
THEME ARTICLE: TinyML

Hardware–Software Co-Design for Real-Time
Latency–Accuracy Navigation in Tiny
Machine Learning Applications
Payman Behnam , Jianming Tong, Alind Khare, Yangyu Chen, Yue Pan , Pranav Gadikar,
Abhimanyu Bambhaniya, Tushar Krishna , and Alexey Tumanov, Georgia Institute of Technology,
Atlanta, GA, 30332, USA

Tiny machine learning (TinyML) applications increasingly operate in dynamically
changing deployment scenarios, requiring optimization for both accuracy and latency.
Existing methods mainly target a single point in the accuracy/latency tradeoff space,
which is insufficient as no single static point can be optimal under variable conditions.
We draw on a recently proposed weight-shared SuperNet mechanism to enable serving a
stream of queries that activates different SubNets within a SuperNet. This creates an
opportunity to exploit the inherent temporal locality of different queries that use the
same SuperNet. We propose a hardware–software co-design called SUSHI that
introduces a novel SubGraph Stationary optimization. SUSHI consists of a novel field-
programmable gate array implementation and a software scheduler that controls which
SubNets to serve and which SubGraph to cache in real time. SUSHI yields up to a 32%
improvement in latency, 0.98% increase in served accuracy, and achieves up to 78.7%
off-chip energy saved across several neural network architectures.

T iny machine learning (TinyML) applications simul-
taneously care about both the accuracy and
latency of ML inference served. Examples include

Intensive Care Unit (ICU) stability score prediction1 and
self-driving cars.2 A body of work including compres-
sion- and hardware-aware neural architecture searches
(NAS) significantly improved latency–accuracy tradeoffs
for specific deep neural network (DNN) models. How-
ever, all of these techniques optimize for a single static
point in the latency–accuracy tradeoff space. We claim
that this is no longer sufficient for dynamic TinyML
deployment conditions.

We observe that these TinyML applications with
acute latency–accuracy sensitivity typically operate
under dynamic deployment conditions. These include
variable-query traffic patterns (e.g., emergency room ver-
sus magnetic resonance imaging in hospitals), on-device
battery power level (e.g., bedside compute), and query
complexity (e.g., autonomous vehicle (AV) navigation
of sparse suburban versus dense urban terrain). Under
dynamic deployment conditions, a choice of any single

model from the latency/accuracy tradeoff space may be
suboptimal as it offers a fixed tradeoff. Indeed, the high-
est accuracy model may result in dropped queries when
transient overloads occur due to its higher latency. When
the load is low, the lowest accuracymodel may yield sub-
optimal prediction quality—both unnecessarily underper-
forming. The ideal is picking a “best-fit” model from the
latency/accuracy tradeoff space. Thus, the ability to
navigate between arbitrary points in the latency/
accuracy tradeoff space in real time is intuitively
required for such TinyML applications.

We identify one mechanism that enables this:
weight-shared SuperNets.3,4 This neural network con-
struct consists of multiple convolutional neural networks
sharing common weights. It simultaneously encapsu-
lates “deep and thin” and “wide and shallow” models
within the same structure. These SuperNets can be used
to activate different SubNetswithout explicitly extracting
them into different independently stored models. This
is highly efficient from a systems perspective as it obvi-
ates the need to store model variants separately, and
enables rapid switching between SubNets “activated”
to serve different incoming queries in real time.

On the training side, once-for-all (OFA)3 proposes an
approach to jointly train multiple such neural network

0272-1732 © 2023 IEEE
Digital Object Identifier 10.1109/MM.2023.3317243
Date of publication 20 September 2023; date of current
version 2 November 2023.

