
222 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Short Papers

Parallel Trajectory Training of Recurrent Neural Network Controllers With
Levenberg–Marquardt and Forward Accumulation Through Time in

Closed-Loop Control Systems

Xingang Fu , Senior Member, IEEE, Jordan Sturtz , Eduardo Alonso , Rajab Challoo , and Letu Qingge

Abstract—This paper introduces a novel parallel trajectory mechanism
that combines Levenberg-Marquardt and Forward Accumulation Through

Time algorithms to train a recurrent neural network controller in a closed-
loop control system by distributing the calculation of trajectories across
Central Processing Unit (CPU) cores/workers depending on the computing
platforms, computing program languages, and software packages available.

Without loss of generality, the recurrent neural network controller of
a grid-connected converter for solar integration to a power system was
selected as the benchmark test closed-loop control system. Two software

packages were developed in Matlab and C++ to verify and demonstrate
the efficiency of the proposed parallel training method. The training of the
deep neural network controller was migrated from a single workstation
to both cloud computing platforms and High-Performance Computing

clusters. The training results show excellent speed-up performance, which
significantly reduces the training time for a large number of trajectories
with high sampling frequency, and further demonstrates the effectiveness
and scalability of the proposed parallel mechanism.

Index Terms—Cloud computing, forward accumulation through time,

high - performance computing (HPC) cluster, Levenberg–Marquardt,
parallel trajectory training, recurrent neural network controller.

I. INTRODUCTION

The Levenberg-Marquardt (LM) algorithm provides a nice compro-

mise between the speed of the second-order Newton’s method and the

guaranteed convergence of first-order steepest descent method to solve

nonlinear least squares problems [1], [2]. Thus it is particularly suitable

for training small and medium-sized feed-forward Neural Networks

(NNs) [3].

However, the computation loads of the LM algorithm are expensive

due to the calculation needs of the Jacobian matrix, and researchers

have explored ways to speed it up. For instance, the block-diagonal

matrix has been proposed to approximate the Hessian matrix [4], [5],

and, in [6], the forward difference method was used to approximate

Manuscript received 7 May 2023; revised 24 September 2023; accepted 31
October 2023. Date of publication 6 November 2023; date of current version 3
April 2024. This work was supported by the National Science Foundation of the
United States under Grants 213214 and 2131175. Recommended for acceptance
by P. D. Yoo. (Corresponding author: Letu Qingge.)

Xingang Fu is with the Department of Electrical and Biomedical Engineering,
The University of Nevada, Reno, NV 89557 USA (e-mail: xfu@unr.edu).

Jordan Sturtz and Letu Qingge are with the Department of Computer Science,
North Carolina A&T State University, Greensboro, NC 27411 USA (e-mail:
jasturtz@aggies.ncat.edu; lqingge@ncat.edu).

Eduardo Alonso is with the Artificial Intelligence Research Centre (CitAI),
University of London, EC1V 0HB London, U.K. (e-mail: e.alonso@city.ac.uk).

Rajab Challoo is with the Department of Electrical Engineering and Com-
puter Science, Texas A&M Kingsville, Kingsville, TX 78363 USA (e-mail:
rajab.challoo@tamuk.edu).

Digital Object Identifier 10.1109/TSUSC.2023.3330573

the Jacobian matrix by perturbing one parameter to produce a column,

instead of calculating the Jacobian matrix directly.

In addition, several mechanisms have been proposed to parallelize

the LM algorithm for NN training, appropriately distributing compu-

tational and space requirements. For example, the Single Program and

Multiple Data (SPMD) strategy divides training data into groups and

each group is distributed on one node in a cluster [7]. [8] also utilized the

parallelization of data sets by calculating the objective functions simul-

taneously. Relatedly, [9] and [10] distributed the computing tasks/data

points across parallel GPU multiprocessors to train the LM algorithm

in parallel. In [11], the parallel selection of the damping parameter and

multicore versions of the Basic-Linear-Algebra-Subprograms (BLAS)

were used in the LM algorithm to increase computational efficiency.

In any case, with or without parallelization, the application of feed-

forward NNs is inherently limited due to their inability to identify and

process sequential partners in large data sets.

Recurrent Neural Networks (RNNs) are potentially more power-

ful than feed-forward NNs thanks to their feedback connections and

memory gates [3]. Many algorithms have been used for training RNNs

such as Backpropagation Through Time (BPTT) [12], Real-Time Re-

current Learning (RTRL) [13], Extended Kalman Filters (EKF) [14],

genetic algorithms [15], and Expectation Maximization (EM) [16],

[17]. Notwithstanding their merits, they all suffer from serious draw-

backs: the BPTT algorithm may cause gradient exploding and vanishing

problems. The high computational cost of RTRL makes it only appro-

priate for online training of small RNNs. EKF is also computationally

expensive since it requires many matrix calculations at each estimation.

