222 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Short Papers

Parallel Trajectory Training of Recurrent Neural Network Controllers With
Levenberg—Marquardt and Forward Accumulation Through Time in
Closed-Loop Control Systems

Xingang Fu"?, Senior Member, IEEE, Jordan Sturtz

Abstract—This paper introduces a novel parallel trajectory mechanism
that combines Levenberg-Marquardt and Forward Accumulation Through
Time algorithms to train a recurrent neural network controller in a closed-
loop control system by distributing the calculation of trajectories across
Central Processing Unit (CPU) cores/workers depending on the computing
platforms, computing program languages, and software packages available.
Without loss of generality, the recurrent neural network controller of
a grid-connected converter for solar integration to a power system was
selected as the benchmark test closed-loop control system. Two software
packages were developed in Matlab and C++ to verify and demonstrate
the efficiency of the proposed parallel training method. The training of the
deep neural network controller was migrated from a single workstation
to both cloud computing platforms and High-Performance Computing
clusters. The training results show excellent speed-up performance, which
significantly reduces the training time for a large number of trajectories
with high sampling frequency, and further demonstrates the effectiveness
and scalability of the proposed parallel mechanism.

Index Terms—Cloud computing, forward accumulation through time,
high - performance computing (HPC) cluster, Levenberg-Marquardt,
parallel trajectory training, recurrent neural network controller.

I. INTRODUCTION

The Levenberg-Marquardt (LM) algorithm provides a nice compro-
mise between the speed of the second-order Newton’s method and the
guaranteed convergence of first-order steepest descent method to solve
nonlinear least squares problems [1], [2]. Thus it is particularly suitable
for training small and medium-sized feed-forward Neural Networks
(NNs) [3].

However, the computation loads of the LM algorithm are expensive
due to the calculation needs of the Jacobian matrix, and researchers
have explored ways to speed it up. For instance, the block-diagonal
matrix has been proposed to approximate the Hessian matrix [4], [5],
and, in [6], the forward difference method was used to approximate

Manuscript received 7 May 2023; revised 24 September 2023; accepted 31
October 2023. Date of publication 6 November 2023; date of current version 3
April 2024. This work was supported by the National Science Foundation of the
United States under Grants 213214 and 2131175. Recommended for acceptance
by P. D. Yoo. (Corresponding author: Letu Qingge.)

Xingang Fu is with the Department of Electrical and Biomedical Engineering,
The University of Nevada, Reno, NV 89557 USA (e-mail: xfu@unr.edu).

Jordan Sturtz and Letu Qingge are with the Department of Computer Science,
North Carolina A&T State University, Greensboro, NC 27411 USA (e-mail:
jasturtz@aggies.ncat.edu; lgingge @ncat.edu).

Eduardo Alonso is with the Artificial Intelligence Research Centre (CitAl),
University of London, EC1V OHB London, U.K. (e-mail: e.alonso@city.ac.uk).

Rajab Challoo is with the Department of Electrical Engineering and Com-
puter Science, Texas A&M Kingsville, Kingsville, TX 78363 USA (e-mail:
rajab.challoo @tamuk.edu).

Digital Object Identifier 10.1109/TSUSC.2023.3330573

, Eduardo Alonso

, Rajab Challoo ", and Letu Qingge

the Jacobian matrix by perturbing one parameter to produce a column,
instead of calculating the Jacobian matrix directly.

In addition, several mechanisms have been proposed to parallelize
the LM algorithm for NN training, appropriately distributing compu-
tational and space requirements. For example, the Single Program and
Multiple Data (SPMD) strategy divides training data into groups and
each group is distributed on one node in a cluster [7]. [8] also utilized the
parallelization of data sets by calculating the objective functions simul-
taneously. Relatedly, [9] and [10] distributed the computing tasks/data
points across parallel GPU multiprocessors to train the LM algorithm
in parallel. In [11], the parallel selection of the damping parameter and
multicore versions of the Basic-Linear-Algebra-Subprograms (BLAS)
were used in the LM algorithm to increase computational efficiency.
In any case, with or without parallelization, the application of feed-
forward NN is inherently limited due to their inability to identify and
process sequential partners in large data sets.

