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Abstract A recent experiment on zebrafish blastoderm morphogenesis showed that the viscosity
(1) of a non-confluent embryonic tissue grows sharply until a critical cell packing fraction (4s). The
increase in 57 up to ¢s is similar to the behavior observed in several glass-forming materials, which
suggests that the cell dynamics is sluggish or glass-like. Surprisingly, # is a constant above ¢s. To
determine the mechanism of this unusual dependence of 5 on ¢, we performed extensive simula-
tions using an agent-based model of a dense non-confluent two-dimensional tissue. We show that
polydispersity in the cell size, and the propensity of the cells to deform, results in the saturation of
the available free area per cell beyond a critical packing fraction. Saturation in the free space not
only explains the viscosity plateau above ¢s but also provides a relationship between equilibrium
geometrical packing to the dramatic increase in the relaxation dynamics.

elLife assessment

This fundamental study substantially advances our physical understanding of the sharp increase and
saturation of the viscosity of non-confluent tissues with increasing cell density. Through the analysis
of a simplified model, this study provides compelling evidence that polydispersity in cell size and
the softness of cells together can lead to this phenomenon. The work will be of general interest to
biologists and biophysicists working on development.

Introduction

There is great interest in characterizing the mechanical and dynamical properties of embryonic tissues
because they regulate embryo development (Kimmel et al., 1995; Keller et al., 2008, Petridou and
Heisenberg, 2019; Hannezo and Heisenberg, 2019; Autorino and Petridou, 2022). Measurements
of bulk properties, such as viscosity and elastic modulus, and the dynamics of individual cells through
imaging techniques, have been interpreted by adapting concepts developed to describe phase tran-
sitions (PTs), glass transition, and active matter (Shaebani et al., 2020; Marchetti et al., 2013; Kirk-
patrick and Thirumalai, 2015, Béar et al., 2020).

Several experiments have shown that during embryo morphogenesis, material properties of the
tissues change dramatically (Morita et al., 2017, Mongera et al., 2018, Barriga et al., 2018, Petridou
et al., 2019; Petridou et al., 2021). Of relevance to our study is a remarkable finding that provided
evidence that a PT occurs during zebrafish blastoderm morphogenesis, which was analyzed using
rigidity percolation theory (Petridou et al., 2021; Jacobs and Thorpe, 1995; Jacobs and Thorpe,
1996, Jacobs and Hendrickson, 1997). The authors also estimated the viscosity (1) of the blastoderm
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tissue using the micropipette aspiration technique (Guevorkian et al., 2010; Petridou et al., 2019).
It was found that change in 7 is correlated with cell connectivity ((C)), rising sharply over a narrow
range of (C). Surprisingly, a single geometrical quantity, the cell-cell contact topology controls both
the rigidity PT and changes in 7 in this non-confluent tissue, thus linking equilibrium and transport
properties.

Here, we focus on two pertinent questions that arise from the experiments on zebrafish blasto-
derm. First, experiments (Sinha and Thirumalai, 2021) showed that 7 increases as a function of the
cell packing fraction (¢) till ¢ < 0.87. The dependence of  on ¢ follows the well-known Vogel-Ful-
cher-Tammann (VFT) law (Sinha and Thirumalai, 2021), which predicts that 7 grows monotonically
with ¢. The VFT law, which is commonly used to analyze the viscosity of a class of glass-forming

materials (Angell, 1991), is given by n ~ exp [ }, where ¢¢ is a constant. Surprisingly, for

1
Polp — 1
packing fractions, ¢ > ¢g = 0.90, n deviates from the VFT law and is independent of ¢, which cannot
be explained using conventional theories for glasses (Berthier and Biroli, 2011; Kirkpatrick and
Thirumalai, 2015). Second, the experimental data (Petridou et al., 2021) was interpreted using equi-
librium rigidity percolation theory (Jacobs and Thorpe, 1995; Jacobs and Thorpe, 1996; Jacobs and
Hendrickson, 1997) for an embryonic tissue in which cells undergo random cell divisions. A priori it is
unclear why equilibrium concepts should hold in zebrafish morphogenesis, which one would expect is
controlled by non-equilibrium processes such as self-propulsion, growth, and cell division.

We show that the two conundrums (saturation of 7 at high packing fractions and the use of equi-
librium statistical mechanics in a growing system to explain PT) may be rationalized by (i) assuming
that the interactions between the cells are soft, and (ii) the cell sizes are highly heterogeneous
(polydisperse), which is the case in zebrafish blastoderm. Using an agent-based (particle) simulation
model of a two-dimensional (2D) non-confluent tissue, we explore the consequences of varying ¢ (see
‘Materials and methods’ for the definition) of interacting self-propelled polydisperse soft cells, on 7.
The central results of our study are (i) the calculated effective viscosity 7 (for details see, Appendix 6,
‘Dynamical changes in local packing fraction cause jammed cells to move’), for the polydisperse cell
system, shows that for ¢ < ¢g = 0.90 the increase in viscosity follows the VFT law. Just as in experi-
ments, 7 is essentially independent of ¢ at high (> ¢s) packing fractions. (ii) The unusual dependence
of n at ¢ > ¢y is quantitatively explained using the notion of available free area fraction (¢pgee), which
is the net void space that can be explored by the cells when they are jammed. At high densities, a
given cell requires free space in order to move. The free area is created by movement of the neigh-
boring cells into the available void space. One would intuitively expect that the ¢gee should decrease
with increasing packing fractions due to cell jamming, which should slow down the overall dynamics.
Indeed, we find that ¢ decreases with increasing packing fraction (¢) until ¢s. The simulations show
that when ¢ exceeds ¢g, the free area ¢g.. saturates because the soft cells (characterized by ‘soft
deformable disks’) can overlap with each other, resulting in the collective dynamics of cells becoming
independent of ¢ for ¢ > ¢5. As a consequence, n saturates at high ¢. (iii) Cells whose sizes are
comparable to the available free area move almost like a particle in a liquid. The motility of small-sized
cells facilitates adjacent cells to move through multi-cell rearrangement even in a highly jammed envi-
ronment. The facilitation mechanism, invoked in glassy systems (Biroli and Garrahan, 2013), allows
large cells to move with low mobility. A cascade of such facilitation processes enable all the cells to
remain dynamic even above the onset packing fraction of the PT. (iv) We find that the relaxation time
does not depend on the waiting time for measurements even in the regime where viscosity saturates.
In other words, there is no evidence of aging even in the regime where viscosity saturates. Strikingly,
the tissue exhibits ergodic (Thirumalai et al., 1989) behavior at all densities. The cell-based simula-
tions, which reproduce the salient experimental features, may be described using equilibrium statis-
tical mechanics, thus providing credence to the use of cell contact mechanics to describe both rigidity
PT and dynamics in an evolving non-confluent tissue (Petridou et al., 2021).