Evolutionary methods such as genetic algorithms have proved to be

successful in training RNNs by formulating the RNN cost function

as a nonlinear global optimization problem. However, they may get

stuck in local minima and show a low speed of convergence. Finally,

the application of EM to training neural networks is limited by the

complicated calculations in the expectation step when the number of

hidden neurons is large. Such deficiencies have been an impediment

to the application of RNNs to real-life problems such as closed-loop

control systems, that we take as our benchmark.

Although some research has shown the potential of training RNNs

using LM [18], [19], LM has not been used broadly for this purpose. The

Forward Accumulation Through Time (FATT) algorithm was proposed

to calculate the Jacobian matrix efficiently and combined with the LM

algorithm to train an RNN controller applied to a power converter

control system, which produced excellent performance [20]. However,

training was based on a rather small number of trajectories (e.g., 10

trajectories) and a relatively low sampling frequency (e.g., 1000 Hz)

due to constraints in the computational power and the memory size of

the single workstation used in the experiments.

2377-3782 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 223

Fig. 1. TI microinverter block diagram [21].

Fig. 2. Schematic of a single-phase DC-AC inverter block with LCL filters.

To extend the LM training of RNNs to a large number of trajectories

with high sampling frequency and accelerate the training process, this

paper proposes a novel parallel trajectory training mechanism. The

key contributions include 1) the introduction of a training mechanism

tailored for RNNs with error integral terms in closed-loop control

systems, a solar microinverter system in particular; 2) the develop-

ment of a parallel LM and FATT algorithm designed for trajectory

training of RNNs; 3) implementation of a parallel approach that effi-

ciently distributes the FATT-based calculation of training trajectories

across Central Processing Unit (CPU) cores/workers, 4) validation

conducted through implementations in two programming languages:

Matlab and C++; 5) comprehensive validation of the implementations

and performance comparison on both cloud computing platforms and

High-Performance Computing (HPC) clusters.

The rest of the paper is organized as follows. Section II introduces the

RNN controllers in the benchmark test closed-loop control system. The

parallel trajectory training algorithm of the RNN controllers is detailed

in Section III. Training results using cloud platforms are presented in

Section IV. Section V provides detailed implementation and training

results on HPC clusters. Finally, the paper concludes with a summary

of the main points in Section VI.

II. RNN CONTROLLERS IN A CLOSED-LOOP CONTROL

SYSTEM FOR A SOLAR INVERTER

A. A Closed-Loop Control System: A Solar Microinverter

Typically, solar inverters consist of two components: the DC-DC

converter and the DC-AC inverter, as illustrated in the case of the Texas

Instruments (TI) Microinverter in Fig. 1 [21]. The PhotoVoltaic (PV)

solar panels attach to the DC-DC converter, while the DC-AC inverter

maintains the voltage of the DC Bus at its rated value while feeding

controlled AC current to the main power grid.

Fig. 2 further shows the schematic of a single-phase DC-AC inverter

block with the LCL filters, in which a DC-link capacitor/DC bus is on

the left, an LCL filter is placed in the middle, and a single-phase voltage

Fig. 3. NN controller in a closed-loop control system. The system
equations serve as the feedback connections for the NN controller.

source, representing the voltage at the Point of Common Coupling

(PCC) of the AC power grid system is on the right [22].

When using the d-q frame, the system state-space equation of the

DC-AC inverter block can be described by (1) [23], which will be used

for RNN training.

d

dt

£

¤
¤
¤
¤
¤
¤
¤
¤
¥

id

iq

idc_d1

idc_q1

vcd

vcq

¦

§
§
§
§
§
§
§
§
¨

︸ ︷︷ ︸
−−−→
idqs

=

£

¤
¤
¤
¤
¤
¤
¤
¤
¤
¥

−Rg

Lg
ωs 0 0 − 1

Lg
0

−ωs −Rg

Lg
0 0 0 − 1

Lg

0 0 −Rc

Lc
ωs

1
Lc

0

0 0 −ωs −Rc

Lc
0 1

Lc

1
C

0 − 1
C

0 0 ωs

0 1
C

0 − 1
C

−ωs 0

¦

§
§
§
§
§
§
§
§
§
¨

︸ ︷︷ ︸

A

£

¤
¤
¤
¤
¤
¤
¤
¤
¥

id

iq

idc_d1

idc_q1

vcd

vcq

¦

§
§
§
§
§
§
§
§
¨

︸ ︷︷ ︸
−−−→
idqs

+

£

¤
¤
¤
¤
¤
¤
¤
¤
¤
¥

1
Lg

0 0 0 0 0

0 1
Lg

0 0 0 0

0 0 − 1
Lc

0 0 0

0 0 0 − 1
Lc

0 0

0 0 0 0 0 0

0 0 0 0 0 0

¦

§
§
§
§
§
§
§
§
§
¨

︸ ︷︷ ︸

B

£

¤
¤
¤
¤
¤
¤
¤
¤
¥

vd

vq

vd1

vq1

0

0

¦

§
§
§
§
§
§
§
§
¨

︸ ︷︷ ︸
−−−→udqs

(1)

where ωs is the angular frequency of the grid voltage, and all other

symbols are consistent with those shown in Fig. 2. id and iq represent

system states that need to be controlled. The controller outputs will be

vd1 and vq1. System parameters in (1) can be obtained from the user

guide or datasheet of TI microinverter [21].

