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infinite commutator width), also being the first such left
orderable examples.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Whether finitely generated infinite simple groups of homeomorphisms of R exist had
been a longstanding open question of Rhemtulla [10] (also asked by Clay and Rolfsen in
[2], by Navas in [13], and in the “Kourovka Notebook” [7]) In [4] the first two authors
constructed the first examples, answering the question in the affirmative. In a subsequent
article [11], Matte Bon and Triestino demonstrated that certain groups of piecewise linear
homeomorphisms of flows are also examples of this phenomenon. The groups of Matte
Bon and Triestino generalize the construction of [4]. The connection has been formally
explained in a paper by Le Boudec and Matte Bon [9]. The goal of this article is to
exhibit two new families of examples that exhibit new, strikingly different dynamical
and algebraic features, compared to existing families.

The question as stated originally asks whether finitely generated simple left orderable
groups exist. However, note that left orderability for countable groups is equivalent to
requiring that they admit a faithful action by orientation preserving homeomorphisms
of the real line. Achieving the combination of finite generation and simplicity for such
groups presents certain technical challenges owing to the lack of compactness of R.
Moreover, there are also certain natural obstructions to simplicity for various finitely
generated groups of homeomorphisms of R. If such a group is amenable, then it admits
a homomorphism onto Z (see [15]). The same holds if the group admits a nontrivial
action by C'-diffeomorphisms on a closed interval (or even [0,1), see [14]). For a more
detailed discussion around these issues, we refer the reader to [4].

One key motivation for the construction of these new examples in the present article is
to prove the following theorem. Note that any countable group of orientation preserving
homeomorphisms of the real line admits faithful actions by homeomorphisms on any
given manifold of dimension one or above. However, it is more desirable to search for
actions that do not admit fixed points or proper, closed invariant subsets of the manifold.
Recall that a group action on a topological space by homeomorphisms is minimal if all
orbits are dense. Indeed, minimality is a desirable dynamical condition that one may
require of an action on a manifold of choice. In this article we focus on the case of the
torus and the circle. We prove the following.

Theorem 1.0.1. Denote by G the class of finitely generated simple groups of homeomor-
phisms of the real line. The following holds:

o There exist G € G that admit a minimal action by homeomorphisms on the torus.
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o There exist G € G that admit a minimal action by homeomorphisms on the circle.

e There exist G € G that admit nontrivial homogeneous quasimorphisms, and that
have infinite commutator width: for each n € N there is an element that cannot be
expressed as a product of fewer than n commutators.

o There exist G € G that admit a faithful action by C'*°-diffeomorphisms of the circle.

o There exist G € G that admit a faithful action by piecewise linear homeomorphisms
of the circle.

The examples that witness the above are divided in two families. Groups in the first
family are finitely generated by definition, however it is surprising that they are simple,
and the proof of simplicity involves an intricate analysis of the group action. The groups
in the second family emerge as the derived subgroups of examples called fast n-ring
groups (defined independently by Brin, Bleak, Kassabov, Moore and Zaremsky in [1] and
by the second author with Kim and Koberda in [8]). The simplicity of these examples is
less surprising, however it is surprising that they are finitely generated and left orderable.
The proof of finite generation involves an intricate analysis of the group action.

We now present the first family. Recall that Thompson’s group T is the group of
piecewise linear orientation preserving homeomorphisms of the circle S = R/Z such
that:

(1) Each linear part is of the form 2" +d for n € Z,d € Z[}]/Z.
(2) There are finitely many points where the slopes do not exist, and they lie in Z[%]

The group T' < Homeo™ (R) is the central extension obtained by “lifting” this action
to the real line. In particular, there is a short exact sequence

15Z->T—>T—1

Here the group Z is the group of integer translations of the real line, and it lies in the
center of T'. It is easily seen that T is finitely presented, since T is finitely presented. The
group T was first studied by Ghys and Sergiescu in [3], and it has several remarkable
features.

One may modify the “lift”, T', as follows. Let S be as above, and consider the map

pr:R—=8'" R - R/N\Z

for each A > 0. The map ¢ provides the alternative lift Ty < Homeo' (R), which as
an abstract group is isomorphic to T = T;. Note that the center of Ty is the group
(t — t+mn)\| n € Z). In spite of the fact that T,T) are not simple, we prove the
following;:

Theorem 1.0.2. Let A\ > 1 be irrational. The group Gy = (T, T)) is simple.
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This provides a family of finitely generated simple groups of homeomorphisms of the
real line which are very elementary to define. Moreover, they are shown to admit minimal
actions on the torus by homeomorphisms. To explain this, we use a very nice description
of the action suggested to us by an anonymous referee. This description also admits a
natural generalization to higher dimensions.

