
E�icient Variant Calling on Human Genome Sequences Using a
GPU-Enabled Commodity Cluster

Manas Jyoti Das
mjdbz4@health.missouri.edu

University of Missouri

USA

Khawar Shehzad
khawar.shehzad@mail.missouri.edu

University of Missouri

USA

Praveen Rao
praveen.rao@missouri.edu

University of Missouri

USA

ABSTRACT

Human genome sequences are very large in size and require signif-

icant compute and storage resources for processing and analysis.

Variant calling is a key task performed on an individual’s genome

to identify di�erent types of variants. Knowing these variants can

lead to new advances in disease diagnosis and treatment. In this

work, we propose a new approach for accelerating variant calling

pipelines on a large workload of human genomes using a commod-

ity cluster with graphics processing units (GPUs). Our approach

has two salient features: First, it enables a pipeline stage to use

GPUs and/or CPUs based on the availability of resources in the

cluster. Second, it employs a mutual exclusion strategy for execut-

ing a pipeline stage on the GPUs of a cluster node so that the stages

(for other sequences) can be executed using CPUs if needed. We

evaluated our approach on a 8-node cluster with bare metal servers

and virtual machines (VMs) containing di�erent types of GPUs. On

publicly available genome sequences, our approach was 3.6X-5X

faster compared to an approach that used only the cluster CPUs.

CCS CONCEPTS

• Computing methodologies; • Applied computing;

KEYWORDS

Variant calling, human genomes, cluster computing, GPUs

ACM Reference Format:

Manas Jyoti Das, Khawar Shehzad, and Praveen Rao. 2023. E�cient Vari-

ant Calling on Human Genome Sequences Using a GPU-Enabled Com-

modity Cluster. In Proceedings of the 32nd ACM International Conference

on Information and Knowledge Management (CIKM ’23), October 21–25,

2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3583780.3615268

1 INTRODUCTION

The volume of human genome data has continued to grow rapidly

due to advances in sequencing technologies and lower cost of se-

quencing [28, 52]. A whole genome sequence of a human can con-

sume gigabytes of storage space due to millions of reads [19, 54]

produced by a sequencer [1]. These reads are short (overlapping)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3615268

fragments of the deoxyribonucleic acid (DNA) in the genome. The

analysis of a genome sequence begins by executing a variant calling

pipeline [30], a key task to identify variants in the genome com-

pared to a reference genome [35]. Several types of variants can be

detected such as single nucleotide polymorphisms (SNPs), short

insertions/deletions (indels), copy number variation, and so on [14].

Executing the pipeline is compute and I/O intensive as it involves

reading the sequence data, aligning the reads against a reference

genome, additional pre-processing steps to mitigate sequencing

errors, and executing a variant caller to produce raw variants.

In recent years, there has been much interest in accelerating

variant calling pipelines using parallel/distributed computing and

hardware accelerators. Open source projects have emerged (e.g.,

GATK4 [27], ADAM/Cannoli [39, 40]) that employ cluster comput-

ing frameworks (e.g., Apache Spark [59], Apache Hadoop [55]) for

variant calling on human genomes. Companies such as Microsoft,

Google, NVIDIA, and Illumina are developing faster and more ac-

curate solutions for human genome sequence analysis [9, 24, 34, 41,

45, 51, 58]. There is continued interest in advancing the state of the

art for managing and analyzing human genomes at scale [53].

Recently, Rao et. al. proposed AVAH [47], an asynchronous com-

putation model to improve cluster utilization of variant calling

pipelines in a commodity cluster. AVAHachieved significant speedup

compared to ADAM/Cannoli [39] by solely using CPUs. Today,

GPUs are readily available in cloud and high performance comput-

ing (HPC) environments. Therefore, in this paper, we investigate

the problem of accelerating a variant calling pipeline on a large

workload of human genomes using a GPU-enabled cluster. Our key

contributions are as follows:

•We propose a new approach that e�ectively manages both GPUs

and CPUs in a cluster to accelerate a variant calling pipeline. Our

approach is designed to achieve good utilization of the cluster

resources via asynchronous computations.

•Our approach has two salient features: First, it enables a pipeline

stage to use GPUs and/or CPUs based on the availability of re-

sources in the cluster. Second, it employs a mutual exclusion strat-

egy for executing a pipeline stage on the GPUs of a cluster node

so that the stages (for other sequences) can use CPUs if needed.

•We evaluated our approach using a 8-node cluster with bare

metal servers and VMs and di�erent types of GPUs. We used the

GATK4 [27] variant calling pipeline as it is widely adopted. On

publicly available genome sequences, our GPU-aware approach

was 3.6X-5X faster than AVAH that used only the cluster CPUs.