To train the RNN digital controller, the continuous state space

model in (1) must first be converted into an equivalent discrete model

using (2), either through a zero-order or a first-order hold discrete

equivalent mechanism with a sampling time of Ts. For example, if the

sampling frequency equals 10000 Hz, then Ts = 1/10000 = 0.1 ms.

−−→
idqs(k + 1) = A

−−→
idqs(k) +B−−→udqs(k) (2)

in which, A stands for system matrix and B is the input matrix.

B. The NN Controller in a Closed-Loop Control System

A NN will be implemented in the Piccolo real-time digital controller

in Fig. 1 to regulate the currents (id and iq) to follow the reference

trajectories (id_ref and iq_ref) in a closed-loop control system, instead

of conventional Proportional–Integral (PI) controllers, as shown in

Fig. 3.

224 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Fig. 4. NN controller with special tracking error integrals [25].

C. The RNN With Error Integral Inputs

The structure of the proposed NN controller is shown in Fig. 4.

The NN has two hidden layers, each with six neurons, and one two-

neuron layer that controls the outputs. The selection of the number of

neurons in each hidden layer was conducted through trial and error

tests. After implementing many trial and error tests, 6 nodes in each

hidden layer were found to be able to generate good enough results

in real-time control. Further, the number of weights or neurons can be

further reduced through the dropout approach to better fit the embedded

real-time computing [24].

The input block of the NN takes the tracking error input signals −→edq
and their special error integral values −→sdq . To avoid input saturation,
−→edq and −→sdq are divided by constant gain values, Gain and Gain2,

respectively, and normalized by the hyperbolic tangent function, whose

values are limited in the range [−1, 1]. Specifically, −→edq is defined as
−→edq(k) =

−→
idq(k) -

−−−−→
idq_ref (k) and −→sdq(k) is calculated by

−→sdq(k) =
∫ kTs

0

−→edq(t)dt ≈ Ts

k∑

j=1

−→edq(j − 1) +−→edq(j)
2

(3)

in which the trapezoid formula was used to compute the integral term
−→sdq(k) and −→edq(0) ≡ 0. The special error integral terms −→sdq will

guarantee that there is no steady-state error for step references [26].

The system equations (1) and (2) serve as the feedback connections

for the NN controller as seen in Fig. 3. Moreover, the calculation of the

error integration terms −→sdq(k) (3) has to accumulate all past error terms
−→edq(j) from j = 0 to j = k and each past error term−→edq(j) computation

will involve the outputs of the NN controller in the corresponding past

step j. Thus, the proposed NN is a recurrent NN and will be denoted

as RNN thereafter.

Further, the RNN controller can be represented explicitly by equation

(4), where W1, W2, and W3 stand for the weights of the input

layer to the first hidden layer, second hidden layer, and output layer,

respectively. The bias for each layer is incorporated into weights W1,

W2, and W3.

R (−→edq,−→sdq,W1,W2,W3) =

tanh

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪«

⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

W3

£

¤
¤
¤
¤
¤
¤
¤
¤
¤
¥

tanh

⎧

⎪⎪⎪⎪⎪⎪⎪«

⎪⎪⎪⎪⎪⎪⎪¬

W2

£

¤
¤
¤
¤
¤
¤
¤
¥

tanh

⎧

⎪⎪⎪⎪⎪«

⎪⎪⎪⎪⎪¬

W1

£

¤
¤
¤
¤
¤
¥

tanh

£

¤
¤
¤
¥

ed
Gain
eq

Gain
sd

Gain2
sq

Gain2

¦

§
§
§
¨

−1

¦

§
§
§
§
§
¨

«

⎪⎪⎪⎪⎪¬

⎪⎪⎪⎪⎪­

−1

¦

§
§
§
§
§
§
§
¨

«

⎪⎪⎪⎪⎪⎪⎪¬

⎪⎪⎪⎪⎪⎪⎪­

−1

¦

§
§
§
§
§
§
§
§
§
¨

«

⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

⎪⎪⎪⎪⎪⎪⎪⎪⎪­

(4)

Fig. 5. Reference trajectories for RNN training.

