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of homeomorphisms of R that also admit minimal actions 
by homeomorphisms on the torus. The second construction 
provides the first examples of finitely generated simple groups 
of homeomorphisms of R which also admit a minimal action 
by homeomorphisms on the circle. This also provides new 
examples of finitely generated simple groups that admit 
nontrivial homogeneous quasimorphisms (and therefore have 
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infinite commutator width), also being the first such left 
orderable examples.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Whether finitely generated infinite simple groups of homeomorphisms of R exist had 
been a longstanding open question of Rhemtulla [10] (also asked by Clay and Rolfsen in 
[2], by Navas in [13], and in the “Kourovka Notebook” [7]) In [4] the first two authors 
constructed the first examples, answering the question in the affirmative. In a subsequent 
article [11], Matte Bon and Triestino demonstrated that certain groups of piecewise linear 
homeomorphisms of flows are also examples of this phenomenon. The groups of Matte 
Bon and Triestino generalize the construction of [4]. The connection has been formally 
explained in a paper by Le Boudec and Matte Bon [9]. The goal of this article is to 
exhibit two new families of examples that exhibit new, strikingly different dynamical 
and algebraic features, compared to existing families.

The question as stated originally asks whether finitely generated simple left orderable 
groups exist. However, note that left orderability for countable groups is equivalent to 
requiring that they admit a faithful action by orientation preserving homeomorphisms 
of the real line. Achieving the combination of finite generation and simplicity for such 
groups presents certain technical challenges owing to the lack of compactness of R. 
Moreover, there are also certain natural obstructions to simplicity for various finitely 
generated groups of homeomorphisms of R. If such a group is amenable, then it admits 
a homomorphism onto Z (see [15]). The same holds if the group admits a nontrivial 
action by C1-diffeomorphisms on a closed interval (or even [0, 1), see [14]). For a more 
detailed discussion around these issues, we refer the reader to [4].

One key motivation for the construction of these new examples in the present article is 
to prove the following theorem. Note that any countable group of orientation preserving 
homeomorphisms of the real line admits faithful actions by homeomorphisms on any 
given manifold of dimension one or above. However, it is more desirable to search for 
actions that do not admit fixed points or proper, closed invariant subsets of the manifold. 
Recall that a group action on a topological space by homeomorphisms is minimal if all 
orbits are dense. Indeed, minimality is a desirable dynamical condition that one may 
require of an action on a manifold of choice. In this article we focus on the case of the 
torus and the circle. We prove the following.

Theorem 1.0.1. Denote by G the class of finitely generated simple groups of homeomor-
phisms of the real line. The following holds:

• There exist G ∈ G that admit a minimal action by homeomorphisms on the torus.
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• There exist G ∈ G that admit a minimal action by homeomorphisms on the circle.
• There exist G ∈ G that admit nontrivial homogeneous quasimorphisms, and that 

have infinite commutator width: for each n ∈ N there is an element that cannot be 
expressed as a product of fewer than n commutators.

• There exist G ∈ G that admit a faithful action by C∞-diffeomorphisms of the circle.
• There exist G ∈ G that admit a faithful action by piecewise linear homeomorphisms 

of the circle.

The examples that witness the above are divided in two families. Groups in the first 
family are finitely generated by definition, however it is surprising that they are simple, 
and the proof of simplicity involves an intricate analysis of the group action. The groups 
in the second family emerge as the derived subgroups of examples called fast n-ring 
groups (defined independently by Brin, Bleak, Kassabov, Moore and Zaremsky in [1] and 
by the second author with Kim and Koberda in [8]). The simplicity of these examples is 
less surprising, however it is surprising that they are finitely generated and left orderable. 
The proof of finite generation involves an intricate analysis of the group action.

We now present the first family. Recall that Thompson’s group T is the group of 
piecewise linear orientation preserving homeomorphisms of the circle S1 = R/Z such 
that:

(1) Each linear part is of the form 2n + d for n ∈ Z, d ∈ Z[ 12 ]/Z.
(2) There are finitely many points where the slopes do not exist, and they lie in Z[ 12 ].

The group T < Homeo+(R) is the central extension obtained by “lifting” this action 
to the real line. In particular, there is a short exact sequence

1 → Z → T → T → 1

Here the group Z is the group of integer translations of the real line, and it lies in the 
center of T . It is easily seen that T is finitely presented, since T is finitely presented. The 
group T was first studied by Ghys and Sergiescu in [3], and it has several remarkable 
features.

One may modify the “lift”, T , as follows. Let S1 be as above, and consider the map

φλ : R → S1 R → R/λZ

for each λ > 0. The map φλ provides the alternative lift Tλ < Homeo+(R), which as 
an abstract group is isomorphic to T = T 1. Note that the center of Tλ is the group 
〈t → t + nλ | n ∈ Z〉. In spite of the fact that T , Tλ are not simple, we prove the 
following:

Theorem 1.0.2. Let λ > 1 be irrational. The group Gλ = 〈T , Tλ〉 is simple.
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This provides a family of finitely generated simple groups of homeomorphisms of the 
real line which are very elementary to define. Moreover, they are shown to admit minimal 
actions on the torus by homeomorphisms. To explain this, we use a very nice description 
of the action suggested to us by an anonymous referee. This description also admits a 
natural generalization to higher dimensions.

For each interval I ⊂ S1, we define the subgroup FI of Thompson’s group T consisting 
of elements which pointwise fix the complement of I. Take the linear foliation on the 2-
torus, generated by an irrational direction λ ∈ R2. For any interval I ⊂ S1 = R/Z with 
dyadic endpoints and length |I| < 1, we let FI×S1 be the subgroup of homeomorphisms 
of T2 supported on the annulus I×S1 which preserve the linear foliation, and the action 
on any segment obtained by considering the intersection of the linear foliation with the 
annulus I×S1 projects on I to the action of the group FI . Similarly one defines the groups 
FS1×I by considering horizontal annuli S1 × I. The group generated by the subgroups 
of the form FS1×I and FI×S1 is the group Gλ. As the linear foliation is preserved by 
the action of Gλ, the restriction of the action on T2 on any leaf of the foliation gives an 
action of Gλ on the real line.