For each interval I C S!, we define the subgroup F; of Thompson’s group 7" consisting
of elements which pointwise fix the complement of I. Take the linear foliation on the 2-
torus, generated by an irrational direction A € R?. For any interval I C S! = R/Z with
dyadic endpoints and length |I| < 1, we let Fy«g: be the subgroup of homeomorphisms
of T2 supported on the annulus I x S' which preserve the linear foliation, and the action
on any segment obtained by considering the intersection of the linear foliation with the
annulus I xS projects on I to the action of the group F;. Similarly one defines the groups
Fg14; by considering horizontal annuli S' x I. The group generated by the subgroups
of the form Fgiy; and Fyyg is the group G,. As the linear foliation is preserved by
the action of G, the restriction of the action on T2 on any leaf of the foliation gives an
action of G on the real line.

To describe the second family, we recall the notion of a fast n-ring group.

Definition 1.0.3. For n > 3, let {J1, ..., J,,} be a set of open intervals in S* that cover S,
and homeomorphisms { f1, ..., f, } that satisfy:

(1) J;nJ; =0if |t — j| ¢ {0,1} mod n and is a nonempty, proper, subinterval of both
Ji, Jj if |i — j| = 1 mod n.
(2) J; = Supp(f;) ={x €S' |z f; #x} for each 1 <i < n.

The aforementioned configuration is called an n-ring of intervals and homeomorphisms.
For n > 3, the group G,, = (f1, ..., fn) is said to be a fast n-ring group if the following
holds. In what appears below, we interpret the subscripts as modulo n. For each 1 <17 <
n, let x; be the endpoint of J; 1 that lies in J;. Then we have the following dynamical
condition which we refer to throughout the article as (x):

i+ fifiv1fir1 € Jiqia Vi<Ii<n

It was demonstrated in [1] that the isomorphism type of G,, does not depend on the
choice of homeomorphisms fi, ..., f,, provided the dynamical condition (x) is satisfied.
The nature of the isomorphism type of G,, for n > 3 remains mysterious to the authors.
Our second family emerges from the derived subgroups of these examples. First, we
observe that these groups in fact admit actions on the line, by exploiting the dynamics
that emerge from the condition (x) above.

Proposition 1.0.4. The lift of the given action of G, to R is isomorphic to G,,.

Finally, we show the following.
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Theorem 1.0.5. For each n > 3, the group H, = G/, is finitely generated and simple.

To provide another dynamical motivation for this second family, we recall the following
dynamical trichotomy for group actions on the real line. We recall that an action & :
G — Homeo™ (R) is prozimal if for every open interval I C R and bounded interval
J C R, there is a group element f € G such that J - ®(f) C I. Also, we recall the
notion of semiconjugacy of actions. Two actions ®;,®, : G — Homeo™ (R) are said to
be semiconjugate if there is a non-decreasing map ¢ : R — R that is also proper (the
preimage of every compact set is bounded), and satisfy:

¢o®i(g) = Pa2(g) 0 ¢

For every action of a finitely generated group G by orientation preserving homeomor-
phisms of the real line without global fixed points, there are three possibilities:

(i) There is a o-finite measure p that is invariant under the action.

(ii) The action is semiconjugate to a minimal action for which every small enough
interval is sent into a sequence of intervals that converge to a point under well
chosen group elements, however, this property does not hold for every bounded
interval.

(iii) The action is globally contracting; more precisely, it is semiconjugate to a proximal
action.

(For details, we refer the reader to [12]). Note that if a group admits a faithful action
of type (i), then it is indicable: it admits a homomorphism onto Z. Therefore, finitely
generated simple groups of homeomorphisms of the real line may only admit actions of
type (i) or (4it). It was shown in [5] that the groups G, constructed by the first two
authors in [4] have the property that every action on the real line by homeomorphisms
without global fixed points is of type (iéi). The same was shown by Matte Bon and
Triestino for their examples in [11]. The following is a corollary of Theorem 1.0.5, which
illustrates a striking new phenomenon associated with the groups H,,n > 3. Note that
the fact that these group actions are of type (ii) follows from the fact that the action
is minimal, locally contracting (as a consequence of Lemma 3.2.1), and each element
commutes with integer translations.

Corollary 1.0.6. There exist finitely generated simple left orderable groups which admit
actions by orientation preserving homeomorphisms on the real line which are of type (it).

The reader should compare this with the results in [5] and [11], where the groups G,
were shown to be uniformly perfect. Given a group that admits an action of type (ii) on
R, it is easy to see that the action of the group on the orbit of 0 provides an unbounded
homogenous quasimorphism. As a consequence, we have the following.
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Corollary 1.0.7. There exist finitely generated simple left orderable groups that admit
non-trivial (unbounded) homogeneous quasimorphisms into the reals.

This also has a nice algebraic consequence.

Corollary 1.0.8. The groups H,,n > 3 have infinite commutator width: for each n € N
there is an element that cannot be expressed as a product of fewer than n commutators.

Note that the homeomorphisms that generate the group G, can be realized as el-
ements of Thompson’s group 7. It follows that the groups H,, are subgroups of T'. It
was shown in [3] that the given action of 7" on S! is conjugate to an action on S! by
C*°-diffeomorphisms.