The outputs from the RNN multiplied by the gain value of the Pulse-

Width-Modulation (PWM) (kPWM) will constitute the control action
−−→vdq1, which is expressed by

−−→vdq1 = kPWMR(−→edq,−→sdq,W1,W2,W3) (5)

III. PARALLEL TRAJECTORY TRAINING OF RNN CONTROLLERS

A. Training Objective: Approximate Optimal Control

Adaptive Dynamic Programming (ADP) [27] methods that com-

bine incremental optimization techniques with parametric structures

that approximate optimal cost are typically used to control a system.

Specifically, a discrete-time ADP approach based on the principle of

Bellman’s optimality [28] uses a discrete-time system model along with

a performance index or cost [29].

The Dynamic Programming (DP) cost function associated with the

RNN training is defined as:

Cdp=
∞∑

k=j

γk−jU(−→edq(k))

=

∞∑

k=j

γk−j

√

[id(k)−id_ref (k)]2+[iq(k)−iq_ref (k)]2 (6)

where j>0 is the starting point, 0<γ≤1 is a discount factor, and U is

the local cost or utility function. Depending on the initial time j and

the initial state
−→
idq(j), the function Cdp is referred to as the cost-to-go

of state
−→
idq(j) of the DP problem. The training objective is to find an

optimal RNN controller that minimizes the DP cost Cdp by regulating
−→
idq .

B. Trajectory Tracking

Fig. 5 demonstrates the reference trajectories for RNN training,

which contains 6 trajectories: 3 for id and 3 for iq . The reference

trajectories were generated randomly within the system’s controllable

range. This range can be determined by the physical current/voltage

ratings of solar inverters. For demonstration purposes, the range was

set as [-100, 100] in Fig. 5. The reference id and iq values were set to

change after certain time steps, e.g. 100, which is a tunable parameter.

Normally, the control system needs time to reach its steady state, the 100

time steps turned out to be a well-balanced number in training the RNN

controller for a solar inverter. The total time steps/trajectory length was

set to a certain number, e.g. 1000 in Fig. 5, which is determined by

training duration and sampling time. For example, if the sampling time

Ts = 1 ms and the training duration 1 s are used, the trajectory length

will be 1 s/Ts = 1000. The total number of training trajectories can

vary from 10 to several hundred. Utilizing a large number of trajectories

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 225

Fig. 6. Idea tracking performance for RNN training.

will significantly slow down training, which is the reason for proposing

the parallel trajectory training algorithm for overcoming this challenge.

Fig. 6 shows the ideal tracking performance after the RNN was

well-trained. After training, an RNN controller will able to regulate

the system states id and iq to follow the reference currents id_ref and

iq_ref .

C. LM Algorithm

If the performance error function is not a sum of squares, then the

LM weight update equation is not directly applicable. To implement

LM training, the cost function defined in (6) needs to be rewritten in

a Sum-Of-Squares form. Consider the cost function Cdp with γ = 1,

j = 1 and k = 1, . . . , N , then it can be written in the form

Cdp=

N∑

k=1

U(−→edq(k))
defV (k)=

√
U(−−→edq(k))⇐==========⇒Cdp=

N∑

k=1

V 2(k) (7)

and the gradient
∂Cdp

∂w
can be written in a matrix product form

∂Cdp

∂−→w =
N∑

k=1

V (k)
∂V (k)

∂−→w = 2Jv(
−→w)TV (8)

where the Jacobian matrix Jv(
−→w) is

Jv(w) =

£

¤
¤
¥

∂V (1)
∂w1

· · · ∂V (1)
∂wM

...
. . .

...
∂V (N)
∂w1

· · · ∂V (N)
∂wM

¦

§
§
¨
, V =

£

¤
¤
¥

V (1)
...

V (N)

¦

§
§
¨

(9)

Therefore, the weight update using LM for an RNN controller can be

expressed as

−→w = −[Jv(
−→w)TJv(

−→w) + µI]−1Jv(
−→w)TV (10)

D. FATT Algorithm

In order to calculate the Jacobian matrix Jv(
−→w) efficiently, FATT

was used, which incorporates the procedures of unrolling the system,

calculating the derivatives of the Jacobian matrix, and calculating the

DP cost into one single process for each training epoch [20]. Fig. 7

illustrates the process of unrolling the trajectory in the forward path,

and Algorithm 1 specifies FATT [18], where
−→
φ (k)=

∑k

j=1

−−→
idqs(j) and

∂
−−→
φdq(k)

∂−→w =
∑k

j=1

∂
−−−→
idqs(j)

∂−→w .

E. Parallel Training Combination of LM and FATT Algorithms

Fig. 8 presents the proposed parallel training combination of LM and

FATT algorithms for training an RNN controller. FATT* in Fig. 8 refers

Algorithm 1: FATT Algorithm to Calculate the Jacobian Matrix

and to Accumulate DP Cost for One Trajectory.

