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Abstract

Many e-commerce platforms use buyers’ personal data to intermediate their

transactions with sellers. How much value do such intermediaries derive from the

data record of each single individual? We characterize this value and find that one

of its key components is a novel externality between records, which arises when

the intermediary pools some records to withhold the information they contain. Our

analysis has several implications about compensating individuals for the use of

their data, guiding companies’ investments in data acquisition, and more broadly

studying the demand side of data markets. Our methods combine modern informa-

tion design with classic duality theory and apply to a large class of principal-agent

problems.
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1 Introduction

Personal data is the “new oil” of modern economies. Search engines and social media platforms

use it to sell targeted advertisement; e-commerce platforms use it to intermediate trade between

buyers and sellers; job-matching platforms use it to match workers and employers. In each

case, a large quantity of personal data fuels a multi-billion-dollar industry. How much of this

total value is created by the data of each single individual? This basic question is at the core of

some of the recent debates regarding the future of data markets, including how to design them

to compensate individuals for their data, how to conduct demand analysis for data brokers, and

to what extent data is a source of market power (see, e.g., Federal Trade Commission, 2014;

Stigler Report, 2019; Seim et al., 2022).1

Yet, the value of personal data for a digital platform is not well understood and can be hard

to assess. For example, consider an e-commerce platform that mediates the trade between one

seller and many buyers.2 For each buyer, the platform owns a data record, which consists of

a list of personal characteristics (gender, age, etc.). Suppose there are two types of records,

ω1 and ω2, which reveal the buyer’s willingness to pay for the seller’s product is 1 and 2,

respectively. The platform’s database has more ω2 records than ω1 records. The seller knows

the database composition, but has no other information about the buyers. How much value

does the platform derive from each record? The answer depends on how it uses them, which in

turn depends on its goal.

To start, consider the simple case where the platform’s payoff is proportional to the seller’s

profits. The platform will then fully disclose all it knows about each buyer to the seller—

for instance, using buyers’ records to divide them into two market segments, each containing

only buyers with the same willingness to pay. The seller then sets prices that extract all the

surplus from each buyer. As a result, the platform earns a higher payoff with ω2 records, which

intuitively also have a higher value than ω1 records. By contrast, consider the case where the

platform’s payoff is proportional to the buyers’ surplus. In this case, it can do strictly better

than full disclosure. For instance, it can add some buyers whose record is of type ω2 to the

segment that previously contained none, as long as the seller continues to set a price of 1 for this

segment. As before, the platform earns a higher payoff with ω2 records than with ω1 records,

whose payoff is zero. Yet, the latter are not worthless for the platform: They are essential to

generate positive surplus with some buyers. In fact, we will show ω1 records have the highest

1Posner and Weyl (2018) were among the first to advocate for data compensations. They also argued that “the

first step toward valuing individual contributions to the data economy is measuring these contributions.”
2This example is inspired by the model in Bergemann et al. (2015) and Elliott et al. (2021).
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value despite generating the lowest payoff.

Our main contribution is to characterize the value of each data record for an intermediary—

like the platform above—that uses data to influence the behavior of strategic agents to its own

advantage by disclosing information.3 Our analysis reveals the value of a record is the sum of

two components. The first is the payoff the intermediary directly obtains from this record (e.g.,

when the corresponding buyer trades with the seller in the platform’s example). The second is

a novel externality between records that arises when the intermediary pools them to withhold

information from the agents. Therefore, the payoff obtained from a record can be an incomplete

measure of its value. In the example above, when the platform maximizes buyers’ surplus, ω1

records exert a positive externality by allowing the platform to earn a positive payoff with some

of the ω2 records. For this reason, they have a positive value despite generating zero payoff.

Records of type ω2 instead exert a negative externality, because when pooled with ω1 records,

they make persuading the seller to set a low price harder—which explains why they are less

valuable than ω1 records.

These pooling externalities are a hallmark of intermediation problems: Conflicts of interest

with and between the agents may induce the intermediary to withhold information from them,

which creates the interdependencies between data records discussed above.4 For example,

the seller’s belief after being told a buyer belongs to some segment depends jointly on all

records pooled in that segment. These pooling externalities arise even when data records are

statistically independent. As such, they are distinct from and complementary to the “learning”

externalities that can arise when a buyer’s record may be informative about another buyer’s

preferences, as highlighted by a recent literature on data markets.5 In this paper, we switch off

this channel and emphasize externalities that arise endogenously from how data is used, rather

than from exogenous correlation.

We propose an inherently classical approach to determine the value of data records. We

3To be clear, our term “value of a data record” exclusively refers to the value derived by the intermediary that

uses the data. Other parties (such as the seller or buyers in the platform example) may also derive value from how

the intermediary uses the data. While interesting, this different perspective is not the focus of this work.
4Withholding information is a common practice for many digital platforms. For example, Google’s “quality

score” pools people’s searches to increase competition among advertisers (see, e.g., Sayedi et al., 2014); Uber

conceals riders’ destinations from drivers to increase riders’ welfare; and Airbnb withholds hosts’ profile pictures

to decrease discrimination.
5Choi et al. (2019), Bergemann et al. (2022), Acemoglu et al. (2021), and Ichihashi (2021) study how con-

sumers’ incentives to disclose their personal data depend on the statistical correlation among them, and the effects

of those incentives on market outcomes, such as consumers’ participation and their welfare.
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think of an intermediary as using inputs (data records) to produce output (information). Ap-

plying standard techniques from information design (Myerson (1982); Bergemann and Morris

(2016)), this production problem acquires a linear structure. We then use duality methods to

characterize the value of the data records, adapting the classic work of Dorfman et al. (1987)

and Gale (1989). This approach is general and direct, as one can find those values without hav-

ing to solve the primal production problem.

We use our characterization of the value of data records as a stepping stone to address three

questions about data markets. First, consider the debate about establishing markets (or other

institutions) whereby individuals could be compensated for their personal data.6 Irrespective of

how these compensations are determined in practice, how do they compare with the value that

each data record generates for the intermediary? In a market setting, such comparison sheds

light on the shares of this value that the intermediary and the individuals ultimately pocket. A

welfare split that is more favorable to the intermediary may be indicative of its market power

or other inefficiencies. Alternatively, in a lawsuit against a platform, the court may decide to

award its users an equal compensation for all. In an application that generalizes the above

example, we find that such compensations could grant buyers with a higher (lower) willingness

to pay more (less) than the value their data actually generated for the platform.

Second, we contribute to the analysis of an intermediary’s demand for data. A key step is to

realize that its preferences over databases are pinned down by the values of data records. We

find that the aforementioned pooling externalities introduce convexities in those preferences.

This renders the intermediary akin to a consumer in standard consumer theory, opening the

door to applying well-known analytical tools. In particular, we derive the demand function for

records of a fixed type and find it is downward-sloping. We study the substitutability between

types of records and characterize when they are imperfect substitutes or even complements.

These properties establish a “scarcity principle” for data: Any intermediary places more value

on scarcer types of records, both in absolute and relative terms. We also note that assigning a

value to each data record can be viewed as an internal accounting exercise on the part of the

intermediary, which can guide its investment decisions of which types of records to acquire.

Moreover, we show that a platform strictly benefits from merging two databases—for instance,

via a takeover—if and only if our pooling externalities are present, which is directly revealed

by the records’ values at the original databases. These insights may inform regulatory policies.

6For example, Seim et al. (2022) argue that “exploring ways to compensate internet users for the collection

and use of their data is of utmost importance from the standpoint of efficiency and fairness, in addition to concerns

about competition and privacy.”
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Finally, we study how learning more about existing records affects their values. In this ex-

ercise, we fix the size of the database and refine some of its records by making them more in-

formative (e.g., by observing new characteristics of the corresponding buyers in the platform

example). We find that refining a record increases its value in expectation, but can decrease

the value of other records. These indirect effects are once again caused by the pooling exter-

nalities between records. Despite these mixed effects, overall, refining records never hurts the

intermediary. We analyze the effects of refinements both at the intensive margin (Blackwell in-

formativeness) and at the extensive margin (quantity of refined records).

Related Literature. This paper contributes to the burgeoning literature on data markets, re-

cently reviewed by Bergemann and Bonatti (2019) and Bergemann and Ottaviani (2021). One

of its strands studies the optimal “use” of databases. This often involves a single party who

owns a database and designs information products to either sell them to some agents or to influ-

ence their behavior (e.g., Admati and Pfleiderer (1986, 1990); Bergemann and Bonatti (2015);

Bergemann et al. (2015); Bergemann et al. (2018); Elliott et al. (2021); Yang (2022)). Our in-

termediary also owns a database and uses it to design information. However, our focus is not

on the optimal use of the database, but on studying the value of each data record for the inter-

mediary and its properties. Because our intermediary already owns the database, we abstract

from important considerations about data privacy, which are the focus of another strand of the

literature on data markets. In addition to the papers discussed in Footnote 5, see Ali et al.

(2022) and Ichihashi (2020) for recent contributions to this literature and Acquisti et al. (2016)

for a review. Calzolari and Pavan (2006) analyze information externalities between sequential

interactions and the role of privacy.

Our methods build on the information-design literature, reviewed by Bergemann and Mor-

ris (2019). We formulate the intermediation problem as a linear program and then consider

its dual to determine the value of data records. Others have used duality in information de-

sign as a method to solve the primal design problem (Kolotilin (2018); Galperti and Perego

(2018); Dworczak and Martini (2019); Dizdar and Kováč (2020); Dworczak and Kolotilin

(2022)). We instead use duality to address a distinct economic question of independent inter-

est. The mechanism-design literature has also used duality methods at least since Myerson

(1983; 1984), and more recently to study informationally robust mechanisms (e.g., Du (2018);

Brooks and Du (2020, 2021)).

We contribute to the literature on the value of information in two ways: by focusing on in-

termediation problems rather than decision problems and by studying the ex-post value of data

records rather than the ex-ante value of information. Frankel and Kamenica (2019) also take
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an ex-post perspective, but focus on decision problems and the ex-post value of information. A

complementary literature studies properties of the cost—not the value—of information (e.g.,

see Morris and Strack, 2019; Bloedel and Zhong, 2021; Pomatto et al., 2021). These properties

are conceptually distinct from those of the value of data records characterized in this paper.

2 Model

For ease of exposition, we present the model and analysis in a context similar to our example

in the Introduction: An e-commerce platform (it) mediates interactions between many buyers

(she) and a single seller (he). Our approach and results apply more broadly as discussed at the

end of this section.

The seller has a finite set of actions A with typical element a, which can be interpreted as the

price, quality, or other features of his product. The platform is used by a population of buyers,

each with unit demand. A buyer’s preference is pinned down by θ in a finite set Θ. Together,

a and θ determine the buyer’s final purchase decision, which we leave implicit and embed into

the platform’s payoff function û(a, θ) and the seller’s profit function π̂(a, θ).

For each buyer, the platform has private access to a data record of her personal characteris-

tics, which is informative about her θ. We model this record as the realization of an exogenous

signal, denoted by ω in some finite set Ω. We refer to ω as the type of the buyer’s record. We

assume ω induces a belief over Θ and denote by u(a, ω) the expected payoff of the platform

and by π(a, ω) the expected profit of the seller when he takes action a and the buyer’s record

is of type ω. That is, u(a, ω) = ∑θ∈Θ û(a, θ)β(θ|ω) and π(a, ω) = ∑θ∈Θ π̂(a, θ)β(θ|ω),

where β(·|ω) ∈ ∆(Θ) is the belief induced by ω.

The collection of all buyers’ data records forms the platform’s database. We denote a

database by q = (q(ω))ω∈Ω, where q(ω) is the quantity of ω records. We think of each buyer

as being “small” within the buyers’ population, and thus allow q(ω) to vary continuously in

the positive real line. The primitives A, Ω, u, π, and q are common knowledge.

The platform mediates each buyer-seller interaction by conveying information about the

buyer’s record to the seller to influence his action a. To do so, it commits once and for all to

an information structure τ that consists of a finite space of signals S and a function τ : Ω →
∆(S).7 After observing τ and a signal s ∈ S, the seller updates his belief about the buyer and

takes an action in the set A(q, τ, s) = arg maxa∈A E(π(a, ω)|q, τ, s). We assume the seller

7Note that restricting τ(·|ω) to be the same between records of the same type ω is without loss of generality.
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breaks indifferences in favor of the platform. The platform’s problem is to choose τ to maxi-

mize

∑
ω∈Ω,s∈S

q(ω)τ(s|ω) max
a∈A(q,τ,s)

u(a, ω). (1)

We refer to (1) as the platform’s intermediation problem.

Our main question is as follows: How much value does the platform derive from each buyer’s

record and what are the properties of this value? Three aspects render this question non-trivial.

First, the platform designs information structures to influence the decisions of someone else,

which introduces an intermediate step between how it uses its data and the final payoff-relevant

outcomes. Second, what information the platform can convey varies with what data records it

has in its database. Third, we are interested in the individual value the platform obtains from

each data record given its type—not the total payoff obtained from the whole database.

Generalizations. Our analysis applies to more general settings where an intermediary uses its

data to mediate the strategic interaction of multiple agents (e.g., competing sellers). We can

allow the intermediary to take contractible actions as a function of ω (e.g., monetary transfers).

We can allow the agents to observe parts of the intermediary’s data records (e.g., a seller may

observe the buyer’s gender but not her age). We can allow for ex-ante participation constraints

(e.g., a seller may choose not to sell his product through the platform). These extensions are

possible because they preserve the linear-programming structure of our baseline model. Our

proofs in the Appendix already account for this more general case.

3 What Is the Value of a Data Record?

We begin by formulating our approach to calculating the values of data records (Section 3.1).

We then analyze their properties (Section 3.2).

3.1 The Data-Value Problem

As is well known (Myerson, 1982; Bergemann and Morris, 2016), we can equivalently express

the intermediation problem (1) in terms of direct recommendation mechanisms. That is, instead

of choosing an information structure τ, the platform can directly recommend an action to the

seller, which he must be willing to follow (obedience). We can formulate such a mechanism

as a function x : A×Ω → R+, where we interpret x(a, ω) as the quantity of ω records for
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which the seller is recommended a. Formally, the problem is

Uq : max
x ∑

ω∈Ω,a∈A
u(a, ω)x(a, ω)

s.t. ∑
ω∈Ω

(
π(a, ω)− π(a′, ω)

)
x(a, ω) ≥ 0 for all a, a′ ∈ A (2)

∑
a∈A

x(a, ω) = q(ω) for all ω ∈ Ω. (3)

The obedience constraint (2) is equivalent to requiring that the seller finds it optimal to follow

the recommended action a conditional on the information it conveys, given x and q. We call x

obedient if it satisfies (2). The resource constraint (3) requires that some recommendation be

sent for every record in the database.8 We denote any optimal mechanism by x∗q and define two

pieces of notation: the direct payoff that the platform obtains from each record of type ω is

u∗q(ω) =
∆ ∑

a∈A
u(a, ω)

x∗q(a, ω)

q(ω)
,

and the total payoff that the platform obtains from the database is

U∗(q) =∆ ∑
ω∈Ω

u∗q(ω)q(ω). (4)

Hereafter, we assume Uq satisfies the following regularity property, which holds generically in

the space of the seller’s payoff functions π: No more than |A ×Ω| of the constraints in Uq

are ever binding at the same time. Intuitively, this property rules out the possibility that the

optimal x∗q recommends an action that leaves the seller indifferent between too many alternative

actions, which is not robust to perturbing the payoffs of those actions.