November/December 2023 Published by the IEEE Computer Society IEEE Micro 93Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3826-9123
https://orcid.org/0009-0001-6358-0394
https://orcid.org/0000-0001-5738-6942

configurations simultaneously with a constant training
cost. This cost is still 40–50-GPU days and suffers from
an explosion of suboptimal model configurations. It also
suffers from a huge search space during the deployment
phase. In the proposed CompOFA,4 we seek to reduce
this search space by constraining it to model configura-
tions close to the expected accuracy-latency Pareto fron-
tier. We incorporate insights of compound relationships
between elastic model dimensions to build CompOFA,4

creating a design space orders ofmagnitude smaller.
To be able to serve such SuperNets efficiently, we

need the support of both hardware and software. The
need for real-time inference has led to a plethora of
accelerators in computer architecture literature. Key
optimization techniques leveraged by these accelera-
tors involve reusing activations and/or weights across
multiple computations, (i.e., weight-, output-, input-,
row-, and hybrid versions of these5). These dataflow
optimizations rely on neural network layers, specifically
2-D convolutions, to be compute bound. One challenge
of serving SubNetswith diverse shapes, however, is the
memory-bound nature of some of the SubNets.6 To
ameliorate the memory pressure, we make a key
enabling observation that there’s a significant amount
of temporal locality in the weights of SubNets used
across queries. We identify this as an opportunity for
a novel type of data reuse, which we call SubGraph
stationary (SGS) optimization, which, to the best of our
knowledge, has not been previously proposed.

The efficiency of serving SuperNets is thus reduced
to the technical challenge of managing the SubNets
activated and SubGraphs reused across queries. Intui-
tively, the systemwill benefit from reusing themaximum
possible SubGraph that offers the maximum overlap
with activated SubNets. Addressing this problem involves

careful design of the on-chip caching mechanism and
the accelerator state-aware scheduler because the
latency of served SubNets directly depends on the
SubGraph cached on chip and is, therefore, a function
of both control choices. Figure 1(a) illustrates that
1) latency for a deep and thin SubNet (blue) is lowest
when a cached SubGraph contains more layers (match-
ing its shape) and 2) latency for a wide and shallow
SubNet (red) is lowest with a cached SubGraph with
larger width layers. Thus, the software scheduler control
decision must be responsible for 1) a SubNet selection
that serves the current query with awareness of the
current cached SubGraph (state) and 2) a cached-
SubGraph update decision, which must be made by
leveraging the temporal locality of weight reuse across
SubNets served over time.

Thus, realization of the proposed SGS optimization
requires the SGS-aware query schedule to be co-designed
with the SGS’s hardware implementation. The scheduler’s
goal is to decide, in real time, which SubNet to activate for
each query and calculate which sequence of SubGraphs
to cache over time. Finally, we generalize the SGS’s opti-
mization by proposing an abstraction that enables the
query scheduling policy to retain its accelerator state
awareness without any accelerator-specific informa-
tion. We claim that it’s possible to capture all the useful
nuances of the accelerator state in a 2-D table, expos-
ing the a priori measured latency of activating a SubNet
i given a currently cached SubGraph j [Figure 2(a)]. We
instantiate the concept of SGS cross-query optimization
in SUSHI: our vertically integrated inference-serving stack.

TRAINING SuperNet
In OFA, there is a search space of SubNets of a teacher
model with varying dimensions, like image resolution,

FIGURE 1. Observations for inference and training of weight-shared DNNs. (a) Latency of two different SubNets as a function of

different cached SubGraphs. (b) Accuracy and latency heatmaps for varying uniform depth/width and expansion ratios and fixed

different kernel size of MobV3.

TinyML

94 IEEE Micro November/December 2023Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

kernel size, depth, and width. These model dimensions
are sampled independently of each other, allowing all
combinations of dimensions, which leads to the combi-
natorial explosion of 1019 models. Obviously, such a large
search space leads to complications in training and
searching. In addition, during the deployment phase on
the target hardware device, OFA relies on the proxy for
accuracy and latency prediction, which is not precise.

We observed that in the OFA search space, there are
specific trends in the accuracy and latency of the mod-
els that increase consistently with the growth of depth
and width dimensions together, as Figure 1(b) shows.

Therefore, we propose that with a heuristic of grow-
ing both depth and width together, one can capture
models with better accuracy and latency tradeoffs. We
leverage these insights to build a new design space
called CompOFA by removing the suboptimal configu-
rations. We show that this tractable design space
directly reduces interference in training, which allows
us to reduce training duration. Note that batch normal-
ization (BN) calibration is needed. We have to precom-
pute BN for each SubNet, but BN layers are not
memory/compute bound.

SERVING SuperNet: SYSTEM
SUSHI consists of three major components: scheduler
(SushiSched), abstraction (SushiAbs), and accelerator
(SushiAccel), as shown in Figure 2(a).

