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ABSTRACT

Human genome sequences are very large in size and require signif-
icant compute and storage resources for processing and analysis.
Variant calling is a key task performed on an individual’s genome
to identify different types of variants. Knowing these variants can
lead to new advances in disease diagnosis and treatment. In this
work, we propose a new approach for accelerating variant calling
pipelines on a large workload of human genomes using a commod-
ity cluster with graphics processing units (GPUs). Our approach
has two salient features: First, it enables a pipeline stage to use
GPUs and/or CPUs based on the availability of resources in the
cluster. Second, it employs a mutual exclusion strategy for execut-
ing a pipeline stage on the GPUs of a cluster node so that the stages
(for other sequences) can be executed using CPUs if needed. We
evaluated our approach on a 8-node cluster with bare metal servers
and virtual machines (VMs) containing different types of GPUs. On
publicly available genome sequences, our approach was 3.6X-5X
faster compared to an approach that used only the cluster CPUs.

CCS CONCEPTS
« Computing methodologies; « Applied computing;

KEYWORDS
Variant calling, human genomes, cluster computing, GPUs

ACM Reference Format:

Manas Jyoti Das, Khawar Shehzad, and Praveen Rao. 2023. Efficient Vari-
ant Calling on Human Genome Sequences Using a GPU-Enabled Com-
modity Cluster. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM ’23), October 21-25,
2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3583780.3615268

1 INTRODUCTION

The volume of human genome data has continued to grow rapidly
due to advances in sequencing technologies and lower cost of se-
quencing [28, 52]. A whole genome sequence of a human can con-
sume gigabytes of storage space due to millions of reads [19, 54]
produced by a sequencer [1]. These reads are short (overlapping)
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fragments of the deoxyribonucleic acid (DNA) in the genome. The
analysis of a genome sequence begins by executing a variant calling
pipeline [30], a key task to identify variants in the genome com-
pared to a reference genome [35]. Several types of variants can be
detected such as single nucleotide polymorphisms (SNPs), short
insertions/deletions (indels), copy number variation, and so on [14].
Executing the pipeline is compute and I/O intensive as it involves
reading the sequence data, aligning the reads against a reference
genome, additional pre-processing steps to mitigate sequencing
errors, and executing a variant caller to produce raw variants.

In recent years, there has been much interest in accelerating
variant calling pipelines using parallel/distributed computing and
hardware accelerators. Open source projects have emerged (e.g.,
GATK4 [27], ADAM/Cannoli [39, 40]) that employ cluster comput-
ing frameworks (e.g., Apache Spark [59], Apache Hadoop [55]) for
variant calling on human genomes. Companies such as Microsoft,
Google, NVIDIA, and [llumina are developing faster and more ac-
curate solutions for human genome sequence analysis [9, 24, 34, 41,
45, 51, 58]. There is continued interest in advancing the state of the
art for managing and analyzing human genomes at scale [53].

Recently, Rao et. al. proposed AVAH [47], an asynchronous com-
putation model to improve cluster utilization of variant calling
pipelines in a commodity cluster. AVAH achieved significant speedup
compared to ADAM/Cannoli [39] by solely using CPUs. Today,
GPUs are readily available in cloud and high performance comput-
ing (HPC) environments. Therefore, in this paper, we investigate
the problem of accelerating a variant calling pipeline on a large
workload of human genomes using a GPU-enabled cluster. Our key
contributions are as follows:

® We propose a new approach that effectively manages both GPUs
and CPUs in a cluster to accelerate a variant calling pipeline. Our
approach is designed to achieve good utilization of the cluster
resources via asynchronous computations.

o Our approach has two salient features: First, it enables a pipeline
stage to use GPUs and/or CPUs based on the availability of re-
sources in the cluster. Second, it employs a mutual exclusion strat-
egy for executing a pipeline stage on the GPUs of a cluster node
so that the stages (for other sequences) can use CPUs if needed.

o We evaluated our approach using a 8-node cluster with bare
metal servers and VMs and different types of GPUs. We used the
GATK4 [27] variant calling pipeline as it is widely adopted. On
publicly available genome sequences, our GPU-aware approach
was 3.6X-5X faster than AVAH that used only the cluster CPUs.