Our approach hinges on thinking about Uq as a production problem, where the inputs are the

records in the database and the output is the information conveyed by the mechanism in the

form of recommendations. Because Uq is a linear program, we can leverage this production

interpretation to assign a value to each record (Dorfman et al. (1987), p. 39; Gale (1989), p. 12).

These values can be computed through a problem related to Uq, which is called its dual.

We refer to this dual as the data-value problem. It involves the choice of two objects. The

first is v : Ω→ R, where v(ω) is the multiplier associated with the resource constraint (3) for

ω records. The second is λ : A× A → R+, where λ(a′|a) is the multiplier of the obedience

constraint (2) when the seller is recommended a and considers deviating to a′. Applying basic

8Note that choosing x : A×Ω → R+ that satisfies (3) is equivalent to a more standard formulation where

the platform chooses χ : Ω→ ∆(A) and we replace x(a, ω) with χ(a|ω)q(ω) everywhere in Uq.
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linear-programming results (see Appendix A), the dual of Uq is

Vq : min
v,λ

∑
ω∈Ω

v(ω)q(ω)

s.t. v(ω) ≥ u(a, ω) + ∑
a′∈A

(
π(a, ω)− π(a′, ω)

)
λ(a′|a), for all ω, a. (5)

We denote an optimal solution by (v∗q , λ∗q). By standard arguments, v∗q is unique generically

with respect to q. Note that (v∗q , λ∗q)—and x∗q , for that matter—ultimately depends only on the

shares of the records of every type implied by q. The reason is that only the frequency of record

types matters for the seller’s incentives.9

The economic interpretation of v∗q(ω) is key for us. It captures the value that any existing

record of type ω in the database q generates for the platform. The structure of the data-value

problem Vq implies v∗q(ω) must satisfy

v∗q(ω) = max
a∈A

{
u(a, ω) + ∑

a′∈A

(
π(a, ω)− π(a′, ω)

)
λ∗q(a′|a)

}
. (6)

Thus, v∗q(ω) is a measure of value because it is related to the payoffs of the platform and the

seller (which could both be expressed in dollars, for instance). This value reflects how records

are used. Indeed, complementary slackness requires that if the platform recommends action a

for some ω records (i.e., x∗q(a, ω) > 0), then constraint (5) must hold with equality; hence, a

maximizes the right-hand side of (6). In particular, this means that even if records of the same

type ω lead to different recommendations, at the optimum they all have the same value v∗q(ω).

Hereafter, we refer to equation (6) as the value formula, whose analysis and explanation are

the focus of the next subsection.

For these reasons, v∗q(ω) captures the “infra-marginal” value of a record, namely the value

of each existing record of type ω in the database q. In fact, Gale (1989) refers to the value of

an input such as v∗q(ω) as its unit value. Moreover, by strong duality,10 the total payoff from

the database U∗(q) equals the sum of the values of its records:

∑
ω∈Ω

v∗q(ω)q(ω) = U∗(q) =∆ ∑
ω∈Ω

u∗q(ω)q(ω). (7)

The dual problem Vq can then be viewed as an internal accounting exercise: For each record

in the database, the platform assigns to it the share of the total payoff U∗(q) that the record

9Note that Vq finds all records’ values simultaneously and does not require calculating x∗q (see Section 3.3.1

for an illustration).
10See Theorem 4.4 in Bertsimas and Tsitsiklis (1997).
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actually generated. This share is v∗q(ω). In Section 3.3, this interpretation will allow us to

establish a benchmark for how to compensate buyers for their specific data.

Our interest in v∗q goes beyond this internal accounting interpretation. As for any constrained

optimization (not just linear ones), v∗q(ω) also captures the shadow value of adding a new

record of type ω to the database. In fact, v∗q(ω) is also equal to the derivative of U∗(q) with

respect to q(ω). Therefore, v∗q(ω) captures not only the infra-marginal value of the existing

records in the database, but also the marginal value of adding new ones. In Section 4.1, this

interpretation will allow us to characterize the platform’s demand for more data.

The rest of the paper characterizes the properties of v∗q and their economic implications. As

a preliminary step, we establish that the value of each record is bounded below by the payoff

of fully revealing its type to the seller, and when this lower bound is achieved. Let the set of

the seller’s optimal actions if he knows ω be

A(ω) =
∆ arg max

a
π(a, ω).

Given this, define the full-disclosure payoff from a record of type ω as

v(ω) =
∆ max

a∈A(ω)
u(a, ω), ω ∈ Ω.

Lemma 1. For every database q, the value of records of type ω is bounded below by the full-

disclosure payoff: v∗q(ω) ≥ v(ω). Moreover, v∗q(ω) = v(ω) for all ω if and only if there is

an optimal mechanism x∗q that induces only actions which are optimal for the seller under full

disclosure (i.e., x∗q(a, ω) > 0 only if a ∈ A(ω) for all ω).

3.2 Value Decomposition and Pooling Externalities

What determines the value of a record? We show next that it can be decomposed into two parts:

the direct payoff from the record and an additional component, which captures the record’s

effects on the information the platform discloses about other records and thus on their direct

payoffs. To formalize this, denote the second part of the value formula in (6) by

t∗q(a, ω) =
∆ ∑

a′∈A

(
π(a, ω)− π(a′, ω)

)
λ∗q(a′|a) ∀a, ω. (8)

Proposition 1. The value v∗q(ω) of records of type ω satisfies

v∗q(ω) = u∗q(ω) + t∗q(ω),
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where

t∗q(ω) =
∆ ∑

a∈A
t∗q(a, ω)

x∗q(a, ω)

q(ω)
a.e.
= ∑

ω′∈Ω

∂u∗q(ω′)
∂q(ω)

q(ω′). (9)

This result explains why the direct payoff from a record u∗q(ω) can differ from its value

v∗q(ω), as we illustrated in the Introduction. The direct payoff does not take into account t∗q(ω).

This component is akin to an externality: It captures the effect that a record can exert on

what the platform achieves with other records. To gain intuition, consider a buyer called Ann

whose record is of type ω. Simply by being in the database, Ann’s record can affect what

recommendations the platform sends for other records, whose types may be different from

Ann’s. Formally, this is shown by the second equality in (9): The externality t∗q(ω) is equal to

the marginal effect that Ann’s record has on the direct payoff from all records (for almost all

databases q). This effect comes about because the presence of Ann’s record affects the seller’s

obedience constraint, and thus changes which mechanisms x are obedient or optimal.11

The first equality in (9) further illuminates the nature of this externality. It shows that t∗q(ω)

aggregates t∗q(a, ω) across recommendations a, where t∗q(a, ω) captures how Ann’s record

contributes to keeping the seller obedient whenever he is recommended a. To gain intuition,

suppose π(a, ω) > π(a′, ω) in (8). If the seller knew he was trading with Ann, he would not

want to deviate to a′. The platform can then pool Ann’s record with other records of type ω′ for

which π(a, ω′) < π(a′, ω′) and still persuade the seller to take action a. In this case, Ann’s

record exerts a positive externality by helping the platform implement a with those records.12

This pooling—which amounts to withholding information to exploit the seller’s incentives—

is thus at the heart of our externality. In fact, consider the special case where the platform

reveals all information, which would be optimal, for instance, if the platform’s and the seller’s

objectives were aligned.

Corollary 1. If the platform’s optimal information structure fully reveals the type of every

record, no externality arises (i.e., t∗q = 0) and the value of each record coincides with its direct

payoffs (i.e., v∗q = u∗q).13

11Indeed, note that ∂
∂q(ω)

u∗q(ω′) = ∑a u(a, ω′) ∂
∂q(ω)

( x∗q (a,ω′)
q(ω′)

)
.

12Appendix D elaborates on this interpretation and how the platform exploits the seller to determine the exter-

nalities between records.
13If the optimal information structure is fully revealing, the corresponding mechanism satisfies x∗q (a, ω) > 0

only if a ∈ A(ω). This implies v(ω) = u∗q(ω) and, moreover, that v(ω) = v∗q(ω) by Lemma 1. Note that the

converse of Corollary 1 is not true: In some examples, t∗q(ω) = 0 but v∗q(ω) > v(ω) for all ω.
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These results lead to the following general point: The externality highlighted in this paper

is a hallmark of intermediation problems. A distinguishing feature of these problems is that

the intermediary and the agent(s) often have conflicting interests, which is captured by the

obedience constraints in (2). To optimally manage these conflicts, the intermediary withholds

information from the agent(s) by pooling data records, which creates the externalities. For

these reasons, we refer to them as pooling externalities. They arise despite our assumption that

each buyer’s record is uninformative about the other buyers’ preferences. As such, they are

distinct from the “learning” externalities discussed in Section 1, which arise because a buyer’s

record conveys information about other buyers.

The rest of this subsection further characterizes these externalities. Which records generate

positive and which negative externalities?

Corollary 2. Fix a record type ω. If t∗q(ω) < 0, the direct payoff exceeds the full-disclosure

payoff: u∗q(ω) > v(ω). Conversely, if u∗q(ω) < v(ω), then t∗q(ω) > 0. Moreover, t∗q(ω) < 0

for some ω if and only if t∗q(ω′) > 0 for some ω′.

To build intuition, consider records whose direct payoff exceeds their value (i.e., t∗q(ω) < 0).

Why should this be the case? Corollary 2 shows the platform must earn a direct payoff u∗q(ω)

that would not be possible if it fully disclosed all ω records. Such a payoff must be achieved by

pooling some ω records with records of different types. Accordingly, the value v∗q(ω) reflects

the fact that these records are being “helped” by others and do not generate u∗q(ω) entirely

on their own. There must be some other type of record—call it ω′—that generates a positive

externality in favor of ω records (i.e., t∗(ω′) > 0). Corollary 2 shows this is the case when

u∗q(ω′) < v(ω′).14 The platform effectively “sacrifices” ω′ records, as the payoff from them is

lower than what it could have obtained by simply revealing their type to the seller. Accordingly,

their value v∗q(ω′) exceeds u∗q(ω′), as it accounts for the greater role they ultimately play.

Proposition 1 highlights that the pooling externalities are tightly related to how the platform

exploits the seller’s incentives by using its records. The next result complements this point by

showing that if the platform recommends different actions using ω records, the records gener-

ating the highest contribution to the externality t∗q(ω) must generate the lowest contribution to

the direct payoff u∗q(ω).

Corollary 3. Suppose an optimal mechanism satisfies x∗q(a, ω) > 0 and x∗q(a′, ω) > 0. Then,

t∗q(a, ω) > t∗q(a′, ω) if and only if u(a, ω) < u(a′, ω).15

14Note that Corollary 2 indicates a simple sufficient condition for t∗q , 0. Proposition C.1 in the Online

Appendix provides another condition based on primitives.
15This follows from complementary slackness, namely v∗q(ω) = u(a, ω) + t∗q(a, ω) if x∗q (a, ω) > 0.
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3.3 A Benchmark for Data Compensation

An important open question in policy is how to create institutions or mechanisms whereby each

individual is compensated for the collection and use of her data. The basic idea is that some

part of the platform’s total payoff (e.g., profits) would be distributed back to its users as a form

of dividend for the monetization of their data. This compensation may be the prevailing price

in markets where the platform acquires data directly from individuals; or it may be the result of

a court ruling that forces the platform to pay back individuals for unduly exploiting their data.

The determination of these compensations involves complex considerations that are outside

of the scope of this paper: for example, which legal framework is needed for those markets

to properly function, and what properties they have. Irrespective of these considerations, our

approach offers a benchmark against which to compare the observed compensations, however

determined.

This benchmark is the value that the platform actually derived from each individual’s data,

namely v∗q . We build on our internal-accounting interpretation of the data-value problem Vq,

which consists in dividing the total payoff U∗(q) in shares that reflect how much each record

actually generated for the platform. To see why this benchmark is useful, let κ(ω) be the

observed compensation for data records of type ω. Suppose κ(ω) is determined by a market

mechanism. Knowing v∗q(ω) allows us to compute how much of the value generated by ω

records is appropriated by the platform itself (i.e., v∗q(ω)− κ(ω)) and by the individuals (i.e.,

κ(ω)). A welfare split that is more favorable to the platform may be indicative of its market

power or other market inefficiencies. In fact, Dorfman et al. (1987) and Gale (1989) provide

arguments for equilibrium prices to equal v∗q under perfect competition. In this case, v∗q would

also offer a benchmark for prices that lead to efficient outcomes. Alternatively, suppose κ(ω)

is determined by a court ruling. Imagine the platform appeals against this decision arguing that

κ(ω) is an unfair burden because it is incommensurate with the economic value that ω records

actually generated for the platform. Assessing the validity of this argument crucially relies on

knowing how much value the platform actually obtained from ω records, which is v∗q(ω).

3.3.1 Application: Mediated Price Discrimination

We conclude this section with an application to the setting of Bergemann et al. (2015). Our

goal is threefold: characterize the values of the records for a concrete setting, illustrate the

implications of using them as a benchmark for compensation, and showcase how to use our

12



duality approach.16

The application involves the following elements. For each buyer, let θ ∈ Θ be her strictly

positive valuation for the seller’s product. Suppose the record type is fully informative about θ

(i.e., ω = θ). Let the seller’s action a ∈ A indicate the price he sets for his product. Without

loss of generality, we can let A = Θ. Normalizing the seller’s constant marginal cost to zero,

his profit is a if ω ≥ a and zero otherwise: π(a, ω) = aI{ω ≥ a}. The platform’s payoff is a

weighted sum of profits and consumer surplus: u(a, ω) = raI{ω ≥ a}+ (1− r)max{ω −
a, 0}, where r ∈ [0, 1] captures the alignment between the platform and the seller’s objectives.

Finally, let aq be the optimal price if the seller had to set the same price for all buyers in the

database q.