We conclude the following.

Corollary 1.0.9. There exists a finitely generated simple left orderable group that admits:

(1) a faithful action by C*-diffeomorphisms of the circle.

(2) a faithful action by piecewise linear homeomorphisms of the circle (with finitely many
allowable breakpoints for each element).

(3) an embedding into Thompson’s group T.

Note that one may show (1) directly without appealing to [3], since we can simply
choose the homeomorphisms that generate G,, to be smooth.

Convention 1.0.10. In this article, all group actions will be right actions. We will use the
notation [f,g] = fgf'¢~' and f9 = g~ fg. For f € Homeo™ (R), we define Supp(f) =
{zeR |z f#x}.

2. The first family

The goal of this section is to prove Theorem 1.0.2. We first state and discuss a few
preliminaries.

2.1. Preliminaries

Throughout the section we denote by F' the standard piecewise linear action of Thomp-
son’s group F < Homeo™ [0,1]. This coincides with the stabilizer of 0 in the standard
action of Thompson’s T on the circle R/Z. Also, we fix A € R\ Q, A > 1. Recall that
Gy = (T,T,) where Ty < Homeo™ (R) is the lift of the action of 7' on S! with the
identification R — R /AZ. We denote the center of T, Ty by Z(T), Z(T)), respectively.
Note that

ZT)={t—t+n|neZ} Z(T)\)={t—t+n\|neZ}



J. Hyde et al. / Journal of Algebra 635 (2023) 1-22 7

Recall that the pointwise stabilizer of Z in T, which we denote by F}, is naturally
isomorphic to Thompson’s group F', which we define as the stabilizer of 0 in T". Indeed
the restriction of this action of Fj to each interval [n,n + 1] for each n € Z is conjugate
to the standard piecewise linear action of F' on [0,1] by the translation ¢ — ¢ + n. The
only normal subgroups of T are the subgroups of the center. Indeed, for any element
feT\ Z(T), ({f)) =T. The analogous statement holds for T'.

We observe the following.

Lemma 2.1.1. Every g € G is Lipschitz. In particular, g is uniformly continuous.

Proof. It is straightforward to see that the elements of T, T are Lipschitz. Since this
property for homeomorphisms is closed under composition and inverses, we are done. [

2.2. The proof
The key idea in the proof of Theorem 1.0.2 is the following.

Proposition 2.2.1. Let f € Gy \ {id}. For each ¢ € {1, A}, there is an element g € {{f))
that satisfies the following.

(1) g fizes ¢+ Z pointwise.
(2) There exists a pair x,y € [0,¢c], x < y such that

(x+c-n)-g>y+c-n VYn e Z
Using Proposition 2.2.1, we can finish the proof of Theorem 1.0.2 as follows.

Proof of Theorem 1.0.2. Let g1,g2 € G \ {id} be elements that satisfy the conclusion
of Proposition 2.2.1 for ¢ = 1, ¢ = A, respectively. We will show that:

(1) {{g1))ex N(T\ Z(T)) # 0.
(2) ((g2))cx N (TA\ Z(T)) # 0.

We know that the normal closure of any element in (7 \ Z(T)) is all of T. Similarly,
the normal closure of any element in (T \ Z(T)) is all of Tx. So showing the above
concludes the proof. Indeed, since the proofs for (1),(2) are analogous, we shall just
prove (1).

Thanks to Lemma 2.1.1, g; !is Lipschitz, and recall that ¢; fixes Z pointwise. Com-
bining this with the fact that there exists a pair z,y € [0, 1], z < y such that

(x4+n)-g1>y+n VneZ

we obtain the following. We can find an open interval € I C (0, 1) such that
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X-giNnX=90 WhereX:U(I+n)
neZ

We proceed to find nontrivial elements ki, ho € Fy < T such that
Supp(ha), Supp(h2) C X
and let h = [hy, ha]. Note that also Supp(h) C X. Since
Supp(gy thy tg1) = Supp(hy ') - g1
it follows that
Supp(gy thy 1) N Supp(hy) = 0
Let hy = g7 *hy 'g1. By our assumption, we know that [hs, hy] = id. Therefore,

[h1, [h2, g7 )] = [h1, hohs) = hiha(hshy ' hy ' )hy ' = hihohi 'yt
= [h1,he] = h € F1 \ {id} C (T'\ Z(T))

finishing the proof. O

The rest of this section shall be devoted to proving Proposition 2.2.1. We will prove
it for the case ¢ = 1, the other case is completely analogous.