1: C ← 0,−→edq(0) ← 0,−→sdq(0) ← 0,
∂
−−−→
idqs(0)

∂−→w ← 0,
∂
−−→
φdq(0)

∂−→w ← 0
2: {Calculate the Jacobian matrix Jv(

−→w)}
3: for k = 0 to N − 1 do

4: −−→vdq1(k) ← kPWMR(−→edq(k),−→sdq(k),−→w)

5:
∂−−→sdq(k)

∂−→w ← Ts

[
∂
−−→
φdq(k)

∂−→w − 1
2

∂
−−→
idq(k)

∂−→w

]

6:
∂−−−→vdq1(k)

∂−→w ←kPWM
[

∂R(k)
∂−→w + ∂R(k)

∂−−→edq(k)

∂
−−→
idq(k)

∂−→w + ∂R(k)
∂−−→sdq(k)

∂−−→sdq(k)

∂−→w

]

7:
∂
−−−→
idqs(k+1)

∂−→w ← A
∂
−−−→
idqs(k)

∂−→w +B
∂−−→udq(k+1)

∂−→w

8:
∂
−−→
idq(k+1)

∂−→w ← the first two terms of
∂
−−−→
idqs(k+1)

∂−→w

9:
∂
−−→
φdq(k+1)

∂−→w ← ∂
−−→
φdq(k)

∂−→w +
∂
−−→
idq(k+1)

∂−→w

10:
−−→
idqs(k + 1) ← A

−−→
idqs(k) +B−−→udqs(k)

11: −→edq(k + 1) ← −→
idq(k + 1)−−−−−→

idq_ref (k + 1)

12: −→sdq(k + 1) ← −→sdq(k) + Ts

2
[−→edq(k) +−→edq(k + 1)]

13: C ← C + U(−→edq(k + 1)) accumulate DP cost

14:
∂
−→
V (k+1)
∂−→w ← ∂

−→
V (k+1)

∂−−→edq(k+1)

∂
−−→
idq(k+1)

∂−→w

15: the (k + 1)th row of J(−→w) ← ∂
−→
V (k+1)
∂−→w

16: end for

17: {On exit, the Jacobian matrix Jv(
−→w) is finished for one

trajectory.}

to a modified version of Algorithm 1 that only calculates the DP cost

by eliminating lines 5–9 and 14–15 to save computation time. The most

time-consuming parts include the DP cost calculation and the Jacobian

matrix for each trajectory, which is conducted by the FATT Algorithms.

To solve this challenge, the basic idea is to parallelize them as follows:

First, all training trajectories are divided intoN groups, each with a size

from 1 to a number smaller than the number of total trajectories. Then,

the calculation of each group of trajectories is allocated to one Worker

or Central Processing Unit (CPU) core. The detailed implementation

will depend on the specific programming language, platforms, etc. For

example, for the MATLAB implementation, the computing unit will

be one MATLAB worker, which corresponds to one CPU core. For the

C++ implementation, this single worker could correspond to one CPU

core or thread. For a fair comparison, one single CPU core was also

used in the C++ implementation. The implementation and comparison

of both cases will be detailed in Sections IV and V.

Fig. 8 also illustrates how the algorithm dynamically adjusts µ.

When µ increases, training is closer to a gradient descent algorithm

with a small learning rate, whereas when µ decreases, training ap-

proaches the Gauss-Newton method, which provides faster convergence

than gradient descent. There are three stopping conditions used for

training: 1) when the training epoch reaches a maximum acceptable

value Epochmax; 2) when µ is larger than µmax; and 3) when the

gradient is smaller than the predefined minimum acceptable value

‖∂Cdp/∂
−→w‖min.

226 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Fig. 7. Unrolling the forward path in the FATT algorithm for training an NN controller in a closed-control loop system.

IV. AMAZON EC2 CLOUD TRAINING PERFORMANCE

A. Amazon EC2 Cloud

Amazon EC2 cloud was utilized as the test cloud platform. The

cloud cluster was configured and connected to Amazon EC2. For the

Amazon EC2 cluster, the region is selected as US East (N. Virginia).

The worker machine type is General Purpose (m5.24 × large, 48 core),

which supports 48 workers per machine. The headnode machine type

is Standard (c5d. × large, 2core,1 × 100NVMe). It is noted that the

m5.24 × large type instance uses up to 3.1 GHz Intel Xeon Platinum

Processor, however, the specific CPU processor number is not provided

by Amazon EC2 [30].

B. MATLAB Implementation and Speedup Performance

Matlab [31] was first used to develop the training program and

validate the proposed parallel training algorithm. Matlab Online run-

ning version R2022b was used. For the two parallel computing parts

described in Fig. 8, two parfor-loop structures were used to execute

for-loop iterations in parallel on workers in a parallel pool. To execute

the parfor-loop, Matlab starts a parallel pool with one worker per

physical CPU core, not CPU thread. A parallel pool with 48 workers

was used.