Proposition 2. For r < 1
2 , the value of a record is

v∗q(ω) =

(1− r)ω if ω < aq

raq + (1− r)(ω− aq) if ω ≥ aq;
(10)

moreover, the externality t∗q(ω) is strictly positive if and only if ω < aq. For r ≥ 1
2 , the value

of a record equals the direct payoff: v∗q(ω) = u∗q(ω) = rω for all ω, and thus t∗q(ω) = 0.

The intuition is as follows. When r < 1
2 , the platform and the seller have sufficiently mis-

aligned objectives. As shown in the Appendix (Lemma A.2), to generate surplus for the buy-

ers, the platform finds it optimal to withhold information from the seller, which requires pool-

ing records. This creates externalities that can induce a non-monotonicity in the values: Higher

records are not necessarily more valuable for the platform. By contrast, when r ≥ 1
2 , the plat-

form and the seller have sufficiently aligned objectives. The platform then withholds no infor-

mation from the seller, who price discriminates all buyers by setting a = ω. By Corollary 1,

there are no externalities and the value of a record equals the direct payoff from it, which is a

fraction r of the seller’s profits ω.

Figure 1 illustrates v∗q for a specific case with r = 0. It also helps us explain expression (10).

In this case, the optimal mechanism can be interpreted as dividing the buyers into market

segments indexed by ω ∈ {1, 2, 3} with the following key property: For each segment, the

seller charges price ω and is indifferent between that price and aq = 3 (see Bergemann et al.

(2015)). Now, consider adding an ω′ record to the database. If ω′ ≥ aq, it is optimal for

the platform to assign it to the top segment (otherwise, the seller’s indifference would break in

lower segments). The new record thus increases the total consumer surplus U∗(q) by v∗q(ω′) =

16Using similar arguments, one can characterize v∗q in the setting with multiple sellers of Elliott et al. (2021).
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Figure 1: Values v∗q when Ω = {1, . . . , 4}, r = 0, and q is such that aq = 3.

ω′ − aq. Suppose instead that ω′ < aq. To be concrete, let ω′ = 2. It is optimal for the

platform to assign this new record to the middle segment, which relaxes the seller’s indifference

strictly in favor of price 2 because now one extra buyer is willing to pay 2. The platform will

then also expand this segment by bringing in (a share of) higher-valuation buyers previously

assigned to the top segment until the seller is again indifferent. Doing so prevents the seller

from extracting surplus from these buyers, where the total forgone profit must be equal to how

much the new record relaxed the seller’s indifference initially, namely 2. Thus, the new record

increases the total consumer surplus U∗(q) by 2. This logic explains why v∗q(ω′) = ω′ for

ω′ < aq.

With Proposition 2 in mind, we return to the question of assessing potential compensations

to buyers for their data. Consider the case of r < 1
2 . Suppose a court rules that each record

of type ω has to be compensated based on the direct payoff it generated (e.g., the profit the

platform earned for intermediating between the corresponding buyer and the seller). Using our

benchmark, we can ask to what extent these compensations reflect how much each record actu-

ally contributed to the platform’s total payoff. This comparison reveals that low-valuation buy-

ers (i.e., those with ω < aq) would receive less than the value the platform obtained from their

data (i.e., t∗q(ω) > 0), while high-valuation buyers would receive more. Similarly, other dis-

crepancies would emerge if the court ruled that every record is awarded the same compensation.

The point here is that knowing v∗q is essential to identify these discrepancies. Whether the court

should act on them is ultimately a normative question, which is beyond the scope of this paper.

We show next the key steps toward Proposition 2 as a way of illustrating the logic of our dual

approach and its applicability. This highlights, for example, that the approach does not rely on

computing the optimal mechanism x∗q . The reader uninterested in these details may skip this

proof with no loss.
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Proof of Proposition 2. Consider Vq and note that the right-hand side of constraint (5) is

raI{ω ≥ a}+ (1− r)max{ω− a, 0}+ ∑
a′
[aI{ω ≥ a} − a′I{ω ≥ a′}︸                                 ︷︷                                 ︸

∆π

]λ(a′|a). (11)

A few observations simplify the problem substantially. First, recall that we can restrict at-

tention to a ≥ ω1, where ω1 is the lowest type of record. Second, for every ω constraint (5)

is strictly slack if a > ω and can therefore be ignored. If a > ω, then (11) is weakly negative,

whereas it is at least rω ≥ 0 for a = ω. Third, we can reduce the cases in which λ(a′|a) can be

positive using the fact that problem Vq seeks to minimize v(ω). If a′ < a ≤ ω, then ∆π > 0,

and setting λ(a′|a) > 0 can only increase (11) and tighten constraint (5); so λ∗q(a′|a) = 0 if

a′ < a.17 Finally, because we can always set λ ≡ 0, it is useful to understand how the first

part of (11) depends on a. For a ≤ ω we can write u(a, ω) = a(2r− 1) + (1− r)ω, which is

strictly increasing in a if and only if r > 1
2 .

The solution (v∗q , λ∗q) is immediate when r > 1
2 . In this case, u(a, ω) is maximal for a = ω

and equals rω. This level is also a lower bound for (11), which can be achieved by setting

λ ≡ 0. It follows that v∗q(ω) = rω for all ω and λ∗q ≡ 0, which implies no externalities (i.e.,

t∗q ≡ 0). This solution extends to r = 1
2 by continuity.

Finding (v∗q , λ∗q) requires a few more steps when r < 1
2 . First, note that λ ≡ 0 is no

longer optimal. Indeed, u(a, ω) is maximal for a = ω1 and u(ω1, ω) > rω unless ω = ω1.

However, if ω > ω1, there exists a′ > a = ω1 such that ∆π < 0, which allows us to

reduce (11) by setting λ(a′|ω1) > 0 and to relax constraint (5).

Next, we explain how to find the optimal λ. We can use the observation that all a for which

constraint (5) binds must give the same value of (11). That is, raising a above ω1 must increase

∑a′ [a − a′I{ω ≥ a′}]λ(a′|a) at the same rate that it decreases u(a, ω), namely 2r − 1. It

follows that

a ∑
a′

λ(a′|a)−∑
a′

a′I{ω ≥ a′}λ(a′|a) = a(1− 2r) + const(ω),

and hence ∑a′ λ(a′|a) = 1− 2r. In addition, since ∑a′ a′I{ω ≥ a′}λ(a′|a) can depend at

most on ω, we can write λ(a′|a) = λ̂(a′) for every a, a′. This implies v(ω) = (1− r)ω −
∑a′ a′I{ω ≥ a′}λ̂(a′) for every ω. Substituting into the objective ∑ω v(ω)q(ω) of Vq, we

17This property of λ∗q implies that, in problem Uq, all constraints that involve deviating to a′ when recommended

a > a′ never bind at the optimum and can be ignored. A similar logic can substantially simplify the analysis of

more general Uq, which can be useful in applications with large sets A and Ω.
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get that λ̂ has to maximize

∑
ω

[
∑
a′

a′I{ω ≥ a′}λ̂(a′)
]
q(ω) = ∑

a′

[
∑
ω

a′I{ω ≥ a′}q(ω)
]
λ̂(a′)

subject to ∑a′ λ̂(a′) = 1− 2r. Clearly, the optimal λ̂ has to put all the “weight” 1− 2r on the a′

that maximizes ∑ω a′I{ω ≥ a′}q(ω), which is aq by definition. This implies λ∗q(aq|a) =

1− 2r for all a ≤ aq and λ∗q(a′|a) = 0 for all other a, a′ (where we use the previous observation

that λ∗q(a′|a) = 0 if a > aq).

Substituting the derived λ∗q , we conclude that v∗(ω) = (1− r)ω + (2r− 1)aqI{ω ≥ aq}
and the externalities satisfy

t∗q(ω) = (1− 2r)×

∑a a
x∗q (a,ω)

q(ω)
> 0 if ω < aq

∑a≤aq [a− aq]
x∗q (a,ω)

q(ω)
≤ 0 if ω ≥ aq.

The first inequality follows because a ≥ ω1 > 0; the second inequality follows because a > aq

can never maximize (11) given λ∗q , and hence, x∗q(a, ω) = 0 by complementary slackness.

Note that we derived (v∗q , t∗q) and signed t∗q without having to know x∗q . �

4 The Demand for Data

What is the platform’s willingness to pay for having “more data”? This colloquial expression

can have two meanings. The first—analyzed in Section 4.1—is that the platform adds more

records to the database, and hence mediates the interactions of more buyers with the seller.

The second—analyzed in Section 4.2—is that the platform obtains better records; namely, it

observes a more informative signal about θ for some buyers whose records already belong to

the database.18 In either case, having more data ultimately changes the database q. Hereafter,

we assume that how the platform changes q is publicly observed, and hence, q is always com-

monly known.19 Building on Section 3, we can study the platform’s willingness to pay for

18The distinction between more and better records is consistent with that between marketing lists and data

appends, the two main products traded in the data-brokerage industry (Federal Trade Commission, 2014). The

former allows companies to identify new customers with specific characteristics. The latter allows companies to

learn new characteristics about existing customers.
19In reality, the platform may change its database privately without the sellers knowing exactly how. Allowing

for this possibility introduces complications and requires enriching the model accordingly. We leave this for future

research.
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more data by analyzing how the records’ values v∗q depend on q. Alternatively, we can inter-

pret the following analysis as a comparative-statics exercise comparing the values of records

between platforms that differ only in their databases.

4.1 More Records: Preferences over Databases

Analyzing the platform’s willingness to pay for more records can shed light on the properties

of its demand for data records. For example, are demand curves downward sloping? Are data

records complements or substitutes and, if so, why? We can view the platform as a “consumer”

of records, whose utility function is U∗. Its preferences over databases are then fully charac-

terized by v∗q . Indeed, v∗q(ω) is akin to the marginal utility of a record of type ω at q, which

determines the platform’s willingness to pay. We can also measure the substitutability between

records of type ω and ω′ at q by computing their marginal rate of substitution as usual, which

satisfies MRSq(ω, ω′)
a.e.
= − v∗q (ω)

v∗q (ω′)
.

As for a standard consumer, we find that the platform’s marginal utilities are diminishing:

When records of a given type become more abundant, they become less valuable. This follows

from the next result, which establishes a general “scarcity principle” for data. Given q, define

the share of ω records by

µq(ω) =
∆ q(ω)

∑ω′ q(ω′)
, ω ∈ Ω.

Proposition 3 (Scarcity Principle). Consider databases q and q′. Fix ω. If µq(ω) < µq′(ω),

then v∗q(ω) ≥ v∗q′(ω). Moreover, v∗q(ω) converges to the full-disclosure payoff v(ω) as

µq(ω)→ 1.

One implication of this result is that v∗q(ω) weakly decreases as q(ω) increases, holding fixed

the quantity of all other types of records. Hence, the platform’s demand for ω records is

downward sloping.

With regard to the marginal rate of substitution between records, we can easily see that it

is always weakly diminishing. This is because U∗(q) is a concave function of q.20 The next

result characterizes when all records are perfect substitutes, namely MRSq(ω, ω′) is constant

20To see why, imagine the platform mixes two databases q and q′ to form a new one γq + (1− γ)q′. Because

it can always reveal to the seller from which original database each record comes, the total payoff from the new

database is at least γU∗(q) + (1− γ)U∗(q′). This argument is related directly to the concavification results in

Mathevet et al. (2020) and indirectly to the individual-sufficiency results in Bergemann and Morris (2016).
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in q for all ω, ω′. It implies that imperfect substitutabilities arise if and only if the platform

withholds information and, hence, if and only if there are externalities between some records.

Proposition 4. All records are perfect substitutes if and only if there is some database q ∈
RΩ

++ at which it is optimal for the platform to fully disclose the type of every record. In this

case, full disclosure is optimal for all databases.

Combining these properties of the platform’s preferences over databases leads to several

implications. We highlight three. First, concavity of U∗ leads to standard demand analysis.

Given market prices for the different types of records, choosing an optimal database subject to

a budget constraint is a well-behaved problem, whose solution q∗ depends on usual relations

between MRSq∗ and price ratios. Thus, we can use our values v∗q to characterize the platform’s

demand function for records, enabling a general study of the demand side of data markets.

This demand satisfies properties that can guide empirical analysis: For example, since U∗(q)

is homothetic, data records are normal goods and the optimal composition of the database q∗

depends only on price ratios, not on the platform’s budget. In particular, except in the case of

perfect substitutability as in Proposition 4, there is always an open set of prices such that q∗

contains multiple types of records. One may also use this demand to determine which prices

will prevail in the market depending on supply conditions.

A second implication sheds light on a platform’s incentives to merge databases. For instance,

it may be interested in acquiring another platform to get access to its data, and a regulator may

want to assess the potential consequences. Given databases q and q′, merging them would lead

to a new database q + q′.

Corollary 4. For any databases q and q′, the platform’s total payoff satisfies U∗(q + q′) ≥
U∗(q) + U∗(q′), with equality if and only if v∗q = v∗q′ generically in q and q′.

The inequality is intuitive. After the merger, the platform can treat the databases separately and

always tell the seller whether a record belongs to q or q′. This would guarantee a total payoff

of U∗(q) +U∗(q′). Together with Proposition 4, this corollary implies that merging databases

can strictly benefit the platform only if the records are not perfect substitutes and, hence, it

withholds some information. Note that to predict whether a merger is strictly beneficial, one

only needs to know the values of the records in the initial, separate databases (i.e., v∗q and v∗q′).

A third implication is to simplify the assessment of whether it is optimal for a platform to

withhold information given a specific database q. By Proposition 4, the answer can depend

on which types of records are in the database, but not on their specific quantities.21 This is

21For this reason, the condition in Proposition 4 considers an interior q.
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useful in applications. For instance, withholding information is optimal if, starting from full

disclosure and any conveniently chosen q̂ ∈ RΩ
++, one can show that it is strictly beneficial

to conceal any type of records in some way. It is also possible to find conditions for the

optimality of withholding information directly in terms of the primitives of the model (see,

e.g., Proposition C.1 in the Online Appendix).

4.2 Better Records and Willingness to Pay for Information

We now study the consequences of refining existing records with more information. For in-

stance, if a buyer’s record originally contained only her age, refining it may entail observing

her gender as well. How do refinements change the records’ values? Do they always increase

the platform’s total payoff and command a positive willingness to pay?