To describe the second family, we recall the notion of a fast n-ring group.

Definition 1.0.3. For n ≥ 3, let {J1, ..., Jn} be a set of open intervals in S1 that cover S1, 
and homeomorphisms {f1, ..., fn} that satisfy:

(1) Ji ∩ Jj = ∅ if |i − j| /∈ {0, 1} mod n and is a nonempty, proper, subinterval of both 
Ji, Jj if |i − j| = 1 mod n.

(2) Ji = Supp(fi) = {x ∈ S1 | x · fi 
= x} for each 1 ≤ i ≤ n.

The aforementioned configuration is called an n-ring of intervals and homeomorphisms. 
For n ≥ 3, the group Gn = 〈f1, ..., fn〉 is said to be a fast n-ring group if the following 
holds. In what appears below, we interpret the subscripts as modulo n. For each 1 ≤ i ≤
n, let xi be the endpoint of Ji+1 that lies in Ji. Then we have the following dynamical 
condition which we refer to throughout the article as (∗):

xi · fifi+1...fi+l ∈ Ji+l+1 ∀1 ≤ l ≤ n

It was demonstrated in [1] that the isomorphism type of Gn does not depend on the 
choice of homeomorphisms f1, ..., fn, provided the dynamical condition (∗) is satisfied. 
The nature of the isomorphism type of Gn for n ≥ 3 remains mysterious to the authors. 
Our second family emerges from the derived subgroups of these examples. First, we 
observe that these groups in fact admit actions on the line, by exploiting the dynamics 
that emerge from the condition (∗) above.

Proposition 1.0.4. The lift of the given action of Gn to R is isomorphic to Gn.

Finally, we show the following.
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Theorem 1.0.5. For each n ≥ 3, the group Hn = G′
n is finitely generated and simple.

To provide another dynamical motivation for this second family, we recall the following 
dynamical trichotomy for group actions on the real line. We recall that an action Φ :
G → Homeo+(R) is proximal if for every open interval I ⊆ R and bounded interval 
J ⊂ R, there is a group element f ∈ G such that J · Φ(f) ⊂ I. Also, we recall the 
notion of semiconjugacy of actions. Two actions Φ1, Φ2 : G → Homeo+(R) are said to 
be semiconjugate if there is a non-decreasing map φ : R → R that is also proper (the 
preimage of every compact set is bounded), and satisfy:

φ ◦ Φ1(g) = Φ2(g) ◦ φ

For every action of a finitely generated group G by orientation preserving homeomor-
phisms of the real line without global fixed points, there are three possibilities:

(i) There is a σ-finite measure μ that is invariant under the action.
(ii) The action is semiconjugate to a minimal action for which every small enough 

interval is sent into a sequence of intervals that converge to a point under well 
chosen group elements, however, this property does not hold for every bounded 
interval.

(iii) The action is globally contracting; more precisely, it is semiconjugate to a proximal 
action.

(For details, we refer the reader to [12]). Note that if a group admits a faithful action 
of type (i), then it is indicable: it admits a homomorphism onto Z. Therefore, finitely 
generated simple groups of homeomorphisms of the real line may only admit actions of 
type (ii) or (iii). It was shown in [5] that the groups Gρ constructed by the first two 
authors in [4] have the property that every action on the real line by homeomorphisms 
without global fixed points is of type (iii). The same was shown by Matte Bon and 
Triestino for their examples in [11]. The following is a corollary of Theorem 1.0.5, which 
illustrates a striking new phenomenon associated with the groups Hn, n ≥ 3. Note that 
the fact that these group actions are of type (ii) follows from the fact that the action 
is minimal, locally contracting (as a consequence of Lemma 3.2.1), and each element 
commutes with integer translations.

Corollary 1.0.6. There exist finitely generated simple left orderable groups which admit 
actions by orientation preserving homeomorphisms on the real line which are of type (ii).

The reader should compare this with the results in [5] and [11], where the groups Gρ

were shown to be uniformly perfect. Given a group that admits an action of type (ii) on 
R, it is easy to see that the action of the group on the orbit of 0 provides an unbounded 
homogenous quasimorphism. As a consequence, we have the following.
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Corollary 1.0.7. There exist finitely generated simple left orderable groups that admit 
non-trivial (unbounded) homogeneous quasimorphisms into the reals.

This also has a nice algebraic consequence.

Corollary 1.0.8. The groups Hn, n ≥ 3 have infinite commutator width: for each n ∈ N
there is an element that cannot be expressed as a product of fewer than n commutators.

Note that the homeomorphisms that generate the group Gn can be realized as el-
ements of Thompson’s group T . It follows that the groups Hn are subgroups of T . It 
was shown in [3] that the given action of T on S1 is conjugate to an action on S1 by 
C∞-diffeomorphisms.

We conclude the following.

Corollary 1.0.9. There exists a finitely generated simple left orderable group that admits:

(1) a faithful action by C∞-diffeomorphisms of the circle.
(2) a faithful action by piecewise linear homeomorphisms of the circle (with finitely many 

allowable breakpoints for each element).
(3) an embedding into Thompson’s group T .

Note that one may show (1) directly without appealing to [3], since we can simply 
choose the homeomorphisms that generate Gn to be smooth.

Convention 1.0.10. In this article, all group actions will be right actions. We will use the 
notation [f, g] = fgf−1g−1 and fg = g−1fg. For f ∈ Homeo+(R), we define Supp(f) =
{x ∈ R | x · f 
= x}.