Results

Experimental results

We first describe the experimental observations, which serve as the basis for carrying out the agent-
based simulations. Figure 1A shows the bright-field images of distinct stages during zebrafish morpho-
genesis. A 2D section of zebrafish blastoderm (Figure 1B) shows that there is considerable dispersion
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Figure 1. Structure and viscosity of non-confluent tissues. (A) Bright-field single-plane images of an exemplary embryo of zebrafish before (t = —60
min), at the onset (t = 0 min), and after blastoderm spreading (t = 60 min). (B) Snapshot of 2D confocal sections at the 1st-2nd deep-cell layer of the
blastoderm at r = 60 min. (A) and (B) are taken from Petridou et al., 2021. (C) Viscosity 1 of zebrafish blastoderm as a function of ¢ in a log-linear
scale using the data from Petridou et al., 2021. The dashed line is the fit to Vogel-Fulcher-Tammann (VFT) equation. Note that 17 does not change
Figure 1 continued on next page
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Figure 1 continued

significantly beyond ¢ > 0.87. (D) A typical snapshot taken from cell-based simulations for ¢ = 0.93. Cells are colored according to their radii (in um)
(color bar shown on the right). (E) The pair correlation function, g(r), as a function of r for ¢ = 0.93. The vertical dashed line is the position of the first
peak (rmax = 17.0 um). The pair correlation function does not exhibit signs of long-range order. Scale bars in (A) is 100 um and (B) is 50 pm.

in cell sizes. The statistical properties of the cell sizes are shown in Appendix 1—figure 1D. Figure 1C
shows that 7 increases sharply over a narrow ¢ range and saturates when ¢ exceeds ¢g = 0.90.

To account for the results in Figure 1C, we first simulated a mono-disperse system in which all the
cells have identical radius (R = 8.5 um). Because the system crystallizes (Appendix 1—figure 1A and
B), we concluded that the dynamics observed in experiments cannot be explained using this model.
A 1:1 binary mixture of cells with different radii gives glass-like behavior for all ¢, with the relaxation
time 7o as well as the effective viscosity 7 (defined in Equation 1) following the VFT behavior (see
Appendix 2).

Polydispersity and cell-cell interactions

In typical cell tissues, and zebrafish in particular, there is a great dispersion in the cell sizes, which vary
in a single tissue by a factor of ~5-6 (Petridou et al., 2021; Figure 1B, Appendix 1—figure 1D). In
addition, the elastic forces characterizing cell-cell interactions are soft, which implies that the cells
can overlap, with r;j — (R; + Rj) < 0 when they are jammed (Figure 1B, D). Thus, both polydispersity
(PD) and soft interactions between the cells must control the relaxation dynamics. To test this prop-
osition, we simulated a highly polydisperse system (PDs) in which the cell sizes vary by a factor of ~8
(Figure 1D, Appendix 1—figure 1E).

A simulation snapshot (Figure 1D) for ¢ = 0.93 shows that different sized cells are well mixed. In
other words, the cells do not phase separate. The structure of the tissue can be described using the
. . . 1 /1 LY oL N .
pair correlation function, g(r) = A Zl:%;(s (r—IF; —7l) ), where p= 75 is the number density,
4 is the Dirac delta function, 7; is the position of the ith cell, and the angular bracket () denotes an

average over different ensembles. The g(r) function (Figure 1E) has a peak around r ~ 17um, which is
approximately the average diameter of the cells. The absence of peaks in g(r) beyond the second one
suggests there is no long-range order. Thus, the polydisperse cell system exhibits liquid-like structure
even at the high ¢.

Effective shear viscosity(7) as a function of ¢

A fit of the experimental data for 7 using the VFT (Tammann and Hesse, 1926; Fulcher, 1925) rela-
tion in the range ¢ < 0.87 (Figure 1C) yields ¢y =~ 0.95 and D ~ 0.51 (Sinha and Thirumalai, 2021).
The VFT equation for cells, which is related to the Doolittle equation (White and Lipson, 2016) for

1
fluidity (=) that is based on free space available for motion in an amorphous system (Doolittle and

Doolittle, 1957, Cohen and Turnbull, 1959), is n = g exp [ , Where D is the apparent acti-

w7
Gole — 1
vation energy. In order to compare with experiments, we calculated an effective shear viscosity (7) for
the polydisperse system using a Green—-Kubo-type relation (Hansen and McDonald, 2013)

7= /0 dty " (Puv()Pyuu(0)) . M

(pv)

The stress tensor P, (f) in the above equation is

1 N N .
Pu@® =2 | D20 iy | - (2)

i=1 j>i

where p,v € (x,y) are the Cartesian components of coordinates, 7; =7 — 7, f,j is the force between
ith and jth cells, and A is the area of the simulation box. Note that 7 should be viewed as a proxy
for shear viscosity because it does not contain the kinetic term and the factor %T is not included in
Equation (1) because temperature is not a relevant variable in the highly over-damped model for cells
considered here.
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Figure 2. Saturation in viscosity and relaxation time. (A) Effective viscosity 7] as a function of ¢, with the solid line being the fit to Vogel-Fulcher—
Tammann (VFT) equation. The inset shows 1] at high ¢. The dashed line in the inset is the expected behavior assuming that the VFT relation holds at
all ¢. (B) The self-intermediate scattering function Fi(q, t) as a function of # for 0.70 < ¢ < 0.905. The dashed line corresponds to Fs(g,t) = %. (C)A
similar plot for ¢ > 0.905. (D) The logarithm of the relaxation time T«/(s) as a function of ¢. The VFT fit is given by the dashed line. The inset shows a
zoomed-in view for ¢ > ¢g. The error bars in (D) are calculated using the standard deviation of Ta for 24 independent simulations.

Plot of 77 as a function of ¢ in Figure 2A shows qualitatively the same behavior as the estimate of
viscosity (using dimensional arguments) made in experiments. Two features about Figures 1C and
2A are worth noting. (i) Both simulations and experiments show that up to ¢ = 0.90, 7j(¢) follows the
VFT relation with ¢g ~ 0.94 and D ~ 0.5. More importantly, 7 is independent of ¢ when ¢ > 0.90. (ii)
The values of ¢y and D obtained by fitting the experimental estimate of 1 to the VFT equation and
simulation results are almost identical. Moreover, the onset of the plateau packing fraction in simula-
tions and experiments occurs at the same value (¢s ~ 0.90). The overall agreement with experiments
is remarkable given that the model was not created to mimic the zebrafish tissue.

To provide additional insights into the dynamics, we calculated the isotropic self-intermediate scat-
tering function, Fs(q, 1),

N
1
Fyg:0 = <Zexp[—ic7- GOR 7,,~<0>)]> ; 3)

J=1

where g is the wave vector, and 7(7) is the position of a cell at time 7. The degree of dynamic correla-
tion between two cells can be inferred from the decay of Fs(q, ). The angle bracket {(...) is an average
over different time origins and different trajectories. We chose ¢ = %, where rmax is the position
of the first peak in g(r) between all cells (see Figure 1E). The relaxation time 7, is calculated using
Fy(g,t=7a) = %
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From Figure 2B and C, which show Fs(g,f) as a function of ¢ for various ¢, it is clear that the
dynamics become sluggish as ¢ increases. The relaxation profiles exhibit a two-step decay with a
plateau in the intermediate time scales. The dynamics continues to slow down dramatically until
¢ < 0.90. Surprisingly, the increase in the duration of the plateau in Fi(g,7) ceases when ¢ exceeds
~ 0.90 (Figure 2C), a puzzling finding that is also reflected in the dependence of 7 on ¢ in Figure 2D.
The relaxation time increases dramatically, following the VFT relation, till ¢ ~ 0.90, and subsequently
reaches a plateau (see the inset in Figure 2D).