Recurrent Neural Networks (RNNs) are potentially more power-
ful than feed-forward NNs thanks to their feedback connections and
memory gates [3]. Many algorithms have been used for training RNNs
such as Backpropagation Through Time (BPTT) [12], Real-Time Re-
current Learning (RTRL) [13], Extended Kalman Filters (EKF) [14],
genetic algorithms [15], and Expectation Maximization (EM) [16],
[17]. Notwithstanding their merits, they all suffer from serious draw-
backs: the BPTT algorithm may cause gradient exploding and vanishing
problems. The high computational cost of RTRL makes it only appro-
priate for online training of small RNNs. EKF is also computationally
expensive since it requires many matrix calculations at each estimation.
Evolutionary methods such as genetic algorithms have proved to be
successful in training RNNs by formulating the RNN cost function
as a nonlinear global optimization problem. However, they may get
stuck in local minima and show a low speed of convergence. Finally,
the application of EM to training neural networks is limited by the
complicated calculations in the expectation step when the number of
hidden neurons is large. Such deficiencies have been an impediment
to the application of RNNs to real-life problems such as closed-loop
control systems, that we take as our benchmark.

Although some research has shown the potential of training RNN's
using LM [18], [19], LM has not been used broadly for this purpose. The
Forward Accumulation Through Time (FATT) algorithm was proposed
to calculate the Jacobian matrix efficiently and combined with the LM
algorithm to train an RNN controller applied to a power converter
control system, which produced excellent performance [20]. However,
training was based on a rather small number of trajectories (e.g., 10
trajectories) and a relatively low sampling frequency (e.g., 1000 Hz)
due to constraints in the computational power and the memory size of
the single workstation used in the experiments.

2377-3782 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 223

|
Isolation |
Boundary |
'

Piccolo ‘ -
Digital Controller [«

Isolated MPPT Solar
Micro Inverter

Fig. 1. TI microinverter block diagram [21].

* 4(}4@ e :

LCL filter 3

Fig. 2. Schematic of a single-phase DC-AC inverter block with LCL filters.

To extend the LM training of RNNs to a large number of trajectories
with high sampling frequency and accelerate the training process, this
paper proposes a novel parallel trajectory training mechanism. The
key contributions include 1) the introduction of a training mechanism
tailored for RNNs with error integral terms in closed-loop control
systems, a solar microinverter system in particular; 2) the develop-
ment of a parallel LM and FATT algorithm designed for trajectory
training of RNNs; 3) implementation of a parallel approach that effi-
ciently distributes the FATT-based calculation of training trajectories
across Central Processing Unit (CPU) cores/workers, 4) validation
conducted through implementations in two programming languages:
Matlab and C++; 5) comprehensive validation of the implementations
and performance comparison on both cloud computing platforms and
High-Performance Computing (HPC) clusters.

The rest of the paper is organized as follows. Section Il introduces the
RNN controllers in the benchmark test closed-loop control system. The
parallel trajectory training algorithm of the RNN controllers is detailed
in Section III. Training results using cloud platforms are presented in
Section IV. Section V provides detailed implementation and training
results on HPC clusters. Finally, the paper concludes with a summary
of the main points in Section VI.

II. RNN CONTROLLERS IN A CLOSED-LOOP CONTROL
SYSTEM FOR A SOLAR INVERTER

A. A Closed-Loop Control System: A Solar Microinverter

Typically, solar inverters consist of two components: the DC-DC
converter and the DC-AC inverter, as illustrated in the case of the Texas
Instruments (TI) Microinverter in Fig. 1 [21]. The PhotoVoltaic (PV)
solar panels attach to the DC-DC converter, while the DC-AC inverter
maintains the voltage of the DC Bus at its rated value while feeding
controlled AC current to the main power grid.