ABSTRACTION
SushiAbs provides latency estimation for the serving
SubNets as a function of cached SubGraph. It implic-
itly makes SushiSched take cached-SubGraph-aware

decisions. The abstraction needs to be space and time
efficient.

To make it space efficient, the abstraction limits
the set of all possible cached SubGraphs to a signifi-
cantly smaller set S (>> 1019 4). The size of SubGraphs
in S is selected to be close to the cache size. To make
it time efficient, SushiAbs uses a lookup table with Sub-
Nets as rows and SubGraphs as columns.

SushiSched DESIGN
Here we describe the principle of SushiSched.

Per-Query SubNet ðSNtÞ Selection. As shown in
Figure 2(a), the scheduler needs to decide from two
policies, namely, 1) serve strictly better accuracy or 2)
serve strictly lesser latency, which can be specified by
the user. In case of strictly better accuracy, the sched-
uler serves a SubNet that has minimum latency among
all the SubNets that have accuracy # At: It may be
possible that the served latency might not satisfy the
latency constraint of$ Lt:

In case of strictly lesser latency, the scheduler
serves a SubNet that has maximum accuracy among
all the SubNets that have latency $ Lt: Similarly, it is
possible that the served accuracy might not satisfy the
accuracy constraint of# At:

The accuracy for a given SubNet is fixed, whereas
the latency depends on the SubGraph cached into
the persistent buffer (PB). The scheduler employs a
Latency% Table to get the latency values for SubNet
given a cache state.

Encoding SubGraph DNN Architecture. The sched-
uler represents both the SubNets and the SubGraphs as
a vector, as shown in Figure 2(b). The scheduler uses the
number of kernelsKi and channels Ci of every layer i to
create a vector of size 2N forN% layered DNNs.

FIGURE 2. (Left) SUSHI overview and (right) SUSHI SubGraph selection. (a) System architecture overview. Given a stream of

queries annotated with [Accuracy (Acc), Latency] pairs q1, ::, qQ and the current cache state C1, the scheduler chooses the Sub-

Net to be served SNt for each tth query and next cache state C2 after everyQ queries. (b) Running average of the SubNets for the

pastQ queries. DRAM: dynamic random-access memory; PB: persistent buffer; DPE: dot product engine.

TinyML

November/December 2023 IEEE Micro 95Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

It is noteworthy that C and K are enough to
encode SubNet dimensions. Elastic dimensions change
the width or depth of SuperNets. The width is repre-
sented by simply changing C and K, and depth is rep-
resented by making C and K equal to zero. If both C

andK are zero, that means that that layer is skipped.
Amortizing Caching Choices. The scheduler keeps

a running average of the past Q SubNets that were
served by the scheduler, as shown in Figure 2(b) (Avg-
Net). The running average serves as a good indicator of
the kernels and the channels that were frequently
used in the SubNets that were served for the past Q
queries. The larger the C and K values for a specific
layer in the AvgNet, the more frequently that that layer
is used in the pastQ queries.

It is noteworthy that other cache replacement poli-
cies (e.g., least recently used and first in, first out)
make sense when we have multiple options to evict.
They imply finer granularity of caching, whereas in SGS,
caching operates at the granularity of entire Sub-
Graphs. Thus, those policies are not applicable.

Predicting the Next SubGraph ðStþQÞ. The sched-
uler employs the distance from the running average of
the past Q queries to predict the next SubGraph to be
cached, as shown in Figure 2(b). The scheduler caches
the SubGraph that has the minimum distance from the
average SubNet. A minimum distance ensures that the
most frequent kernels and channels are cached into
the PB. A minimum distance from average SubNet
ensures that we are picking the best-fit SubGraph in
terms of frequently occurring channels and kernels in
the served SubNets.

SERVING SuperNet: HARDWARE
Hardware Design Challenges
To support SGS, we propose augmenting DNN acceler-
ators with a custom cache called the PB. Introduction
of the PB leads to a new design space because it com-
petes for a finite on-chip buffer capacity [which needs
to be partitioned across input activation (iAct), weight,
output activation tiles, and also shared weights].

Architectural Components
In this section, we introduce components of SushiAccel
[Figure 3(a)] and how they support all the proposed data
reuse in Figure 3.