We first formalize what a refinement is. We consider refining a single type of record, denoted

by ω̄ hereafter. Intuitively, when the platform refines the record of a buyer, it privately ob-

serves a new exogenous signal about her underlying preference θ, which may change the belief

β(·|ω̄) ∈ ∆(Θ) induced by ω̄ records. Formally, a refinement is then a distribution σ ∈ ∆(Ω),

where σ(ω) is the probability of observing a signal that updates β(·|ω̄) to β(·|ω) and, hence,

transforms the refined record from type ω̄ to type ω. Therefore, σ has to satisfy Bayes’ consis-

tency: β(·|ω̄) = ∑ω∈supp σ σ(ω)β(·|ω). Fixing σ, let α ∈ [0, 1] be the share of ω̄ records that

are refined, each according to σ. Doing so transforms the original database q into a new one,

denoted by qα, as follows: The quantity of ω̄ records falls to qα(ω̄) = (1− α)q(ω̄), while the

quantity of ω records rises to qα(ω) = q(ω) + αq(ω̄)σ(ω) for ω ∈ supp σ. This is akin to

assuming records are refined independently according to σ.22 Note that the composition of qα

is certain, even though it is uncertain which records of type ω̄ become of type ω. Thus, it suf-

fices that the seller knows how the platform refines its database (i.e., σ and α) to know its new

composition.

The next result shows that, by changing the database composition, a refinement affects the

value not only of the refined records, but also of those that are not being refined.

Corollary 5. Fix any database q. Suppose a share α of ω̄ records is refined according to σ.

− The value of refined records increases in expectation: ∑ω∈Ω v∗qα
(ω)σ(ω) ≥ v∗q(ω̄).

This increase becomes smaller as α gets larger.

22If we interpret αq(ω̄) as a finite but very large quantity of refined records, then with the usual abuse of the

law of large numbers, the composition of the new database would be certain and reflect the underlying distribution

σ as described. Section 5.1 discusses the case of correlated refinements.
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− The value of unrefined records of type ω̄ increases: v∗qα
(ω̄) ≥ v∗q(ω̄). The value of

unrefined records of type ω ∈ supp σ decreases: v∗qα
(ω) ≤ v∗q(ω). Both effects become

larger as α gets larger.

Consider first refined records. On the one hand, the platform knows more about each of them,

so it can better tailor its signals for the seller and achieve better outcomes. On the other hand,

the value of the record types that result from the refinement falls, because they are more abun-

dant (Proposition 3). The result shows that, in expectation, the first force always dominates.

With regard to unrefined records, the change in values is a consequence of our pooling exter-

nalities. They imply, for instance, that the platform’s willingness to pay for Ann’s record may

change when it learns something new about another buyer, even if this news is uninformative

about Ann.

Given these mixed effects of refinements on the values of records, one may wonder whether

they always benefit the platform overall.

Proposition 5. Fix any database q. Suppose a share α of ω̄ records is refined according to σ.

The platform weakly benefits from the refinement: U∗(qα) ≥ U∗(q). This benefit is zero for

all α if (and only if generically in q) there exists an action a such that x∗q(a, ω) > 0 for ω = ω̄

and all ω ∈ supp σ. Finally, the refinement’s marginal benefit decreases in α.

The platform weakly benefits from the refinement for the following reason. A mechanism x

that is obedient given q may no longer be obedient given qα. However, there is always another

mechanism x̂ that is obedient given qα and yields the same expected payoff for the platform

as does x (see Lemma A.4 in the Appendix). The intuition is twofold. First, with x̂, the

platform commits to ignoring the information obtained from the refinement, by treating the

refined records as x did before the refinement. Second, when considering the composition of

the pool of refined records implied by σ, the seller forms the same belief about every buyer’s θ

as before the refinement (by the Bayes’ consistency condition).

The second part of Proposition 5 also provides a sharp condition for when the platform’s

willingness to pay for a refinement is zero. This condition uniquely depends on how the plat-

form uses records before the refinement. Specifically, at the original q, the platform must

sometimes withhold information from the seller by simultaneously pooling ω̄ records with ω

records for all ω ∈ supp σ. This implies it already uses the unrefined records to achieve the

same outcomes as it would achieve after any realization of the refinement. In other words, the

refinement provides extra information that the platform would strategically withhold anyway,
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Figure 2: Platform’s demand and indifference curves

so its willingness to pay for it is zero.23 Moreover, under this condition, all records have the

same value before and after the refinement.

Finally, Proposition 5 sheds light on the overall effects for the platform of obtaining more

information, at both the intensive and extensive margin. With regard to the former, fixing the

original q and α, suppose refinement σ′ is more informative than σ (in Blackwell’s sense).

Then, the platform benefits weakly more from σ′ than from σ; that is, U∗(q′α) ≥ U∗(qα),

where qα and q′α are the new databases resulting from σ and σ′. This result is a consequence

of the aforementioned Lemma A.4 and Proposition 5 and is reminiscent of classic results for

decision problems (see, e.g., Moscarini and Smith, 2002; Varian, 2019). The extensive margin

instead consists in fixing the refinement σ and increasing the share α of records to be refined.

The last part of Proposition 5 shows that doing so has decreasing returns, which has no coun-

terpart for decision problems.

4.3 Application: More and Better Records

We illustrate some of the main ideas in this section by returning to the application of Sec-

tion 3.3.1. Recall that the platform maximizes a weighted sum of the seller’s profits (with

weight r) and the buyers’ surplus (with weight 1− r).

Demand Curve. Fix r = 0. Suppose Ω = {ω1, . . . , ωK} and each record of type ωk fully re-

23Note that this willingness to pay can be zero even if the platform is not indifferent between how it is using

records of type ω̄ and ω ∈ supp σ in the sense that u∗q(ω̄) , u∗q(ω) (which implies x∗q (·, ω̄) , x∗q (·, ω)).
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veals that the buyer’s θ = k for k = 1, . . . , K. Figure 2(a) shows an example of the downward-

sloping demand curve implied by Proposition 3, for ωK records. As q(ωK) increases, v∗q(ωK)

decreases and eventually reaches its lower bound—the full-disclosure payoff v(ωK).24 For

r = 0, this lower bound is zero because under full disclosure the seller charges the price

a = ωK and extracts all the buyer’s surplus.

Indifference Curves. Suppose Ω = {ω1, ω2} and again each record of type ωk fully reveals

that θ = k for k = 1, 2. Figure 2(b) illustrates how the records’ substitutability depends on

the alignment between the platform’s and the seller’s objectives, namely r. When r ≥ 1
2 , the

platform fully discloses information and records are perfect substitutes (Proposition 4): Indeed,

MRSq(ω1, ω2) = −ω1
ω2

for all q. When r < 1
2 , instead, the platform withholds information

and records are imperfect substitutes. In particular, as the platform’s objective becomes less

aligned with the seller’s—that is, as r decreases toward 0—the indifference curves become

“more convex.” At r = 0, records are perfect complements. This monotonic dependence of the

records’ substitutability on r extends to K > 2, as shown by Corollary A.1 in the Appendix.

Refinements. Fix r = 0 and suppose Ω = {ω1, ω2, ω̄}. As before, let ω1 and ω2 reveal

that θ is 1 or 2, respectively. Instead, assume ω̄ is partially informative and induces the be-

lief that θ = 2 with probability h > 1
2 and θ = 1 otherwise. Consider a database q̂ that sat-

isfies q̂(ω̄) < q̂(ω1) < q̂(ω2). Online Appendix E shows that, in this case, the values are

v∗q̂(ω1) = 1, v∗q̂(ω2) = 0, and v∗q̂(ω̄) = 1− h. Moreover, Table 1 reports an optimal mecha-

nism x∗q̂ . Consider an arbitrary database q satisfying the inequalities above. Suppose the plat-

form refines a share α of ω̄ records by fully learning their underlying θ. That is, σ(ω2) = h

and σ(ω1) = 1 − h. Note that the resulting database qα satisfies qα(ω̄) = (1 − α)q(ω̄),

qα(ω1) = q(ω1) + (1 − h)αq(ω̄), and qα(ω2) = q(ω2) + hαq(ω̄). Hence, qα(ω̄) <

qα(ω1) < qα(ω2). As a consequence of the refinement, the platform changes how it uses some

of the refined records—compare x∗q(·, ω̄) and x∗qα
(·, ω2)—as well as the unrefined records of

type ω2—compare x∗q(·, ω2) and x∗qα
(·, ω2). Nonetheless, the “if” condition in Proposition 5

holds, so the platform does not benefit from the refinement: U∗(q) = U∗(qα). Indeed, in this

example the consumer surplus is equal to the mass of buyers with θ = 2 who trade at price 1.

Therefore, by using x∗q̂ and qα, we get

U∗(qα) = qα(ω1)− (2h− 1)qα(ω̄) + hqα(ω̄) = q(ω1)− (2h− 1)q(ω̄) + hq(ω̄) = U∗(q).

Finally, the value of the refined record does not change in expectation: v∗qα
(ω1)σ(ω1) +

24The step-wise behavior of v∗q is a consequence of the finiteness of Ω × A and is a property we prove in

Lemma A.3 in the Appendix.
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x∗q̂(a, ω) ω1 ω2 ω̄

a = 1 q̂(ω1) q̂(ω1)− (2h− 1)q̂(ω̄) q̂(ω̄)

a = 2 0 q̂(ω2)− q̂(ω1)− (2h− 1)q̂(ω̄) 0

Table 1: Optimal x∗q̂ when q̂(ω̄) < q̂(ω1) < q̂(ω2).

v∗qα
(ω2)σ(ω2) = v∗q(ω̄).

5 Discussion

5.1 Correlation between Records

In our analysis, we assumed each buyer’s record is uninformative about other buyers’ prefer-

ences. This assumption can be relaxed. For a fixed database, each buyer’s record should al-

ready contain all the available information about her θ, which may include variables that re-

fer to other individuals. For example, if Ann’s income is predictive of Briana’s θ, it should be

listed in Briana’s record. Suppose this assignment is done for each buyer. Then, by construc-

tion, Ann’s record adds no information about Briana’s preferences that is not already contained

in Briana’s record. Thus, our analysis for a fixed database q is unchanged.

The possibility that one buyer’s data is informative about other buyers can have deeper im-

plications when changing q. For example, consider the case of refinements. Suppose observ-

ing Ann’s income requires updating Briana’s record. Such a correlated refinement can induce

a distribution over resulting databases (i.e., qα) that have significantly different compositions,

which in addition only the platform may observe. By contrast, the refinements in Section 4.2

led to a deterministic qα that, from the seller’s viewpoint, essentially involved the same com-

position of possible buyers’ preferences as the original database q. One may then wonder

whether the results in that section extend to the case of correlated refinements. The answer de-

pends on how much the seller learns about the resulting database qα, which in practice may de-

pend on how publicly the platform refines records. To illustrate this point, Online Appendix F

presents an example where the seller learns qα and a refinement can strictly decrease both the

value of the refined records and the platform’s total payoff. In a nutshell, this is because cor-

related refinements can significantly change what information the platform has in its database

and, hence, can use to influence the seller’s behavior.

23



5.2 The Relation with Decision Problems

We briefly explain how our analysis would change if, instead of intermediation problems, we

focused on decision problems in the tradition of Blackwell (1951, 1953). A decision-maker

(DM) observes a signal realization ω with probability q(ω), which induces a belief β(·|ω)

about a state θ. She then chooses an action a to maximize her expected payoff u(a, ω). Let

x(a, ω) ≥ 0 describe the joint probability that DM chooses action a when the signal is ω.

Then, we can view DM as solving

Dq : max
x ∑

ω∈Ω,a∈A
u(a, ω)x(a, ω)

s.t. ∑
a∈A

x(a, ω) = q(ω) for all ω ∈ Ω.

Note that problem Dq is identical to Uq in Section 3.1, net of the obedience constraints. In this

case, many of our questions have standard answers. In Dq, the action DM optimally chooses

given ω never depends on what she plans to choose given any other ω′. This implies x∗ does

not depend on q and u∗(ω) = maxa u(a, ω) for all ω. By formulating the dual of Dq, we

could derive the value of each signal realization ω. It is immediate to see that, in this case,

v∗(ω) = u∗(ω) for all ω and independently of q.25 Thus, decision problems such as Dq

never give rise to the kind of externalities highlighted in Section 3.2. In other words, the direct

payoff from a signal realization gives a complete assessment of the value DM derives from it.

Consequently, refinements in the sense of Section 4.2 would affect only the value of the refined

signal realizations, while leaving all the other values unchanged.

This comparison with decision problems such as Dq further clarifies the role of obedience

constraints in our analysis. These constraints are a defining feature of intermediation problems

and create interdependencies in how data records are used and the resulting pooling external-

ities. Other types of constraints may introduce interdependencies in the use of data records,

even in the context of decision problems. For example, one can add constraints to Dq that re-

quire DM to take specific actions with at least some probability. When these constraints are

linear, our dual approach remains valid. We conjecture that, in this case, v∗ may differ system-

atically from u∗ and may depend on q. We leave exploring such problems for future research.

25One can then use this value to calculate the net ex-post value of a piece of information as suggested by Frankel

and Kamenica (2019).
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6 Conclusion

This paper addressed the question of how much the data of a single individual contributes

to fueling the business of firms in the digital economy. The paper proposes a unifying and

classical approach and identifies a novel externality between data records. Our analysis has

several implications: for assessing the compensations to individuals for the collection and use

of their data, for guiding companies’ investments in data acquisition, and more broadly for

studying the demand side of data markets, which may ultimately inform regulation.

Our approach can be used to study the value of data records in a broad range of intermedia-

tion problems, beyond our leading case of e-commerce platforms. Online advertisement slots

are sold using data about keywords submitted by users of search engines or about the behav-

ior of users on social-media platforms. Universities use data on past academic performance

of their students for recommending them to potential employers so as to improve employment

outcomes. Ride-sharing companies use riders’ locations and requested destinations to match

them with drivers. Navigation-service apps may use drivers’ data to recommend routes and

minimize congestion.

Nonetheless, our framework makes assumptions that may be restrictive in some other appli-

cations. For example, we considered settings with only one platform, thus ignoring the issue

of cross-platform competition. We allowed our platform to send any information to the seller,

whereas in practice privacy regulations may restrict how it can use its database. Finally, we as-

sumed the platform has commitment power, which may be unrealistic in some settings. These

extensions could break the linear-programming formulation of the problem and complicate the

approach presented in this paper. These areas remain open for future research.
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A Appendix

All proofs in this appendix are for the following model, which generalizes the one of Section 2.

There are n > 1 sellers (agents), where their set is I = {1, . . . , n}. Let i = 0 denote the

platform (principal). Let Ai be the finite set of actions controlled by i = {0, 1, . . . , n} and let

A = A0 × · · · × An. For each buyer, each seller may privately observe some data, which we

model as an exogenous signal ωi in some finite set Ωi about the underlying payoff-relevant θ.

Let Ω = Ω0 × . . .×Ωn with typical element ω = (ω0, . . . , ωn). The key assumption is that

the platform also observes the private data of each seller—i.e., the entire ω = (ω0, . . . , ωn)—

as does the omniscient designer in Bergemann and Morris (2016).26 Thus, now the whole

vector ω defines a type of data record in the platform’s database q. For every a = (a0, . . . , an),

let u(a, ω) be the expected payoff of the platform and πi(a, ω) be the expected profit of seller i

calculated using the belief over θ defined by ω.