2. The first family

The goal of this section is to prove Theorem 1.0.2. We first state and discuss a few 
preliminaries.

2.1. Preliminaries

Throughout the section we denote by F the standard piecewise linear action of Thomp-
son’s group F ≤ Homeo+[0, 1]. This coincides with the stabilizer of 0 in the standard 
action of Thompson’s T on the circle R/Z. Also, we fix λ ∈ R \ Q, λ > 1. Recall that 
Gλ = 〈T , Tλ〉 where Tλ < Homeo+(R) is the lift of the action of T on S1 with the 
identification R → R/λZ. We denote the center of T , Tλ by Z(T ), Z(Tλ), respectively. 
Note that

Z(T ) = {t �→ t + n | n ∈ Z} Z(Tλ) = {t �→ t + nλ | n ∈ Z}
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Recall that the pointwise stabilizer of Z in T , which we denote by F1, is naturally 
isomorphic to Thompson’s group F , which we define as the stabilizer of 0 in T . Indeed 
the restriction of this action of F1 to each interval [n, n + 1] for each n ∈ Z is conjugate 
to the standard piecewise linear action of F on [0, 1] by the translation t → t + n. The 
only normal subgroups of T are the subgroups of the center. Indeed, for any element 
f ∈ T \ Z(T ), 〈〈f〉〉 = T . The analogous statement holds for Tλ.

We observe the following.

Lemma 2.1.1. Every g ∈ Gλ is Lipschitz. In particular, g is uniformly continuous.

Proof. It is straightforward to see that the elements of T, Tλ are Lipschitz. Since this 
property for homeomorphisms is closed under composition and inverses, we are done. �
2.2. The proof

The key idea in the proof of Theorem 1.0.2 is the following.

Proposition 2.2.1. Let f ∈ Gλ \ {id}. For each c ∈ {1, λ}, there is an element g ∈ 〈〈f〉〉
that satisfies the following.

(1) g fixes c · Z pointwise.
(2) There exists a pair x, y ∈ [0, c], x < y such that

(x + c · n) · g > y + c · n ∀n ∈ Z

Using Proposition 2.2.1, we can finish the proof of Theorem 1.0.2 as follows.

Proof of Theorem 1.0.2. Let g1, g2 ∈ Gλ \ {id} be elements that satisfy the conclusion 
of Proposition 2.2.1 for c = 1, c = λ, respectively. We will show that:

(1) 〈〈g1〉〉Gλ
∩ (T \ Z(T )) 
= ∅.

(2) 〈〈g2〉〉Gλ
∩ (Tλ \ Z(Tλ)) 
= ∅.

We know that the normal closure of any element in (T \ Z(T )) is all of T . Similarly, 
the normal closure of any element in (Tλ \ Z(Tλ)) is all of Tλ. So showing the above 
concludes the proof. Indeed, since the proofs for (1), (2) are analogous, we shall just 
prove (1).

Thanks to Lemma 2.1.1, g−1
1 is Lipschitz, and recall that g1 fixes Z pointwise. Com-

bining this with the fact that there exists a pair x, y ∈ [0, 1], x < y such that

(x + n) · g1 > y + n ∀n ∈ Z

we obtain the following. We can find an open interval x ∈ I ⊂ (0, 1) such that
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X · g1 ∩X = ∅ where X =
⋃
n∈Z

(I + n)

We proceed to find nontrivial elements h1, h2 ∈ F1 ≤ T such that

Supp(h1), Supp(h2) ⊂ X

and let h = [h1, h2]. Note that also Supp(h) ⊂ X. Since

Supp(g−1
1 h−1

2 g1) = Supp(h−1
2 ) · g1

it follows that

Supp(g−1
1 h−1

2 g1) ∩ Supp(h1) = ∅

Let h3 = g−1
1 h−1

2 g1. By our assumption, we know that [h3, h1] = id. Therefore,

[h1, [h2, g
−1
1 ]] = [h1, h2h3] = h1h2(h3h

−1
1 h−1

3 )h−1
2 = h1h2h

−1
1 h−1

2

= [h1, h2] = h ∈ F1 \ {id} ⊆ (T \ Z(T ))

finishing the proof. �
The rest of this section shall be devoted to proving Proposition 2.2.1. We will prove 

it for the case c = 1, the other case is completely analogous.

Definition 2.2.2. Let G < Homeo+(R) be a given subgroup. Given compact intervals I, J
in R such that |I| = |J |, we denote by TJ,I : R → R the unique translation so that 
TJ,I(J) = I. Given g, g1, g2 ∈ G and I, J as above, we define

dg(I, J) = sup{(|x · g − x · h| | x ∈ I} where h = TI,J ◦ g ◦ TJ,I

and

dI(g1, g2) = sup{|x · g1 − x · g2| | x ∈ I}

Note that a direct computation gives us that dg(I, J) = dg(J, I).

Lemma 2.2.3. Consider an element

g = u1v1...unvn ∈ Gλ ui ∈ T , vi ∈ Tλ for each 1 ≤ i ≤ n

For each ε > 0, there is a δ1 > 0 such that for each δ ∈ (−δ1, δ1), the element

gδ = u1(f−1
δ v1fδ)...un(f−1

δ vnfδ) where x · fδ = x + δ

satisfies that d[0,1](g, gδ) < ε.
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Proof. This follows from an elementary inductive argument on n, using uniform con-
tinuity of elements of Tλ (which follows from the fact that its elements are lifts of 
homeomorphisms of the circle, which is a compact space). �

The following is a basic dynamical fact about irrational translations, we refer the 
reader to chapter 4 in [6].