The rest of the paper is organized as follows: Section 2 provides

background/related work on variant calling pipelines. Section 3

presents our GPU-enabled approach. Section 4 describes the per-

formance evaluation. Finally, we conclude in Section 5.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Manas Jyoti Das, Khawar Shehzad, & Praveen Rao

2 BACKGROUND AND RELATED WORK

a) Accelerating Variant Calling Pipelines. Several e�orts have

been made to accelerate DNA variant calling pipelines using cluster

computing frameworks. Some of them used Apache Hadoop [55]

for speeding up the computationally-intensive alignment stage [2,

36, 37, 44, 48]. A few approaches used Apache Spark [59] for ac-

celerating the alignment stage [3, 8, 60]. Even field-programmable

gate arrays (FPGAs) were used to speed up alignment [4, 7] using

BWA-MEM [32], a widely used alignment so�ware. Additional tools

were developed to cope with large genome datasets [31, 38, 50]

and perform ad hoc analysis using Apache Hadoop and Pig [43].

However, only certain stages of a pipeline were supported.

The GATK Best Practices Workflows [26] are widely adopted

for variant discovery. Halvade [11] parallelized the variant call-

ing pipeline of GATK using MapReduce [10]. Later, GATK4 was

released that employed Apache Spark for multithreading and par-

allelization [27]. NVIDIA developed Parabricks to accelerate GATK

pipelines using GPUs [41, 42]. Google developed DeepVariant [45,

58] that used deep learning for variant calling and operated directly

on aligned reads. Notha� et. al. [39] created ADAM/Cannoli to

handle large genomic datasets using Apache Spark and parallelized

the alignment process/variant calling by reusing existing tools.

Yang et. al. [57] parallelized the code of DeepVariant [20] to run

faster on GPUs. More recently, Illumina developed DRAGEN to

accelerate the variant calling pipeline using FPGAs [23, 49]. Sen-

tieon [51] developed highly optimized so�ware-based algorithms

for variant calling using CPUs. They developed DNAscope [15], a

machine learning-based variant caller that achieved be�er accu-

racy than GATK HaplotypeCaller [25]. Recently, a few approaches

used FPGAs to accelerate variant calling [33, 56].

b) AVAH [46, 47]. AVAH was proposed to overcome the poor clus-

ter utilization of ADAM/Cannoli for variant calling on a workload

of human genome sequences. AVAH improved the cluster utiliza-

tion via the concept of futures [22], which enables non-blocking

operations. AVAH distributed the task of executing a variant calling

pipeline on input sequences across the cluster nodes. It exploited

task parallelism and data parallelism for di�erent stages in the

pipeline via asynchronous computations (i.e., futures). These com-

putations were executed in a sliding window manner on small

groups of sequences resulting in improved cluster utilization. AVAH

was built atop Apache Spark and Apache Hadoop. Hence, it lever-

aged the APIs of Adam/Cannoli [18, 39] for data parallelism. AVAH

was 3X-4.7X faster than Adam/Cannoli on a large workload of low

coverage human genome sequences [47].

Let us consider a single-sample (germline) variant calling pipeline

with four stages [30] involving (a) reading FASTQ files [29] contain-

ing raw unmapped reads in preparation for alignment, (b) aligning

reads [32] with a reference genome to produce mapped reads in

the BAM format [21], (c) marking duplicate reads, BQSR and indel

realignment to correct sequencing errors, and sorting, (d) invok-

ing a variant caller [17, 25] to produce raw variants in the VCF

format [16]. Algorithm 1 shows AVAH’s strategy to process a work-

load of sequences for the aforementioned 4-stage variant calling

pipeline. Each sequence has an ID, and the paired-end FASTQ files

are stored in HDFS. The sequence IDs are read into Spark’s resilient

distributed dataset (RDD), which is partitioned across the worker

nodes. AVAH invokes a map operation on each RDD partition to

execute a stage on the sequences in that partition. It chains the

map operations followed by collect.