To test whether training is successful or not, the current tracking

performance in the closed-loop control was performed. Fig. 9 shows the

current tracking performance after the RNN controller was well-trained.

The current id and iq can track their reference currents id_ref and iq_ref

very well only with some slight oscillations at the beginning of the

reference change.

Fig. 10 shows the running time comparison on different numbers

of Matlab workers and trajectories. The horizontal axis represents the

number of CPU cores/Matlab workers, while the vertical axis stands

for the average running time. To test the performance of the proposed

approach, all inputs across all runs and any randomness inherent in

the code were fixed. The test program was run with trajectories in

{10, 20, 30, . . .100} and with Matlab workers from {1, 2, 3, . . .48}.

When the number of Matlab workers equals 1, no parallel computing

was used. For each running case, the program was repeated 10 times, and

the average running time was calculated to remove possible variations

of the running time in each run for a fair comparison. Regardless of

the number of trajectories used in the experiment, a consistent trend

emerges: as the number of CPU cores/Matlab workers increases to a

certain threshold, the average running time stabilizes and cannot be

further reduced.

The speedup is defined as the ratio of serial execution time

over parallel execution time, which is speedup = Serial Execution
T ime/Parallel ExecutionT ime. Fig. 11 shows the speedup com-

parison across different numbers of Matlab workers. The horizontal axis

represents the number of CPU cores/Matlab workers and the vertical

axis stands for the speedup. Figs. 10 and 11 clearly show an excellent,

although nonlinear speedup performance. When the number of Matlab

workers surpasses the number of trajectories, no speedup benefits can

be further achieved and the running time is slightly longer due to

communication loads between Matlab workers. The trend was observed

in all number of trajectories. Compared to nonparallel training, the

parallel approach achieves a least 4 times speedup. When the number

of trajectories increases, the speedup becomes even more significant.

V. HPC CLUSTER TRAINING PERFORMANCE

A. HPC Cluster Platform

The selected HPC platform is a cluster consisting of four Non-

Uniform Memory Access (NUMA) system [32] compute nodes running

the AlmaLinux distribution of the Linux operating system [33]. The

CPU of each compute node is Intel(R) Xeon(R) Platinum 8180 M CPU.

Each compute node contains 2 sockets, one 28-core CPU per socket,

and 2 threads per CPU core, providing a total of 2 ∗ 28 = 56 CPU

cores and 56 ∗ 2 = 112 threads. See Fig. 12 for an illustration of the

HPC architecture.

B. MATLAB Implementation and Speedup Performance

The HPC is configured to use Slurm to manage job scheduling [34].

The Matlab cluster configuration supports up to 28*2 = 56 computa-

tional CPU cores. For a fair comparison with results running on Amazon

EC2 Cloud, the maximum number of Matlab workers was also set

to 48.

Fig. 13 shows the running time comparison across different numbers

of Matlab workers and trajectories. Fig. 14 shows the speedup compar-

ison across different numbers of Matlab workers. Figs. 13 and 14 show

slightly better speedup performance running on the HPC cluster than

Figs. 10 and 11 running on Amazon EC2 Cloud. For example, the

maximum speedup running on the HPC cluster is 6 times compared

to only 5 times speedup on the Amazon EC2 Cloud for 10-trajectory

training.

C. C++ Implementation and Speedup Performance

The c++17 standard [35] and the compiler g++ [36] were used to

develop the training program. An important third-party package used

in the training program is the C++ package Armadillo, which is a

fast linear algebra library to perform linear algebra computations [37],

[38]. Armadillo relies on BLAS [39] and Linear Algebra PACKage

(LAPACK) [40]. BLAS is a specification of low-level routines for

performing basic linear algebra operations. The training program used

OpenBLAS, which is an open-source implementation in Fortran of this

software specification [41]. The configuration of an implementation of

BLAS is paramount since it can be tuned to particular architectures to

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 227

Fig. 8. Proposed parallel LM+FATT trajectory training algorithm for an RNN
controller.µmax stands for maximumµ, andβde andβin signify the decreasing
and increasing factors, respectively.

Fig. 9. Tracking performance in a closed-loop after successful RNN training.

Fig. 10. Average running time across Matlab workers on Amazon EC2 Cloud.

Fig. 11. Speedup across Matlab workers on Amazon EC2 Cloud.

Fig. 12. Schematic of the HPC Cluster architecture.

Fig. 13. Average running time across Matlab workers on the HPC cluster.

228 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Fig. 14. Speedup across Matlab workers on the HPC cluster.

Fig. 15. Average running time across workers on the HPC cluster.

improve performance. LAPACK is a software library of more complex

linear algebra operations also written in Fortran.

The OpenMPI implementation of the Message Passing Interface

(MPI) standard [42] was utilized to parallelize the workload among

the available worker nodes. An advantage of the Open MPI framework

is that programs are scalable to larger and more powerful clusters. To

parallelize the workload, the MPI program has a sequential part and

parallel parts as illustrated in Fig. 8. The master process in the MPI

program handles the sequential parts and sends messages to each worker

process to manage its parallel part of the workload.