Definition 2.2.2. Let G’ < Homeo' (R) be a given subgroup. Given compact intervals I,.J
in R such that |I| = |J|, we denote by T;; : R — R the unique translation so that
T;1(J)=1I. Given g,g1,92 € G and I, J as above, we define

dg(I,J) =sup{(lz-g—x-h||zel} where h =T yog0 Ty

and
di(g1,92) = sup{|z- g1 — 2 - go| |z € I}
Note that a direct computation gives us that dy (1, J) = dgy(J, I).
Lemma 2.2.3. Consider an element
g = Uv1...un v, € Gy u; € T,v; € Ty for each 1 <i<n
For each € > 0, there is a 61 > 0 such that for each § € (—61,81), the element
gs = ur (f5 v fs)eeun(f5  on fs) where x - fs =1+ 0

satisfies that djp 11(g, gs) < e.
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Proof. This follows from an elementary inductive argument on n, using uniform con-
tinuity of elements of T\ (which follows from the fact that its elements are lifts of
homeomorphisms of the circle, which is a compact space). O

The following is a basic dynamical fact about irrational translations, we refer the
reader to chapter 4 in [6].

Lemma 2.2.4. Fix A € R\ Q,\ > 1. For each € > 0, there is an N € N such that for
any interval I such that |I| > N, there are m,k € Z such that

[m,m+1] C I |m — kA < e

Definition 2.2.5. An element g € Homeo™ (R) is repetitive if for each ¢ > 0 there is
an N € N such that for each interval I such that |I| > N, there is a subinterval
[m,m 4+ 1] C I,m € Z such that

dg([0,1], [m,m +1]) < e

We say that a group action G < Homeo™ (R) is said to be repetitive, if every g € G is
repetitive.

Proposition 2.2.6. G is repetitive.

Proof. Consider a nontrivial element g = ujv; ... uyv, € Gy, where u; € T and v; € Ty.
We will show that g is repetitive. Let ¢ > 0. Applying Lemma 2.2.3, there is a §; > 0
such that for each § € (—d1, 1), the element

g5 = w1 (f5 o1 fs)eoun (f5 ton fs) where z- fs=xz+46

satisfies that djg 1j(g,9s) < e.

Using Lemma, 2.2.4 we find an N € N such that in every interval I of length at least
N there are m, k € Z such that [m,m + 1] C I and |m — kA| < &;. For such m, k there
isa d € (=41, 1) such that

gl mm+1=frlgsfm  wheret- f, =t+m
Combining this with the fact that djg 1j(g, gs) < €, we obtain
dg([0,1],[m,m+1]) <e O
For the rest of the section, we denote ((g))¢, as simply ({(g)). We shall now focus our

attention on the pointwise stabilizer of Z in ). Recall that the pointwise stabilizer of
Z in T is Fy, defined in the preliminaries above.
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Proposition 2.2.7. Let g € G \ {id}. There is an open interval J C (0,1) whose closure
is also contained in (0,1), and a nontrivial element f € ({g)) such that:

Supp(f) < | (n+J)

n€eZ

Proof. First we argue that ((g)) must contain elements that do not lie in (¢t — ¢t + n |
n € Z). If g is itself not in this subgroup, then we are done. Otherwise, we can find an
element f € T such that the element [g, f] # id and satisfies the required property.

We assume in the rest of the proof that g ¢ (¢t = ¢t +n | n € Z). It follows that there
is an m € Z and an open interval J such that J C (m,m + 1) and g~! | J is not the
restriction of an integer translation. We may assume for simplicity that J C (0,1), by
replacing g by a conjugate of g by an integer translation. Since g is Lipschitz, for each
€ > 0 there is a 6 > 0 such that given an interval I, if [I| < §, then |- g| <.

1

Since g~ | J is not the restriction of an integer translation, combining this with

the Lipschitz condition we can choose a sufficiently small ¢ > 0 and an open interval
IC (inf(J)+e€,sup(J) — €) such that:

II<s  (T-ghHnlm+D) =0 VneZ|I+n) g <e
neZz

From our assumption that I C (inf(J) + €, sup(J) — €) and the Lipschitz condition, we
know that for any ni,ns € Z, if (n1 +1)-gN(na+1) #0, then (ny +1)-g C (ny+J).
Let f1, fo € F1 be such that

Supp(fr), Supp(f2) € |J(n+ 1) [f1, fo] #id

neZz

Note that, in particular, [f1, fo] | I # id | I and that I is fi, fo-invariant.

Claim. The element f = [f1,[f2,97']] € ({g)) is nontrivial and satisfies that:

Supp(f) € |J (n+J)

neZz

Proof of claim. Set v = g~'f; 'g. Note that [f2,g~'] = foy, and that

Supp(v) = Supp(f2)-g < (| Jn+1)-g=J((n+1)-g)
neZ neZz
First we show that f # id. Since
(IghHnJn+D=0

nez

it follows that



J. Hyde et al. / Journal of Algebra 635 (2023) 1-22 11

Iﬂ(U(n+I)-g)=@

nez

and so v [ I = id [ I. Therefore,

[frfol T =[fo, fo 1T #dd [ 1

Recall from our assumption above that for any ny,ns € Z, if (n1+1)-gN(ne+1) # 0,
then (ny+1I)-g C (na+J). Let