If the VFT relation continued to hold for all ¢, as in glasses or in binary mixture of 2D cells (see
Appendix 2), then the fit yields ¢y ~ 0.95 and D =~ 0.50. However, the simulations show that 74 is
nearly a constant when ¢ exceeds 0.90. We should note that the behavior in Figure 2D differs from
the dependence of 7o on ¢ for 2D monodisperse polymer rings, used as a model for soft colloids.
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Figure 3. Spectrum of relaxation times. (A) Scatter plot of relaxation times T (s) as a function of cell radius. From top to bottom, the plot corresponds
to decreasing ¢. The vertical dashed line is for R; = 4.25 puim, beyond which the 7o changes sharply at high packing fractions. (B) Histogram P(In(7a))
as a function of In(7«). Beyond ¢ = 0.90 (¢s), the histogram peaks do not shift substantially towards a high T« values. (C) For ¢ < ¢g (scaled by
Pmax(ln(Ta))) falls on a master curve, as described in the main text. (D) Same as (C) except the results are for ¢ > 0.90. The data deviates from the
Gaussian fit, shown by the dashed line.
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Video 1. Shows multiple rearrangements of smaller
sized cells (blue and green cells) causes the big cells
(yellow cells) to move in a highly jammed environment
(@ = 0.92 > ¢g). Bright colors show the cell-cell
overlap. Note that the overlap values are higher

than those in lower area fractions. Free spaces (black
background) are changing dynamically around a cell.
https://elifesciences.org/articles/87966/figurestvideo

Physics of Living Systems

Simulations (Gnan and Zaccarelli, 2019) showed
Ta increases till a critical ¢g but it decreases
substantially beyond ¢g with no saturation.

Relaxation dynamics of individual
cells

Plot of 7o as a function of the radius of cells R;
(Figure 3A) shows nearly eight orders of magni-
tude change. The size dependence of 7 on ¢ is
striking. That 7« should increase for large-sized
cells (see the data beyond the vertical dashed line
in Figure 3A) is not unexpected. However, even
when cell sizes increase beyond R; = 4.25 um, the
dispersion in 74 is substantial, especially when ¢
exceeds ¢s. The relaxation times for cells with
R; < 4.25um are relatively short even though the
system as a whole is jammed. For ¢ > 0.90, 7 for

Video 2. Shows how a big cell (yellow) moves in the crowded environment (¢ = 0.90(¢s)). Note that the smaller-
sized cells (colored as deep blue) always move faster. Again, the multiple rearrangement causes the bigger cell to
move substantially. The amount of overlap is smaller than that at ¢ = 0.92.

https://elifesciences.org/articles/87966/figurest#video2
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small-sized cells have a weak dependence on ¢.
Although 74 for cells with radius <4 pm is short,
it is clear that for a given ¢ (e.g., ¢ =0.93) the
variations in 7o are substantial. In contrast, Tas
for larger cells (R > 7pm) are substantially large,
possibly exceeding the typical cell division time
in experiments. In what follows, we interpret
these results in terms of available free area (Afee)
for cells. The smaller-sized cells have the largest
(Afree) = 50 um* ~ nR3(Rg ~ 4 um) (Rs is the
radius of the small cell).

The effect of jamming on the dramatic increase
in 7o occurs near R; &~ 4.5 um, which is compa-
rable to the length scale of short-range interac-
tions. For ¢ < 0.90, 7, increases as the cell size
increases. However, at higher packing fractions,

Video 3. Shows the movements of cellsatalowarea  even cells of similar sizes show substantial varia-
fraction (¢ = 0.85). Note that the smaller and bigger- tions in 7a, which change by almost 3-4 orders
sized cells are almost equally faster at lower area of magnitude (see the data around the vertical

fractions (phi = 0.85) because of the huge available dashed line for ¢ > 0.915 in Figure 3A).
free areas. This is a consequence of large variations in the
local density (Appendix 6—figure 1). Some of
the similar-sized cells are trapped in the jammed
environment, whereas others are in less crowded
regions (see Appendix 6—figure 1). The spread in 7, increases dramatically for ¢ > ¢g (= 0.90) and
effectively overlap with each other. This is vividly illustrated in the histogram, P(log(7a)), shown in
Figure 3B. For ¢ < ¢, the peak in P(log(7)) monotonically shifts to higher log(7+) values. In contrast,
when ¢ exceeds ¢g there is overlap in P(log(7w)), which is reflected in the saturation of 77 and 7.

There are cells (typically with small sizes) that move faster even in a highly jammed environ-
ment (see Appendix 5—figures 1C and 2). The motions of the fast-moving cells change the local
environment, which effectively facilitates the bigger cells to move in a crowded environment (see
Appendix 5—figures 1D and 2, Video 1 (¢ = 0.92 > ¢5) and Video 2 (¢ = 0.90 = ¢g)). In contrast, for
¢ = 0.85 < ¢g, small- and large-sized cells move without hindrance because of adequate availability of
free area (Video 3). The videos vividly illustrate the large-scale facilitated rearrangements that enable
the large-sized cells to move.

The dependence of 7o on ¢ for ¢ < ¢s (Figure 2D) implies that the polydisperse cell systems behave
as a soft glass in this regime. On theoretical grounds, it was predicted that P(In(7.)) ~ exp[— c(ln(—)) ]

https://elifesciences.org/articles/87966/figurest#video3

in glass-forming systems (Kirkpatrick and Thirumalai, 2015). Remarkably, we found that this predlc-
tion is valid in the polydisperse cell system (Figure 3C). However, above ¢g the predicted relation is
not satisfied (see Figure 3D).

Available free area explains viscosity saturation at high ¢

We explain the saturation in the viscosity by calculating the available free area per cell, as ¢ increases.
In a hard disk system, one would expect that the free area would decrease monotonically with ¢ until it
is fully jammed at the close packing fraction (~0.84; Drocco et al., 2005; Reichhardt and Reichhardt,
2014). Because the cells are modeled as soft deformable disks, they could overlap with each other
even when fully jammed. Therefore, the region where cells overlap creates free area in the immediate
neighborhood.

The extent of overlap (h;) is reflected in distribution P(h;). The width in P(h;) increases with ¢,
and the peak shifts to higher values of h;; (Figure 4A). The mean, <h,j>, increases with ¢ (Figure 4B).
Thus, even if the cells are highly jammed at ¢ ~ ¢g, free area is available because of an increase in the
overlap between cells (see Figure 5).

When ¢ exceeds ¢g, the mobility of small-sized cells facilitates the larger cells to move, as is
assumed in the free volume theory of polymer glasses (Cohen and Turnbull, 1959; Turnbull and
Cohen, 1961; Turnbull and Cohen, 1970; Falk et al., 2020). As a result of the motion of small cells, a
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void is temporarily created, which allows other (possibly large) cells to move. In addition to the release
of space, the cells can also interpenetrate (Figure 4A and B). If hjj increases, as is the case when the
extent of compression increases (Figure 4A), the available space for nearby cells would also increase.
This effect is expected to occur with high probability at ¢s and beyond, resulting in high overlap
between the cells. These arguments suggest that the combined effect of PD and cell-cell overlap
creates, via the self-propulsion of cells, additional free area that drives larger cells to move even under
jammed conditions.