Compute Array
Dot Product Engine (DPR). The key building block

of DNN accelerators is the ability to compute dot prod-
ucts. We picked fixed-size DPEs of size nine. Larger ker-
nels will be broken down into a serial of 3' 3 kernels
and get flattened across the multipliers for reduction
using the adder tree. As for small kernels (e.g., 1' 1),
the C dimension will be flattened across multipliers to
leverage input channel parallelism.

Parallelism. The number of rows indicates the total
number of kernels being processed in parallel in the
DPE array, i.e., kernel-level parallelism ðKP Þ in Figure
3(a). Although the number of columns stands for the
total number of iAct channels being processed in paral-
lel, i.e., channel-level parallelism ðCP Þ: To leverage paral-
lelism, SushiAccel first loads weights and then stores
and forwards iActs to reuse them from top to bottom.

FIGURE 3. SushiAccel architecture and corresponding single convolutional (conv) and multiquery scheduling. (a) Overall SushiAccel

architecture ðKP ¼ 2,CP ¼ 3Þ: (b) Dataflow overview. (c) iAct sliding window reuse. (d) iAct multifilter reuse. (e) oAct reuse. (f) Sub-

Graph reuse. iAct: input activation; oAct: output activation.

TinyML

96 IEEE Micro November/December 2023Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

On-Chip Buffers and Supported Data Reuse
We designed a custom on-chip buffer hierarchy to sup-
port reuse opportunities not leveraged by the DPE
array. Each data type has its own separate buffers, as
illustrated by different colors in Figure 3(a).

Persistent Buffer. The PB is designed to enable
SubGraph reuse. For example, SushiAccel loads the
SubGraph (kernel 1) in Figure 3(f) from off-chip memory
only once and stores it inside the PB such that it could
be reused when switching between SubNet 1 and
SubNet 2.

Dynamic Buffer (DB). The DB is a typical on-chip
storage device that stores the distinct weights of the
requested SubNet. By adopting a PB, only noncommon
weights need to be fetched from the off-chip to the
on-chip storage. For example, in Figure 3(f), all kernels
except the common part (kernel 2 to kernel N) will be
loaded into the DB when targeting at SubNet 1 and will
be replaced by kernel M to kernel M þN when switch-
ing into SubNet 2. The DB Is implemented as a ping-
pong buffer, as indicated by DB1 and DB2 in Figure 3(a),
to hide the latency of fetching distinct weights from the
off-chip dynamic random-accessmemory (DRAM).

Zero Point (ZP)/Scale Buffer (ZSB). The ZP/ZSB
stores zero point and scale for quantized inference.

Further, we implement a streaming buffer, line buffer,
and an output buffer to enable iAct reuse—multiple
kernels [Figure 3(d)], iAct—sliding-window reuse [Figure
3(c)], and oAct reuse [Figure 3(e)], separately.

SushiAccel DATAFLOW AND
SCHEDULING
Latency Reduction From Interquery
Scheduling
The interquery scheduling of SushiAccel is shown in
Figure 3(b), where stage B indicates the movement of
the common SubGraph from an off-chip to an on-chip
PB. The latency saving of SushiAccel comes from elimi-
nating the redundant off-chip SubGraph access, as
illustrated in Figure 3(b), where SushiAccel reduces
multiple common SubGraph off-chip access (stage B)
to only once, compared to the design without a PB.

Hiding Latency From Intralayer Dataflow
Within each convolution layer, SushiAccel processes a
convolution layer in the granularity of weight tiles
shown in Figure 3(b). Different stages (i.e., A–L) are
defined in Figure 3(a), which represent the movement
of specific data.

To further hide off-chip data access latency from
the critical path, we implement a double-distinct
weights buffer [ping-pong DBs, i.e., DB1 and DB2 shown
in Figure 3(a) to hide the off-chip latency of fetching

distinct weights behind the computation latency]. This
is indicated by stages D1 and D2, which are hidden
from stages F, G, J, and K [the red arrows in Figure 3(b)].