Fig. 15 shows the running time comparison across different num-

bers of workers. The horizontal axis represents the number of CPU

cores/workers, while the vertical axis stands for the average run-

ning time. Fig. 16 shows the speedup comparison on different num-

bers of workers. The horizontal axis represents the number of CPU

cores/workers and the vertical axis stands for the speedup. Compared

with Figs. 13 and 14, the parallel version of the C++ program (Figs. 15

and 16) runs faster than the Matlab version on the HPC cluster. For

example, the maximum speedup of the C++ version is around 8 times

compared to the 6 times speedup of the corresponding Matlab version

for 10-trajectory training. Overall, among the three implementations:

the C++ version on the HPC cluster, the Matlab version on the HPC

cluster, and the Matlab version on the cloud, the C++ version on the

HPC cluster achieves the best results. The next one is the Matlab version

on the HPC cluster, while the Matlab version on the cloud is the slowest

one.

Fig. 16. Speedup across workers on the HPC cluster.

VI. CONCLUSION

This paper investigated how to use parallel computing to accelerate

the LM algorithm for training an RNN controller in a closed-loop

control system. The proposed parallel trajectory training algorithm

incorporates LM and FATT algorithms. The training programs were

implemented using both Matlab and C++. The developed programs

were tested on two computing platforms, namely the Amazon EC2

Cloud and an HPC cluster. Performance comparison results show

that the parallel training algorithm can provide a significant speedup

compared to its non-parallelized counterparts. Specifically, the C++

implementation achieves better speedup than the corresponding MAT-

LAB implementation. The program running on HPC clusters can further

yield even better speedup than that on cloud platforms. The significant

speedup performance makes it suitable to train RNN controllers with a

large number of trajectories and long-duration trajectories.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of the

United States under Grants 2131214 and 2131175. The authors thank

anonymous reviewers for their insightful comments and inputs.

REFERENCES

[1] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quart. Appl. Math., vol. 2, pp. 164–168, 1944.

[2] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[3] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design.
Boston, MA, USA: PWS, 2002, pp. 19–23.

[4] L. Chan and C. Szeto, “Training recurrent network with block-diagonal
approximated Levenberg-Marquardt algorithm,” in Proc. IEEE Int. Joint

Conf. Neural Netw., 1999, pp. 1521–1526.
[5] Y. Kwak, “An accelerated Levenberg-Marquardt algorithm for feedfor-

ward network,” J. Korean Data Inf. Sci. Soc., vol. 23, no. 5, pp. 1027–1035,
2012.

[6] T. Tawara, Levenberg-Marquardt with sparse block matrices on the
GPU. [Online]. Available: https://on-demand.gputechconf.com/gtc/
2012/presentations/S0231-Levenberg-Marquardt-Using-Block-Sparse-
Matrices-on-CUDA.pdf

[7] N. N. R. Ranga Suri, D. Deodhare, and P. Nagabhushan, “Parallel
Levenberg-Marquardt-based neural network training on Linux clusters - a
case study,” in Proc. 3rd Indian Conf. Comput. Vis. Graph. Image Process.,
2002, pp. 1–6.

[8] J. Cao, K. A. Novstrup, A. Goyal, S. P. Midkiff, and J. M. Caruthers,
“A parallel levenberg-marquardt algorithm,” in Proc. 23rd Int. Conf.

Supercomput, 2009, pp. 450–459. [Online]. Available: https://doi.org/10.
1145/1542275.1542338

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 229

[9] A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates,
“Gpufit: An open-source toolkit for GPU-accelerated curve fitting,” Sci.

Rep. vol. 7, 2017, Art. no. 15722. [Online]. Available: https://doi.org/10.
1038/s41598--017-15313-9

[10] X. Zhu and D. Zhang, “Efficient parallel Levenberg-Marquardt model
fitting towards real-time automated parametric imaging microscopy,”
PLoS One, vol. 8, no. 10, 2013, Art. no. e76665. [Online]. Available:
https://doi.org/10.1371/journal.pone.0076665

[11] Y. Lin, D. O’Malley, and V. V. Vesselinov, “A computationally efficient
parallel Levenberg-Marquardt algorithm for highly parameterized inverse
model analyses,” Water Resour. Res., vol. 52, no. 9, pp. 6948–6977, 2016.
[online]. Available: https://doi.org/10.1002/2016WR019028

[12] S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Vector control of a grid-
connected rectifier/inverter using an artificial neural network,” in Proc.

IEEE Int. Joint Conf. Neural Netw., Brisbane Australia, 2012, pp. 1–7.
[13] R. J. Williams and D. Zipser, “A learning algorithm for continually

running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp. 270–280, 1989.