Lemma 2.2.4. Fix λ ∈ R \ Q, λ > 1. For each ε > 0, there is an N ∈ N such that for 
any interval I such that |I| > N , there are m, k ∈ Z such that

[m,m + 1] ⊂ I |m− kλ| < ε

Definition 2.2.5. An element g ∈ Homeo+(R) is repetitive if for each ε > 0 there is 
an N ∈ N such that for each interval I such that |I| > N , there is a subinterval 
[m, m + 1] ⊂ I, m ∈ Z such that

dg([0, 1], [m,m + 1]) < ε

We say that a group action G ≤ Homeo+(R) is said to be repetitive, if every g ∈ G is 
repetitive.

Proposition 2.2.6. Gλ is repetitive.

Proof. Consider a nontrivial element g = u1v1 . . . unvn ∈ Gλ, where ui ∈ T and vi ∈ Tλ. 
We will show that g is repetitive. Let ε > 0. Applying Lemma 2.2.3, there is a δ1 > 0
such that for each δ ∈ (−δ1, δ1), the element

gδ = u1(f−1
δ v1fδ)...un(f−1

δ vnfδ) where x · fδ = x + δ

satisfies that d[0,1](g, gδ) < ε.
Using Lemma 2.2.4 we find an N ∈ N such that in every interval I of length at least 

N there are m, k ∈ Z such that [m, m + 1] ⊂ I and |m − kλ| < δ1. For such m, k there 
is a δ ∈ (−δ1, δ1) such that

g � [m,m + 1] = f−1
m gδfm where t · fm = t + m

Combining this with the fact that d[0,1](g, gδ) < ε, we obtain

dg([0, 1], [m,m + 1]) < ε �
For the rest of the section, we denote 〈〈g〉〉Gλ

as simply 〈〈g〉〉. We shall now focus our 
attention on the pointwise stabilizer of Z in Gλ. Recall that the pointwise stabilizer of 
Z in T is F1, defined in the preliminaries above.
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Proposition 2.2.7. Let g ∈ Gλ \ {id}. There is an open interval J ⊂ (0, 1) whose closure 
is also contained in (0, 1), and a nontrivial element f ∈ 〈〈g〉〉 such that:

Supp(f) ⊂
⋃
n∈Z

(n + J)

Proof. First we argue that 〈〈g〉〉 must contain elements that do not lie in 〈t → t + n |
n ∈ Z〉. If g is itself not in this subgroup, then we are done. Otherwise, we can find an 
element f ∈ Tλ such that the element [g, f ] 
= id and satisfies the required property.

We assume in the rest of the proof that g /∈ 〈t → t + n | n ∈ Z〉. It follows that there 
is an m ∈ Z and an open interval J such that J ⊂ (m, m + 1) and g−1 � J is not the 
restriction of an integer translation. We may assume for simplicity that J ⊂ (0, 1), by 
replacing g by a conjugate of g by an integer translation. Since g is Lipschitz, for each 
ε > 0 there is a δ > 0 such that given an interval I, if |I| < δ, then |I · g| < ε.

Since g−1 � J is not the restriction of an integer translation, combining this with 
the Lipschitz condition we can choose a sufficiently small ε > 0 and an open interval 
I ⊂ (inf(J) + ε, sup(J) − ε) such that:

|I| < δ (I · g−1) ∩
⋃
n∈Z

(n + I) = ∅ ∀n ∈ Z, |(I + n) · g| < ε

From our assumption that I ⊂ (inf(J) + ε, sup(J) − ε) and the Lipschitz condition, we 
know that for any n1, n2 ∈ Z, if (n1 + I) · g ∩ (n2 + I) 
= ∅, then (n1 + I) · g ⊂ (n2 + J).

Let f1, f2 ∈ F1 be such that

Supp(f1), Supp(f2) ⊂
⋃
n∈Z

(n + I) [f1, f2] 
= id

Note that, in particular, [f1, f2] � I 
= id � I and that I is f1, f2-invariant.

Claim. The element f = [f1, [f2, g−1]] ∈ 〈〈g〉〉 is nontrivial and satisfies that:

Supp(f) ⊂
⋃
n∈Z

(n + J)

Proof of claim. Set γ = g−1f−1
2 g. Note that [f2, g−1] = f2γ, and that

Supp(γ) = Supp(f2) · g ⊂ (
⋃
n∈Z

(n + I)) · g =
⋃
n∈Z

((n + I) · g)

First we show that f 
= id. Since

(I · g−1) ∩
⋃
n∈Z

(n + I) = ∅

it follows that
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I ∩ (
⋃
n∈Z

(n + I) · g) = ∅

and so γ � I = id � I. Therefore,

[f1, f2γ] � I = [f1, f2] � I 
= id � I

Recall from our assumption above that for any n1, n2 ∈ Z, if (n1 +I) ·g∩(n2 +I) 
= ∅, 
then (n1 + I) · g ⊂ (n2 + J). Let

X1 = {n ∈ Z | ((n + I) · g) ∩ (
⋃
m∈Z

(m + I)) 
= ∅}

X2 = {n ∈ Z | ((n + I) · g) ∩ (
⋃
m∈Z

(m + I)) = ∅}

and

U1 =
⋃

n∈X1

((n + I) · g) U2 =
⋃

n∈X2

((n + I) · g)

Let γ1, γ2 ∈ Homeo+(R) be defined as:

γ1 � U1 = γ � U1 γ1 � R \ U1 = id � R \ U1

γ2 � U2 = γ � U2 γ2 � R \ U2 = id � R \ U2

By design, γ = γ1γ2, and that

Supp(γ1) ⊂
⋃
n∈Z

(n + J) Supp(γ2) ∩
⋃
n∈Z

(n + I) = ∅

In particular, [γ2, f2] = id. It follows that

f = [f1, f2γ] = f1f2γf
−1
1 γ−1f−1

2 = f1f2(γ1(γ2f
−1
2 γ−1

2 )γ−1
1 )f−1

2

= f1f2(γ1f
−1
2 γ−1

1 )f−1
2

Since

Supp(f1), Supp(f2), Supp(γ1) ⊂ (
⋃
n∈Z

(n + J))

it follows that Supp(f) ⊂ (
⋃

n∈Z(n + J)). �
We define a map ν : F → T as the obvious extension of the natural map ν : F →

F1 ≤ T . For an open interval I ⊂ (0, 1) and N ∈ N, an element f ∈ Gλ is said to be 
(I, N)-regular, if the following holds.
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(1) Supp(f) ⊂
⋃

n∈Z(I + n).
(2) There is an element g ∈ F \ {id} such that for each interval L, |L| > N , there is an 

interval [m, m + 1] ⊂ L for m ∈ Z, such that

ν(g) � [m,m + 1] = f � [m,m + 1]

Note that the element f that emerges in the conclusion of Proposition 2.2.7 satisfies 
the first of the two conditions above. We show the following.