Xi={neZ|(n+1)-g9)n(J (m+1)+#0}

meZ

Xo={neZ|((n+1)-g)n(|J (m+1)

0}
and

= ((n+D-99 U= ((n+D-9g

neX1 n€Xso
Let 71,72 € Homeo™ (R) be defined as:
NnIUi=~v1U01 mn[R\Ui=id[R\U
Y [Uz=71Uz 7 [R\Us=id | R\U

By design, v = 12, and that

Supp(m) € | (n+J)  Supp(ra) 0 |J(n+1) =10

neZ neZ
In particular, [ys, fo] = id. It follows that

F=1hfo) = fforfi oy s = Af(n(efs e D D!
= fifo(nfs )t

Since

Supp(f1), Supp(f2), Supp(1) € (| (n+ 7))

nez

it follows that Supp(f) C (U,cz(n+J)). O

We define a map v : F — T as the obvious extension of the natural map v : F —
Fy; < T. For an open interval I C (0,1) and N € N, an element f € G is said to be
(I, N)-regular, if the following holds.
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(1) Supp(f) € Upez(I +n).
(2) There is an element g € F'\ {id} such that for each interval L, |L| > N, there is an
interval [m,m + 1] C L for m € Z, such that

V(g) r[mvm+1}:f.[[mam+1]

Note that the element f that emerges in the conclusion of Proposition 2.2.7 satisfies
the first of the two conditions above. We show the following.

Proposition 2.2.8. Let I C (0,1) be an open interval whose closure is also contained in
(0,1), and let f € Gy \ {id} be such that:

Supp(f)  |J(n+1)

neZ

Then there is a nontrivial element h € ((f)) and an N € N such that h is (I, N)-regular.

Proof. Assume without loss of generality that f [ [0, 1] is nontrivial. (Otherwise, we may
replace f with a conjugate of f by an integer translation and proceed.) Let J C I C (0,1)
be an open interval such that either sup(J- f) < inf(J) or sup(J) < inf(J-f). It follows
that there is an ¢ > 0 such that for any g € Homeot[0,1] such that do1)(9, f) < €, we
have that J-gnNJ = (.

Since f is repetitive, there is an N € N such that for each interval L,|L| > N there
is an interval [k, k + 1] C L for k € Z, such that

ap(0,1], ook +1]) < e
Let g = [g1,92], 91,92 € F be non trivial elements such that

Supp(g), Supp(g1), Supp(gz2) C J

Using an argument analogous to the one in the proof of Theorem 1.0.2, we see that the
element

h = [v(g1), [V(g2), F]] € ()

has the property that for each interval L,|L| > N there is an interval [k, k + 1] C L for
k € Z such that

vig) Ik k+1]=hT [k k+1]
Moreover,

Supp(h) C U (I+k)

keZ
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This finishes the proof. 0O

An element f € Homeo™ (I) (for I a compact interval) is said to be e-pressive for some
€ > 0, if for each € I we have that z- f > x —e.

Lemma 2.2.9. Let a € Homeo™[0,1]\ {id} such that Supp(c) C I for an open interval
I C (0,1) whose closure is also contained in (0,1). For any e > 0 and z,y € (0,1),z < y,
there exist elements g1, ...,g, € F,n € N such that:

(1) The element h = (a9)l1...(a9%)!n satisfies that x - h >y for some ly,...,1, € Z.
(2) For any homeomorphism 3 € Homeo™[0,1], Supp(B) C I (where I is the same
interval as above), we have that (39)11...(B97)n is e-pressive for any i, ...,1, € Z.

Proof. Recall that the action of F on (0, 1) has the following two features, which we shall
use. The first is that for any pair of closed intervals I;, I C (0,1) with dyadic rational
endpoints, there is an element f € F such that I; - f = Is. The second is that for any
triple of closed intervals Iy C Iy C I3 C (0, 1) with dyadic rationals as endpoints, we can
find an f € F such that Supp(f) C I3 and that Ir C I; - f.

Let K C I be an open interval such that K is a connected component of Supp(«). It
follows that either Vo € K,x-a > xz or Vo € K,z - a < x. We use the aforementioned
features of F' to construct elements gy, ..., g, € F such that

Ji=1-¢ I =19y,
and

Ki=K- g1 K,=K:-g,
are intervals satisfying:

(1) z € K1,y € K.
(2) For each 1 <i <n—1, we have

inf(K;) < inf(Kit1) < sup(K;) < sup(K;11) sup(K;) < inf(K42) (for i <n —1)
(3) For each 1 <i<m, |J;| <e.

We remark that Ky, ..., K, forms an n-chain of intervals, in the sense of [8]. It follows
that for suitable 1, ...,1,, € Z we have

T- (agl)ll._.(agn)ln >y

Note that condition (3) above guarantees that for any 3 € Homeo™[0,1] such that
Supp(B) C I, we have that (891)4...(39%)i is e-pressive for any ly,...,l, € Z. O
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Proof of Proposition 2.2.1. Let g € G\ {id}. By combining Propositions 2.2.7 and 2.2.8,
we obtain an element h € ({(g)), an open interval I C (0, 1) whose closure is also contained
in (0,1), and an N € N such that h is (I, N)-regular. Replacing h by a conjugate of h by
an integer translation if necessary, we assume that for [0, N], the interval [0, 1] realizes
condition (2) of the definition of (I, N)-regular.