EXPERIMENTAL RESULTS
System Setup
Workload
We choose the weight-shared version of ResNet50 and
MobV3. By utilizing Sahni et al.,4 we obtain a sequence
of six SubNets from ResNet50, with sizes ranging from
[7.58 MB, 27.47 MB], and 7 SubNets from MobV3 ranging
from 2.97 MB to 4.74 MB.a Shared weights take up 7.55
MB and 2.90MB for ResNet50 andMobV3, separately.

Deployment Platforms
We implemented the proposed SushiAccel on ZCU104
as a small field-programmable gate array (FPGA) board.
We compare our SushiAccel with the PB and without
the PB and the CPU (Intel i7, 45 W).

Scheduler Simulator
We developed an analytic model that estimates the
behavior of SushiAccel to explore the design space by
configuring the architecture with parameters. We also
developed SushiSched, which runs on the CPU.

SuperNet Training Evaluation
Although OFA requires 978 h for training, CompOFA4

needs only 494 h (a 2' reduction). In addition, CompOFA
reaches a 216' speedup in model search/extraction
time compared to OFA.

A latency–accuracy comparison of CompOFA with
a fixed/elastic kernel size and OFA networks on an Intel
CPU and a Samsung cellphone is shown in Figure 4(a)
and (b). The best model in CompOFA for the evaluated
latency targets is as accurate as OFA, despite its signif-
icantly smaller family size and training budget. The
results validate our intuition behind the CompOFA
heuristic, which leads to a smaller design space without
degrading the latency/accuracy of Pareto optimality.

SushiAccel Evaluation
We evaluate how SushiAccel contributes to latency
and energy reduction. We run the 3' 3 convolution
layers of ResNet50. The SushiAccel on ZCU104 has an
off-chip bandwidth of 9.6 GB/s, a PB size of 1.7 MB, and
throughput of 0.2592 tera-floating point operations per
second when running at 100MHz.

aThe selected SubNets are shown by A–F and A–G in the
Figure 4(c) and (d).

TinyML

November/December 2023 IEEE Micro 97Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

Latency Evaluation
The real board results are shown in Figure 4(c), where
the SushiAccel without and with the PB achieves a
[1.81', 3.04'] and [1.87', 3.17'] speedup, respectively,
over the CPU. And the SubGraph reuse could boost
extra [2.86%, 6.48%] speedup for SushiAccel running on
the ZCU104 for a single query.

Energy Evaluation
Energy spent on data movement has been proven to
dominate energy consumption in DNN accelerators.
We estimate the overall off-chip energy for several plat-
forms in Figure 4(d). We estimate the off-chip energy
by profiling the DRAM data access and compute it as
NumberAccess' EnergyPerAccess. Compared to with
and without the PB design, the proposed SubGraph
reuse can save [14%, 52.6%] and [43.6%, 78.7%] off-chip
data access energy of ResNet50 (MobV3), respectively,
for different SubNets!

SushiSched Evaluation
Figure 5(a) and (b) show that SushiSched is able to
serve queries with strictly lesser latency and/or better

accuracy for ResNet50. The blue dots represent the
served queries by employing SushiSched. We observed
similar trends for MobV3.

End-to-End SUSHI Evaluation
In this section, we compare the latency–accuracy
tradeoff results among SUSHI without the PB, SUSHI
with the PB (state-unaware caching), and SUSHI. The
blue dots in Figure 5(c) and (d) illustrate how SUSHI
serves random queries.b

For ResNet50, in all cases in Figure 5(c), SUSHI with
the PB consistently outperforms SUSHI without the PB.
And SUSHI increases the serving accuracy up to 0.98%
given the same latency. It is also able to decrease the
latency by 2.4 ms given the same accuracy. For MobV3,
SUSHI offers better accuracy latency except for a few
points, which is slightly worse than with the PB. Due to
the small size of MobV3, a big portion of SubNet can
be fit into the PB. Thus, for a few queries, it may be

FIGURE 4. Real hardware evaluations. (top) Latency–accuracy tradeoff space and (bottom) the FPGAmeasurement [the left and

right bars in (c) are SushiAccel without the PB and with the PB]. (a) Intel (CompOFA versus OFA). (b) Samsung (CompOFA versus

OFA). (c) ZCU104 (Latency). (d) ZCU104 (Energy).

bDue to the overlapping, only limited points in the figures
are visible.