Proposition 2.2.8. Let I ⊂ (0, 1) be an open interval whose closure is also contained in 
(0, 1), and let f ∈ Gλ \ {id} be such that:

Supp(f) ⊂
⋃
n∈Z

(n + I)

Then there is a nontrivial element h ∈ 〈〈f〉〉 and an N ∈ N such that h is (I, N)-regular.

Proof. Assume without loss of generality that f � [0, 1] is nontrivial. (Otherwise, we may 
replace f with a conjugate of f by an integer translation and proceed.) Let J ⊂ I ⊂ (0, 1)
be an open interval such that either sup(J ·f) < inf(J) or sup(J) < inf(J ·f). It follows 
that there is an ε > 0 such that for any g ∈ Homeo+[0, 1] such that d[0,1](g, f) < ε, we 
have that J · g ∩ J = ∅.

Since f is repetitive, there is an N ∈ N such that for each interval L, |L| > N there 
is an interval [k, k + 1] ⊂ L for k ∈ Z, such that

df ([0, 1], [k, k + 1]) < ε

Let g = [g1, g2], g1, g2 ∈ F be non trivial elements such that

Supp(g), Supp(g1), Supp(g2) ⊂ J

Using an argument analogous to the one in the proof of Theorem 1.0.2, we see that the 
element

h = [ν(g1), [ν(g2), f−1]] ∈ 〈〈f〉〉

has the property that for each interval L, |L| > N there is an interval [k, k + 1] ⊂ L for 
k ∈ Z such that

ν(g) � [k, k + 1] = h � [k, k + 1]

Moreover,

Supp(h) ⊂
⋃

(I + k)

k∈Z
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This finishes the proof. �
An element f ∈ Homeo+(I) (for I a compact interval) is said to be ε-pressive for some 

ε > 0, if for each x ∈ I we have that x · f ≥ x − ε.

Lemma 2.2.9. Let α ∈ Homeo+[0, 1] \ {id} such that Supp(α) ⊆ I for an open interval 
I ⊂ (0, 1) whose closure is also contained in (0, 1). For any ε > 0 and x, y ∈ (0, 1), x < y, 
there exist elements g1, ..., gn ∈ F, n ∈ N such that:

(1) The element h = (αg1)l1 ...(αgn)ln satisfies that x · h > y for some l1, ..., ln ∈ Z.
(2) For any homeomorphism β ∈ Homeo+[0, 1], Supp(β) ⊆ I (where I is the same 

interval as above), we have that (βg1)l1 ...(βgn)ln is ε-pressive for any l1, ..., ln ∈ Z.

Proof. Recall that the action of F on (0, 1) has the following two features, which we shall 
use. The first is that for any pair of closed intervals I1, I2 ⊂ (0, 1) with dyadic rational 
endpoints, there is an element f ∈ F such that I1 · f = I2. The second is that for any 
triple of closed intervals I1 ⊂ I2 ⊂ I3 ⊂ (0, 1) with dyadic rationals as endpoints, we can 
find an f ∈ F such that Supp(f) ⊂ I3 and that I2 ⊂ I1 · f .

Let K ⊂ I be an open interval such that K is a connected component of Supp(α). It 
follows that either ∀x ∈ K, x · α > x or ∀x ∈ K, x · α < x. We use the aforementioned 
features of F to construct elements g1, ..., gn ∈ F such that

J1 = I · g1 ... Jn = I · gn

and

K1 = K · g1 ... Kn = K · gn

are intervals satisfying:

(1) x ∈ K1, y ∈ Kn.
(2) For each 1 ≤ i ≤ n − 1, we have

inf(Ki) < inf(Ki+1) < sup(Ki) < sup(Ki+1) sup(Ki) < inf(Ki+2) (for i < n− 1)

(3) For each 1 ≤ i ≤ n, |Ji| < ε.

We remark that K1, ..., Kn forms an n-chain of intervals, in the sense of [8]. It follows 
that for suitable l1, ..., ln ∈ Z we have

x · (αg1)l1 ...(αgn)ln > y

Note that condition (3) above guarantees that for any β ∈ Homeo+[0, 1] such that 
Supp(β) ⊆ I, we have that (βg1)l1 ...(βgn)ln is ε-pressive for any l1, ..., ln ∈ Z. �
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Proof of Proposition 2.2.1. Let g ∈ Gλ\{id}. By combining Propositions 2.2.7 and 2.2.8, 
we obtain an element h ∈ 〈〈g〉〉, an open interval I ⊂ (0, 1) whose closure is also contained 
in (0, 1), and an N ∈ N such that h is (I, N)-regular. Replacing h by a conjugate of h by 
an integer translation if necessary, we assume that for [0, N ], the interval [0, 1] realizes 
condition (2) of the definition of (I, N)-regular.

We apply Lemma 2.2.9 to α = h � [0, 1] for ε = 1
8N , x = 1

8 , y = 3
4 to obtain elements 

g1, ..., gn ∈ F, n ∈ N such that:

(1) The element γ = (αg1)l1 ...(αgn)ln satisfies that 1
8 · γ > 3

4 for some l1, ..., ln ∈ Z.
(2) For any homeomorphism β ∈ Homeo+[0, 1], Supp(β) ⊆ I (where I is the same 

interval as above), we have that (βg1)l1 ...(βgn)ln is ε-pressive for any l1, ..., ln ∈ Z.