We apply Lemma 2.2.9 to a = h | [0,1] for € = SiN,x = %,y = 3 to obtain elements
g1,y gn € F,m € N such that:

(1) The element v = (a9)1...(a9)! satisfies that & -y > 2 for some Iy, ..., I, € Z.
(2) For any homeomorphism 3 € Homeo™[0,1], Supp(8) C I (where I is the same

interval as above), we have that (391)l1...(397) is e-pressive for any [y, ...,1,, € Z.

Let
(1= (hl’(g1))l1m(h1/(gn))ln

and

<2: H f]c_lglfn Wheret'fk:k+1

0<k<N,k€Z

Then (5 is the required element that satisfies the conditions of Proposition 2.2.1 for
c =1, that is:

(1) z- ==z forall z € Z.
(2) And

(—+n)'C2>%+n VneZ 0O
3. The second family

Our goal in this section will be to prove Theorem 1.0.5.
3.1. Preliminaries

We recall from the introduction the n-ring configuration of intervals {Ji, ..., J,} and
homeomorphisms {f1, ..., f,} that satisfy the dynamical condition (x). Note that if the
above is satisfied for some 1 < ¢ < n, then it is satisfied for all 1 < ¢ < n. As before,
we denote the resulting group, called the fast n-ring group, as G, = (f1, ..., fn). The
following was proved in [1].
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Theorem 3.1.1. Given an n-ring configuration of intervals and homeomorphisms that
satisfies condition (x), the (marked) isomorphism type of the group G, (with generating
set {f1,...; fn}) does not depend on the choice of homeomorphisms fi, ..., fn.

Recall the following well known result (Theorem 2.1.1 in [14]).
Theorem 3.1.2. If G < Homeo ' (S') then precisely one of the following holds:

(1) There is a finite orbit.

(2) All the orbits are dense.

(3) There exists a copy of the Cantor set C C S', which is G-invariant, and such that
G | C is minimal. In this case, the given action is semiconjugate to a minimal action,
i.e. there is a degree one continuous map ® : S* — S! and a group homomorphism
¥ : G — H onto some group H such that

VfeG Dof=9Y(f)od

The resulting minimal action of H on S' is called the minimalization of the action

of G.

Remark 3.1.3. Note that in case 3, the minimalization is an action of H, but since H
is a quotient of G (possibly with trivial kernel), it may be viewed as an action of G. In
some cases (for instance if G is the fast n-ring group), one can show that ¢ : G — H
must be an isomorphism.

Given a group of homeomorphisms of the circle, we say that the action is prozimal,
if for every interval I C S' such that S'\ I has nonempty interior, and any nonempty
open set J C S!, there is an element f in the group such that - f C J.

3.2. The proof of Theorem 1.0.5

Observe that while a given action of G,, may not be minimal, by part (3) of Theo-
rem 3.1.2, it is semiconjugate to a minimal action on S!. (Clearly the group action has
no finite orbit.) It is clear that the dynamical condition () holds for the new minimal
action as well. Since this dynamical condition guarantees a stable isomorphism type (by
Theorem 3.1.1), it follows that this new minimal action of G,, is also faithful. Actually,
the main Theorem of [1] in fact guarantees that we can choose the homeomorphisms
f1, -, fn satisfying the dynamical condition (x) such that the action of G,, on S! is min-
imal. Therefore, for the rest of this section we shall assume that the action of G,, on S!
is minimal. We denote as before H,, = G/, and assume that n > 3.

Lemma 3.2.1. The action of H,, on S' is prozimal.
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Proof. First we shall prove that the action of G, on S! is proximal. Let I C S! such
that S'\ I has nonempty interior, and consider an open set J C S'.

By minimality, we find an element ¢g; € G,, such that inf(Jy) - g1 € J. By continuity,
there is an open interval I; containing inf(J1) such that I; - g1 C J. It is an elementary
exercise using the definition of f1, ..., f,,, and minimality, to construct an element g € G,
such that I - go C Supp(f1). There is an n € Z such that I - go - f7* C I1. It follows that
I-g2fi'g1 C J, finishing the proof.

Next we show that the action of H,, is minimal. Using proximality of G, as above,
let g; € G, be an element such that J; - g; C Jf. We define the elements

L=g"f"gf:

Clearly, I; € H, and I; | Supp(f;) = fi | Supp(f;). It follows that the orbits of the
actions of H,,G,, are the same, hence the action of H,, is minimal. We show that the
action of H,, is proximal in a similar way as done above for GG,,, replacing the elements
fi by l;. (Note that one may modify I; above so that Supp(l;) N Jf lies in any given open
interval J C J¢.) O

Proposition 3.2.2. H,, is simple.