Algorithm 1 Key steps in AVAH (a.k.a. AVAH~) [47]

Input: Ĝ : a partitioning function; Ħ : # of RDD partitions; Ĉ : sliding
window size for futures

1: Create an RDD Ď of sequence IDs, repartition into Ħ partitions,
and sort each partition by sequence size

2: Ē ← Ď.mapPartitions(executefutures(ĩ1, Ĉ))
.mapPartitions(executefutures(ĩ2, Ĉ))
.mapPartitions(executefutures(ĩ3, Ĉ))
.mapPartitions(execFutures(ĩ4, Ĉ)).collect()

3: return Ē // This .vcf file is stored in HDFS

c) Motivation. Most of the aforementioned techniques [24, 27,

39, 42, 45, 51] aim to accelerate the variant calling pipeline on a

single gold-standard high coverage human genome sequence. How-

ever, our goal is to accelerate a large workload of human genome

sequences using a commodity cluster similar to AVAH. The com-

moditization of GPUs provides an opportunity to outperformAVAH,

which only uses the cluster CPUs. However, e�ectively managing

the cluster GPUs/CPUs when executing di�erent pipeline stages

(of di�erent sequences via futures) is a non-trivial challenge and

requires rethinking how the stages are designed.

3 OUR APPROACH: AVAH★

In this section, we present AVAH★ to accelerate a variant calling

pipeline on a large workload of genomes using a GPU-enabled

cluster. While AVAH★ draws inspiration from AVAH in terms of

asynchronous computations, it e�ectively manages the cluster

CPU/GPUs to enable stages to use GPUs and/or CPUs.

Table 1: Stages in the GATK4 Pipeline

Stage Description

ĩ1 Copy FASTQ files from HDFS to a local file system,

produce an unaligned .bam, and store it in HDFS

ĩ2 Align the .bam file against a reference genome, mark

duplicates of mapped reads to produce an aligned

.bam file, and then store in HDFS

ĩ3 Sort the aligned reads and apply BQSR/indel realign-

ment to produce a .bam file in HDFS

ĩ4 Invoke the variant caller (HaplotypeCaller) to produce

a .vcf file in HDFS

Without loss of generality, we consider GATK4 [27] as the un-

derlying variant calling pipeline as it is widely adopted. Table 1

shows the di�erent stages of the pipeline. GATK4 supports multi-

threading and parallelization using Apache Spark. Hence, for the

three stages ĩ2, ĩ3, and ĩ4, GATK4 can exploit data parallelism due

to Spark-based APIs. However, for stage ĩ1, GATK4 still requires

local processing on a cluster node as it currently does have a Spark-

based implementation. Hence, ĩ1 requires more I/O due to copying

FASTQ files from HDFS (to local storage) and copying back the

unaligned .bam file (from local storage) to HDFS for a sequence.

The design of AVAH★ has two salient features in order to ef-

fectively manage the CPUs/GPUs in a cluster: The first feature

E�icient Variant Calling on Human Genome Sequences Using a GPU-Enabled Commodity Cluster CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 1: Possible Execution Paths in AVAH★

is its ability to execute a pipeline stage either on a single node’s

GPUs/CPUs or across multiple nodes using their CPUs. Figure 1

shows the possible execution paths for the pipeline stages. We use

the term local to indicate that a single node’s resources are used;

we use the term distributed to indicate that the resources of several

cluster nodes are used. Execution Path 1 uses only CPUs to execute

the stages shown in Table 1. Execution Path 2, however, uses local

GPUs and CPUs (on a single node) to execute stages ĩ1-ĩ3, and

finally, executes stage ĩ4 using the CPUs of several cluster nodes.1

The second feature is a mutual exclusion strategy for executing a

pipeline stage of a sequence on the GPUs of a single node. As a

result, the stages of other sequences in the same RDD partition

can either wait for the GPUs to become available or proceed to use

CPUs. Without mutual exclusion, pipeline stages will fail due to

limited memory on the GPUs.

Algorithm 2Main steps for stage ĩ1

Input: ĩğĚ : sequence ID; īĩěăČđ , ğĩĂÿĂď : Boolean flags
1: Copy FASTQ files for ĩğĚ from HDFS to local file system
2: res← false
3: Let ĦąĀ denote the ID of the RDD partition
4: if useGPU = true AND (ĦąĀ mod ġ = 0) then
5: res← TryGPU(ğĩĂÿĂď , {ĩ1, ĩ2, ĩ3})
6: if res = false then
7: Construct .bam file using GATK4 on local FASTQ files
8: Copy unaligned .bam file (in ĩ1) to HDFS
9: res← true
10: return (ĩğĚ , res)

AVAH★ executes the pipeline on a workload of sequences using

Algorithm 1. However, each stage ĩ1-ĩ4 that is executed as a future

must be redesigned to be GPU-aware. We describe the main steps

of these stages next. Algorithm 2 shows the steps for stage ĩ1.

Based on the chosen positive integer ġ , either all or a subset of

RDD partitions can be assigned to use GPUs using their IDs (Line 4).