In order to quantify the physical picture given above, we calculated an effective area for each cell
by first calculating Voronoi cell area A. A plot for Voronoi tessellation is presented in Figure 5A for
¢ = 0.93, and the histogram of A is shown in Figure 5B. As ¢ increases, the distribution shifts toward
lower Voronoi cell size (A). The mean Voronoi cell size (A) as a function of ¢ in Figure 5C shows (A)
decreases as ¢ is increased. As cells interpenetrate, the Voronoi cell size will be smaller than the
actual cell size (7rRl-2) in many instances (Figure 5A). To demonstrate this quantitatively, we calculated
Afreei = Ai — 7rR,-2. The value of Age. could be negative if the overlap between neighboring cells is
substantial; Agee is positive only when the Voronoi cell size is greater than the actual cell size. Positive
Afree is an estimate of the available free area. The histograms of Age. for all the packing fractions in
Figure 5D show that the distributions saturate beyond ¢ = 0.90. All the distributions have a substan-
tial region in which Ag.. is negative. The negative value of Ag.. increases with increasing ¢, which
implies that the amount of interpenetration between cells increases.

Because of the overlap between the cells, the available free area fraction ¢ge. is higher than the
expected free area fraction (1.0 — ¢) for all ¢. We define an effective free area fraction ¢gee as

N; Nl’ J
Zj:l Zi:l Afree”
NlAbox

Dfree = 4)

where N, is the number of positive free area in jth snapshots, N; is the total number of snapshots, Apox
is the simulation box area, and Af-reeﬂ_ is the positive free area of ith cell in jth snapshot.

The calculated ¢y, plotted as a function of ¢ in Figure 5E, shows that ¢ge. decreases with ¢ until
¢ =0.90, and then it saturates near a value ¢ge =~ 0.22 (see the right panel in Figure 5E). Thus, the
saturation in 7] as a function of ¢ is explained by the free area picture, which arises due to combined
effect of the size variations and the ability of cells to overlap.
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Figure 5. Changes in free area fraction with ¢. (A) Voronoi tessellation of cells for ¢ = 0.93 for a single realization. The orange circles represent actual
cell sizes. The blue polygons show the Voronoi cell size. (B) Distribution of Voronoi cell size A as a function of ¢. (C) Mean Voronoi cell size (A) as a
function of ¢. A zoomed-in view for ¢ > 0.860 is shown in the inset. (D) Distribution of free area P(Afee) for all ¢. The vertical blue dashed line shows

that the maximum in the distribution is at Afree ~ 50,um2. (E) Free area fraction ¢sree as a function of ¢. Note that ¢gee saturates beyond ¢ = 0.90.
An expanded view of the saturated region is shown in the right panel of (E). The error bars in (C) and (D) are the standard deviation in (A) and @free,

respectively, for 24 independent simulations.

Aging does not explain viscosity saturation

Our main result, which we explain by adopting the free volume theory developed in the context of
glasses (Cohen and Turnbull, 1959; Turnbull and Cohen, 1961; Turnbull and Cohen, 1970, Falk
et al., 2020), is that above a critical packing fraction ¢g ~ 0.90 the viscosity saturates. Relaxation time,
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Figure 6. Relaxation in the polydisperse cell system is independent of the waiting time. (A) F(g, t) for ¢ = 0.92 at different waiting times (7w, = IOG(S)).

Regardless of the value of T, all the Fs(g, f) curves collapse onto a master curve. (B) Relaxation time, In(7« ), as a function of 7w. Over a three orders of

magnitude change in ., the variation in relaxation times is less than the sample-to-sample fluctuations, as shown by the error bar. The error bars in (B)
are the standard deviation in Ta for 24 independent simulations.

Ta, measured using dynamic light scattering, in nearly monodisperse microgel poly(N- isopropylacryl-
amide) (PNiPAM) (Philippe et al., 2018) was found to depend only weakly on the volume fraction
(3D), if ¢y exceeds a critical value. It was suggested that the near saturation of 7« at high ¢y is due to
aging, which is a non-equilibrium effect. If saturation in viscosity and relaxation time in the embryonic
tissue at high ¢ is due to aging, then 7, should increase sharply as the waiting time, 7, is lengthened.
We wondered if aging could explain the observed saturation of 7 in the embryonic tissue above ¢g. If
aging causes the plateau in the tissue dynamics, then 7 or 74 should be an increasing function of the
waiting time, 7. To test the effect of 7, on 74, we calculated the self-intermediate scattering function
Fy(q,t+ 7u) as a function of ¢ by varying 7., over three orders of magnitude at ¢ = 0.92 (Figure 6A).
There is literally no change in Fs(q, t + 7w) over the entire range of 7. We conclude that, 7, extracted
from Fs(q,t + 7,) is independent of 7. The variations in 7« (Figure 6B), with respect to 7., are signifi-
cantly smaller than the errors in the simulation. Thus, the saturation in n or 7o when ¢ > ¢g is not a
consequence of aging.

There are two implications related to the absence of aging in the dynamics of the non-confluent
embryonic tissues. (i) Although active forces drive the dynamics of the cells, as they presumably do in
reality, the cell collectives can be treated as being near equilibrium, justifying the use of Green-Kubo
relation to calculate 7. (ii) Parenthetically, we note that the absence of significant non-equilibrium
effects, even though zebrafish is a living system, further justifies the use of equilibrium rigidity perco-
lation theory to analyze the experimental data (Petridou et al., 2021).

Discussion

Extensive computer simulations of a 2D dense tissue using a particle-based model of soft deformable
cells with active self-propulsion have successfully reproduced the dynamical behavior observed in the
blastoderm tissue of zebrafish.

The dependence of viscosity (1) and relaxation time (7.) (before the saturation) is well fit by the
VFT equation. The value of ¢y obtained from simulations, ¢y ~ 0.95, is close to ¢ ~ 0.94 extracted
by fitting the experimental data to the VFT equation. Thus, the dynamics for ¢ < ¢5 resembles the
behavior expected for glass-forming systems. Remarkably, the dependence of 1 on ¢ over the entire
range (VFT regime followed by a plateau) may be understood using available free area picture with
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essentially a single parameter, an idea that was proposed nearly 70 y ago. We discovered that PD as
well as the ease of deformation of the cells that creates free area under high jamming conditions is the
mechanism that explains viscosity saturation at high cell densities. The mechanism suggested here is
an important step that links equilibrium PT to dynamics during zebrafish development (Hannezo and
Heisenberg, 2022).

One could legitimately wonder if the extent of PD used in the soft discs simulations, which seems
substantial, is needed to recapitulate the observed dependence of 1 on ¢. Furthermore, such large
values of PD may not represent biological tissues. Although the choice of PD was made in part by the
2D projection of area reported in experiments (Petridou et al., 2021), it is expected that PD values
have to be less in three dimensions. We performed preliminary simulations in three dimensions with
considerably reduced PD and calculated the dependence of relaxation time (7.) as a function of ¢.
The results show that 7 does indeed saturate at high-volume fractions.

The proposed model neglects adhesive interactions between cells, which of course is not unim-
portant. It is crucial to wonder if the proposed mechanism would change if cell-cell adhesion is taken
into account. We wanted to create the simplest model to explain the experimental data. We do
think that realistic values of adhesion strength would not significantly alter the forces between cells
(Malmi-Kakkada et al., 2018). Thus, we expect a similar mechanism. Furthermore, the physics of the
dynamics in glass-forming materials does not change in systems with and without attractive forces
(Kirkpatrick and Thirumalai, 2015). Universal behavior, such as VFT relation, is valid for a broad class
of unrelated materials (see Figure 1in Angell, 1991). Needless to say, non-universal quantities such as
glass transition temperature T, or effective free energy barriers for relaxation will change. In our case,
we expect that changing the adhesion strength, within a reasonable range, would change ¢ without
qualitatively altering the dependence of 1 on ¢. For these reasons, in the first pass we neglected
adhesion, whose effects have to be investigated in the future.