The rest of the paper is organized as follows: Section 2 provides
background/related work on variant calling pipelines. Section 3
presents our GPU-enabled approach. Section 4 describes the per-
formance evaluation. Finally, we conclude in Section 5.
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2 BACKGROUND AND RELATED WORK

a) Accelerating Variant Calling Pipelines. Several efforts have
been made to accelerate DNA variant calling pipelines using cluster
computing frameworks. Some of them used Apache Hadoop [55]
for speeding up the computationally-intensive alignment stage [2,
36, 37, 44, 48]. A few approaches used Apache Spark [59] for ac-
celerating the alignment stage [3, 8, 60]. Even field-programmable
gate arrays (FPGAs) were used to speed up alignment [4, 7] using
BWA-MEM [32], a widely used alignment software. Additional tools
were developed to cope with large genome datasets [31, 38, 50]
and perform ad hoc analysis using Apache Hadoop and Pig [43].
However, only certain stages of a pipeline were supported.

The GATK Best Practices Workflows [26] are widely adopted
for variant discovery. Halvade [11] parallelized the variant call-
ing pipeline of GATK using MapReduce [10]. Later, GATK4 was
released that employed Apache Spark for multithreading and par-
allelization [27]. NVIDIA developed Parabricks to accelerate GATK
pipelines using GPUs [41, 42]. Google developed DeepVariant [45,
58] that used deep learning for variant calling and operated directly
on aligned reads. Nothaft et. al. [39] created ADAM/Cannoli to
handle large genomic datasets using Apache Spark and parallelized
the alignment process/variant calling by reusing existing tools.

Yang et. al. [57] parallelized the code of DeepVariant [20] to run
faster on GPUs. More recently, lllumina developed DRAGEN to
accelerate the variant calling pipeline using FPGAs [23, 49]. Sen-
tieon [51] developed highly optimized software-based algorithms
for variant calling using CPUs. They developed DNAscope [15], a
machine learning-based variant caller that achieved better accu-
racy than GATK HaplotypeCaller [25]. Recently, a few approaches
used FPGAs to accelerate variant calling [33, 56].

b) AVAH [46, 47]. AVAH was proposed to overcome the poor clus-
ter utilization of ADAM/Cannoli for variant calling on a workload
of human genome sequences. AVAH improved the cluster utiliza-
tion via the concept of futures [22], which enables non-blocking
operations. AVAH distributed the task of executing a variant calling
pipeline on input sequences across the cluster nodes. It exploited
task parallelism and data parallelism for different stages in the
pipeline via asynchronous computations (i.e., futures). These com-
putations were executed in a sliding window manner on small
groups of sequences resulting in improved cluster utilization. AVAH
was built atop Apache Spark and Apache Hadoop. Hence, it lever-
aged the APIs of Adam/Cannoli [18, 39] for data parallelism. AVAH
was 3X-4.7X faster than Adam/Cannoli on a large workload of low
coverage human genome sequences [47].

Let us consider a single-sample (germline) variant calling pipeline
with four stages [30] involving (a) reading FASTQ files [29] contain-
ing raw unmapped reads in preparation for alignment, (b) aligning
reads [32] with a reference genome to produce mapped reads in
the BAM format [21], (c) marking duplicate reads, BQSR and indel
realignment to correct sequencing errors, and sorting, (d) invok-
ing a variant caller [17, 25] to produce raw variants in the VCF
format [16]. Algorithm 1 shows AVAH’s strategy to process a work-
load of sequences for the aforementioned 4-stage variant calling
pipeline. Each sequence has an ID, and the paired-end FASTQ files
are stored in HDFS. The sequence IDs are read into Spark’s resilient
distributed dataset (RDD), which is partitioned across the worker
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nodes. AVAH invokes a map operation on each RDD partition to
execute a stage on the sequences in that partition. It chains the
map operations followed by collect.

Algorithm 1 Key steps in AVAH (a.k.a. AVAH ) [47]

Input: f:a partitioning function; p: # of RDD partitions; w: sliding
window size for futures
1: Create an RDD R of sequence IDs, repartition into p partitions,
and sort each partition by sequence size
2: V «— R.mapPartitions(executefutures(si, w))
.mapPartitions(executefutures(sz, w))
.mapPartitions(executefutures(ss, ©))
.mapPartitions(execFutures(s4, w)).collect()
3: return V // This .vcf file is stored in HDFS

¢) Motivation. Most of the aforementioned techniques [24, 27,
39, 42, 45, 51] aim to accelerate the variant calling pipeline on a
single gold-standard high coverage human genome sequence. How-
ever, our goal is to accelerate a large workload of human genome
sequences using a commodity cluster similar to AVAH. The com-
moditization of GPUs provides an opportunity to outperform AVAH,
which only uses the cluster CPUs. However, effectively managing
the cluster GPUs/CPUs when executing different pipeline stages
(of different sequences via futures) is a non-trivial challenge and
requires rethinking how the stages are designed.