Let

ζ1 = (hν(g1))l1 ...(hν(gn))ln

and

ζ2 =
∏

0≤k≤N,k∈Z

f−1
k ζ1fn where t · fk = k + 1

Then ζ2 is the required element that satisfies the conditions of Proposition 2.2.1 for 
c = 1, that is:

(1) x · ζ2 = x for all x ∈ Z.
(2) And

(1
4 + n) · ζ2 >

1
2 + n ∀n ∈ Z �

3. The second family

Our goal in this section will be to prove Theorem 1.0.5.

3.1. Preliminaries

We recall from the introduction the n-ring configuration of intervals {J1, ..., Jn} and 
homeomorphisms {f1, ..., fn} that satisfy the dynamical condition (∗). Note that if the 
above is satisfied for some 1 ≤ i ≤ n, then it is satisfied for all 1 ≤ i ≤ n. As before, 
we denote the resulting group, called the fast n-ring group, as Gn = 〈f1, ..., fn〉. The 
following was proved in [1].
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Theorem 3.1.1. Given an n-ring configuration of intervals and homeomorphisms that 
satisfies condition (∗), the (marked) isomorphism type of the group Gn (with generating 
set {f1, ..., fn}) does not depend on the choice of homeomorphisms f1, ..., fn.

Recall the following well known result (Theorem 2.1.1 in [14]).

Theorem 3.1.2. If G < Homeo+(S1) then precisely one of the following holds:

(1) There is a finite orbit.
(2) All the orbits are dense.
(3) There exists a copy of the Cantor set C ⊂ S1, which is G-invariant, and such that 

G � C is minimal. In this case, the given action is semiconjugate to a minimal action, 
i.e. there is a degree one continuous map Φ : S1 → S1 and a group homomorphism 
ψ : G → H onto some group H such that

∀f ∈ G Φ ◦ f = ψ(f) ◦ Φ

The resulting minimal action of H on S1 is called the minimalization of the action 
of G.

Remark 3.1.3. Note that in case 3, the minimalization is an action of H, but since H
is a quotient of G (possibly with trivial kernel), it may be viewed as an action of G. In 
some cases (for instance if G is the fast n-ring group), one can show that φ : G → H

must be an isomorphism.

Given a group of homeomorphisms of the circle, we say that the action is proximal, 
if for every interval I ⊂ S1 such that S1 \ I has nonempty interior, and any nonempty 
open set J ⊂ S1, there is an element f in the group such that I · f ⊂ J .

3.2. The proof of Theorem 1.0.5

Observe that while a given action of Gn may not be minimal, by part (3) of Theo-
rem 3.1.2, it is semiconjugate to a minimal action on S1. (Clearly the group action has 
no finite orbit.) It is clear that the dynamical condition (∗) holds for the new minimal 
action as well. Since this dynamical condition guarantees a stable isomorphism type (by 
Theorem 3.1.1), it follows that this new minimal action of Gn is also faithful. Actually, 
the main Theorem of [1] in fact guarantees that we can choose the homeomorphisms 
f1, ..., fn satisfying the dynamical condition (∗) such that the action of Gn on S1 is min-
imal. Therefore, for the rest of this section we shall assume that the action of Gn on S1

is minimal. We denote as before Hn = G′
n and assume that n ≥ 3.

Lemma 3.2.1. The action of Hn on S1 is proximal.
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Proof. First we shall prove that the action of Gn on S1 is proximal. Let I ⊂ S1 such 
that S1 \ I has nonempty interior, and consider an open set J ⊂ S1.

By minimality, we find an element g1 ∈ Gn such that inf(J1) · g1 ∈ J . By continuity, 
there is an open interval I1 containing inf(J1) such that I1 · g1 ⊂ J . It is an elementary 
exercise using the definition of f1, ..., fn, and minimality, to construct an element g2 ∈ Gn

such that I · g2 ⊂ Supp(f1). There is an n ∈ Z such that I · g2 · fn
1 ⊂ I1. It follows that 

I · g2f
n
1 g1 ⊂ J , finishing the proof.

Next we show that the action of Hn is minimal. Using proximality of Gn as above, 
let gi ∈ Gn be an element such that Ji · gi ⊂ Jc

i . We define the elements

li = g−1
i f−1

i gifi

Clearly, li ∈ Hn and li � Supp(fi) = fi � Supp(fi). It follows that the orbits of the 
actions of Hn, Gn are the same, hence the action of Hn is minimal. We show that the 
action of Hn is proximal in a similar way as done above for Gn, replacing the elements 
fi by li. (Note that one may modify li above so that Supp(li) ∩Jc

i lies in any given open 
interval J ⊂ Jc

i .) �
Proposition 3.2.2. Hn is simple.

Proof. To prove simplicity, we must show that 〈〈g〉〉Hn
= Hn for an arbitrary g ∈

Hn\{id}. First we show that 〈〈g〉〉Hn
contains a nontrivial element f such that Supp(f)c

has nonempty interior. Let J be an open interval such that J∩(J ·g) = ∅. We find elements 
l1, l2 ∈ Hn such that [l1, l2] 
= id and (Supp(l1) ∪Supp(l2))c has nonempty interior. Using 
Proximality, we find h1 ∈ Hn such that

(Supp(l1) ∪ Supp(l2)) · h1 ⊂ J

The element f = [[lh1
1 , g−1

1 ], lh2
2 ] has the feature that f ∈ 〈〈g〉〉Hn

\ {id} and that 
Supp(f)c has nonempty interior.