Fig. 2 further shows the schematic of a single-phase DC-AC inverter
block with the LCL filters, in which a DC-link capacitor/DC bus is on
the left, an LCL filter is placed in the middle, and a single-phase voltage

i System/Plant System
+ Input S Output System State oqtpqts
ld, lg

» Space Equations

id ref, Iq_ref _ in d-q Domain
Reference
signal RNN controller
trajectories y
Feedback signals
Fig. 3. NN controller in a closed-loop control system. The system

equations serve as the feedback connections for the NN controller.

source, representing the voltage at the Point of Common Coupling
(PCC) of the AC power grid system is on the right [22].

When using the d-q frame, the system state-space equation of the
DC-AC inverter block can be described by (1) [23], which will be used
for RNN training.

i][22 w0 0 =& 0][i]
iq —we =7 000 0 =]
dligear| _| 0 0 *Isz ws = 0 lde_d1
t idciql 0 0 —Wg *%: 0 %c idcﬁql
Ved & 0 L 0 0w Ved
L Veq | O = 0 -5 —ws 0 | L veq |
— A —
ldgs ldgs
0 0 0 0 0| [vg]
0 & 0 0 0 0| |,
L]0 o -= 0 0 0f [va 0
0 0 0 -7 0 0f |va
0 0 0 0 0 0|]|0
0 0 0 0 0 0| LO]
L |
B Uagd

where w; is the angular frequency of the grid voltage, and all other
symbols are consistent with those shown in Fig. 2. 74 and ¢, represent
system states that need to be controlled. The controller outputs will be
vq1 and vg;. System parameters in (1) can be obtained from the user
guide or datasheet of TI microinverter [21].

To train the RNN digital controller, the continuous state space
model in (1) must first be converted into an equivalent discrete model
using (2), either through a zero-order or a first-order hold discrete
equivalent mechanism with a sampling time of 7. For example, if the
sampling frequency equals 10000 Hz, then 75 = 1/10000 = 0.1 ms.

— —
iags(k +1) = Aiags (k) + Bigg! (k) 2)

in which, A stands for system matrix and B is the input matrix.

B. The NN Controller in a Closed-Loop Control System

A NN will be implemented in the Piccolo real-time digital controller
in Fig. 1 to regulate the currents (iq and %,) to follow the reference
trajectories (iq_r.s and iq_,.y) in a closed-loop control system, instead
of conventional Proportional-Integral (PI) controllers, as shown in
Fig. 3.

224 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

1IGjin—p>@
19/ ‘

W@ b [/ Control Outputs
@ —1/Gain tanh A“v’""@"‘v@#’v’ @ v
Plgas N ST
Ie,,) /&,‘Q /"?ﬂ‘z“ ‘o\
,@ LI) v
N PIM| q

Je, ”X“'@Vcﬁ%};‘;;@l -
YA

\W"""@

S

Fig. 4. NN controller with special tracking error integrals [25].

C. The RNN With Error Integral Inputs

The structure of the proposed NN controller is shown in Fig. 4.
The NN has two hidden layers, each with six neurons, and one two-
neuron layer that controls the outputs. The selection of the number of
neurons in each hidden layer was conducted through trial and error
tests. After implementing many trial and error tests, 6 nodes in each
hidden layer were found to be able to generate good enough results
in real-time control. Further, the number of weights or neurons can be
further reduced through the dropout approach to better fit the embedded
real-time computing [24].

The input block of the NN takes the tracking error input signals e;;
and their special error integral values ,s_dq> . To avoid input saturation,
eaq and 54, are divided by constant gain values, Gain and Gain2,
respectively, and normalized by the hyperbolic tangent function, whose
values are limited in the range [—1, 1]. Specifically, e_dg is defined as

i (k) = iqe (k) - iag res (k) and 52 (k) is calculated by

kT ko —s. .
Saq (k) = / Cag(t)dt ~ Ty €aq(J 1; + €aq(4) 3)
0 e

in which the trapezoid formula was used to compute the integral term
5aq(k) and é4,(0) = 0. The special error integral terms sq, will
guarantee that there is no steady-state error for step references [26].

The system equations (1) and (2) serve as the feedback connections
for the NN controller as seen in Fig. 3. Moreover, the calculation of the
error integration terms s‘fq (k) (3) has to accumulate all past error terms
e_dq> (j) fromj = 0toj = kand each pasterror term @1 (j) computation
will involve the outputs of the NN controller in the corresponding past
step j. Thus, the proposed NN is a recurrent NN and will be denoted
as RNN thereafter.