3 OUR APPROACH: AVAH*

In this section, we present AVAH* to accelerate a variant calling
pipeline on a large workload of genomes using a GPU-enabled
cluster. While AVAH* draws inspiration from AVAH in terms of
asynchronous computations, it effectively manages the cluster
CPU/GPUs to enable stages to use GPUs and/or CPUs.

Table 1: Stages in the GATK4 Pipeline

l Stage |
51 Copy FASTQ files from HDFS to a local file system,
produce an unaligned .bam, and store it in HDFS

52 Align the .bam file against a reference genome, mark
duplicates of mapped reads to produce an aligned
.bam file, and then store in HDFS

s3 Sort the aligned reads and apply BQSR/indel realign-
ment to produce a .bam file in HDFS

S4 Invoke the variant caller (HaplotypeCaller) to produce
a .vcf file in HDFS

Description

Without loss of generality, we consider GATK4 [27] as the un-
derlying variant calling pipeline as it is widely adopted. Table 1
shows the different stages of the pipeline. GATK4 supports multi-
threading and parallelization using Apache Spark. Hence, for the
three stages sz, s3, and s4, GATK4 can exploit data parallelism due
to Spark-based APIs. However, for stage s;, GATK4 still requires
local processing on a cluster node as it currently does have a Spark-
based implementation. Hence, s; requires more 1/O due to copying
FASTQ files from HDFS (to local storage) and copying back the
unaligned .banm file (from local storage) to HDFS for a sequence.

The design of AVAH* has two salient features in order to ef-
fectively manage the CPUs/GPUs in a cluster: The first feature
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Figure 1: Possible Execution Paths in AVAH*

is its ability to execute a pipeline stage either on a single node’s
GPUs/CPUs or across multiple nodes using their CPUs. Figure 1
shows the possible execution paths for the pipeline stages. We use
the term local to indicate that a single node’s resources are used,;
we use the term distributed to indicate that the resources of several
cluster nodes are used. Execution Path 1 uses only CPUs to execute
the stages shown in Table 1. Execution Path 2, however, uses local
GPUs and CPUs (on a single node) to execute stages s1-s3, and
finally, executes stage sq4 using the CPUs of several cluster nodes.!
The second feature is a mutual exclusion strategy for executing a
pipeline stage of a sequence on the GPUs of a single node. As a
result, the stages of other sequences in the same RDD partition
can either wait for the GPUs to become available or proceed to use
CPUs. Without mutual exclusion, pipeline stages will fail due to
limited memory on the GPUs.

Algorithm 2 Main steps for stage s;

Input: sid: sequence ID; useGPU, isFCFS: Boolean flags
Copy FASTQ files for sid from HDFS to local file system

1:

2: res «— fals

3: Let pID denote the ID of the RDD partition

4: if useGPU = true AND (pID mod k = 0) then

5 res «<— TryGPU(isFCFS, {s1, s2, s3})

6: if res = false then

7. Construct .bam file using GATK4 on local FASTQ files
8:  Copy unaligned .bam file (in s1) to HDFS

9 res « true

0: return (sid, res)

AVAH* executes the pipeline on a workload of sequences using
Algorithm 1. However, each stage s1-s4 that is executed as a future
must be redesigned to be GPU-aware. We describe the main steps
of these stages next. Algorithm 2 shows the steps for stage sj.
Based on the chosen positive integer k, either all or a subset of
RDD partitions can be assigned to use GPUs using their IDs (Line 4).
Within a partition, a first-come, first-served (FCFS) policy can be
employed, wherein only the first future to acquire the lock proceeds
to use GPUs. This is indicated by isFCFS=true (Line 5). Any other
concurrent future that tries to acquire the same lock will return
after a timeout period and proceed to use CPUs. If isFCFS=false,
all the sequences in the partition will execute on the local GPUs
one after the other. If useGPU=false (for Execution Path 1) or if
GPUs were not available (for Execution Paths 2 and 3), the steps
required by stage s; are executed locally on a node (Lines 7- 8).
10ne can imagine another Execution Path where only s;-s; use local GPU/CPU
resources, and s3-s; use distributed CPU resources. However, the current GPU-