TinyML

98 IEEE Micro November/December 2023Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

beneficial to use the current content rather than
update the PB at every “Q” queries.

ABLATION STUDY
PB Size
When the PB size is less than the minimum SubNet
size, increasing the PB size results in further latency
reduction for SushiAccel [Figure 6(a) and (b)]. Even
with a fixed PB size, the amount of improvement can
be changed depending on what is in the PB (up to 7').
SushiSched can help us to provide the SubGraph that
can provide maximum latency reduction.

Impact of PB Hit Ratio on Latency
Due to the novel concept of SGS cache reuse, we
define the cache hit ratio as a fraction of SubGraph
weights in the PB that were used (hit) by a served Sub-
Net, relative to SubNet size. More precisely, the SUSHI

cache hit ratio is size_of_used_SubGraph_in_PB/
size_of_served_SubNet. Intuitively, higher temporal
locality should lead to a higher cache hit ratio as
more of the cached SubGraph weights are reused
across queries. This property directly stems from the

weight-shared nature of the activated SubNets. Cache
hit ratio becomes a function of the workload, quality of
SushiSched decisions, and the properties of SushiAccel
(such as PB size). We validate that better temporal
locality of the workload leads to a better cache hit
ratio and correlates to higher latency performance
improvement. We consider MinNetTrace (MaxNet-
Trace), a set of queries annotated with latency that
only the smallest (largest) SubNet can satisfy. We
also define a step function that steps through Sub-
Nets such that each next SubNet is a superset of the
previous one, starting from minimum SubNet to maxi-
mum SubNet.

Figure 6(c) shows that for a given model architec-
ture, all workloads consistently perform between the
“guardrails” set by the MinNetTrace and the MaxNet-
Trace. This is useful as it defines the range of operation
for SushiSched. The traces that activate the exact same
SubNet exhibit maximum locality. Further, we show
that the step trace has a higher hit ratio than a random
trace, with queries randomly annotated. Importantly,
this correlates with the better latency performance in
Figure 6(d) and (e). Thus, SUSHI offers a convenient
method of evaluating its relative performance by using

FIGURE 5. (top) Serving strictly lesser latency and higher accuracy. (a) Lesser latency for ResNet50. (b) Higher accuracy for

ResNet50. (bottom) Comparing SUSHI latency-accuracy trade0ff space with design without SUSHI and SUSHIwithout scheduler for (c)

ResNet50 and (d) MobV3. sch: scheduling.

TinyML

November/December 2023 IEEE Micro 99Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

the newly defined SGS cache hit ratio. We observe that
for a stream of queries (e.g., 50), SUSHI improves the
latency by 29% (32%) compared to SUSHI without a
scheduler for ResNet50 (MobV3).

CONCLUSION
SUSHI is a vertically integrated inference-serving stack
that takes advantage of the temporal locality induced
by queries on the same weight-shared SuperNet. SUSHI

proposes a novel SGS optimization for SuperNet infer-
ence across queries. SUSHI is a vertically co-designed
and integrated scheduler and FPGA implementation
with a layer of abstraction in between that general-
izes the design. SUSHI can be integrated into state-of-
the-art ML inference-serving frameworks and enables
better latency/accuracy tradeoffs when serving a
stream of queries with latency–accuracy constraints
in real time.

FIGURE 6. Ablation study. Latency reduction by increasing (top) PB size and (bottom) effect of higher temporal locality andmodel

architecture on hit ratio and latency. (a) PB size ResNet50. (b) PB size MobV3. (c) Hit ratio CDF (lower right is better). (d) ResNet50

latency CDF. (e) MobV3 latency CDF.

TinyML

100 IEEE Micro November/December 2023Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT
This material is based on work partially supported by
the National Science Foundation under Grant CCF-
2029004, Semiconductor Research Corporation, and
the Qualcomm Innovation Fellowship Award. Addi-
tional support was provided by a sponsored research
award by Cisco Research.

REFERENCES
1. S. Hong et al., “HOLMES: Health OnLine model

ensemble serving for deep learning models in intensive
care units,” in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2020,
pp. 1614–1624, doi: 10.1145/3394486.3403212.