In the physical considerations leading to Equation (6), the random activity term (u) plays an
important role. Is it possible to create a passive model by maintaining the system at a finite tempera-
ture using stochastic noise with p = 0, which would show the observed viscosity behavior? First, in such
a system of stochastic equations, the coefficient of noise (a diffusion constant) would be related to ~;
in Equation (6) through fluctuation dissipation theorem (FDT). Thus, only +; can be varied. In contrast,
in Equation (6) the two parameters (7; and p) maybe independently changed, which implies that the
two sets of stochastic equations of motion are not equivalent. Second, the passive system describes
particles that interact by soft Hertz potential. In analogy with systems in which the particles interact
with harmonic potential (Ikeda et al., 2012), we expect that the passive model would form a glass in
which the viscosity would follow the VFT law.

We find it surprising that the calculation of viscosity using linear response theory (valid for systems
close to equilibrium) and the link to free area quantitatively explain the simulation results and by
implication the experimental data for a living and growing tissue. The calculation of free area of the
cells is based on the geometrical effects of packing, which in turn is determined by cell-to-cell contact
topology. These considerations, which are firmly established here, explain why equilibrium PTs are
related to a steep increase in viscosity (Kirkpatrick and Thirumalai, 2015) as the packing fraction
changes over a narrow range. The absence of aging suggests that, although a large number of cell
divisions occur, they must be essentially independent, thus allowing the cells to reach local equilibrium.

Materials and methods

Two-dimensional cell model
Following our earlier studies (Malmi-Kakkada et al., 2018; Sinha et al., 2020), we simulated a 2D
version of a particle-based cell model. We did not explicitly include cell division in the simulations. This
is physically reasonable because in the experiments (Petridou et al., 2021) the time scales over which
cell division induced local stresses relax are short compared to cell division time. Thus, local equilib-
rium is established in between random cell division events. We performed simulations in 2D because
experiments reported the dependence of viscosity as a function of area fraction.

In our model, cells are modeled as soft deformable disks (Matoz-Fernandez et al., 2017; Drasdo
and Héhme, 2005; Schaller and Meyer-Hermann, 2005, Malmi-Kakkada et al., 2018) interacting
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via short-ranged forces. The elastic (repulsive) force between two cells with radii R; and R; is Hertzian,
which is given by

32
Fy "
1} ’
Coafie) 1 )
2 E R R

where hj; = max[0, R; + R; — IF; — 7il]. The repulsive force acts along the unit vector 7, which points
from the center of the jth cell to the center of the ith cell. The total force on the ith cell is

n 1\ -
Fi= Z (Ffj)ﬂij,

JENN()

where NN(i) is the number of near-neighbor cells that are in contact with the ith cell. The jth cell
is the nearest neighbor of the ith cell, if 4; > 0. The near-neighbor condition ensures that the cells
interpenetrate each other to some extent, thus mimicking the cell softness. For simplicity, we assume
that the elastic moduli (E) and the Poisson ratios (v) for all the cells are identical. PD in the cell sizes is
important in recovering the plateau in the viscosity as a function of packing fraction. Thus, the distri-
bution of cell areas (A; = 7TR,-2) is assumed to have a distribution that mimics the broad area distribution
discovered in experiments.

Self-propulsion and equations of motion

In addition to the repulsive Hertz force, we include an active force arising from self-propulsion mobility
(1), which is a proxy for the intrinsically generated forces within a cell. For illustration purposes, we
take p to independent of the cells, although this can be relaxed readily. We assume that the dynamics
of each cell obeys the phenomenological equation

-

L F; -
Fi= — 4+ pW), (6)
Vi
where 7; is the friction coefficient of ith cell, and W;(?) is a noise term. The friction coefficient ~; is taken
2
to be yoR; (Sinha et al., 2022). By scaling t by the characteristic time scale, 7 = @ in Equation (6),

one can show that the results should be insensitive to the exact value of p. The noise term W;(1) is
chosen such that (W;(r)) = 0 and (Wf‘(t)Wf(/)} =6(t— t’)5ix,~6“’6. In our model, there is no dynamics
with only systematic forces because the temperature is zero. The observed dynamics arises solely due
to the self-propulsion (Equation 6).
We place N cells in a square box that is periodically replicated. The szize of the box is L so that
Zﬁ] mR;
12

the packing fraction (in our 2D system it is the area fraction) is ¢ = . We performed extensive

simulations by varying ¢ in the range 0.700 < ¢ < 0.950. The results reported in main text are obtained
with N = 500. Finite size effects are discussed in Appendix 7.

To mimic the variations in the area of cells in a tissue (Petridou et al., 2021), we use a broad distri-
bution of cell radii (see Appendix 1 for details). The parameters for the model are given in Table 1.
In this study, we do not consider the growth and division of cells. Thus, our simulations describe

Table 1. Parameters used in the simulation.

Parameters Values References

Timestep (Atf) 10s This paper

Self-propulsion (p) 0.045um/+/s This paper

Friction coefficient (Vo) 0.1kg/(pum s) This paper

Mean cell elastic modulus (E;) 10~ 3MPa Galle et al., 2005; Malmi-Kakkada et al., 2018

Schaller and Meyer-Hermann, 2005; Malmi-Kakkada
Mean cell Poisson ratio (1) 0.5 et al.,, 2018
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Figure 7. Fit of the stress—stress correlation functions to stretched exponential functions. (A) The stress—stress
correlation function (P, (£)P1,(0)) divided by the value at r = 0 as a function of ¢ for ¢ € (0.75 — 0.87).

(B) Similar plot for ¢ € (0.89 — 0.93). (C) The long time decay of (P ()P (0)) is fit to Cs exp [—(%)’6}, as
shown by the dashed lines. The inset shows the dependence of 5 on ¢. (D) The data that is fit using the stretched
exponential function (black dashed line) is combined with the short time data (blue solid line), which is fit using the

cubic spline function. The resulting fits produces a smooth curve (P ()P (0)) as shown in the inset.

combined’

steady-state dynamics of the tissue. For each ¢, we performed simulations for at least (5-10)7, before
storing the data. For each ¢, we performed 24 independent simulations. The calculation of viscosity
was performed by averaging over 40 independent simulations at each ¢.