implementation of GATK4 [41] cannot execute only s;-s; on the GPUs. Hence, this
scenario is not considered as an Execution Path.
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Algorithm 3 describes the mutual exclusion strategy for using
GPUs that is invoked by stages s; and s4 (to be discussed later).
If isFCFS=true and the GPU lock is acquired by a future, the
desired stages are executed on the node’s GPUs. If the lock can-
not be acquired, then the control is returned to caller. Otherwise,
the process of acquiring the lock is tried repeatedly with some
delay (Lines 8-10). Once the lock is acquired, the required stages
are executed on the node’s GPUs. Stages s; and s3 are relatively
straightforward and executed using distributed CPUs (Execution
Path 1) if useGPU=false.

Algorithm 3 TryGPU: main steps for mutual exclusion

Input: isFCFS: Boolean flag; S: stages to execute
lock gpuLock // one lock for all GPUs on a cluster node
: timeout < 30 seconds
. if isFCFS = true then
if acquire(gpuLock, timeout) = false then
return false
else
res « false
while res != true do
sleep("some seconds")
10: res «— acquire(gpuLock, timeout)
11: // The lock has been acquired
12: for each s € S do
13- Perform stage s on the node’s GPUs
14: Copy final output to HDFS // either .bam or .vcf
15: release(gpuLock)
16: return true

WRNDTD w2

Algorithm 4 shows the steps for stage s4 and is similar to Al-
gorithm 2 in terms of assigning partitions to GPUs and mutual
exclusion for GPU execution when useGPU=true. The distributed
CPUs are used for s4 when the GPU lock cannot be acquired for
isFCFS=true or when useGPU=false.

Algorithm 4 Main steps for stage s4

Input sid: sequence ID; useGPU, isFCFS: Boolean flags

res < false
: Let pID denote the ID of the RDD partition

. if useGPU = true AND (pID mod k = 0) then
res «— TryGPU(isFCFS, {s4})

if res = false then
Perform stage s4 using GATK4 Spark APls
res «— true

: return (sid, res)

AU R (A

4 PERFORMANCE EVALUATION

We begin by describing our experimental setup and then present
the performance results of AVAH and AVAH*. Note that the variant
calling pipeline/cluster hardware described below are different
from those used in our previous work [47].

a) Dataset, Implementation and Cluster Setup. Our workload con-
sisted of 98 human whole genome sequences that were publicly
released by the 1000 Genomes Project [5]. The total size of these
low-coverage (paired-end) sequences was 632 GB (in compressed
form). The min. and max. size of the sequences (in compressed
form) were 2.2 GB and 15.4 GB, respectively. They consumed 1.9
TB of HDFS storage due to the default replication factor of 3.

The original implementation of AVAH used the ADAM/Cannoli
APls [47]. Hence, we implemented support for GATK4 in AVAH
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and the aforementioned algorithms of AVAH* using Scala 2.12.8
and GATK 4.1.8.0. In addition, Apache Spark 2.4.7, Apache Hadoop
2.7.6, Open)DK 8, and CUDA Toolkit 11.0.2 were used. AVAH* used
Parabricks 4.0.0 [41], which implements the GATK4 pipeline for
GPUs via Docker containers [12]. The mutual exclusion strategy
for GPUs was implemented using file locking in Linux.

We ran the experiments on a 8-node cluster that was set up in
two different testbeds: CloudLab [13] and FABRIC [6]. CloudLab
is an experimental testbed for cloud computing research and pro-
vides bare metal servers for experimentation. The cluster nodes ran
Ubuntu 18.04 and were connected by a Gigabit Ethernet (10 Gbps).
Each node had two Intel Xeon Silver 4114 10-core CPUs (2.2 GHz)
and one NVIDIA GPU. Block storage was mounted on each node
and used to set up HDFS. In contrast, FABRIC is a newer testbed
with more powerful GPUs, faster storage drives, and high-speed
optical links. FABRIC provides only VMs for experimentation. The
VMs in the cluster ran Ubuntu 18.04 and were connected by a
Gigabit Ethernet (25 Gbps). Non-volatile Memory Express (NVMe)
drives were mounted on each VM. One NVIDIA GPU was attached
to each VM. The physical servers that hosted the VMs had dual
AMD EPYC Rome 2.5-2.9 GHz (32 core) processors with 512 GB
RAM. Table 2 summarizes the cluster node/VM characteristics for
the two testbeds. The GPU memory for P100, T4, and RTX6000
cards were 12 GB, 16 GB, and 24 GB, respectively.