Within a partition, a first-come, first-served (FCFS) policy can be

employed, wherein only the first future to acquire the lock proceeds

to use GPUs. This is indicated by ğĩĂÿĂď=true (Line 5). Any other

concurrent future that tries to acquire the same lock will return

a�er a timeout period and proceed to use CPUs. If ğĩĂÿĂď=false,

all the sequences in the partition will execute on the local GPUs

one a�er the other. If īĩěăČđ=false (for Execution Path 1) or if

GPUs were not available (for Execution Paths 2 and 3), the steps

required by stage ĩ1 are executed locally on a node (Lines 7- 8).

1One can imagine another Execution Path where only B1-B2 use local GPU/CPU
resources, and B3-B4 use distributed CPU resources. However, the current GPU-
implementation of GATK4 [41] cannot execute only B1-B2 on the GPUs. Hence, this
scenario is not considered as an Execution Path.

Algorithm 3 describes the mutual exclusion strategy for using

GPUs that is invoked by stages ĩ1 and ĩ4 (to be discussed later).

If ğĩĂÿĂď=true and the GPU lock is acquired by a future, the

desired stages are executed on the node’s GPUs. If the lock can-

not be acquired, then the control is returned to caller. Otherwise,

the process of acquiring the lock is tried repeatedly with some

delay (Lines 8-10). Once the lock is acquired, the required stages

are executed on the node’s GPUs. Stages ĩ2 and ĩ3 are relatively

straightforward and executed using distributed CPUs (Execution

Path 1) if īĩěăČđ =false.

Algorithm 3 TryGPU: main steps for mutual exclusion

Input: ğĩĂÿĂď : Boolean flag; S: stages to execute
1: lock ĝĦīĈĥęġ // one lock for all GPUs on a cluster node
2: ĪğģěĥīĪ ← 30 seconds
3: if ğĩĂÿĂď = true then
4: if acquire(ĝĦīĈĥęġ , ĪğģěĥīĪ) = false then
5: return false
6: else
7: res← false
8: while res != true do
9: sleep("some seconds")
10: res← acquire(ĝĦīĈĥęġ , ĪğģěĥīĪ)
11: // The lock has been acquired
12: for each ĩ ∈ S do
13: Perform stage ĩ on the node’s GPUs
14: Copy final output to HDFS // either .bam or .vcf
15: release(ĝĦīĈĥęġ)
16: return true

Algorithm 4 shows the steps for stage ĩ4 and is similar to Al-

gorithm 2 in terms of assigning partitions to GPUs and mutual

exclusion for GPU execution when īĩěăČđ =true. The distributed

CPUs are used for ĩ4 when the GPU lock cannot be acquired for

ğĩĂÿĂď=true or when īĩěăČđ =false.

Algorithm 4 Main steps for stage ĩ4

Input: ĩğĚ : sequence ID; īĩěăČđ , ğĩĂÿĂď : Boolean flags
1: res← false
2: Let ĦąĀ denote the ID of the RDD partition
3: if useGPU = true AND (ĦąĀ mod ġ = 0) then
4: res← TryGPU(ğĩĂÿĂď , {ĩ4})
5: if res = false then
6: Perform stage ĩ4 using GATK4 Spark APIs
7: res← true
8: return (ĩğĚ , res)

4 PERFORMANCE EVALUATION

We begin by describing our experimental setup and then present

the performance results of AVAH and AVAH★. Note that the variant

calling pipeline/cluster hardware described below are di�erent

from those used in our previous work [47].

a) Dataset, Implementation and Cluster Setup. Our workload con-

sisted of 98 human whole genome sequences that were publicly

released by the 1000 Genomes Project [5]. The total size of these

low-coverage (paired-end) sequences was 632 GB (in compressed

form). The min. and max. size of the sequences (in compressed

form) were 2.2 GB and 15.4 GB, respectively. They consumed 1.9

TB of HDFS storage due to the default replication factor of 3.

The original implementation of AVAH used the ADAM/Cannoli

APIs [47]. Hence, we implemented support for GATK4 in AVAH

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Manas Jyoti Das, Khawar Shehzad, & Praveen Rao

and the aforementioned algorithms of AVAH★ using Scala 2.12.8

and GATK 4.1.8.0. In addition, Apache Spark 2.4.7, Apache Hadoop

2.7.6, OpenJDK 8, and CUDA Toolkit 11.0.2 were used. AVAH★ used

Parabricks 4.0.0 [41], which implements the GATK4 pipeline for

GPUs via Docker containers [12]. The mutual exclusion strategy

for GPUs was implemented using file locking in Linux.