Calculation of viscosity

We calculated the effective viscosity (77) for various values of ¢ by integrating the off-diagonal part
of the stress—stress correlation function (P ()P (0)) using the Green—Kubo relation (Hansen and
McDonald, 2013) (without the pre-factor %T)

7= /O dtS" (Puv (P () , 7)

(pv)

where p and v denote Cartesian components (x and y) of the stress tensor P, (f) (see main text for the
definition of P, (?). The definition of 77, which relates the decay of stresses as a function of times in the
non-confluent tissue, is akin to the methods used to calculate viscosity in simple fluids (Equation 7).
The time dependence of (P, (1)P..,(0)), normalized by <PW(0)2>, for different values of ¢ (Figure 7A
and B) shows that the stress relaxation is clearly non-exponential, decaying to zero in two steps.
After an initial rapid decay followed by a plateau at intermediate times (clearly visible for ¢ > 0.91),
the normalized (P, (t)P,.,(0)) decays to zero as a stretched exponential. The black dashed lines in

B
Figure 7C show that a stretched exponential function, Cs exp {— (#) } where 7, is the characteristic

time in which stress relax and § is the stretching exponent, provides an excellent fit to the long time
decay of (P, (t)P;.,(0)) (from the plateau region to zero) as a function of ¢. Therefore, we utilized the

B
fit function, Csexp [— (i) ], to replace the noisy long time part of (P, ()Puv(0)) by a smooth fit

Tn
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data before evaluating the integral in Equation (7). The details of the procedure to compute 7 are
described below.

We divided (P ()P (0)) in two parts. (i) The short time part ((Puu ()P (0)) o) — the smooth
initial rapid decay until the plateau is reached (e.g., see the blue circles in Figure 7D for ¢ = 0.93). For
the n data points at short times, (#1, (Puu(t1)Puw(0)) qoor)s- s (tns (Ppuv(tn)Ppuv(0)) oy ) We constructed a
spline S(7) using a set of cubic polynomials:

S10) = (Pus)Pu(0)) g + b1t — 1) + 1t — 1)) + dy (¢ — 17)°
S0 = (Puv@)Pun(0))gor + b2t — 12) + 2t — 1)* + do(t — 12)°
Suc1(®) = (Puvta—DPuv(©0)) gor + ba—1(t — tn—1) + a1 (t — tn—1)* + dy—1 (t — t—1)°.

The polynomials satisfy the following properties. (a) Si(ti) = (Puv(t)Puv(0)) g0  and
Si(tiv1) = (Puv(tiy1)Puv(0)) g for i = 1,...,n — 1 which guarantees that the spline function S() interpo-
lates between the data points. (b) §/_(r) = Si() fori = 2, ...,n — 1so that §' () is continuous in the interval
[t1.tn]. () Sy (1) = S/'(r) for i =2,...n — 1 so that §” () is continuous in the interval [1;,,]. By solving
for the unknown parameters, b;, ¢;, and d;, using the above-mentioned properties, we constructed the
function S(t). We used S(¥) to fit (P ()P (0)) 4o to get an evenly spaced (61 = 10s) smooth data (solid
blue line in Figure 7D). The fitting was done using the software ‘Xmgrace'.

(ii) The long time part ((P#,,(Z)P#U(O))long) — from the plateau until it decays to zero - is shown by

B
the red circles in Figure 7D. The long time part was fit using the analytical function Csexp [— (i) }

Tn
(black dashed line in Figure 7D). We refer to the fit data (67 = 10s) as (PW(Z)PW(O»IﬁOtng.
We then combined (P (t)P1uv(0))gpor and (Ppu (0P (0)) s’

to obtain (Puu ()P (0)) see
inset of Figure 7D). Finally, we calculated 7 using the equation,

combined (

7 =1lime0 30 0 Yy (P (i8DP 1 (0)) compined
=limg; 0 3 iLo 013 10y (PrvSDPuu(0)) ghort ®)
Lm0 Yoy, 6 S ) (Pr (10DP (0

where 1,6t is the end point of (P ()P (0)) g, @nd T6t is the end point of (P (i61)P .., (0))

combined*
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Cell polydispersity is needed to account for viscosity saturation
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Appendix 1—figure 1. Area distribution of the cells. (A) Simulation snapshot for monodisperse cell system. The
number of cells in the two-dimensional periodic box is N = 500. (B) Pair correlation function, g(r), as a function of
r. There is clear evidence of order, as reflected in the sharp peaks at regular intervals, which reflects the packing

in (A). (C) A schematic picture of polydisperse cell system from the simulations. Color bar on the right shows the
scale of radii in um. There is no discernible order. (D) Distribution of cell area extracted from experiment during
morphogenesis of zebrafish blastoderm (extracted from Fig. S2(A)) (Petridou et al., 2021). (E) Same as (D) except,
P(A;), used in a typical simulation. Cell radii vary from 2 pm to 15 um.

To explain the observed saturation in viscosity (Figure 1C) when cell area fraction, ¢, exceeds ¢g
(= 0.90), we first simulated a monodisperse cell system using the model described in the ‘Materials
and methods’ section. The monodisperse cell system (R = 8.5um) crystallizes (see Appendix 1—
figure 1A and B), which excludes it from being a viable model for explaining the experimental
findings. We also find that a system consisting of 50:50 binary mixture of cells cannot account for
the experimental data even though crystallization is avoided (see the next section). These findings
forced us to take PD into account.

In order to develop an agent-based model that accounts for PD effects, we first extracted the
distribution, P(A4;), of the area (4;) in the zebrafish cells from the experimental data (Petridou
et al., 2021). Appendix 1—figure 1D shows that P(4;) is broad, implying that cell sizes are
highly heterogeneous. Based on this finding, we sought a model of the non-confluent tissue that
approximately mimics PD found in experiments. In other words, %‘; (AA is the dispersion in P(A;)
and (A) is the mean value) should be similar to the data in Appendix 1—figure 1D. The radii (R;) of
the cells in the simulations are sampled from a Gaussian distribution ~ exp (—(Ri - (R))2/2AR2), with
(R) = 8.5um and AR = 4.5um. The resulting P(4;) for one of the realizations (see Appendix 1—figure
1C) is shown in Appendix 1—figure 1E. The value of %“; is ~ 0.5, which compares favorably with the
experimental estimate (~0.4). The unusual dependence of the viscosity () as a function of packing
fraction (¢) cannot be reproduced in the absence of PD.
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Relaxation time in the binary mixture of cells does not saturate at high
¢

We showed that the saturation in the relaxation time above a critical area fraction, ¢g, is related to
two factors. One is that there ought to be dispersion in the cell sizes (Appendix 1—figure 1). The
extent of dispersion is likely to less in three rather in two dimensions. The second criterion is that the
cells should be soft, allowing them to overlap at high area fraction. In other words, the cell diameters
are explicitly non-additive. The Hertz potential captures the squishy nature of the cells.

In order to reveal the importance of PD, we first investigated if a binary mixture of cells (see
Appendix 2—figure 1A) would reproduce the observed dependence of 7o on ¢. We created a
50:50 mixture with a cell size ratio ~ 1.4 (Rp = 8.5um and Rg = 6.1um). All other parameters are the
same as in the polydisperse system (see Table 1). The radial distribution function, g(r), calculated
by considering both the cell types, exhibits intermediate- but not long-range translational order
(Appendix 2—figure 1B). A peak in g(r) appears at rmax = 14.0um.

In order to determine the dependence of the relaxation time, 7o, on ¢, we first calculated Fi(g, 1)
at g = 27/rmax (Appendix 2—figure 1C). The decay of Fy(q, 1) is similar to what one finds in typical
glass-forming systems.