Proof. To prove simplicity, we must show that ((g))m, = H, for an arbitrary g €
H,\{id}. First we show that {{g))m, contains a nontrivial element f such that Supp(f)©
has nonempty interior. Let J be an open interval such that JN(J-g) = (. We find elements
l1,1l2 € Hy, such that [l1, 2] # id and (Supp(l1)USupp(l2))¢ has nonempty interior. Using
Proximality, we find h; € H,, such that

(Supp(ly) U Supp(la)) - hy C J

The element f = [[I"*, g7'],152] has the feature that f € ((g))m, \ {id} and that
Supp(f)¢ has nonempty interior.

Since ({f))m, < {{(9))m, , showing that ((f))p, = H, finishes the proof. It suffices to
show that [f;, f;]" = [f, f1] € ((f))m, for each 1 <i,j <n and h € Gy.

We denote 8; = fI 32 = fjh and K1 = Supp(p1), K2 = Supp(P2). It is easy to see
that (K3 U K5)¢ has nonempty interior since Supp([f;, f;])¢ has the same feature.

Let I, I5, I3 be disjoint open intervals such that

L-fnhL =0  ILUl3C Supp(f)°
Using proximality, we find g1, g2, g3 € H,, such that

(KhWUKs)-g1C1 Ki-goCIy Ky-g3C1I3
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Let

on =[g7 " AP g T =B (BTN e =97, BallBa, g5 T = BY (B )%

Note that a1, € H,,.
We obtain

(81, Bo] = law, oz, S € (),
This proves our claim. O

Definition 3.2.3. We say that an open interval I C S' is small if there exists 1 < k < n
such that I C Jg. We find a collection of pairwise disjoint small intervals

I={Li;CS"'[1<i,j<n}
satisfying that
Lijcint(S'\J;) 1<i,j<n

We say that a small open interval I C St is Z-small if for each 1 < 4, j < n the following
holds:

(1) ¥INL;#0then INJ; =0
(2) If[ﬂjj?é@, then INL;; = 0.

It is an easy exercise to show that for any such Z, there is an € > 0 such that any interval
I with |I]| < € is Z-small. More generally, we say that a subset of S! is Z-small, if it is
contained in a Z-small interval.

Using proximality from Lemma 3.2.1, we construct a set of n? elements

satisfying that

Ji'/\i,jCLi,j Vlgl,jgn
We define v; ; = )\;jlfi)\i,j. Note that Supp(v; ;) C L; ;. Since the intervals {L; ; | 1 <
i,j < n} are pairwise disjoint, the elements of the set {v; ; | 1 <4,j < n} generate a free
abelian group of rank n2.

We define the set

X={v}fill1<ij<n}CH,
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Observe that
{Vi’jlyijjlg ‘ 1 S iajlaj? g n} C <X>

since Vi,jluisz = (VZ-T]-I2 fi)(ulfjll fi)~1. Also, observe that (fiuifjl) € (X) since

(vitvig) i) f)wiavi)) = (vii fi)wiavi) ) = (fiv; D wiavi ) = (fivi})

An element of the form fy;]-l € (X) is called a special element if Supp(f) N
Supp(z/;jl) = () and Supp(f) is Z-small.

Lemma 3.2.4. Let fl/ijjl € (X) be a special element and let g € {flﬂ, oy FEUY be such
that Supp(f9) is T-small. Then there is a 1 < k < n such that fgui_’kl s also a special
element of (X).

Proof. Assume that g = f;. The proof where g = f,; ! is similar. If Supp(f) N Supp(f;) =
(), then fgz/,;jl = fl/;jl and we are done. If Supp(f) N Supp(f;) # 0, then we consider the
special element

fyitll _ (f]/ijjl)(yi’jy;ll) € (X)

Note that this is a special element since Supp(f) is Z-small, and Supp(f) N Supp(f;) # 0,
hence Supp(f) N Supp(ui_’ll) = (). Tt follows that

o e L G Uy

-1
= fflVi,l €(X)
is a special element. O

Lemma 3.2.5. Let J C S' be an open interval such that J¢ has nonempty interior. For
each 1 < i <mn,s € {£1}, there exists an element v € (X) such thaty [ J = f7 [ J.

Proof. We fix i € {1,...,n} and s = —1 (the proof for s = 41 is similar). Consider the
element v; ; for some 1 < j < n. We know that Supp(ui,j) C Ji for some 1 < k < n.
Consider the element z/iyjuijkl € (X).

By minimality of the action of G, on S!, we can find an element g = g...g,, for
gi € {fif, ..., fE1) such that inf(Jy) - g C J¢. By continuity, we find a Z-small open
interval I containing inf(Jy) such that:

(1) I-gcCJe.
(2) For each 1 < s <m, the interval I - g;...g5 is Z-small.
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We let h = frv, ,lc € (X). It follows that for some large I € N the element
A

4,57

that this means that for each 1 < s < m, Supp(y)-gi...gs is Z-small, hence Supp(9t--9=)

has the property that if v = then Supp(vy) C I and oLzy kl is a special element. Note
is Z-small.