[14] H. Jaeger, “Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the “echo state network”,” Gesellschaft für Mathematik
und Datenverarbeitung Report, 2002, Art. no. 159.

[15] F. Gomez, J. Schmidhuber, R. Miikkulainen, and M. Mitchell, “Acceler-
ated neural evolution through cooperatively coevolved synapses,” J. Mach.

Learn. Res., vol. 9, no. 5, pp. 937–965, 2008.
[16] S. Ma and J. Chuanyi, “A unified approach on fast training of feedforward

and recurrent networks using EM algorithm,” IEEE Trans. Signal Process.,
vol. 46, no. 8, pp. 2270–2274, Aug. 1998.

[17] S.K. Ng and G.J. McLachlan, “Using the EM algorithm to train neural net-
works: Misconceptions and a new algorithm for multiclass classification,”
IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 738–749, May 2004.

[18] X. Fu, S. Li, and I. Jaithwa, “Implement optimal vector control for LCL-
filter-based grid-connected converters by using recurrent neural networks,”
IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4443–4454, Jul. 2015.

[19] Y. Tanoto, W. Ongsakul, and C. O.P. Marpaung, “Levenberg-Marquardt re-
current networks for long term electricity peak load forecasting,” Telecom-

mun. Comput. Electron. Control, vol. 9, no. 2, pp. 257–266, 2011.
[20] X. Fu, S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Training

recurrent neural networks with the Levenberg–Marquardt algorithm for
optimal control of a grid-connected converter,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 26, no. 9, pp. 1900–1912, Sep. 2015.
[21] Texas Instruments, Digitally controlled solar micro inverter design using

C2000 Piccolo microcontroller user’s guide, 2014. [Online]. Available:
https://www.ti.com/lit/ug/tidu405b/tidu405b.pdf

[22] W. Wu, Y. Sun, Z. Lin, T. Tang, F. Blaabjerg, and H. S. Chung, “A new
LCL-filter with in-series parallel resonant circuit for single-phase grid-
tied inverter,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4640–4644,
Sep. 2014.

[23] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photo-

voltaic and Wind Power Systems. Hoboken, NJ, USA: Wiley, 2011.
[24] J. Sturtz, X. Fu, C. D. Hingu, and L. Qingge, “A novel weight dropout

approach to accelerate the neural network controller embedded imple-
mentation on FPGA for a solar inverter,” in Proc. IEEE Int. Conf. Smart

Comput., Nashville, TN, USA, 2023, pp. 157–163.
[25] W. Waithaka, X. Fu, A. Hadi, R. Challoo, and S. Li, “DSP implementation

of a novel recurrent neural network controller into a TI solar microinverter,”
in Proc. IEEE PES Gen. Meeting, 2021, pp. 1–5.

[26] X. Fu, S. Li, D. C. Wunsch, and E. Alonso, “Local stability and conver-
gence analysis of neural network controllers with error integral inputs,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7, pp. 3751–3763,
Jul. 2023.

[27] F. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An in-
troduction,” IEEE Comput. Intell. Mag., vol. 4, no. 2, pp. 39–47, May 2009.

[28] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

[29] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans.

Neural Netw., vol. 8, no. 5, pp. 997–1007, Sep. 1997.
[30] Amazon EC2 instance Types. [Online]. Available: https://aws.amazon.

com/ec2/instance-types/
[31] Matlab. Available: https://www.mathworks.com/products/matlab.html
[32] C. Lameter, “NUMA (Non-Uniform Memory Access): An overview:

NUMA becomes more common because memory controllers get close
to execution units on microprocessors,” Queue, vol. 11, no. 7, pp. 40–51,
Jul. 2013.

[33] AlmaLinux OS Foundation, Almalinux. [Online]. Available: https://
almalinux.org/

[34] Slurm: Workload Manager. [Online]. Available: https://slurm.schedmd.
com/overview.html

[35] C++17. [Online]. Available: https://en.cppreference.com/w/cpp/17
[36] Free Software Foundation, Inc, G++(1) - Linux man page. [Online].

Available: https://linux.die.net/man/1/g++
[37] C. Sanderson and R. Curtin, “Armadillo: A template-based C++ library

for linear algebra,” J. Open Source Softw., vol. 1, 2016, Art. no. 26.
[38] C. Sanderson and R. Curtin, “A user-friendly hybrid sparse matrix class

in C++,” Lecture Notes Comput. Sci., vol. 10931, pp. 422–430, 2018.
[39] BLAS. [Online]. Available: https://netlib.org/blas/
[40] LAPACK. [Online]. Available: https://netlib.org/lapack/
[41] OpenBLAS. [Online]. Available: https://github.com/xianyi/OpenBLAS
[42] Open MPI: Open Source High Performance Computing. [Online]. Avail-

able: https://www.open-mpi.org/