As ¢ increases, the decay of Fi(g,) slows down dramatically. When ¢ exceeds 0.93, there is a
visible plateau at intermediate times followed by a slow decay. By fitting the long time decay of
Fs(q,1) to exp(—(t/ra)’B) (B is the stretching exponent), we find that 7o (¢) as a function of ¢ is well
characterized by the VFT relation (Appendix 2—figure 1D). There is no evidence of saturation in
Ta(9) at high ¢. The ¢ dependence of the effective shear viscosity 77 (Appendix 2—figure 1E),
calculated using Equation (8), also shows no sign of saturation. The VFT behavior, with ¢y ~ 1 and
D = 1.2, shows that the two-component cell system behaves as a ‘fragile’ glass (Angell, 1991).

Acommentregarding the binary system of cellsisin order. The variables that characterize this system
are A = Rp/Rs (Rp (Ry) is the radius of the big (small) cells), @5 = Np/(N4 + Np) (Np (Na) is the number
of big (small) cells) with ®4 = 1 — ®p, and the packing fraction, ¢ = 7T(N3R129 +NAR/24)/AS, where Ag is
the area of the sample. The results in Appendix 2—figure 1 were obtained using A = 1.4, 3 =0.5.
With this choice, the value of PD is (A — 1)/(A + 1) & 0.17, which is smaller than the experimental
value. It is possible that by thoroughly exploring the parameter space, A and ¢, one could find
regions in which the 74 in the two-component cell system would saturate beyond ¢s. However, in
light of the results in Appendix 1—figure 1D, we choose to simulate systems that also have high
degree of PD (Appendix 1—figure 1E).
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Appendix 2—figure 1. Structure and relaxation behavior for a binary mixture of cells. (A) A typical simulation
snapshot for binary mixture of cells at ¢ = 0.93. (B) The corresponding pair correlation function, g(r), between all
the cells. The vertical dashed line is at the first peak position (rmax). (C) Fs(q, t), with g = %, where rmax is the
location of the first peak in the g(r), as a function of time at various ¢ values. (D) The logarithm of the relaxation
time, Ta, as a function of ¢. Over the entire range of ¢, the increase in Ta is well fit by the Vogel-Fulcher—
Tammann (VFT) (VFT) relation. Most importantly, the relaxation time does not saturate, which means the evolving
tissue cannot be modeled using a 50:50 binary mixture. (E) Effective shear viscosity 7] as a function of ¢ reflects the
behavior of 7 as a function of ¢ in (D).
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Absence of saturation in the free area in binary mixture of cells

In the main text, we established that the effective viscosity, 77, which should be a proxy for the true
7 and the relaxation time (7o) in the polydisperse cell system, saturates beyond ¢s. The dynamics
saturates beyond ¢g because the available area per cells (quantified as ¢gee) is roughly a constant in
this region (see Figure 5E). In the binary system, however, we do not find any saturation in the 7a.
Therefore, if dgee controls the dynamics, one would expect that ¢gee should decrease monotonically
with ¢ for the binary cells system. We calculated the average Vornoi cell size (A) (Appendix 3—
figure 1A) and ¢ (Appendix 3—figure 1B) for the binary system. Both (A) and ¢ decrease with
¢, which is consistent with the free volume picture proposed in the context of glasses.
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Appendix 3—figure 1. Free area decreases monotonically for the binary mixture of cells. (A) Mean Voronoi cell
size, (A), as a function of ¢ for the 50:50 binary system. (B) The free area fraction, @free, as a function of ¢ shows
that ¢ree decreases monotonically as ¢ increases. The error bars in (B) are the standard deviation in $\phi_{free}$
for 24 independent simulations.
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Absence of broken ergodicity

We have shown in the earlier section that the saturation of 7. above ¢g is not a consequence of
aging. In the context of glasses and supercooled liquids (Thirumalai et al., 1989), it has been shown
that if ergodicity is broken, then a variety of observables would depend on initial conditions. In order

to test if ergodicity is broken in our model of non-confluent tissues, we define a measure Q(z) given
by

a0 = [0 -] . ®

. . e .. 1 /! .
where k and [ represent systems with different initial conditions, and wk(t) = ;/ Plfw(s)ds with

P, (s) being the value of stress (see Equation 2 in the main text) at time s. If the system is ergodic,
implying the system has explored the whole phase space on the simulation time scale, the values of
wk(t) and wl(l) would be independent of k and I. Therefore, Q() should vanish at very long time for
ergodic systems. On the other hand, if ergodicity is broken, then Q(r) would be a constant whose
value would depend on k and .

The long time values of Q(r), normalized by ©2(0) (at r=0), are 0.01, 0.016, and 0.026 for
¢ =0.85,0.90, and 0.92, respectively (Appendix 4—figure 1A-C). Because these values are
sufficiently small, we surmise that effectively ergodicity is established. Therefore, our conclusion in
the earlier section that the polydisperse cell system is in near equilibrium is justified and also explains
the absence of aging. Furthermore, it was also predicted previously (Thirumalai et al., 1989) that
in long time the ergodic measure (Q(¢) in our case) should decay as ~ 1/t. Appendix 4—figure 1D
shows that this is indeed the case - at long time Q(r)/Q2(0) decays approximately as 1/z.
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Appendix 4—figure 1. Measure of ergodicity. (A) Ergodic measure €(t) scaled by the value at 7 = 0 (€2(0)) as a
function of ¢ for ¢ = 0.85. (B, C) Similar plots for ¢ = 0.90 and ¢ = 0.92, respectively. At long time, ()/€2(0)
reach 0.01, 0.016, and 0.026 for ¢ = 0.85, ¢ = 0.90, and ¢ = 0.92, respectively. (D) 2(0)/€2(¢) as a function of ¢
for ¢ = 0.90. The dashed line shows a linear fit. The time t is in second.
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Dynamics of small and large cells are dramatically different
The structural and the dynamical behavior of the small (Rg < 4.51m) and large (Rp > 12.0um) cells is
dramatically different in the non-confluent tissue. The pair correlation functions between small cells
(gss(r)) and between large cells (gpp(r)) (Appendix 5—figure 1A and B) for ¢ = 0.905 and ¢ = 0.92
show that both small and large cells exhibit liquid-like disordered structures. However, it is important
to note that gss(r) has only one prominent peak and a modest second peak. In contrast, ggp(r) has
three prominent peaks. Thus, the smaller-sized cells exhibit liquid-like behavior, whereas the large
cells are jammed. This structural feature is reflected in the decay of Fs(g, 1) with ¢ = ri—j where rmax
is the position of the first peak in the g(r) (Appendix 5—figure 1C and D).

There is a clear difference in the decay of Fi(g,1), spanning nearly eight orders of magnitude,
between small and large cells (compare Appendix 5—figure 1C and D). At the highly jammed
packing fraction (¢ = 0.92), small-sized cells have the characteristics of fluid-like behavior.
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Appendix 5—figure 1. Cell size-dependent structures and dynamics. (A) Radial distribution function gss(r)
between small-sized cells (Rg < 4.5um) at ¢ = 0.905 (blue) and 0.92 (red). These values are greater than

¢s = 0.90. (B) Same as (A) except the results are for gpp(r) between large cells (Rp > 12.0um). (C) Fs(g, 1) for
cells with Rg < 4.5um at ¢ = 0.905 and ¢ = 0.92. Note that even at these dense packings, the mobility of the
smaller-sized cells is substantial, which is reflected in the time dependence of Fs(g,t). (D) F(q, ) for cells with
Rp > 12.0um at ¢ = 0.905 and ¢ = 0.92. The black dashed lines are fits to stretched exponential functions,

Fy(q,1t) ~ eXp(—(%)B), where Tq is the relaxation time and 3 is the stretching exponent. The dotted lines
correspond to the value Fs(g,1) = %.