We ran the experiments on a 8-node cluster that was set up in

two di�erent testbeds: CloudLab [13] and FABRIC [6]. CloudLab

is an experimental testbed for cloud computing research and pro-

vides bare metal servers for experimentation. The cluster nodes ran

Ubuntu 18.04 and were connected by a Gigabit Ethernet (10 Gbps).

Each node had two Intel Xeon Silver 4114 10-core CPUs (2.2 GHz)

and one NVIDIA GPU. Block storage was mounted on each node

and used to set up HDFS. In contrast, FABRIC is a newer testbed

with more powerful GPUs, faster storage drives, and high-speed

optical links. FABRIC provides only VMs for experimentation. The

VMs in the cluster ran Ubuntu 18.04 and were connected by a

Gigabit Ethernet (25 Gbps). Non-volatile Memory Express (NVMe)

drives were mounted on each VM. One NVIDIA GPU was a�ached

to each VM. The physical servers that hosted the VMs had dual

AMD EPYC Rome 2.5-2.9 GHz (32 core) processors with 512 GB

RAM. Table 2 summarizes the cluster node/VM characteristics for

the two testbeds. The GPU memory for P100, T4, and RTX6000

cards were 12 GB, 16 GB, and 24 GB, respectively.

Table 2: Hardware Comparison

Testbed Logical cores/ RAM/ Storage/ NVIDIA

node node node GPU type

(or VM) (or VM) (or VM)

CloudLab 40 192 GB 1.1 TB P100

FABRIC 24 128 GB 850 GB T4, RTX6000

Table 3: Time Comparison (Best Time Shown in Bold)

Testbed Time taken Best

AVAH AVAH★ (8B���(=false) speedup

ġ = 1 ġ = 2

CloudLab 61 hr 30 m 16 h 43 m 35 h 52 m 3.67X

FABRIC 90 h 2 m 17 h 49 m 52 h 6 m 5.05X

b) Results. Next, we discuss the performance results. In each

cluster setup, one node (or VM) was the master and the other

nodes (or VMs) were the workers. AVAH and AVAH★ were run using

YARN [55] with the deploy mode as "client". Hence, all the Spark

executors were launched on the worker nodes (or VMs). Thus, the

master node (or VM) was lightly utilized as expected. Also, GATK’s

HaplotypeCaller failed to run on a P100 GPU due to insu�icient

memory. Hence, for all the experiments, AVAH★ avoided using

Execution Path 3 for sequences. (Recall from Figure 1.) GRCh38 [35]

was used as the reference genome. Both AVAH and AVAH★ used a

sliding window size of 2 for executing futures. We do not report

any accuracy results as both AVAH and AVAH★ use GATK4.

Table 3 shows the time taken by AVAH and some represen-

tative results for AVAH★. AVAH★ ran the fastest for ġ = 1 and

ğĩĂÿĂď=false, wherein every sequence was processed using Ex-

ecution Path 2. In all cases, AVAH was the slowest as it used only

CPUs and chose Execution Path 1. AVAH★ outperformed AVAH in

both the testbeds and achieved significant speedup by using GPUs.

Figures 2(a) and 2(b) show the overall CPU and GPU utilization

of AVAH★ in CloudLab, respectively. Figures 2(c) and 2(d) show the

overall CPU and GPU utilization of AVAH★ in FABRIC, respectively.

The CPU utilization was measured using dstat and is reported as

15-minute load average (measured every 30 seconds) on a worker

node/VM. The GPU utilization was measured using nvidia-smi.

Overall, AVAH★ achieved good CPU and GPU utilization. (Note

that stage ĩ4 used (distributed) CPUs; hence, the GPU utilization

was zero a�er stage ĩ3 completed for all the sequences.) In contrast,

AVAH’s cluster CPU utilization was lower than that of AVAH★ in

both testbeds. Hence, it ran slower than AVAH★. (In the interest of

space, we do not show these plots.) In summary, AVAH★’s design of

leveraging both CPUs and GPUs and the mutual exclusion strategy

were e�ective in achieving good performance compared to solely

using CPUs of a cluster. (We anticipate AVAH★ to execute even

faster if Execution Path 3 was also used.)

Next, we remark on the execution of AVAH★ in CloudLab and

FABRIC. The cluster in CloudLab had slower storage drives. Hence,

stage ĩ1 of AVAH
★ was more I/O bound on CloudLab compared

to FABRIC, which had faster NVMe drives. We can observe this

di�erence in Figures 2(a) and 2(c). With regard to GPUs, the cluster

in FABRIC had more powerful GPUs (three T4 and four RTX6000

GPUs on the worker VMs) compared to CloudLab (seven P100

GPUs on worker nodes). Hence, the first three stages of the GATK4

pipeline finished much faster on FABRIC. This can be noticed in

the GPU utilization plots shown in Figures 2(b) and 2(d).