Further, the RNN controller can be represented explicitly by equation
(4), where W1, W2, and W3 stand for the weights of the input
layer to the first hidden layer, second hidden layer, and output layer,
respectively. The bias for each layer is incorporated into weights W1,
W2, and W3.

— —
R(edm Sdq> Wi, W, VV3) =
- ey
Gain
€q
Gain

tanh

tanh d
t h Gain2
tanhdw,| V> Sq.

Gain2
-1

C)

100 T T

ﬁ
T

-50 - 4

(9] 100 200 300 400 500 600 700 800 900
Time Step

i ,andi_Reference Currents

g

-100

Fig. 5. Reference trajectories for RNN training.

The outputs from the RNN multiplied by the gain value of the Pulse-
Width-Modulation (PWM) (kpywy as) will constitute the control action
m , which is expressed by

Vagr = kpwar R(€ag, 5aq, Wi, Wa, W3) 5)

III. PARALLEL TRAJECTORY TRAINING OF RNN CONTROLLERS

A. Training Objective: Approximate Optimal Control

Adaptive Dynamic Programming (ADP) [27] methods that com-
bine incremental optimization techniques with parametric structures
that approximate optimal cost are typically used to control a system.
Specifically, a discrete-time ADP approach based on the principle of
Bellman’s optimality [28] uses a discrete-time system model along with
a performance index or cost [29].

The Dynamic Programming (DP) cost function associated with the
RNN training is defined as:

Cap= 3" U ()

k=3
= 3R e B2+ (B) i e R ©)
k=j

where j>0 is the starting point, 0<y<1 is a discount factor, and U is
the local cost or utility function. Depending on the initial time j and
the initial state i;;(j), the function Cy, is referred to as the cost-to-go
of state i44(j) of the DP problem. The training objective is to find an
(Eirnal RNN controller that minimizes the DP cost C'y,, by regulating

ldg-

B. Trajectory Tracking

Fig. 5 demonstrates the reference trajectories for RNN training,
which contains 6 trajectories: 3 for 74 and 3 for %,. The reference
trajectories were generated randomly within the system’s controllable
range. This range can be determined by the physical current/voltage
ratings of solar inverters. For demonstration purposes, the range was
set as [-100, 100] in Fig. 5. The reference ¢4 and 7, values were set to
change after certain time steps, e.g. 100, which is a tunable parameter.
Normally, the control system needs time to reach its steady state, the 100
time steps turned out to be a well-balanced number in training the RNN
controller for a solar inverter. The total time steps/trajectory length was
set to a certain number, e.g. 1000 in Fig. 5, which is determined by
training duration and sampling time. For example, if the sampling time
Ts = 1 ms and the training duration 1 s are used, the trajectory length
will be 1 s/Ts = 1000. The total number of training trajectories can
vary from 10 to several hundred. Utilizing a large number of trajectories

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024 225

200 - - - -
| Al e, Ta ref Lo ref

w
=3

— |

gy

=
S
=i

|
h—-—T—J

20 40 60 80 100
Time Step

=3

[
=3
—]

ia and iy Reference Currents

O
S
S

Fig. 6. Idea tracking performance for RNN training.

will significantly slow down training, which is the reason for proposing
the parallel trajectory training algorithm for overcoming this challenge.

Fig. 6 shows the ideal tracking performance after the RNN was
well-trained. After training, an RNN controller will able to regulate
the system states ¢4 and %, to follow the reference currents 74 ..y and

g _ref-

C. LM Algorithm

If the performance error function is not a sum of squares, then the
LM weight update equation is not directly applicable. To implement
LM training, the cost function defined in (6) needs to be rewritten in
a Sum-Of-Squares form. Consider the cost function Cyg,, with v =1,

j=1land k =1,..., N, then it can be written in the form
N N
def V (k)=+/U (€qq (k)
k=1 k=1
and the gradlent d” can be written in a matrix product form
ac a 8V(k)
df’ Z V(k =2J,(W)TV ®8)
where the Jacobian matrix J,, () is
av (1) av (1)
w1 owpr V(l)
Tw)y=| . V=] ©)
AV(N) AV (N)
ow1 ow g V(N)