In this general case, we can formulate the platform’s intermediation problem in terms of

mechanisms x : A×Ω→ R+ as follows:

Uq : max
x ∑

ω∈Ω,a∈A
u(a, ω)x(a, ω)

s.t. for all i ∈ I, ωi ∈ Ωi, and ai, a′i ∈ Ai,

∑
ω−i∈Ω−i,a−i∈A−i

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
x(ai, a−i, ω) ≥ 0, (A.1)

and for all ω ∈ Ω,

∑
a∈A

x(a, ω) = q(ω). (A.2)

General Derivation of the Data-Value Problem Vq. We now derive the general version of

problem Vq in Section 3.1. To this end, it is convenient to express Uq in matrix form. Fix an

arbitrary total ordering of the set A×Ω. We denote by u ∈ RA×Ω the vector whose entry

corresponding to (a, ω) is u(a, ω). For every player i, let Πi ∈ R(Ai×Ai×Ωi)×(A×Ω) be a

matrix thus defined: For each row (a′i, a′′i , ω′i) ∈ Ai × Ai ×Ωi and column (a, ω) ∈ A×Ω,

let the corresponding entry be

Πi((a′i, a′′i , ω′i), (a, ω)) =
∆

πi(a′i, a−i, ω)− πi(a′′i , a−i, ω) if a′i = ai, ω′i = ωi

0 else.

Thus, Πi(a′i, a′′i , ω′i) denotes the row labeled by (a′i, a′′i , ω′i) (which defines the corresponding

obedience constraint) and Πi(a, ω) denotes the column labeled by (a, ω). Define the matrix Π

26Online Appendix B illustrates how to incorporate participation constraints.
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by stacking all the matrices {Πi}i∈I on top each other. Each row of this matrix corresponds to

one obedience constraint of Uq. Finally, define the indicator matrix I ∈ {0, 1}Ω×(A×Ω) such

that, for each row ω′ and column (a, ω′),

I(ω′, (a, ω)) =
∆

1 if ω′ = ω

0 else.

Treating q as a vector in RΩ
+ and x as a vector in RA×Ω, we can then write Uq as

max
x

uTx

s.t. Πx ≥ 0,

Ix = q,

x ≥ 0.

(A.3)

We can now invoke standard linear-programming arguments to derive the dual Vq of Uq (see,

e.g., Bertsimas and Tsitsiklis (1997), p. 142). Let v(ω) be the dual variable corresponding to

constraint (A.2) for each ω ∈ Ω and λi(a′i|ai, ωi) be the dual variable corresponding to the

obedience constraint (A.1) for agent i when he has data ωi, is recommended ai, and considers

deviation a′i. Note that v can be viewed as a vector in RΩ and λ as a vector with as many

entries as the rows of Π. We can write Vq as

min
λ,v

λT0 + vTq

s.t. ITv ≥ u + ΠTλ

λ ≥ 0.

Thus, the objective simplifies to

min
λ,v

∑
ω∈Ω

v(ω)q(ω).

The constraints on λ require that λi(a′i|ai, ωi) ≥ 0 for all i ∈ I, ai, a′i ∈ Ai, and ωi ∈ Ωi. The

first set of constraints requires that, for all (a, ω) ∈ A×Ω,

v(ω) ≥ u(a, ω) + ∑
i∈I

 ∑
a′i∈Ai

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
λi(a′i|ai, ωi)

 . (A.4)

This Vq with |I| = 1 boils down to the formulation in Section 3.1.
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A Remark on Non-degeneracy and the Structure of Solutions. In Section 2, we assumed

that no more than |A × Ω| of the constraints (2) are ever active at the same time. We now

formalize that assumption following Bertsimas and Tsitsiklis (1997). Consider the polyhedron

defined by the constraints in (A.3) and recall that x ∈ RA×Ω
+ , which has dimensions |A×Ω|.

A basic feasible solution of Uq is an x such that (i) all equality constraints are active, (ii)

|A × Ω| of the constraints active at x are linearly independent, and (iii) all constraints are

satisfied. Formally, we assume the following.

Assumption 1 (Non-degeneracy). At every basic feasible solution x of problem Uq there are

only |A×Ω| active constraints.

The next remark describes the structure of optimal solutions of Uq and Vq.

Remark 1. We can transform Uq into the standard form US
q , which can be written as follows

(Bertsimas and Tsitsiklis (1997), p. 53):

max
x,s

uTx

s.t. Πx− s = 0,

Ix = q,

x, s ≥ 0,

(A.5)

where each si(a′i|ai, ωi) is a nonnegative slack variable. The dual of US
q coincides with the

data-value problem Vq. Note that Uq always has an optimal solution x∗q , which is generically

unique and hence corresponds to an extreme point of the polyhedron of feasible x. Moreover,

this x∗q is an optimal solution of US
q as well. The extreme point x∗q is nondegenerate by Assump-

tion 1 and characterized by a square, nonsingular, active-constraint submatrix B consisting of

linearly independent rows of the stacked matrix
[

Π −1
I 0

]
, where 1 is the identity matrix. As il-

lustrated in (Bertsimas and Tsitsiklis, 1997, Chapter 4), given B, we have[
x∗q
s∗q

]
= B−1

[
0
q

]
, (A.6)

where s∗q is the vector of optimal slack variables in US
q . A corresponding solution of Vq is given

by [
λ∗q
v∗q

]
= uB−1. (A.7)

Note that this implies that, as long as the optimal solutions of Uq and Vq are defined by the

same extreme point given by B, x∗q varies with q, but (v∗q , λ∗q) does not.
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Generalization and Proof of Lemma 1. For the model with multiple agents, Lemma 1 takes

the following form. Let Γω = {I, (Ai)
n
i=0, (πi(·, ω))n

i=1} be the complete-information game

between the agents defined by the primitive of the model given ω, where the principal is a

dummy player. For ω ∈ Ω, let CE(Γω) be the set of correlated equilibria of the game Γω; that

is, given y ∈ ∆(A), y ∈ CE(Γω) if and only if, for all i ∈ I and ai, a′i ∈ Ai,

∑
a−i∈A−i

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
y(ai, a−i) ≥ 0.

Lemma A.1. For every database q,

v∗q(ω) ≥ v(ω) =
∆ max

y∈CE(Γω)
∑

a∈A
u(a, ω)y(a), ω ∈ Ω.

Moreover, v∗q(ω) = v(ω) for all ω if and only if there is an optimal mechanism x∗q such that
x∗q (·,ω)

q(ω)
∈ CE(Γω) for all ω.

Proof. Fix an optimal solution (v∗q , λ∗q) of Vq. For every q, ω ∈ Ω, and x such that x(·,ω)
q(ω)

∈
CE(Γω), by (A.4) we have

v∗q(ω) ≥ ∑
a∈A

u(a, ω)
x(a, ω)

q(ω)

+ ∑
a∈A

{
∑
i∈I

∑
âi∈Ai

(πi(ai, a−i, ω)− πi(âi, a−i, ω)) λ∗i (âi|ai, ωi)

}
x(a, ω)

q(ω)

= ∑
a∈A

u(a, ω)
x(a, ω)

q(ω)

+∑
i∈I

∑
ai,âi∈Ai

λ∗i (âi|ai, ωi)

{
∑

a−i∈A−i

(πi(ai, a−i, ω)− πi(âi, a−i, ω))
x(a, ω)

q(ω)

}

≥ ∑
a∈A

u(a, ω)
x(a, ω)

q(ω)
,

where the last inequality follows from the definition of any element of CE(Γω). Since x(a,ω)
q(ω)

is an arbitrary element of CE(Γω), we conclude that v∗q(ω) ≥ v(ω).

To prove the second part of the lemma, first suppose v∗q(ω) = v(ω) for all ω. Consider

any mechanism x that satisfies (A.2), x(a,ω)
q(ω)

∈ CE(Γω)—which implies that x also satisfies

(A.1)—and

v(ω) = ∑
a∈A

u(a, ω)
x(a, ω)

q(ω)
, ω ∈ Ω.

It follows that ∑ω v∗q(ω)q(ω) = ∑a,ω u(a, ω)x(a, ω). Therefore, x is an optimal solution of

Uq by strong duality. Conversely, suppose there is an optimal x∗q such that
x∗q (·,ω)

q(ω)
∈ CE(Γω)
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for all ω. By strong duality and v∗q(ω) ≥ v(ω) = u∗q(ω) for all ω, we must have v∗q(ω) =

v(ω) for all ω. �

Proof of Proposition 1. For each i ∈ I and (a, ω) ∈ A×Ω, define

ti(a, ω) =
∆ ∑

a′i∈Ai

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
λi(a′i|ai, ωi),

and t(a, ω) =
∆

∑i∈I ti(a, ω). Denote the t(a, ω) resulting from λ∗q by t∗q(a, ω). By comple-

mentary slackness, x∗q(a, ω) > 0 implies v∗q(ω) = u(a, ω) + t∗q(a, ω). Hence,

v∗q(ω) = ∑
a∈A

u(a, ω)
x∗q(a, ω)

q(ω)
+ ∑

a∈A
t∗q(a, ω)

x∗q(a, ω)

q(ω)
= u∗q(ω) + t∗q(ω).

Fix ω. Suppose we start from database q with q(ω) > 0 and we increase q(ω) to q̂(ω),

thus obtaining database q̂. We can write

U∗(q̂)−U∗(q) = u∗q̂(ω)[q̂(ω)− q(ω)] + ∑
ω′∈Ω

[u∗q̂(ω
′)− u∗q(ω

′)]q̂(ω′)

Dividing both sides by q̂(ω)− q(ω), taking limits as q̂(ω)→ q(ω), and using strong duality

(i.e., (7)), we obtain that

t∗q(ω) = v∗q(ω)− u∗q(ω) =
∂U∗(q)
∂q(ω)

− u∗q(ω)

= lim
q̂(ω)→q(ω)

∑ω′∈Ω[u∗q̂(ω
′)− u∗q(ω′)]q̂(ω′)

q̂(ω)− q(ω)
= ∑

ω′∈Ω

∂u∗q(ω′)
∂q(ω)

q(ω′)

= ∑
ω′∈Ω,a∈A

u(a, ω′)

(
lim

q̂(ω)→q(ω)

[x∗q̂(a, ω′)/q̂(ω′)− x∗q(a, ω′)/q(ω′)]

q̂(ω)− q(ω)

)
q(ω′) =

a.e.
= ∑

ω′∈Ω,a∈A
u(a, ω′)

∂

∂q(ω′)

(x∗q(a, ω′)

q(ω)

)
q(ω′),

where the existence of the derivative of
x∗q (a,ω′)

q(ω)
almost everywhere follows from (A.6). �

Primal Solutions for the Application in Section 3.3.1. As mentioned after Proposition 2, for

the setting of Section 3.3.1 the solution of problem Uq can take only two forms depending on r.

Let x̄∗ be the profit-maximizing solution (i.e., for r = 1) and x∗ be the surplus-maximizing

solution (i.e., for r = 0) (see Bergemann et al. (2015) for details).

Lemma A.2. x̄∗ is optimal for all r ≥ 1
2 and x∗ is optimal for all r ≤ 1

2 .
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Proof. First, note that we can write u(a, ω) = raI{ω ≥ a}+ (1− r)max{ω− a, 0} as

[a(2r− 1) + (1− r)ω]I{ω ≥ a},

which is strictly increasing in a if and only if r > 1
2 . Fix any (non-trivial) q and r ∈ (0, 1).

Problem Uq involves maximizing

∑
ω,a

ur(a, ω)x(a, ω) = ∑
ω≥a

[a(2r− 1) + (1− r)ω]x(a, ω)

subject to constraints (2).

Suppose that r > 1
2 . Note that x̄∗ is feasible and maximizes the objective function pointwise for

every ω. Indeed, since x̄∗(ω, ω) = q(ω), for every ω we have that x̄∗ selects the highest a ≤
ω for every ω, thereby maximizing a(2r− 1)I{ω ≥ a}; it also maximizes ∑a≤ω ωx(a, ω) for

every ω. We can invoke the Theorem of the Maximum to extend the optimality of x̄∗ at r = 1
2 .

Suppose now that r < 1
2 . Now for each ω the objective is to pair ω with the smallest possible

a and do so with the highest probability allowed by (2). This is what x∗ essentially does. We

can again invoke the Theorem of the Maximum to extend the optimality of x∗ at r = 1
2 . �

Uniqueness and Stability of the Values of Data Records. We establish the following unique-

ness and stability properties of v∗q , which we will use to prove other results below.

Lemma A.3. There exists a finite collection {Q1, . . . , QM} of open, convex, and disjoint cones

in RΩ
+ such that ∪mQm has full measure and, for every m, v∗q is unique and constant for

q ∈ Qm.

Proof. The argument leverages the structure of the polyhedron of feasible solutions of Vq,

denoted by F(Vq). By the formulation of Vq and Lemma 1, F(Vq) does not contain a line

because all dual variables are bounded from below. By Theorem 2.6 and Corollary 2.1 in

Bertsimas and Tsitsiklis (1997), F(Vq) has at least one and at most finitely many extreme

points. By Theorem 4.4 in Bertsimas and Tsitsiklis (1997), Vq has at least one optimal solution.

By Theorem 2.7 in Bertsimas and Tsitsiklis (1997), we can focus on solutions that are extreme

points of F(Vq).

Next, we characterize some properties of the dual solutions. Fix q and suppose that the op-

timal solution (v∗q , λ∗q) of Vq is unique. As explained in Remark 1, there exists a submatrix B

such that (v∗q , λ∗q) satisfies (A.7). Given Assumption 1, Theorem 3.1 and Exercise 3.6 in Bert-

simas and Tsitsiklis (1997) imply that[
Π −1

I 0

]
B−1

[
0
q

]
≥
[

0
q

]
.

34



The inequality is strict for each row of Π that corresponds to λ∗q,i(a′i|ai, ωi) = 0 (i.e., the

corresponding obedience constraint is not binding):[
Πi(ai, a′i, ωi) | − 1i(ai, a′i, ωi)

]
B−1

[
0
q

]
> 0, (A.8)

where 1i(ai, a′i, ωi) is the row of the identity matrix 1 that corresponds to (i, ai, a′i, ωi). Note

that for each row ω of the indicator matrix I (i.e., I(ω)), which corresponds to variable v∗q(ω),

it automatically holds that
[
I(ω) | 0

]
B−1

[
0
q

]
= q(ω). Similarly, for each row of Π that

corresponds to λ∗q,i(a′i|ai, ωi) > 0 (i.e., the corresponding obedience constraint is binding), it

holds that
[
Πi(ai, a′i, ωi) | − 1i(ai, a′i, ωi)

]
B−1

[
0
q

]
= 0 as long as B identifies the optimal

extreme point.