(a) CPU utilization (CloudLab) (b) GPU utilization (CloudLab)

(c) CPU utilization (FABRIC) (d) GPU utilization (FABRIC)

Figure 2: Cluster Utilization of AVAH★

5 CONCLUSION

We presented AVAH★ that leverages a GPU-enabled cluster to

e�iciently perform variant calling on human genomes using asyn-

chronous computations and a mutual exclusion strategy. It was

significantly faster than solely using cluster CPUs. AVAH★ so�ware

is available at https://github.com/MU-Data-Science/GAF.

Acknowledgments. This work was supported by the National

Science Foundation under Grant No. 2201583.

E�icient Variant Calling on Human Genome Sequences Using a GPU-Enabled Commodity Cluster CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] 2021. What is Paired-End Sequencing? https://www.illumina.com/science/

technology/next-generation-sequencing/plan-experiments/paired-end-vs-
single-read.html.

[2] J. M. Abuin, J. C. Pichel, T. F. Pena, and J. Amigo. 2015. BigBWA: Approaching
the Burrows-Wheeler Aligner to Big Data Technologies. Bioinformatics 31, 24
(2015), 4003–4005.

[3] J. M. Abuin, J. C. Pichel, T. F. Pena, and J. Amigo. 2016. SparkBWA: Speeding
up the Alignment of High-Throughput DNA Sequencing Data. PLoS ONE 11, 5
(2016).

[4] NaumanAhmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels, and Zaid Al-Ars.
2015. Heterogeneous Hardware/So�ware Acceleration of the BWA-MEM DNA
Alignment Algorithm. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 240–246.

[5] Adam Auton and et.al. 2015. A Global Reference for Human Genetic Variation.
Nature 526, 7571 (2015), 68–74.

[6] Ilya Baldin, Anita Nikolich, James Gri�ioen, Indermohan Inder S. Monga, Kuang-
Ching Wang, Tom Lehman, and Paul Ruth. 2019. FABRIC: A National-Scale
Programmable Experimental Network Infrastructure. IEEE Internet Computing
23, 6 (2019), 38–47.

[7] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. 2016. When
Apache SparkMeets FPGAs: A Case Study for Next-Generation DNA Sequencing
Acceleration. In Proc. of the 8th USENIX Conference on Hot Topics in Cloud
Computing (Denver, CO). 64–70.

[8] J. Cong, Jie Lei, Sen Li, Myron Peto, P. Spellman, PengWei, and Peipei Zhou. 2015.
CS-BWAMEM: A Fast and Scalable Read Aligner at the Cloud Scale for Whole
Genome Sequencing. In High Throughput Sequencing Algorithms and Applications
(HITSEQ).

[9] Databricks. 2018. Building the Fastest DNASeq Pipeline at Scale.
https://databricks.com/blog/2018/09/10/building-the-fastest-dnaseq-pipeline-
at-scale.html

[10] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Process-
ing on Large Clusters. In Proc. of the 6th OSDI Conference. 137–150.

[11] D. Decap, J. Reumers, C. Herzeel, P. Costanza, and J. Fostier. 2015. Halvade:
Scalable Sequence Analysis with MapReduce. Bioinformatics 31, 15 (2015), 2482–
2488.

[12] Docker. 2023. Docker: Develop faster. Run anywhere. https://www.docker.com/
[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Ellio�, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19) (Renton, WA). 1–14.

[14] Ensembl. 2021. Ensembl Variation - Variant Classification. https://m.ensembl.
org/info/genome/variation/prediction/classi�cation.html

[15] Donald Freed, Renke Pan, Haodong Chen, Zhipan Li, Jinnan Hu, and Rafael
Aldana. 2022. DNAscope: High Accuracy Small Variant Calling Using Machine
Learning. bioRxiv (2022). https://doi.org/10.1101/2022.05.20.492556

[16] GA4GH. 2021. The Variant Call Format (VCF) Version 4.2 Specification. https:
//samtools.github.io/hts-specs/VCFv4.2.pdf .

[17] Erik Garrison and Gabor Marth. 2012. Haplotype-Based Variant Detection from
Short-Read Sequencing. arXiv:1207.3907

[18] Big Data Genomics. 2020. Big Data Genomics. https://github.com/
bigdatagenomics/

[19] Sara Goodwin, John D McPherson, and W Richard McCombie. 2016. Coming
of Age: Ten Years of Next-Generation Sequencing Technologies. Nature Reviews
Genetics 17, 6 (2016), 333–351.