Since 〈〈f〉〉Hn
≤ 〈〈g〉〉Hn

, showing that 〈〈f〉〉Hn
= Hn finishes the proof. It suffices to 

show that [fi, fj ]h = [fh
i , f

h
j ] ∈ 〈〈f〉〉Hn

for each 1 ≤ i, j ≤ n and h ∈ Gn.
We denote β1 = fh

i , β2 = fh
j and K1 = Supp(β1), K2 = Supp(β2). It is easy to see 

that (K1 ∪K2)c has nonempty interior since Supp([fi, fj ])c has the same feature.
Let I1, I2, I3 be disjoint open intervals such that

I1 · f ∩ I1 = ∅ I2 ∪ I3 ⊂ Supp(f)c

Using proximality, we find g1, g2, g3 ∈ Hn such that

(K1 ∪K2) · g1 ⊂ I K1 · g2 ⊂ I2 K2 · g3 ⊂ I3
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Let

α1 = [g−1
1 , β1][β1, g

−1
2 ] = βg1

1 (β−1
1 )g2 α2 = [g−1

1 , β2][β2, g
−1
3 ] = βg1

2 (β−1
2 )g3

Note that α1, α2 ∈ Hn.
We obtain

[β1, β2] = [α1, [α2, f
−1]]g

−1
1 ∈ 〈〈f〉〉Hn

This proves our claim. �
Definition 3.2.3. We say that an open interval I ⊂ S1 is small if there exists 1 ≤ k ≤ n

such that I ⊂ Jk. We find a collection of pairwise disjoint small intervals

I = {Li,j ⊂ S1 | 1 ≤ i, j ≤ n}

satisfying that

Li,j ⊂ int(S1 \ Jj) 1 ≤ i, j ≤ n

We say that a small open interval I ⊂ S1 is I-small if for each 1 ≤ i, j ≤ n the following 
holds:

(1) If I ∩ Li,j 
= ∅ then I ∩ Jj = ∅.
(2) If I ∩ Jj 
= ∅, then I ∩ Li,j = ∅.

It is an easy exercise to show that for any such I, there is an ε > 0 such that any interval 
I with |I| < ε is I-small. More generally, we say that a subset of S1 is I-small, if it is 
contained in a I-small interval.

Using proximality from Lemma 3.2.1, we construct a set of n2 elements

{λi,j | 1 ≤ i, j ≤ n} ⊂ Gn

satisfying that

Ji · λi,j ⊂ Li,j ∀1 ≤ i, j ≤ n

We define νi,j = λ−1
i,j fiλi,j . Note that Supp(νi,j) ⊆ Li,j . Since the intervals {Li,j | 1 ≤

i, j ≤ n} are pairwise disjoint, the elements of the set {νi,j | 1 ≤ i, j ≤ n} generate a free 
abelian group of rank n2.

We define the set

X = {ν−1
i,j fi | 1 ≤ i, j ≤ n} ⊂ Hn
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Observe that

{νi,j1ν−1
i,j2

| 1 ≤ i, j1, j2 ≤ n} ⊂ 〈X〉

since νi,j1ν
−1
i,j2

= (ν−1
i,j2

fi)(ν−1
i,j1

fi)−1. Also, observe that (fiν−1
i,j ) ∈ 〈X〉 since

(ν−1
i,i νi,j)(ν

−1
i,j fi)(νi,iν

−1
i,j ) = (ν−1

i,i fi)(νi,iν
−1
i,j ) = (fiν−1

i,i )(νi,iν−1
i,j ) = (fiν−1

i,j )

An element of the form fν−1
i,j ∈ 〈X〉 is called a special element if Supp(f) ∩

Supp(ν−1
i,j ) = ∅ and Supp(f) is I-small.

Lemma 3.2.4. Let fν−1
i,j ∈ 〈X〉 be a special element and let g ∈ {f±1

1 , ..., f±1
n } be such 

that Supp(fg) is I-small. Then there is a 1 ≤ k ≤ n such that fgν−1
i,k is also a special 

element of 〈X〉.

Proof. Assume that g = fl. The proof where g = f−1
l is similar. If Supp(f) ∩Supp(fl) =

∅, then fgν−1
i,j = fν−1

i,j and we are done. If Supp(f) ∩Supp(fl) 
= ∅, then we consider the 
special element

fν−1
i,l = (fν−1

i,j )(νi,jν−1
i,l ) ∈ 〈X〉

Note that this is a special element since Supp(f) is I-small, and Supp(f) ∩Supp(fl) 
= ∅, 
hence Supp(f) ∩ Supp(ν−1

i,l ) = ∅. It follows that

(fν−1
i,l )flν

−1
l,l = fflν

−1
l,l ν−1

i,l = (fν−1
l,l )flν−1

i,l

= fflν−1
i,l ∈ 〈X〉

is a special element. �
Lemma 3.2.5. Let J ⊂ S1 be an open interval such that Jc has nonempty interior. For 
each 1 ≤ i ≤ n, s ∈ {±1}, there exists an element γ ∈ 〈X〉 such that γ � J = fs

i � J .

Proof. We fix i ∈ {1, ..., n} and s = −1 (the proof for s = +1 is similar). Consider the 
element νi,j for some 1 ≤ j ≤ n. We know that Supp(νi,j) ⊂ Jk for some 1 ≤ k ≤ n. 
Consider the element νi,jν−1

i,k ∈ 〈X〉.
By minimality of the action of Gn on S1, we can find an element g = g1...gm for 

gi ∈ {f±1
1 , ..., f±1

n } such that inf(Jk) · g ⊂ Jc. By continuity, we find a I-small open 
interval I containing inf(Jk) such that:

(1) I · g ⊂ Jc.
(2) For each 1 ≤ s ≤ m, the interval I · g1...gs is I-small.
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We let h = fkν
−1
k,k ∈ 〈X〉. It follows that for some large l ∈ N the element

(νi,jν−1
i,k )h

l

= ν
f l
k

i,jν
−1
i,k ∈ 〈X〉

has the property that if γ = ν
f l
k

i,j , then Supp(γ) ⊂ I and γν−1
i,k is a special element. Note 

that this means that for each 1 ≤ s ≤ m, Supp(γ) ·g1...gs is I-small, hence Supp(γg1...gs)
is I-small.