Now consider how changes in q affect these optimality properties. Note that q only enters the

objective of Vq. Each condition (A.8) defines an open set of q’s in RΩ
+ that satisfy it. Define

(v∗B, λ∗B) identified by B as in (A.7) and

Q(B) = {q : (A.8) holds for all i ∈ I and (ai, a′i, ωi) s.t. λ∗B,i(ai|a′i, ωi) = 0}.

Note that Q(B) is an open set because it is the intersection of finitely many open sets.

Finally, recall that there are only finitely many extreme points of the dual polyhedron of

feasible solutions. Therefore, there are finitely many submatrices {B1, . . . , BM} such that

each identifies an optimal (v∗Bm
, λ∗Bm

), where v∗Bm
is unique for all q ∈ Q(Bm). For all m =

1, . . . , M, define Qm = Q(Bm). By construction, each Qm is open and q, q′ ∈ Qm implies

that v∗q = v∗q′ . Since v∗q is generically unique with respect to q, it follows that RΩ
+ \ ∪mQm has

Lebesgue measure zero. �

Proof of Proposition 3. The proof uses a monotone-comparative-static argument that relies

on establishing convenient orders for the vectors µ, which describe the shares of record types

in a database, and for the dual variables v and λ. Fix ω and suppose that µq(ω) > µq′(ω)

for databases q and q′. Let Ωq = {ω̂ ∈ Ω : µq(ω̂) > µq′(ω̂)}, Ωq′ = {ω̂ ∈ Ω :

µq′(ω̂) > µq(ω̂)}, and Ω = Ω \ {Ωq ∪Ωq′}. Note that (v, λ) belongs to the set Y = RΩ ×
R

A1×A1×Ω1
+ × . . . × R

An×An×Ωn
+ . Associate the canonical component-wise order with Y,

except that this order is reversed for ω̂ ∈ Ωq. Then, Y is a lattice. Treating µq and µq′ as

parameters of the problem, we order the set {µq, µq′} as µq > µq′ .

Now note that we can equivalently state the data-value problem as max(v,λ)∈S f (v, λ; µ),

where f (v, λ; µ) = −∑ω∈Ω v(ω)µ(ω) and the feasible set S ⊂ Y is given by the inequalities

v(ω) ≥ u(a, ω) + ∑
i∈I

∑
a′i∈Ai

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))λi(a′i|ai, ωi).
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Next, we show that f is supermodular in (v, λ) and has increasing differences in (v, λ; µ)

for µ ∈ {µq, µq′} given our order. Observe that for any (v′, λ′) and (v′′, λ′′)

f (v′, λ′; µ) + f (v′′, λ′′; µ) = − ∑
ω∈Ω

v′(ω)µ(ω)− ∑
ω∈Ω

v′′(ω)µ(ω)

= − ∑
ω∈Ω

(v′(ω) + v′′(ω))µ(ω)

= − ∑
ω∈Ω

(max{v′(ω), v′′(ω)}+ min{v′(ω), v′′(ω)})µ(ω)

= f ((v′, λ′) ∧ (v′′, λ′′); µ) + f ((v′, λ′) ∨ (v′′, λ′′); µ).

Then f is supermodular in (v, λ). Fix (v′, λ′) ≥ (v, λ). Given µq > µq′ , observe that

( f (v′, λ′, µq)− f (v, λ, µq))− ( f (v′, λ′, µq′)− f (v, λ, µq′))

= ∑
ω̂∈Ω

(v(ω̂)− v′(ω̂))(µq(ω̂)− µq′(ω̂))

= ∑
ω̂∈Ωq

(v(ω̂)− v′(ω̂))(µq(ω̂)− µq′(ω̂)) + ∑
ω̂∈Ωq′

(v(ω̂)− v′(ω̂))(µq(ω̂)− µq′(ω̂)),

which is non-negative given the partial orders we adopted. Then, f has increasing differences

in (v, λ; µ).

It then follows that arg max(v,λ)∈S f (v, λ; µq) ≥ arg max(v,λ)∈S f (v, λ; µq′) by Theorem 5

in Milgrom and Shannon (1994). This result and the generic uniqueness of v∗q̂ with respect to q̂

imply that v∗q(ω) ≤ v∗q′(ω). That is, this monotonicity of v∗q̂(ω) holds for any selection v∗q̂
from the optimal solution correspondence of Vq̂.

We now prove the second part of the proposition. When only records of type ω are present

in the database (i.e., µq(ω) = 1), we have v∗q(ω) = v(ω). This follows immediately from

Lemma A.1. We will show that v∗q(ω) = v(ω) continues to hold in a neighborhood of

µq(ω) = 1. For ε > 0, consider a set Mε(ω) defined as Mε(ω) = {µ ∈ ∆(Ω) : µ(ω′) ∈
(0, ε) for ω , ω′, µ(ω) < 1}. By Lemma A.3, there exists a finite collection {P1, . . . ,PK}
of open, convex, and disjoint subsets of ∆(Ω) such that ∪kPk has measure one and, for ev-

ery k, v∗q is unique and constant for q, with µq ∈ Pk. Therefore, we can always find Pm ∈
{P1, . . . ,PK}, such that Pm ∩Mε(ω) is nonempty, open, and convex for all 0 < ε ≤ δ, where

δ > 0. Then v∗q(ω) is unique and constant for all q ∈ RΩ
++, with µq ∈ Pm ∩Mδ(ω). Let us

refer to this constant as v̂(ω). If v̂(ω) = v(ω), then the result follows. Suppose, on the con-

trary, that v̂(ω) , v(ω). We can always pick a sequence µn, n ∈ N, from Pm ∩Mδ(ω) that

converges to µ̃, with µ̃(ω) = 1. Then for every n ∈ N, v∗q(ω) = v̂(ω) for every q such that

µq = µn. By the Berge’s maximum theorem, (v∗q , λ∗q) is an upper-hemicontinuous correspon-
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dence and therefore has a closed graph. Hence, v̂(ω) ∈ v∗q(ω) for every q, with µq = µ̃. We

obtain the desired contradiction, since v∗q(ω) = v(ω) for such q.

Proof of Proposition 4. If all types of records are perfect substitutes, MRSq(ω, ω′) =

− v∗q (ω)

v∗q (ω′)
must be constant for all (ω, ω′) and q. By Lemma A.1 and Proposition 3, it follows

that v∗q(ω) = v(ω) for all ω and q. Therefore, it is optimal to always fully disclose every

record. �

Fix q ∈ RΩ
++. Suppose that an optimal mechanism x∗q involves full disclosure. Then, we

have

v∗q(ω) = u∗q(ω) + ∑
a∈A

t∗q(a, ω)
x∗q(a, ω)

q(ω)
≥ u∗q(ω),

where the inequality follows because
x∗q (·,ω)

q(ω)
∈ CE(Γω) for all ω. Since by strong duality we

must have ∑ω v∗q(ω)q(ω) = ∑ω u∗q(ω)q(ω) (see (7)), it follows that v∗q(ω) = u∗q(ω) for

all ω. Finally, since x∗q is optimal, it must be that u∗q(ω) = v(ω) for all ω. Now, note that v∗q
defines a supporting hyperplane of the iso-payoff line of level U∗(q) at q. The intercept of such

an hyperplane on each ω-axis is q̂ω(ω) = U∗(q)
v(ω)

and q̂ω(ω′) = 0 for ω′ , ω. By definition,

each q̂ω also belongs to the iso-payoff line of level U∗(q) and therefore U∗(q) = U∗(q̂ω) for

all ω. In other words, the intercepts of the hyperplane and the iso-payoff line coincide for all ω.

Now consider any q′ ∈ R++, q′ , q, that belongs to the supporting hyperplane of level U∗(q)

at q. By definition, we can obtain q′ as a convex combination of intercepts q̂ω on each axis.

Specifically, there exists ζ ∈ ∆(Ω) such that q′(ω) = ζ(ω)q̂ω(ω) for all ω. By concavity

of U∗(q) (Footnote 20), we must have that

U∗(q′) = ∑
ω∈Ω

v∗q′(ω)q′(ω) ≤ U∗(q) = ∑
ω∈Ω

ζ(ω)U∗(q̂ω) = ∑
ω∈Ω

v(ω)q′(ω).

But since v∗q′(ω) ≥ v(ω) for all ω by Lemma A.1, we must have v∗q′(ω) = v(ω) for all ω.

Then v∗q′′(ω) = v(ω) for all q′′ that belong to the supporting hyperplane of level U∗(q) at q.

Finally, since v∗q is invariant to scaling of q,27 it follows that v∗q(ω) = v(ω) for all ω and all

q ∈ RΩ
+. �

Proof of Corollary 4. Since U∗ is concave and homogeneous of degree 1, we have U∗(q +

q′) = 2U∗
(1

2 q + 1
2 q′
)
≥ 2

(1
2U∗(q) + 1

2U∗(q′)
)
. If v∗q = v∗q′ , then v∗q = v∗1

2 q+ 1
2 q′

by Proposi-

tion 3. Strong duality (i.e., (7)) implies that U∗
( 1

2 q + 1
2 q′
)
= 1

2U∗(q) + 1
2U∗(q′). Conversely,

27It is easy to see that v∗q is constant along the rays in the space of databases: If q′ = δq for δ > 0, then

v∗q = v∗q′ .
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if U∗
( 1

2 q + 1
2 q′
)
= 1

2U∗(q) + 1
2U∗(q′), then since U∗ is concave, it must be linear over the

line defined by all convex combinations of q and q′. By homogeneity of degree 1, U∗ must

also be linear over the open cone that contains this line, which means that v∗q̂ is constant over

this cone (see Footnote 27). Hence, v∗q can differ from v∗q′ only if one of them is on the bound-

ary of this cone, which is a nongeneric condition. �

Application of Section 4.3: Indifference Curves for K > 2. The next result characterizes

how the records’ substitutability depends on r when there are more than two types of records.

Corollary A.1. Fix q and increase r < 1
2 . If ω, ω′ < aq, MRSq(ω, ω′) is constant at − ω

ω′ . If

ω < aq ≤ ω′, MRSq(ω, ω′) increases monotonically toward − ω
ω′ from below. If ω′ > ω ≥

aq, MRSq(ω, ω′) decreases monotonically toward − ω
ω′ from above.

In words, as r increases toward 1
2 , for record types on the opposite side of aq the platform’s

indifference curves rotate counterclockwise in the direction of perfect substitutability. For

records on the same side of aq, its indifference curves rotate clockwise in the direction of perfect

substitutes. Thus, the indifference curves become “less convex” around the dimension ω = aq.

In particular, at r = 0 records of type ω = aq are perfect complements with every other type.

Proof. For r > 1
2 , we have MRSq(ω, ω′) = − ω

ω′ and all ω, ω′. Consider now r < 1
2 :

MRSq(ω, ω′) =


− ω

ω′ if ω, ω′ < aq

− (1−r)ω
raq+(1−r)(ω′−aq)

if ω < aq ≤ ω′

− raq+(1−r)(ω−aq)

raq+(1−r)(ω′−aq)
if ω, ω′ ≥ aq.

Thus, we have

∂MRSq(ω, ω′)

∂r
=


0 if ω, ω′ < aq

ωaq
[raq+(1−r)(ω′−aq)]2

if ω < aq ≤ ω′

− aq(ω′−ω)

[raq+(1−r)(ω′−aq)]2
if ω, ω′ ≥ aq.

Finally, it is easy to see that MRSq(ω, ω′) < − ω
ω′ for ω < aq ≤ ω′ and that MRSq(ω, ω′) >

− ω
ω′ for ω′ > ω ≥ aq. �

Proof of Corollary 5. For this result, we assume that the agents observe no data (i.e., |Ωi| =
1 for all i = 1, . . . , n). Fix q, the type of refined records ω̄, and the refinement σ. By the law
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of iterated expectations and Bayes’ consistency of σ, we have u(a, ω̄) = Eσ[u(a, ω)|ω̄] and

πi(a, ω̄) = Eσ[πi(a, ω)|ω̄] for all i. Therefore , by (6)

v∗q(ω̄) = max
a∈A

∑
ω∈Ω

[u(a, ω) + t∗q(a, ω)]σ(ω)

≤ ∑
ω∈Ω

max
a∈A

[u(a, ω) + t∗q(a, ω)]σ(ω) = ∑
ω∈Ω

v∗q(ω)σ(ω). (A.9)

Thus, if refining αq(ω̄) of the records of type ω̄ according to σ does not change the value

of any record, then (A.9) implies the desired inequality. Now consider the other case: There

exists a share α > 0 such that refining αq(ω̄) of the records of type ω̄ according to σ leads to a

database qα such that v∗qα
(ω) , v∗q(ω) for some ω ∈ supp σ or ω = ω̄. Since the total quantity

of records does not change, we have that µqα(ω̄) < µq(ω̄) and µqα(ω) > µq(ω) for all ω ∈
supp σ. By Proposition 3, it follows that v∗qα

(ω̄) ≥ v∗q(ω̄) and v∗qα
(ω) ≤ v∗q(ω) for all ω ∈

supp σ and that the effects on the unrefined records are increasing in α. Now, note that for all α,

∑
ω∈Ω

v∗qα
(ω)σ(ω) ≥ v∗qα

(ω̄) ≥ v∗q(ω̄), (A.10)

where the first inequality follows from (A.9). This implies that the effect of σ on the refined

records is always non-negative and decreasing in α. �

Obedience and Refinements. For the next result, we again assume that the agents observe

no data (i.e., |Ωi| = 1 for all i = 1, . . . , n).

Lemma A.4. Consider databases q and qα, where qα is obtained from q by refining α records

of type ω̄ according to σ. For every obedient x at q, there exists a obedient x̂ at qα such that

∑
a∈A,ω∈Ω

u(a, ω)x(a, ω) = ∑
a∈A,ω∈Ω

u(a, ω)x̂(a, ω).

Proof. Fix q, x, and σ as stated. Recall that

qα(ω) =


(1− α)q(ω) if ω = ω̄

q(ω) + αq(ω̄)σ(ω) if ω ∈ supp σ

q(ω) else.

Define x̂ : A×Ω→ R+ as follows:

x̂(·, ω) =


x(·, ω) + ασ(ω)x(·, ω̄) if ω ∈ supp σ

x(·, ω)(1− α) if ω = ω̄

x(·, ω) else.
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To interpret x̂, note that the previous definition is equivalent to

x̂(·, ω)

qα(ω)
=


q(ω)
qα(ω)

x(·,ω)
q(ω)

+ qα(ω)−q(ω)
qα(ω)

x(·,ω̄)
q(ω̄)

∀ω ∈ supp σ
x(·,ω)
q(ω)

else.