[20] Google. 2021. DeepVariant. https://github.com/google/deepvariant
[21] The SAM/BAM Format Specification Working Group. 2021. Sequence Align-

ment/Map Format Specification. https://samtools.github.io/hts-specs/SAMv1.
pdf

[22] Robert H. Halstead. 1985. MULTILISP: A Language for Concurrent Symbolic
Computation. ACM TOPLAS 7, 4 (1985), 501–538.

[23] Illumina. 2020. DRAGEN Wins at PrecisionFDA Truth Challenge V2
Showcase Accuracy Gains from Alt-aware Mapping and Graph Reference
Genomes. https://www.illumina.com/science/genomics-research/articles/
dragen-wins-precisionfda-challenge-accuracy-gains.html

[24] Illumina. 2022. DRAGEN. https://developer.illumina.com/dragen
[25] Broad Institute. 2020. HaplotypeCaller in a Nutshell. https://gatk.broadinstitute.

org/hc/en-us/articles/360035531412-HaplotypeCaller-in-a-nutshell
[26] Broad Institute. 2021. Genome Analysis Toolkit. https://gatk.broadinstitute.org/

hc/en-us
[27] Broad Institute. 2023. GATK4. https://gatk.broadinstitute.org/hc/en-us/articles/

360035890591-Spark
[28] National Human Genome Research Institute. 2021. The Cost of Sequencing

a Human Genome. https://www.genome.gov/about-genomics/fact-sheets/
Sequencing-Human-Genome-cost

[29] Welcome Trust Sanger Institute. 2000. FASTQ Format Specification. https:
//maq.sourceforge.net/fastq.shtml

[30] Daniel C. Koboldt. 2020. Best Practices for Variant Calling in Clinical Sequencing.
Genome Medicine 12, 1 (2020), 91.

[31] Simone Leo, Federico Santoni, and Gianluigi Zane�i. 2009. Biodoop: Bioinformat-
ics on Hadoop. In 2009 International Conference on Parallel Processing Workshops.
IEEE, 415–422.

[32] Heng Li. 2013. Aligning Sequence Reads, Clone Sequences and Assembly Contigs
With BWA-MEM. arXiv e-prints (March 2013), arXiv:1303.3997. arXiv:1303.3997

[33] Michael Lo, Zhenman Fang, Jie Wang, Peipei Zhou, Mau-Chung Frank Chang,
and Jason Cong. 2020. Algorithm-Hardware Co-design for BQSR Acceleration
in Genome Analysis ToolKit. In 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 157–166.

[34] Microso�. 2020. Microso� Genomics. https://www.microsoft.com/en-us/
genomics/

[35] NCBI. 2013. Genome Reference Consortium Human Build 38. https://www.
ncbi.nlm.nih.gov/assembly/GCF_000001405.26/

[36] T. Nguyen, W. Shi, and D Ruden. 2011. CloudAligner: A Fast and Full-Featured
MapReduce Based Tool for Sequence Mapping. BMC Research Notes 4, 1 (2011),
171.

[37] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemela, E. Korpelainen, and K. Hel-
janko. 2012. Hadoop-BAM: Directly Manipulating Next Generation Sequencing
Data in the Cloud. Bioinformatics 28, 6 (2012), 876–877.

[38] Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang. 2013. BioPig: a
Hadoop-based Analytic Toolkit for Large-Scale Sequence Data. Bioinformatics
29, 23 (2013), 3014–3019.

[39] Frank A. Notha�. 2017. Scalable Systems and Algorithms for Genomic Variant
Analysis. Ph. D. Dissertation. UC Berkeley, Pro�est.

[40] Frank Austin Notha�, Ma� Massie, Timothy Danford, Zhao Zhang, Uri Laser-
son, Carl Yeksigian, Jey Ko�alam, Arun Ahuja, Je� Hammerbacher, Michael D.
Linderman, Michael J. Franklin, Anthony D. Joseph, and David A. Pa�erson. 2015.
Rethinking Data-Intensive Science Using Scalable Analytics Systems. In Proc. of
the 2015 ACM SIGMOD Conference (Victoria, Australia). 631–646.

[41] NVIDIA. 2020. NVIDIA Clara Parabricks. https://developer.nvidia.com/clara-
parabricks

[42] Kyle A. O’Connell, Zelaikha B. Yosufzai, Ross A. Campbell, Collin J. Lobb, Haley T.
Engelken, Laura M. Gorrell, Thad B. Carlson, Josh J. Catana, Dina Mikdadi,
Vivien R. Bonazzi, and Juergen A. Klenk. 2023. Accelerating Genomic Workflows
Using NVIDIA Parabricks. BMC Bioinformatics 24 (2023).