A typical snapshot from one of the simulations (¢ = 0.91) and the trajectories for a few small- and
big-sized cells are displayed in Appendix 5—figure 2A-D. The figures reflect the decay in Fs(q, ).
Not only are the mobilities heterogeneous, it is also clear that the displacements of the small cells

are greater than the large cells.
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Appendix 5—figure 2. Simulation snapshot and trajectories for a few smaller- and bigger-sized cells. (A) Cells
(¢ = 0.91) are colored according to their sizes (gray colors). A few small-sized cells are shown in different colors
(pink, blue, orange, purple, cyan, light purple, and yellow). (B) The corresponding trajectories are shown over the
entire simulation time. (C) Similar plot as (A) but for a few bigger-sized cells shown in purple, yellow, light green,

red, cyan, and green colors. (D) Same as (B) except the trajectories of the large-sized cells are highlighted. Clearly,
the large cells are jammed.
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Appendix 6

Dynamical changes in local packing fraction cause jammed cells to

move

The mobilities of all the cells, even under highly jammed conditions (¢ > ¢g), are only possible if
the local area fraction changes dynamically. This is a collective effect, which is difficult to quantify
because it would involve multi-cell correlation function. As explained in the main text, the movement
of a jammed cell can only occur if several neighboring cells move to create space. This picture is
not that dissimilar to kinetic facilitation in glass-forming materials (Hedges et al., 2009; Biroli and
Garrahan, 2013). However, in glass-like systems, facilitation is due to thermal excitation, but in the
active system, it is self-propulsion that causes the cells to move.

The creation of free space may be visualized by tracking the positions of the nearest-neighbor
cells. In Appendix 6—figure 1, we display the local free area of a black-colored cell at different
times. The top panels show the configurations where the black cell is completely jammed by other
cells. The cell, colored in black, can move if the neighboring cells rearrange (caging effect in glass-
forming systems) in order to increase the available free space. The bottom panels show that upon
rearrangement of the cells surrounding the black cell its mobility increases. Such rearrangement

occurs continuously, which qualitatively explains the saturation in viscosity in the multicomponent

cell system.

8’0 /e;

Appendix 6—figure 1. Dynamical rearrangement of jammed cells. The changing local environment of a randomly
selected cell (black) over time. Top panels: from left to right, t = 9.4174, 10.0174, and 25.397,. The black-colored
cell is completely jammed by other cells. Bottom panels: from left to right, t = 10.977¢, 25.447¢, and 27.497,.
Dynamical facilitation, resulting in collective rearrangement of the cells surrounding the black cell, enables it to
move in the dynamically created free volume.
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Appendix 7

Finite system size effects

In the main text, we report results for N = 500. To asses if the unusual dynamics is not an effect
of finite system size, we performed additional simulations with N =200 and N = 750. As shown in
Appendix 7—figure 1A and B, F(q, 1) saturates at ¢ > ¢g, which is reflected in the logarithm of 7o
as a function of ¢ (Appendix 7—figure 1C and D). The saturation value ¢s ~ 0.90 is independent
of the system size. The value of ¢ (= 0.95) is also nearly independent of system size. Therefore, the
observed dynamics, reflected in the plateau in the viscosity at high ¢, is likely not an effect of finite
system size.
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Appendix 7—figure 1. Finite size effects. Fs(gq, t) for N = 200 (A) and N = 750 (B). Logarithm of T as a function
of ¢ for N = 200 (C) and for N = 750 (D). The dashed lines are the Vogel-Fulcher-Tammann (VFT) fits.
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Appendix 8

Dependence of viscosity on average coordination number and average

connectivity

In the zebrafish blastoderm experiment (Petridou et al., 2021), the change in viscosity (1) was shown
as a function of mean connectivity (C). To test whether our 2D tissue simulations also exhibit similar
behavior, we calculated viscosity as a function of mean coordination number (N.) (defined below),
which is equivalent to (C). We define the coordination number, N, as the number of cells that are
in contact with a given cell. Two cells with indices i and j are in contact if h; = R; + R; — rjj > 0. We
calculate N, for all the cells for each ¢ and calculate the histogram P(N.). The distributions of P(N.)

are well fit by a Gaussian distribution function A exp [—(%)2] (Appendix 8—figure 1A-C). The

calculated mean, (N.), from the fit is linearly related to the cell area fraction ¢ (Appendix 8—figure
1D). We also calculate the average connectivity (C) defined in the following way. Each cell is defined
as a node, and an edge is defined as the line connecting two nodes. If a snapshot has n nodes and

m edges, then the connectivity is defined as C = m (Petridou et al., 2021). We calculate C for all

n
the snapshots for each ¢ and estimated its mean value (C). We find that (C) and (N.) are of similar
values (Appendix 8—figure 2A), and the dependence of viscosity 77 on (N.) and (C) is similar to
experimental results (Appendix 8—figure 2B and C; Petridou et al., 2021).
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Appendix 8—figure 1. Mean coordination number and cell area fraction. (A—C) shows the distribution of
coordination number P(N¢) for ¢ = 0.85, 0.90 and 0.93, respectively. The orange lines are Gaussian fits to the
histograms. (D) shows mean (N¢) as a function of ¢. The dashed line shows the linear relationship between them.

Das et al. eLife 2023;12:RP87966. DOI: https://doi.org/10.7554/eLife.87966 28 of 30


https://doi.org/10.7554/eLife.87966

eLife
(A)

<C>

Physics of Living Systems

(B) |
. 101 o 0
~ ] o O
/D/ Z 0]
¥l vy 107 o
o S o
o =101
| = E o
1079 o
3 35 25 3 35 4
<NC> <N >
C
(©)
10'1 ®o
—~ 0©
5}- 100" fo)
o
_ o
&~ 1074
| = o
1071
25 3 35 4
<C>

Appendix 8—figure 2. Viscosity and coordination number. (A) shows (C) as a function of (N¢). Clearly they are
linearly related as shown by the dashed line. Viscosity 7 as a function of (N¢) (B) and (C) (C).
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Appendix 9

Connectivity map

To pictorially observe the percolation transition in the simulations, we plot the connectivity map for
various values ¢ in Appendix 9—figure 1. Note that for smaller ¢ < 0.89 the map shows that cells are
loosely connected, suggesting a fluid-like behavior. For ¢ > 0.89, the connectivity between the cells
spans the entire system, which was noted and analyzed elsewhere thoroughly (Petridou et al., 2021).
Cells at one side of simulation box are connected to cells at the side. The cell connectivity extends
throughout the sample. The transition from a non-percolated state to a percolated state occurs over
a very narrow range of ¢, which corresponds to the onset of rigidity percolation transition (Petridou
et al., 2021). It is gratifying that the simple simulations reproduce the experimental observations.
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Appendix 9—figure 1. Connectivity profile. Connectivity maps for ¢ = 0.80,0.85,0.89,0.90,0.92, and 0.93 are
shown in (A), (B), (C), (D), (E), and (F), respectively. For ¢ > 0.89, there is a path that connects the cells in the entire
sample. The percolation transition occurs over a very narrow range of ¢ (roughly at ¢ ~ 0.89 ; orange map), which
also coincides with the sharp increase in 1), thus linking equilibrium transition to geometric connectivity.
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