Thus, under x̂, the probability that a record of type ω ∈ supp σ leads to recommendations a

(i.e., x̂(·, ω)/qα(ω)) is a convex combination of the probability that a record of that type led

to a under x (i.e., x(·, ω)/q(ω)) and the probability that a record of type ω̄ led to a under x

(i.e., x(·, ω̄)/q(ω̄)).

We begin by establishing that x̂ is obedient at qα. For any i ∈ I and ai, a′i ∈ Ai,

∑
a−i,ω

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x̂(ai, a−i, ω)

= ∑
a−i

(πi(ai, a−i, ω̄)− πi(a′i, a−i, ω̄))x(ai, a−i, ω̄)(1− α)

+ ∑
a−i,ω∈supp σ

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x(ai, a−i, ω)

+ ∑
a−i,ω∈supp σ

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x(ai, a−i, ω̄)ασ(ω)

+ ∑
a−i,ω̄,ω<supp σ

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x(ai, a−i, ω)

= ∑
a−i

(πi(ai, a−i, ω̄)− πi(a′i, a−i, ω̄))x(ai, a−i, ω̄)(1− α)

+∑
a−i

(πi(ai, a−i, ω̄)− πi(a′i, a−i, ω̄))x(ai, a−i, ω̄)α

+ ∑
a−i,ω,ω̄

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x(ai, a−i, ω)

= ∑
a−i,ω

(πi(ai, a−i, ω)− πi(a′i, a−i, ω))x(ai, a−i, ω) ≥ 0

The first equality follows from the definition of x̂. The second equality follows from the fact

that ∑ω πi(ai, a−i, ω)σ(ω) = πi(ai, a−i, ω̄) by the Bayes’ consistency conditions of the be-

liefs at ω̄ and ω ∈ supp σ. The last inequality follows from the assumption that x is obedient

at q. We conclude that x̂ is obedient at qα. A similar progression allows us to argue that:

∑
a,ω

u(a, ω)x̂(a, ω) = ∑
a

u(a, ω̄)x(a, ω̄)(1− α)

+ ∑
a,ω∈suppσ

u(a, ω)(x(a, ω) + ασ(ω)x(a, ω̄))

+ ∑
a,ω̄,ω<supp σ

u(a, ω)x(a, ω)

= ∑
a,ω

u(a, ω)x(a, ω),

which concludes the proof. �
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Proof of Proposition 5. For this result, we again assume that the agents receive no data (i.e.,

|Ωi| = 1 for all i = 1, . . . , n). For the first part of the result, Lemma A.4 immediately implies

that U∗(qα) ≥ U∗(q).

Now observe that the directional derivative of U∗ at any q̂ in the direction implied by apply-

ing refinement σ is equal to28

∑
ω′∈Ω

v∗q̂(ω
′)σ(ω′)− v∗q̂(ω̄).

Note that if we replace q̂ with qα, this derivative is decreasing in α by Proposition 3. This

proves that the refinement’s marginal benefit decreases in α.

Finally, to prove the rest of the result, we first parametrize the linear path from q to qα as

follows: For t ∈ [0, 1], define qt(ω̄) = q(ω̄)− tαq(ω̄), qt(ω) = q(ω) + tασ(ω)q(ω̄) for

ω ∈ supp σ, and qt(ω′) = q(ω′) for the remaining ω′. By the gradient theorem,

U∗(qα)−U∗(q) =
1∫

0

v∗qt
· ∇qt dt = αq(ω̄)

1∫
0

[
∑

ω∈Ω
v∗qt

(ω)σ(ω)− v∗qt
(ω̄)

]
dt,

where ∇qt is the gradient of qt with respect to t.

Now, suppose that there exists a common ã that satisfies x∗q(ã, ω̄) > 0 and x∗q(ã, ω) > 0 for

all ω ∈ supp σ. By complementary slackness, v∗q(ω) = u(ã, ω)+ t∗q(ã, ω) for all ω ∈ supp σ

and for ω = ω̄. Therefore, by Proposition 3,

∑
ω∈Ω

v∗qα
(ω)σ(ω) ≤ ∑

ω∈Ω
v∗q(ω)σ(ω) = v∗q(ω̄) ≤ v∗qα

(ω̄),

which, combined with (A.10), implies that ∑ω∈Ω v∗qα
(ω)σ(ω) = v∗qα

(ω̄) for all α ∈ [0, 1]. In

turn, this implies that U∗(qα) = U∗(q) for all α ∈ [0, 1].

Conversely, suppose that for every â such that x∗q(â, ω̄) > 0, there exists ω ∈ supp σ

that satisfies x∗q(â, ω′) = 0. If the solution to the data-value problem is unique at q (which

is the case generically), then x∗q(â, ω) = 0 implies v∗q(ω) > u(â, ω) + t∗q(â, ω) by strict

complementary slackness. This and Lemma A.3 imply that there exists t′ > 0 such that

∑ω∈Ω v∗qt
(ω)σ(ω) > v∗qt

(ω̄) for all t ∈ [0, t′]. It follows that U∗(qα) > U∗(q).

28Note that refining a record of type ω̄ implies losing that record for sure (which explains the coefficient−1 on

v∗q̂(ω̄)) and gaining a record of type ω with probability σ(ω).
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Online Appendix (For Online Publication Only)

B Adding Participation Constraints.

This appendix enriches our baseline model by adding sellers’ participation constraints and

shows that they generate new externalities. Let πi ≥ 0 be the (exogenously given) payoff of

the outside option for seller i. This could be interpreted as the payoff of joining a competing

platform or of opening a brick-and-mortar store. Varying πi is thus a reduced-form way of

capturing the intensity of the competition that the platform faces. Recall that a mechanism

takes the form x : A×Ω→ R+. The platform solves

max
x ∑

ω,a
u(a, ω)x(a, ω)

s.t. for all i, ai, a′i, and ω′,

∑
ω,a−i

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
x(ai, a−i, ω) ≥ 0 (B.1)

∑
a

x(a, ω′) = q(ω′) (B.2)

∑
a,ω

πi(a, ω)x(a, ω) ≥ πi (B.3)

We now consider the dual problem. As in the baseline model, let λi(a′i|ai) and v(ω) be

the multipliers of the obedience constraint (B.1) and feasibility constraint (B.2). Let ζi be the

multiplier of seller i’s participation constraint (B.3). The dual is then

min
v,λ,ζ

∑
ω∈Ω

v(ω)q(ω)

s.t. for all ω ∈ Ω and a ∈ A,

v(ω) ≥ u(a, ω) + t(a, ω) + l(a, ω),

where t(a, ω) is defined as in the baseline model and l(a, ω) = ∑i(πi(a, ω)− πi
∑ω q(ω)

)ζi. The

structure of this dual is similar to that of the dual of the baseline model. From this formulation,

we obtain a generalized version of the decomposition in Proposition 1: The value v∗q(ω) of

records of type ω satisfies

v∗q(ω) = u∗q(ω) + t∗q(ω) + l∗q (ω), where l∗q (ω) = ∑
a∈A

l∗q (a, ω)
x∗q(a, ω)

q(ω)
.

The first two components, u∗q(ω) and t∗q(ω), are identical to those in the baseline model and

have the same interpretation. The last component captures the intuitive idea that the value of
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type-ω records depends also on whether their use helps or hinders satisfying the participation

constraints of the seller(s). An extension of the scarcity principle can be easily derived using

the same logic of Proposition 3.

C A Sufficient Condition for Optimality of Withholding In-

formation.

We provide a sufficient condition for optimality of withholding information in terms of the

primitives Γω = {I, (Ai)
n
i=0, (πi(·, ω))n

i=1} for ω ∈ Ω, excluding q. We consider the general

case where the intermediary can choose a0 ∈ A0 and each agent i can privately observe some

data ωi ∈ Ωi. Recall that if the intermediary always fully disclose all ω, then it must be

implementing a correlated equilibrium of the complete-information game Γω for all ω (i.e.,
x∗q (·,ω)

q(ω)
∈ CE(Γω)).

Proposition C.1. Fix Γ. Suppose there exists (a, ω) that satisfies:

(1) u(a, ω) > v(ω),

(2) for every agent i and action âi, such that πi(ai, a−i, ω) < πi(âi, a−i, ω), there exists a

y ∈ CE(Γω′) for some ω′, with ω′i = ωi, that satisfies

∑
a∈A

u(a, ω′)y(a) = v(ω′),

∑
a−i∈A−i

(
πi(ai, a−i, ω′)− πi(âi, a−i, ω′)

)
y(ai, a−i) > 0.

Then it is not optimal in Uq to always fully disclose all records for any q ∈ RΩ
++.

Condition (1) is clearly necessary: If for every records of type ω every action profile a

cannot deliver a payoff higher than the full-disclosure payoff v(ω), then it is clearly optimal

for the intermediary to fully disclose every ω. Given an outcome (a, ω) with u(a, ω) >

v(ω), there must be an agent who would have a profitable deviation from ai to âi if he knew

(a−i, ω−i). Otherwise, given a0, the profile a−0 is a Nash Equilibrium of Γω and hence a−0 ∈
CE(Γω), which would imply u(a, ω) ≤ v(ω). Then, condition (2) requires that agent i’s

data ωi is consistent with another record ω′ (so that he cannot tell ω and ω′ apart based on

his own data only) and that Γω′ admits a intermediary-preferred correlated equilibrium that

also recommends i to play ai and renders the deviation to âi strictly suboptimal. Note that this

condition is easy to check in applications starting from the best full-disclosure mechanism x.
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Proof of Proposition C.1. . We will argue by contradiction. Suppose q ∈ RΩ
++ and Uq admits

a full-disclosure solution x∗∗q and hence x∗∗q (·|ω̃) ∈ CE(Γω̃) and u∗∗q (ω̃) = v(ω̃) for all

ω̃ ∈ Ω. Then v∗∗q (ω̃) = u∗∗q (ω̃) = v(ω̃) for all ω̃ ∈ Ω by Proposition 4.

Now suppose that (a, ω) satisfies both conditions in the statement of the proposition. For

(v∗∗q , λ∗∗q ) to be feasible for Vq, we must have for all ω̃ ∈ Ω,

v∗∗q (ω̃) ≥ u(a, ω̃) + t∗∗q (a, ω̃).

Since u(a, ω) > v(ω) = v∗∗q (ω), we must have t∗∗q (a, ω) < 0. Therefore, there exists a pair

(i, âi) that satisfies πi(ai, a−i, ω) < πi(âi, a−i, ω) and λ∗∗q,i(âi|ai, ωi) > 0. For such a pair

(i, âi), there exists a mechanism x such that x(·,ω′)
q(ω′) ∈ CE(Γω′) with the properties listed in the

proposition. Then, since λ∗∗q,i(âi|ai, ωi) > 0,

∑
ã∈A

u(ã, ω′)
x(ã, ω′)

q(ω′)
+ ∑

ã∈A
t∗∗q (ã, ω′)

x(ã, ω′)

q(ω′)

≥ ∑
ã∈A

u(ã, ω′)
x(ã, ω′)

q(ω′)

+λ∗∗q,i(âi|ai, ωi)

{
∑

ã−i∈A−i

(
πi(ai, ã−i, ω′)− πi(âi, ã−i, ω′)

) x(ai, ã−i|ω′)
q(ω′)

}

> ∑
ã∈A

u(ã, ω′)
x(ã, ω′)

q(ω′)
= v∗∗q (ω′),

where the first inequality follows because x(·,ω′)
q(ω′) ∈ CE(Γω′). The strict inequality is incom-

patible with the dual constraint (A.4) and delivers the desired contradiction. �

D Interpreting the Data-Value Problem

To further understand the values of data records and the pooling externalities, we provide a

standalone interpretation of the data-value problem Vq. This also sheds light on the forces,

trade-offs, and constraints that determine the record values by shaping how the platform uses

its data to influence the sellers. We focus on the case in which the agents have no data (i.e.,

|Ωi| = 1 for all i), but only minor adjustments are needed to also cover the more general case.

We fix q ∈ RΩ
++ and so drop it from notation. This interpretation links our work to an earlier

literature on dual analysis of correlated equilibria (Nau and McCardle (1990); Nau (1992);

Myerson (1997)).
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We first rewrite V in the following equivalent way by exploiting the structure of the specific

problem at hand. For every i, we can set λi(ai|ai) = 1 (or any strictly positive number) for all

ai ∈ Ai. Given this, for every i and ai ∈ Ai, define

bi(ai) = ∑
a′i∈Ai

λi(a′i|ai),

which is strictly positive by construction. Also, for every i and ai, a′i ∈ Ai define

`i(a′i|ai) =
λi(a′i|ai)

bi(ai)
,

which implies that `i(·|ai) ∈ ∆(Ai). After constructing b = (b1, . . . , bn) and ` = (`1, . . . , `n)

in this way, for each i ∈ I and (a, ω) define

ti(a, ω) =
∆ bi(ai) ∑

a′i∈Ai

(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
`i(a′i|ai)

and t(a, ω) =
∆

∑i∈I ti(a, ω). The data-value problem can be written as

V : min
v,b,`

∑
ω∈Ω

v(ω)q(ω)

s.t. for all ω ∈ Ω,

v(ω) = max
a∈A

{
u(a, ω) + t(a, ω)

}
, (D.1)

D.1 Gambles Against the Agents

Our interpretation hinges on unpacking how the platform determines the records’ contributions

t(a, ω) to the externality t(ω). By (D.1), it does so by choosing b and `, which fully pin down

t(a, ω) and hence v(ω). Recall that the platform wants to minimize the values of its records,

so it would like to lower t(a, ω) = ∑i∈I ti(a, ω) as much as possible for all (a, ω). Each term

of ti(a, ω) takes the form

bi(ai)`i(a′i|ai)
(
πi(ai, a−i, ω)− πi(a′i, a−i, ω)

)
,

which contributes to lowering ti(a, ω) if and only if `i(a′i|ai) > 0 and πi(ai, a−i, ω) <

πi(a′i, a−i, ω). That is, if seller i knew ω and his opponents’ actions a−i, he would strictly pre-

fer deviating to a′i than following recommendation ai. In this case, playing ai amounts to mak-

ing a mistake from an ex-post viewpoint. We will say that seller i regrets offering ai.

Thus, inducing sellers to make offers they will regret emerges as an intrinsic goal of the

platform’s problem—together with maximizing u of course. In this view, (bi, `i) becomes an
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exploitation strategy on the part of the platform against seller i. Inducing regrettable actions

requires withholding information from seller i about ω or a−i. This explains why the platform

may prefer withholding information, but from the perspective of the data-value problem. In the

end, v(ω) results from a trade-off between u(a, ω) and the return from inducing actions the

sellers regret.