Therefore, the weight update using LM for an RNN controller can be
expressed as

AW = —[J (W) T, (B) + pI) (W) V (10)

D. FATT Algorithm

In order to calculate the Jacobian matrix Jv(ﬁ) efficiently, FATT
was used, which incorporates the procedures of unrolling the system,
calculating the derivatives of the Jacobian matrix, and calculating the
DP cost into one single process for each training epoch [20]. Fig. 7
illustrates the process of unrolling the trajectory in the forward path,
and Algorithm 1 specifies FATT [18], where ¢ (k):Zle 7:(1: (j) and

— —
0daq(k) _Zk digqs (J)
ow — Lwj=1 ow

E. Parallel Training Combination of LM and FATT Algorithms

Fig. 8 presents the proposed parallel training combination of LM and
FATT algorithms for training an RNN controller. FATT* in Fig. 8 refers

Algorithm 1: FATT Algorithm to Calculate the Jacobian Matrix
and to Accumulate DP Cost for One Trajectory.

— —
1: C 0,45(0) = 0,545(0) + 0, Lda=© ¢ 22450, ¢

2: {Calculate the Jacobian matrix .J,, (W)}
3ifork=0to N —1do
4 Vaqi (k) kpwarR(eag(k), 5a5(k), @)

5. 05 o [06ag(k) 1 07ag(h)
. oW s ow PRI
dvga1(k
6: %QFkPWM
OR(K) | OR(K) 61’33(’@)_’_ OR(k) O5a. (k)
oW Oeqq(k) 0w 9sqq(k) 0w
o k+1 3] k Aty (k+1
7: qu;fu+) A qua() +B ud%(w‘F)
— —
Biga (k41 Bigas(k
8: %L) + the first two terms of qu(;(1)
— — —
. 0¢4q(k+1) 0daq(k) Oigq(k+1)
9: b < ~os T ow

— —
10: dags(k + 1) < Adgqe(k) + Bitags (k)
— —
11: egp(k41) ¢ dgq(k + 1) = dag res(k+1)
12: Sk +1) < 5ay(k) + S[eag(k) + eay(k + 1))

13: C « C+ Ul(eq;(k + 1)) accumulate DP cost

4. AVerD) oV (kt1) diag(k+1)
. oW deqq(k+1) oW
15: the (k + 1)th row of J(@) + 2V(41)

16: end for
17: {On exit, the Jacobian matrix .J,, (@) is finished for one
trajectory. }

to a modified version of Algorithm 1 that only calculates the DP cost
by eliminating lines 5-9 and 14—15 to save computation time. The most
time-consuming parts include the DP cost calculation and the Jacobian
matrix for each trajectory, which is conducted by the FATT Algorithms.
To solve this challenge, the basic idea is to parallelize them as follows:
First, all training trajectories are divided into N groups, each with a size
from 1 to a number smaller than the number of total trajectories. Then,
the calculation of each group of trajectories is allocated to one Worker
or Central Processing Unit (CPU) core. The detailed implementation
will depend on the specific programming language, platforms, etc. For
example, for the MATLAB implementation, the computing unit will
be one MATLAB worker, which corresponds to one CPU core. For the
C++ implementation, this single worker could correspond to one CPU
core or thread. For a fair comparison, one single CPU core was also
used in the C++ implementation. The implementation and comparison
of both cases will be detailed in Sections IV and V.

Fig. 8 also illustrates how the algorithm dynamically adjusts .
When p increases, training is closer to a gradient descent algorithm
with a small learning rate, whereas when p decreases, training ap-
proaches the Gauss-Newton method, which provides faster convergence
than gradient descent. There are three stopping conditions used for
training: 1) when the training epoch reaches a maximum acceptable
value Epochp,ax; 2) when g is larger than fin.x; and 3) when the
gradient is smaller than the predefined minimum acceptable value

10C 2y /0% | in-

226

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Reference signals

l.djej(o), iqirej(o) id_"‘?/(1)’ iq_re/(1)

ia(0), i4(0)

System

C System
Equations

Equations

Initial system

states
—

l.dje/(N- 1), l.qirg/(N- 1)

Final system states
idN), ig(N)

System
Equations

l.dje_/(l), l'qire/(l)

System

Equations

Forward Path: total N time steps

Fig. 7.