[43] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-
drew Tomkins. 2008. Pig Latin: a Not-So-Foreign Language for Data Processing.
In Proceedings of the 2008 ACM SIGMOD international conference on Management
of data. 1099–1110.

[44] Luca Pireddu, Simone Leo, and Gianluigi Zane�i. 2011. SEAL: A Distributed
Short Read Mapping and Duplicate Removal Tool. Bioinformatics 27, 15 (2011),
2159–2160.

[45] Ryan Poplin, Pi-Chuan Chang, David Alexander, Sco� Schwartz, Thomas
Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T
Afshar, Sam S Gross, Lizzie Dorfman, Cory YMcLean, andMark A DePristo. 2018.
A universal SNP and Small-Indel Variant Caller Using Deep Neural Networks.
Nature Biotechnology 36, 10 (2018), 983–987.

[46] Praveen Rao and Arun Zachariah. 2022. Enabling Large-Scale Human Genome
Sequence Analysis on CloudLab. In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 1–2.

[47] Praveen Rao, Arun Zachariah, Deepthi Rao, Peter Tonellato, Wesley Warren,
and Eduardo Simoes. 2021. Accelerating Variant Calling on Human Genomes
Using a Commodity Cluster. In Proc. of 30th ACM International Conference on
Information and Knowledge Management (CIKM). 3388–3392.

[48] Michael C. Schatz. 2009. CloudBurst: Highly Sensitive Read Mapping with
MapReduce. Bioinformatics 25, 11 (2009), 1363–1369.

[49] Konrad Sche�ler, Severine Catreux, Taylor O’Connell, Heejoon Jo, Varun Jain,
Theo Heyns, Je�rey Yuan, Lisa Murray, James Han, and Rami Mehio. 2023. So-
matic small-variant calling methods in Illumina DRAGEN™ Secondary Analysis.
bioRxiv (2023). arXiv:2023.03.23.534011

[50] André Schumacher, Luca Pireddu, Ma�i Niemenmaa, Aleksi Kallio, Eija Ko-
rpelainen, Gianluigi Zane�i, and Keijo Heljanko. 2014. SeqPig: Simple and
Scalable Scripting for Large Sequencing Data Sets in Hadoop. Bioinformatics 30,
1 (2014), 119–120.

[51] Sentieon. 2023. Enabling Precision Data for Precision Medicine. https://www.
sentieon.com/

[52] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang
Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and
Gene E. Robinson. 2015. Big Data: Astronomical or Genomical? PLOS Biology
13, 7 (2015), 1–11.

[53] Tomoya Tanjo, Yosuke Kawai, Katsushi Tokunaga, Osamu Ogasawara, and
Masao Nagasaki. 2021. Practical Guide for Managing Large-Scale Human
Genome Data in Research. Journal of Human Genetics 66, 1 (2021), 39–52.

[54] Stanford University. 2023. Stanford Genomics. https://med.stanford.edu/sfgf/
services/sequencing.html

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Manas Jyoti Das, Khawar Shehzad, & Praveen Rao

[55] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.
[56] Tiancheng Xu, Sco� Rixner, and Alan L. Cox. 2023. An FPGA Accelerator for

Genome Variant Calling. ACM Transactions on Reconfigurable Technology and
Systems (May 2023), 1–20.

[57] Chih-Han Yang, Jhih-Wun Zeng, Cheng-Yueh Liu, and Shih-Hao Hung. 2020.
Accelerating Variant Calling with Parallelized DeepVariant. In Proceedings of
the International Conference on Research in Adaptive and Convergent Systems
(Gwangju, Republic of Korea). 13–18.

[58] Taedong Yun, Helen Li, Pi-Chuan Chang, Michael F Lin, Andrew Carroll, and
Cory YMcLean. 2021. Accurate, Scalable Cohort Variant Calls Using DeepVariant
and GLnexus. Bioinformatics 36, 24 (01 2021), 5582–5589.

[59] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Sco� Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proc. of the
2nd USENIX Conference on Hot Topics in Cloud Computing. Boston, MA, 10–10.

[60] Lingqi Zhang, Cheng Liu, and Shoubin Dong. 2019. PipeMEM: A Framework to
Speed Up BWA-MEM in Spark with Low Overhead. Genes 10, 11 (2019).

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Our Approach: AVAH
	4 Performance Evaluation
	5 Conclusion
	References