Table 2: Hardware Comparison

Testbed | Logical cores/ | RAM/ | Storage/ | NVIDIA
node node node GPU type
(or VM) (or VM) | (or VM)
CloudLab 40 192GB | 1.17TB P100
FABRIC 24 128 GB | 850 GB | T4, RTX6000

Table 3: Time Comparison (Best Time Shown in Bold)

Testbed Time taken Best
AVAH AVAH* (isFCFS=false) | speedup
k=1 | k=2
CloudLab | 61hr30m | 16 h43 m | 35 h52m 3.67X
FABRIC 90h2m 17h49m | 52h6m 5.05X

b) Results. Next, we discuss the performance results. In each
cluster setup, one node (or VM) was the master and the other
nodes (or VMs) were the workers. AVAH and AVAH* were run using
YARN [55] with the deploy mode as "client". Hence, all the Spark
executors were launched on the worker nodes (or VMs). Thus, the
master node (or VM) was lightly utilized as expected. Also, GATK’s
HaplotypeCaller failed to run on a P100 GPU due to insufficient
memory. Hence, for all the experiments, AVAH* avoided using
Execution Path 3 for sequences. (Recall from Figure 1.) GRCh38 [35]
was used as the reference genome. Both AVAH and AVAH* used a
sliding window size of 2 for executing futures. We do not report
any accuracy results as both AVAH and AVAH* use GATK4.

Table 3 shows the time taken by AVAH and some represen-
tative results for AVAH*. AVAH* ran the fastest for k = 1 and
isFCFS=false, wherein every sequence was processed using Ex-
ecution Path 2. In all cases, AVAH was the slowest as it used only
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CPUs and chose Execution Path 1. AVAH* outperformed AVAH in
both the testbeds and achieved significant speedup by using GPUs.

Figures 2(a) and 2(b) show the overall CPU and GPU utilization
of AVAH* in CloudLab, respectively. Figures 2(c) and 2(d) show the
overall CPU and GPU utilization of AVAH* in FABRIC, respectively.
The CPU utilization was measured using dstat and is reported as
15-minute load average (measured every 30 seconds) on a worker
node/VM. The GPU utilization was measured using nvidia-smi.
Overall, AVAH* achieved good CPU and GPU utilization. (Note
that stage s4 used (distributed) CPUs; hence, the GPU utilization
was zero after stage s3 completed for all the sequences.) In contrast,
AVAH’s cluster CPU utilization was lower than that of AVAH* in
both testbeds. Hence, it ran slower than AVAH*. (In the interest of
space, we do not show these plots.) In summary, AVAH*’s design of
leveraging both CPUs and GPUs and the mutual exclusion strategy
were effective in achieving good performance compared to solely
using CPUs of a cluster. (We anticipate AVAH* to execute even
faster if Execution Path 3 was also used.)

Next, we remark on the execution of AVAH* in CloudLab and
FABRIC. The cluster in CloudLab had slower storage drives. Hence,
stage s; of AVAH* was more 1/0 bound on CloudLab compared
to FABRIC, which had faster NVMe drives. We can observe this
difference in Figures 2(a) and 2(c). With regard to GPUs, the cluster
in FABRIC had more powerful GPUs (three T4 and four RTX6000
GPUs on the worker VMs) compared to CloudLab (seven P100
GPUs on worker nodes). Hence, the first three stages of the GATK4
pipeline finished much faster on FABRIC. This can be noticed in
the GPU utilization plots shown in Figures 2(b) and 2(d).
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Figure 2: Cluster Utilization of AVAH*

5 CONCLUSION

We presented AVAH* that leverages a GPU-enabled cluster to
efficiently perform variant calling on human genomes using asyn-
chronous computations and a mutual exclusion strategy. It was
significantly faster than solely using cluster CPUs. AVAH* software
is available at https://github.com/MU-Data-Science/GAF.
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