Applying Lemma 3.2.4 to ’yl/;kl, we conclude that there is a 1 < k1 < n such that
Yty kll € (X) is a special element. Proceeding inductively, applying Lemma 3.2.4 each
time, we find 1 < kq, ..., k;,, < n such that

791"‘g3uf,i € (X) is a special element for 1 < s <m

17

In particular, 'ygl/;klm € (X) and (’ygz/fklm)(l/i,kmfifl)

(2

= ~9f7! € (X) is an element
which satisfies the conclusion of the Lemma, since Supp(~9) C J€.

O
Now we prove our main theorem.
Theorem 3.2.6. H,, = (X)), and hence it is finitely generated.

Proof. Let f € (X) \ {id} be such that Supp(f)° has nonempty interior. Since H, is
simple, ((f))g, = Hp. To prove the claim, it suffices to show that for any element
g € H,,, we have that (f*!)9 € (X). We proceed by induction on the word length of g.
The base case is trivial. Now assume that g = hf; for some 1 <[ < n, and that by the
induction hypothesis f" € (X). The proof for the case g = hff1 shall be similar.

Let J = Supp(f"). Note that J¢ has nonempty interior. Applying Lemma 3.2.5, there
exists an element v € (X) such that v | J = f;. We obtain that f*' = f» ¢ (X). 0O

We now prove Proposition 1.0.4.

Proof of Proposition 1.0.4. Recall that Homeo™ (S') admits a central extension as fol-
lows:

—~

1 — Z — Homeo™ (S!) — Homeo™ (S') — 1

where Z = (t =t +n | n € Z) and Homeo™' (S') is the centralizer of (t — ¢t +n | n € Z)
in Homeo™ (R).
We claim that G, lifts to a subgroup of Homeo™ (R). We choose lifts of the generators

fi as homeomorphisms h; € Homeo™ (R), for each 1 < i < n, such that each h; fixes
points in R. Let G,, = (h1, ..., hy,). It suffices to show that

GuN(t—t+n|neZ)=/{idg}
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If this were not the case, then we can find a word

g=g1..-Gm gi € {hlﬂ, ...,hfl}

with the property that z-g = z+n for n € Z\ {0}. The corresponding word v = v1...Vm,
where each hiil is replaced by fiﬂ, must satisfy the following condition. For any point
in z € S, the sequence

LyX Y1, L - Y1725 eees L Y1+oYm = T

must “go around the circle” a nontrivial number of times to arrive back to itself. We will
show that this is impossible, i.e. the above can only happen with “backtracking”.
Let @ = inf(J1). Consider the sequence

xT,T ")/1,1'"71’72,...,1"’}/1...")/m =X

If

Y1 Ye = L Y1--Yi+1

we delete the occurrence of ;41 from the word ~1...7,,,, and adjust the indices (replacing
jbyj—1forj>i+1) to obtain a new word 7;...ym—1. Whenever we find backtracking,
i.e.

T -Y1--Yi—-1 =T Y1--Yit1

in y1...7Ym, we remove y;y;+1 from the word, and adjust the indices (replacing j by j — 2
for j > i+ 1) to obtain a new word 7;...7¥m—2. At the end of this process, we obtain a
new word ;... such that

Ty YLy Y1Y2y ooy T Y1V = T
such that for each 1 <i < k

TY1Yi F T Y1 Yid
and foreach 1 <i< k—1

TY1Yi F T Y1 Yid2

Assume without loss of generality that v; = f; (rather than f[l) for some 1 < i < n. By
our analysis above, together with the condition (x), we have that

(D) oy =
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for some 1 <i <n,p; € N\ {0}, and where the indices of f; are read modulo n.

Note that the dynamical condition (*) can be applied in an iterative fashion and
hence is in fact equivalent to the following dynamical condition (where the indices are
read modulo n as usual):

(II) - fifixrfizi € Jijir VIEN,1>1

Combining this with equation (I) immediately gives us that
-y € {inf(J;),sup(J;) | 1 <i<n}
This contradicts our assumption that = inf(J;), and hence the hypothesis that
GuN(t—t+n|neZ)={idg}
must hold. O

4. A question

The following is an open question that has been driving the curiosity of the authors
throughout the course of this research.

Question 4.0.1. Do there exist finitely presented infinite simple groups of homeomor-
phisms of R?

We also remark that it would be particularly interesting to find finitely presented
infinite simple groups of homeomorphisms of R that admit type (¢i7) actions on R.
Since most known examples of groups of homeomorphisms that are finitely presented
and simple emerge as groups of homeomorphisms of the Cantor set or the circle, an
example acting on R by means of a type (i7) action shall exhibit a fundamentally new
phenomenon.
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