This return depends on the structure of b and `, which can be interpreted as defining a

family of gambles against the sellers. To see this, fix (a, ω) and seller i. Then, `i(·|ai) ∈
∆(Ai) defines a lottery whose prize for the platform is πi(ai, a−i, ω) − πi(a′i, a−i, ω) for

each a′i; the scaling term bi(ai) captures the stake that the platform bets on this lottery. The

platform “wins” when πi(ai, a−i, ω) < πi(a′i, a−i, ω) and “loses” otherwise. Thus, t(a, ω)

is the overall expected prize from (b, `). We can then think of V as a fictitious environment

where money is a medium of exchange and the platform can write monetary gambling contracts

with each seller. Such contracts are enforced through contingent-claim markets that determine

prizes based on the record type ω and outcome a.1

We can then link how the platform chooses these gambles in V with the pooling external-

ities. Negative externalities t∗(ω) < 0 correspond to favorable gambles, in the sense that

the platform wins in expectation. This requires the help of other records to withhold informa-

tion and induce the sellers to choose actions they will regret. Conversely, positive externali-

ties t∗(ω) > 0 correspond to unfavorable gambles. Corollary 2 implies that, at the optimum,

the platform chooses gambles that favor it for some records, but not for others. In fact, this

stems from deeper constraints and trade-offs in the use of such gambles against the sellers.

D.2 Feasible Gambles and Trade-offs

The feasible gambles in V have specific features that shed light on the data-value problem.

Some features reflect structural properties of V . While the prizes of each gamble are contin-

gent on ω and the entire a, for each seller i both bi and `i can depend only on ai. This limits

the platform’s ability to tailor its gambles across records and sellers. These properties reflect

in V key interdependences in U : The independence of (bi, `i) from a−i reflects the interdepen-

dence in U between sellers’ incentives; the independence of (bi, `i) from ω reflects the non-

separability of U across data records. To see this, suppose `i(âi|ai) > 0. Then, (bi, `i) links

the value formula (D.1) for (ai, a−i, ω) and (ai, a′−i, ω′). In particular, if πi(ai, a−i, ω) <

πi(âi, a−i, ω) but πi(ai, a′−i, ω′) > πi(âi, a′−i, ω′), the platform faces a trade-off because it

1See Nau (1992) for a related interpretation.
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may not be possible to use (bi, `i) to lower v(ω) without also raising v(ω′). This is another

way to see why and how externalities arise between records. When committing to (b, `) the

platform has to take into account these effects of each (bi, `i) across records.

How it solves the trade-offs depends on the relative frequency of records in the database

(hence q). Importantly, this transformation of non-separabilities in U into independence prop-

erties of (b, `) is what enables V to assign values individually to each record.

The platform faces other constraints in its ability to jointly exploit the sellers. Given V ,

it is clear that it would want to choose (b, `) so that t(a, ω) ≤ 0 for all (a, ω) with some

strict inequality. Such gambles would guarantee a sure arbitrage against the sellers, but are

infeasible in the following sense. By complementary slackness x∗(a, ω) > 0 implies v∗(ω) =

u(a, ω) + t∗(a, ω). Thus, since every ω must induce some a for every x, action profiles that

cannot be in the support of any obedient x(·, ω) are irrelevant for determining v∗(ω). Given

this, define

X = {(a, ω) ∈ A×Ω : x(a, ω) > 0 for some obedient x} .

Let G(X) be the set of gambles that can be contingent only on (a, ω) ∈ X (formally, we

restrict the functions b and ` to the subdomain X). Note that restricting the platform to choosing

from G(X) in V is immaterial, as restricting x to the domain X is immaterial in U .

Proposition D.1. For every gamble (b, `) ∈ G(X), if t(a, ω) < 0 for some (a, ω), there must

exist (a′, ω′) such that t(a′, ω′) > 0.

This property is closely related to a similar result in Nau (1992). For completeness we provide

a proof below, which relies on a dual characterization of X using Farkas’ lemma.

The economic takeaway is that in the attempt to minimize values v by exploiting the sellers

with (b, `), the platform faces a fundamental trade-off that is a hallmark of V . Successfully

exploiting the sellers for records of type ω with some outcome a requires paying the cost of

losing against them for records of some other type ω′ or outcome a′. This result sheds light on

how and how much the platform can actually manipulate sellers by conveying information.

Proof of Proposition D.1. This proof is for the general case where each agent i can privately

observe some own data ωi ∈ Ωi. Fix (a∗, ω∗) ∈ X and introduce 1a∗,ω∗ as a vector of size |X|
with ε > 0 in the position indexed by (a∗, ω∗) and 0 in all other positions. Construct a matrix

W such that its rows are indexed by (a, ω) ∈ X, its columns are indexed by (i, a′i, ai, ωi) for

i ∈ I, and its entries are as follows:

W
(
(ã, ω̃), (i, a′i, ai, ωi)

)
= 1 {ai = ãi, ωi = ω̃i} (πi(ai, ã−i, ωi, ω̃−i)−πi(a′i, ã−i, ωi, ω̃−i)).
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By a variant of the Farkas’ lemma, either there exists λ ≥ 0, such that Wλ ≤ −1a∗,ω∗ , or

else there exists x ≥ 0, such that WTx ≥ 0, with xT1a∗,ω∗ > 0. We show that the latter is true.

Indeed, we can pick x to be a mechanism that is obedient and satisfies x(a∗, ω∗) > 0. We can

find such x, since (a∗, ω∗) ∈ X. Then x ≥ 0 and xT1a∗,ω∗ > 0 are satisfied automatically.

Finally, WTx ≥ 0 corresponds exactly to the set of obedience constraints in Uq restricted to

the subdomain X.

Since any λ can be decomposed as λi(a′i|ai, ωi) = bi(ai, ωi)`i(a′i|ai, ωi), we conclude that

there is no (b, `) ∈ G(X) that satisfies t(a, ω) ≤ 0 for every (a, ω) ∈ X and t(a∗, ω∗) < −ε.

The result then follows, since the choice of (a∗, ω∗) ∈ X and ε > 0 was arbitrary. �

E Data and Price Discrimination: Analysis

This section provides the calculations for Section 4.3 and the example in the Online Appendix F

below. Recall that a ∈ {1, 2} and that u(a, ω) = max{ω− a, 0} and π(a, ω) = aI{ω ≥ a}
for ω ∈ {ω1, ω2}. For ω̄, we have u(a, ω̄) = hu(a, ω2) + (1− h)u(a, ω1) and π(a, ω̄) =

hπ(a, ω2) + (1− h)π(a, ω1). For completeness, we solve both the intermediation (primal)

problem Uq and the data-value (dual) problem Vq.

Intermediation Problem. The objective function is

(ω2 −ω1)x(1, ω2) + h(ω2 −ω1)x(1, ω̄) = x(1, ω2) + hx(1, ω̄).

The obedience constraints are

−x(2, ω1) + x(2, ω2) + (2h− 1)x(2, ω̄) ≥ 0,

x(1, ω1)− x(1, ω2)− (2h− 1)x(1, ω̄) ≥ 0.

Consider first the case of h > 1
2 . From the second constraint we get x∗q(1, ω1) = q(ω1).

The first constraint is then automatically satisfied. Since h ∈ (0, 1), it is always true that

2h − 1 < h. The solution satisfies x∗q(1, ω2) = 0 and x∗q(1, ω̄) = 1
2h−1 q(ω1), as long as

1
2h−1 q(ω1) ≤ q(ω̄).

Now consider the case of h ≤ 1
2 . Combining obedience constraints, we get

x(1, ω1)− x(1, ω2)− (2h− 1)x(1, ω̄) ≥ max {2q(ω1) + (1− h)2q(ω̄)− 1, 0} .

It is immediate that x∗q(1, ω̄) = q(ω̄) and x∗q(1, ω1) = q(ω1), since this relaxes the constraint

as much as possible. The constraint then becomes

q(ω1)− (2h− 1)q(ω̄)−max {2q(ω1) + (1− h)2q(ω̄)− 1, 0} ≥ x(1, ω2).

7



Data-Value Problem. The data-value problem is

min
v,λ

q(ω1)v(ω1) + q(ω2)v(ω2) + q(ω̄)v(ω̄),

subject to λ(2|1), λ(1|2) ≥ 0,

v(ω1) = max{λ(2|1),−λ(1|2)} = λ(2|1),

v(ω2) = max{1− λ(2|1), λ(1|2)},

v(ω̄) = max{h + (1− 2h)λ(2|1), (2h− 1)λ(1|2)}

= h max
{

1− 2h− 1
h

λ(2|1), 2h− 1
h

λ(1|2)
}

.

As we noted before, 2h−1
h < 1. Suppose that h > 1

2 . Then, it is optimal to set λ∗q(1|2) = 0

to relax the problem as much as possible. We then have

v(ω1) = λ(2|1),

v(ω2) = max{1− λ(2|1), 0},

v(ω̄) = h max
{

1− 2h− 1
h

λ(2|1), 0
}

.

There are three candidates for optimal λ(2|1). When λ(2|1) = 0, the objective is S0 =
∆

q(ω2) + hq(ω̄). When λ(2|1) = 1, the objective is S1 =
∆ q(ω1) + q(ω̄)(1 − h). When

λ(2|1) = h
2h−1 , the objective is S f =

∆ q(ω1)
h

2h−1 . The following claims are true. First,

S0 ≤ S1 if and only if q(ω1) ≥ q(ω2) + (2h − 1)q(ω̄). Second, S0 ≤ S f if and only if

q(ω1) ≥ q(ω2)
2h−1

h + (2h− 1)q(ω̄). Third, S1 ≤ S f if and only if q(ω1) ≥ (2h− 1)q(ω̄).

Suppose now that h ≤ ω1
ω2

. Then v(ω̄) = h− (2h− 1)λ(2|1) and λ∗q(1|2) = 0 is again

optimal. There are only two candidates for optimal λ(2|1), specifically, 0 and 1.

Summary. All these cases lead to three scenarios in terms of q.

Scenario 1: q(ω1) ≤ (2h − 1)q(ω̄). Note that this requires h > 1
2 . Table 2 presents the

optimal x∗q .

x∗q(a, ω)
ω

ω1 ω2 ω̄

a
1 q(ω1) 0 1

2h−1 q(ω1)

2 0 q(ω2) q(ω̄)− 1
2h−1 q(ω1)

Table 2: Platform Example, x∗q for Scenario 1.

8



The solution to the data-value problem is λ∗q(1|2) = 0, λ∗q(2|1) = h
2h−1 and the unit values

are v∗q(ω1) =
h

2h−1 , v∗q(ω2) = 0, and v∗q(ω̄) = 0.

Scenario 2: (2h− 1)q(ω̄) ≤ q(ω1) ≤ q(ω2) + (2h− 1)q(ω̄). Note that the lower bound on

q(ω1) is meaningful only if h > 1
2 . Table 3 presents the optimal x∗q .

x∗q(a, ω)
ω

ω1 ω2 ω̄

a
1 q(ω1) q(ω1)− (2h− 1)q(ω̄) q(ω̄)

2 0 q(ω2)− [q(ω1)− (2h− 1)q(ω̄)] 0

Table 3: Platform Example, x∗q for Scenario 2.

The solution to the data-value problem is λ∗q(1|2) = 0, λ∗q(2|1) = 1, and the unit values are

v∗q(ω1) = 1, v∗q(ω2) = 0, and v∗q(ω̄) = 1− h.

Scenario 3: q(ω1) ≥ q(ω2) + (2h− 1)q(ω̄). Table 4 presents the optimal x∗q .

x∗q(a, ω)
ω

ω1 ω2 ω̄

a
1 q(ω1) q(ω2) q(ω̄)

2 0 0 0

Table 4: Platform Example, x∗q for Scenario 3.

The solution to the data-value problem is λ∗q(1|2) = λ∗q(2|1) = 0 and the unit values are

v∗q(ω1) = 0, v∗q(ω2) = 1, and v∗q(ω̄) = h.

F Correlated Refinements: An Example

We present an example of a correlated refinement that decreases the value of the refined records

as well as the platform’s total payoff.

The setting is as in the last part of Section 4.3, where r = 0 and Ω = {ω1, ω2, ω̄}. The

initial database q satisfies q(ω̄) < q(ω1) < q(ω2) and q(ω2) < q(ω1) + (1− h)q(ω̄). Let

α = 1 and consider the following refinement, which is arguably extreme but serves to make our

point as clearly as possible. Suppose the platform learns that all its records of type ω̄ involve

buyers with the same θ. That is, with probability 1− h they all become records of type ω1

and with probability h they all become records of type ω2. Thus, with probability 1− h the
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ω1 ω2 ω̄

v∗q 1 0 1− h U∗(q) = q(ω1) + (1− h)q(ω̄)

v∗q′ 0 1 − U∗(q′) = q′(ω2)

v∗q′′ 1 0 − U∗(q′′) = q′′(ω1)

Table 5: Value of records and total payoffs for specific databases (r = 0)

new database is q′ and satisfies q′(ω1) > q′(ω2) > q′(ω̄) = 0; with probability h, the

new database is q′′ and satisfies q′′(ω2) > q′′(ω1) > q′′(ω̄) = 0. Table 5 reports the unit

value of the records for these databases. The calculations are in Online Appendix E. The

refinement strictly decreases both the unit value of the refined records and the platform’s total

payoff: v∗q(ω̄) > (1− h)v∗q′(ω1) + hv∗q′′(ω2) = 0 and U∗(q) > U∗(q′) > U∗(q′′) because

q′(ω2) = q(ω2) and q′′(ω1) = q(ω1).

By contrast, the same refinement strictly increases both the unit value of the refined records

and the platform’s total payoff if the platform maximizes the seller’s profits (r = 1). Indeed,

we have v∗q̂(ω1) = 1, v∗q̂(ω2) = 2, and v∗q̂(ω̄) = 2h for all q̂ ∈ {q, q′, q′′}. The key

is that a profit-maximizing platform treats each buyer-seller interaction as independent of all

other interactions, so it does not care about correlation in how it learns about records. Instead,

a surplus-maximizing platform cares about such correlation, because it can have profound

consequences on the information the platform has in its database and so can convey to (or

withhold from) the seller. Specifically, for the original database q, the platform was pooling

all records of type ω̄ with those of type ω1. Now, if all records of type ω̄ become of type ω2,

their value drops to zero. This is because type-ω2 records were already abundant in the original

database and exhausted all possibilities of pooling them with records of type ω1. If instead all

records of type ω̄ become of type ω1, their value again drops to zero. This is because now

type-ω1 records become too abundant in the new database and the ability to pool them with

records of type ω2 becomes worthless for the platform, since providing no information to the

seller already induces him to charge the lowest price of 1 to all buyers.
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