IV. AMAZON EC2 CLOUD TRAINING PERFORMANCE

A. Amazon EC2 Cloud

Amazon EC2 cloud was utilized as the test cloud platform. The
cloud cluster was configured and connected to Amazon EC2. For the
Amazon EC2 cluster, the region is selected as US East (N. Virginia).
The worker machine type is General Purpose (m5.24 X large, 48 core),
which supports 48 workers per machine. The headnode machine type
is Standard (c5d. x large, 2core,1 x 100NVMe). It is noted that the
m5.24 X large type instance uses up to 3.1 GHz Intel Xeon Platinum
Processor, however, the specific CPU processor number is not provided
by Amazon EC2 [30].

B. MATLAB Implementation and Speedup Performance

Matlab [31] was first used to develop the training program and
validate the proposed parallel training algorithm. Matlab Online run-
ning version R2022b was used. For the two parallel computing parts
described in Fig. 8, two parfor-loop structures were used to execute
for-loop iterations in parallel on workers in a parallel pool. To execute
the parfor-loop, Matlab starts a parallel pool with one worker per
physical CPU core, not CPU thread. A parallel pool with 48 workers
was used.

To test whether training is successful or not, the current tracking
performance in the closed-loop control was performed. Fig. 9 shows the
current tracking performance after the RNN controller was well-trained.
The current 74 and 4, can track their reference currents ¢y e andig_,y
very well only with some slight oscillations at the beginning of the
reference change.

Fig. 10 shows the running time comparison on different numbers
of Matlab workers and trajectories. The horizontal axis represents the
number of CPU cores/Matlab workers, while the vertical axis stands
for the average running time. To test the performance of the proposed
approach, all inputs across all runs and any randomness inherent in
the code were fixed. The test program was run with trajectories in
{10, 20, 30, ...100} and with Matlab workers from {1,2,3,...48}.
When the number of Matlab workers equals 1, no parallel computing
was used. For each running case, the program was repeated 10 times, and
the average running time was calculated to remove possible variations
of the running time in each run for a fair comparison. Regardless of
the number of trajectories used in the experiment, a consistent trend
emerges: as the number of CPU cores/Matlab workers increases to a
certain threshold, the average running time stabilizes and cannot be
further reduced.

The speedup is defined as the ratio of serial execution time
over parallel execution time, which is speedup = Serial Execution
Time/Parallel Execution Time. Fig. 11 shows the speedup com-
parison across different numbers of Matlab workers. The horizontal axis
represents the number of CPU cores/Matlab workers and the vertical

Unrolling the forward path in the FATT algorithm for training an NN controller in a closed-control loop system.

axis stands for the speedup. Figs. 10 and 11 clearly show an excellent,
although nonlinear speedup performance. When the number of Matlab
workers surpasses the number of trajectories, no speedup benefits can
be further achieved and the running time is slightly longer due to
communication loads between Matlab workers. The trend was observed
in all number of trajectories. Compared to nonparallel training, the
parallel approach achieves a least 4 times speedup. When the number
of trajectories increases, the speedup becomes even more significant.

V. HPC CLUSTER TRAINING PERFORMANCE

A. HPC Cluster Platform

The selected HPC platform is a cluster consisting of four Non-
Uniform Memory Access (NUMA) system [32] compute nodes running
the AlmaLinux distribution of the Linux operating system [33]. The
CPU of each compute node is Intel(R) Xeon(R) Platinum 8180 M CPU.
Each compute node contains 2 sockets, one 28-core CPU per socket,
and 2 threads per CPU core, providing a total of 2 x 28 = 56 CPU
cores and 56 * 2 = 112 threads. See Fig. 12 for an illustration of the
HPC architecture.