2. I. Gog et al., “D3: A dynamic deadline-driven approach
for building autonomous vehicles,” in Proc. 17th Eur.
Conf. Comput. Syst. (EuroSys), 2022, pp. 453–471,
doi: 10.1145/3492321.3519576.

3. H. Cai et al., “Once for all: Train one network and
specialize it for efficient deployment,” in Proc. ICLR, 2022.

4. M. Sahni et al., “CompOFA: Compound once-for-all
networks for faster multi-platform deployment,” in
Proc. ICLR, 2021.

5. H. Kwon et al., “MAESTRO: A data-centric approach to
understand reuse, performance, and hardware cost of
DNN mappings,” IEEE Micro, vol. 40, no. 3, pp. 20–29,
May/Jun. 2020, doi: 10.1109/MM.2020.2985963.

6. P. Behnam et al., “Subgraph stationary hardware-
software inference co-design,” in Proc. MLSys, 2023.

PAYMAN BEHNAM is a Ph.D. candidate majoring in electri-

cal and computer engineering at the Georgia Institute of

Technology, Atlanta, GA, 30332, USA. His research interests

are at the intersection of machine learning, systems, and

hardware. He is the co-corresponding author of this article.

Contact him at paymabn.behnam@gatech.edu.

JIANMING TONG is a Ph.D. candidate majoring in computer

science at the Georgia Institute of Technology, Atlanta,

GA, 30332, USA. His research interests are focused on

AI acceleration and privacy-perserving AI. He is the

co-corresponding author of this article. Contact him at

jianming.tong@gatech.edu.

ALIND KHARE is a Ph.D. candidate majoring in computer

science at the Georgia Institute of Technology, Atlanta, GA,

30332, USA. His research interests are at the intersection of

machine learning and systems. Contact him at alind.khare@

gatech.edu.

YANGYU CHEN was a master’s student in electrical and

computer engineering at the Georgia Institute of Technol-

ogy, Atlanta, GA, 30332, USA. His research interests include

computer architecture and deep neural network accelerators.

Contact him at yangyuchen@gatech.edu.

YUE PAN is a Ph.D. candidate majoring in computer science

and engneering at the University of California, San Diego.

His research interests include computer architecture and

domain-specific accelerators. Contact him at yup014@ucsd.edu.

PRANAV GADIKAR is a master’s student majoring in com-

puter science at the Georgia Institute of Technology, Atlanta,

GA, 30332, USA. His research interest is focused on systems for

machine learning. Contact him at pranav.gadikar@gatech.edu.

ABHIMANYU BAMBHANIYA is a Ph.D. candidate majoring in

electrical and computer engineering at the Georgia Institute

of Technology, Atlanta, GA, 30332, USA. His research inter-

ests include artificial intelligence accelerators and deep neu-

ral networks. He is a Graduate Student Member of IEEE.

Contact him at abambhaniya3@gatech.edu.

TUSHAR KRISHNA is an associate professor of electrical and

computer engineering/computer science at theGeorgia Institute

of Technology, Atlanta, GA, 30332, USA. His research interests

include computer architecture, on-chip networks, and deep

learning accelerators. Krishna received his Ph.D. degree in

electrical engineering and computer science from MIT. He is a

SeniorMember of IEEE.Contact himat tushar@ece.gatech.edu.

ALEXEY TUMANOV is an assistant professor of computer

science/electrical and computer engineering at the Georgia

Institute of Technology, Atlanta, GA, 30332, USA. His research

interest is focused on systems support for soft real-time

machine learning and distributed machine learning frame-

works. He received his Ph.D. degree from Carnegie Mellon Uni-

versity. Contact him at atumanov@gatech.edu.

TinyML

November/December 2023 IEEE Micro 101Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 28,2024 at 23:13:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3394486.3403212
http://dx.doi.org/10.1145/3492321.3519576
http://dx.doi.org/10.1109/MM.2020.2985963
mailto:paymabn.behnam@gatech.edu
mailto:jianming.tong@gatech.edu
mailto:alind.khare@gatech.edu
mailto:alind.khare@gatech.edu
mailto:yangyuchen@gatech.edu
mailto:yup014@ucsd.edu
mailto:pranav.gadikar@gatech.edu
mailto:abambhaniya3@gatech.edu
mailto:tushar@ece.gatech.edu
mailto:atumanov@gatech.edu