Applying Lemma 3.2.4 to γν−1
i,k , we conclude that there is a 1 ≤ k1 ≤ n such that 

γg1ν−1
i,k1

∈ 〈X〉 is a special element. Proceeding inductively, applying Lemma 3.2.4 each 
time, we find 1 ≤ k1, ..., km ≤ n such that

γg1...gsν−1
i,ks

∈ 〈X〉 is a special element for 1 ≤ s ≤ m

In particular, γgν−1
i,km

∈ 〈X〉 and (γgν−1
i,km

)(νi,km
f−1
i ) = γgf−1

i ∈ 〈X〉 is an element 
which satisfies the conclusion of the Lemma, since Supp(γg) ⊂ Jc. �

Now we prove our main theorem.

Theorem 3.2.6. Hn = 〈X〉, and hence it is finitely generated.

Proof. Let f ∈ 〈X〉 \ {id} be such that Supp(f)c has nonempty interior. Since Hn is 
simple, 〈〈f〉〉Hn

= Hn. To prove the claim, it suffices to show that for any element 
g ∈ Hn, we have that (f±1)g ∈ 〈X〉. We proceed by induction on the word length of g. 
The base case is trivial. Now assume that g = hfl for some 1 ≤ l ≤ n, and that by the 
induction hypothesis fh ∈ 〈X〉. The proof for the case g = hf−1

l shall be similar.
Let J = Supp(fh). Note that Jc has nonempty interior. Applying Lemma 3.2.5, there 

exists an element γ ∈ 〈X〉 such that γ � J = fl. We obtain that fhfl = fhγ ∈ 〈X〉. �
We now prove Proposition 1.0.4.

Proof of Proposition 1.0.4. Recall that Homeo+(S1) admits a central extension as fol-
lows:

1 → Z → ˜Homeo+(S1) → Homeo+(S1) → 1

where Z = 〈t → t + n | n ∈ Z〉 and ˜Homeo+(S1) is the centralizer of 〈t → t + n | n ∈ Z〉
in Homeo+(R).

We claim that Gn lifts to a subgroup of Homeo+(R). We choose lifts of the generators 
fi as homeomorphisms hi ∈ ˜Homeo+(R), for each 1 ≤ i ≤ n, such that each hi fixes 
points in R. Let G̃n = 〈h1, ..., hn〉. It suffices to show that

G̃n ∩ 〈t → t + n | n ∈ Z〉 = {idR}
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If this were not the case, then we can find a word

g = g1...gm gi ∈ {h±1
1 , ..., h±1

n }

with the property that x ·g = x +n for n ∈ Z \{0}. The corresponding word γ = γ1...γm, 
where each h±1

i is replaced by f±1
i , must satisfy the following condition. For any point 

in x ∈ S1, the sequence

x, x · γ1, x · γ1γ2, ..., x · γ1...γm = x

must “go around the circle” a nontrivial number of times to arrive back to itself. We will 
show that this is impossible, i.e. the above can only happen with “backtracking”.

Let x = inf(J1). Consider the sequence

x, x · γ1, x · γ1γ2, ..., x · γ1...γm = x

If

x · γ1...γi = x · γ1...γi+1

we delete the occurrence of γi+1 from the word γ1...γm, and adjust the indices (replacing 
j by j− 1 for j > i +1) to obtain a new word γ1...γm−1. Whenever we find backtracking, 
i.e.

x · γ1...γi−1 = x · γ1...γi+1

in γ1...γm, we remove γiγi+1 from the word, and adjust the indices (replacing j by j − 2
for j > i + 1) to obtain a new word γ1...γm−2. At the end of this process, we obtain a 
new word γ1...γk such that

x, x · γ1, x · γ1γ2, ..., x · γ1...γk = x

such that for each 1 ≤ i < k

x · γ1...γi 
= x · γ1...γi+1

and for each 1 ≤ i < k − 1

x · γ1...γi 
= x · γ1...γi+2

Assume without loss of generality that γi = fi (rather than f−1
i ) for some 1 ≤ i ≤ n. By 

our analysis above, together with the condition (∗), we have that

(I) γ1...γk = fp0
i fp1

i+1...f
pm−1
i+m−1
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for some 1 ≤ i ≤ n, pj ∈ N \ {0}, and where the indices of fi are read modulo n.
Note that the dynamical condition (∗) can be applied in an iterative fashion and 

hence is in fact equivalent to the following dynamical condition (where the indices are 
read modulo n as usual):

(II) xi · fifi+1...fi+l ∈ Ji+l+1 ∀l ∈ N, l ≥ 1

Combining this with equation (I) immediately gives us that

x · γ1...γk /∈ {inf(Ji), sup(Ji) | 1 ≤ i ≤ n}

This contradicts our assumption that x = inf(J1), and hence the hypothesis that

G̃n ∩ 〈t → t + n | n ∈ Z〉 = {idR}

must hold. �
4. A question

The following is an open question that has been driving the curiosity of the authors 
throughout the course of this research.

Question 4.0.1. Do there exist finitely presented infinite simple groups of homeomor-
phisms of R?

We also remark that it would be particularly interesting to find finitely presented 
infinite simple groups of homeomorphisms of R that admit type (iii) actions on R. 
Since most known examples of groups of homeomorphisms that are finitely presented 
and simple emerge as groups of homeomorphisms of the Cantor set or the circle, an 
example acting on R by means of a type (iii) action shall exhibit a fundamentally new 
phenomenon.
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