B. MATLAB Implementation and Speedup Performance

The HPC is configured to use Slurm to manage job scheduling [34].
The Matlab cluster configuration supports up to 28%2 = 56 computa-
tional CPU cores. For a fair comparison with results running on Amazon
EC2 Cloud, the maximum number of Matlab workers was also set
to 48.

Fig. 13 shows the running time comparison across different numbers
of Matlab workers and trajectories. Fig. 14 shows the speedup compar-
ison across different numbers of Matlab workers. Figs. 13 and 14 show
slightly better speedup performance running on the HPC cluster than
Figs. 10 and 11 running on Amazon EC2 Cloud. For example, the
maximum speedup running on the HPC cluster is 6 times compared
to only 5 times speedup on the Amazon EC2 Cloud for 10-trajectory
training.

C. C++ Implementation and Speedup Performance

The c++17 standard [35] and the compiler g++ [36] were used to
develop the training program. An important third-party package used
in the training program is the C++ package Armadillo, which is a
fast linear algebra library to perform linear algebra computations [37],
[38]. Armadillo relies on BLAS [39] and Linear Algebra PACKage
(LAPACK) [40]. BLAS is a specification of low-level routines for
performing basic linear algebra operations. The training program used
OpenBLAS, which is an open-source implementation in Fortran of this
software specification [41]. The configuration of an implementation of
BLAS is paramount since it can be tuned to particular architectures to

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Initialize training parameters

Ho Mo By Bres EpOCh,,

C,

ow

1]
Initialize Weights y with
small random numbers

1]

Parallel Computing

FATT calculates
DP cost and the
]eﬁ:obian matrix
J(w) for Group #1
trajectories

FATT calculates

DP cost and the \ .

Jzﬁ:obian matrix

J(w) for Group #2
trajectories

CPU core 1/ Worker 1

CPU core 2/ VWorker 2

FATT calculates
DP cost and the

Jaicobian matrix
J(w) for Group #N
trajectories

CPU core N/ Worker N

all trajectories

(ggregate DP cost and Jacobian matrix f@

ac,

ow

g ‘

mip

YES

Compute Aw using

Cholesky factorization

Parallel Computing

FATT#* calculates
NO DP cost with
wo=wtAw
for Group #1
trajectories

FATT# calculates
DP cost with
W o=wtAw
for Group #2
trajectories

CPU core 1/ Worker 1

CPU core 2/ Worker 2

FATT# calculates
DP cost with

W o=w+Aw
for Group #N
trajectories

CPU core N/ Worker N

]

Qggregate DP* cost for all trajectories

¥
<o
YES
A

Epoch < Epoch,

<_{

Update weights yy«< 1y and
Decrease 4 < i/ f,

NO

Increase
M pxp,

—F‘Training Stop

227
T
10-trajectory
—~ 104 20-trajectory | -
G 30-trajectory
g 40-trajectory
= 50-trajectory
=4 60-trajectory
= 70-trajectory
S 80-trajectory
; 90-trajectory
g’ 100-trajectory
]
z
1031 E
0 5 10 15 20 25 30 35 40 45 50
the number of CPU cores/Matlab workers
Fig. 10. Average running time across Matlab workers on Amazon EC2 Cloud.
14
10-trajectory
20-trajectory
30-trajectory
12 40-trajectory i
50-trajectory
60-trajectory
70-trajectory
10 80-trajectory 4
90-trajectory
100-trajectory | //
a 81 q
S
o
8
o
e i
a4l 4
Py 4
o . I I | I . I I .
o 5 10 15 20 25 30 35 40 45 50
ther of CPU cor workers
Fig. 11. Speedup across Matlab workers on Amazon EC2 Cloud.

Node 1 Node 2

: —

Socket 1 Socket 2 Socket 1 Socket 2

Core 1 Core 1 Core 1 Core 1

-

t‘hreld 1 [Thrud 2J

)
thrnd 1 lThrud zJ h‘hmd 1 [mmu zJ tmmu 1 [Threlﬂ zJ

Core 2 Core 2 Core 2 Core 2

tl'hnld 1 lmma 2 J

LThn-d 1 |Thrud 2 J tl'huld 1 lmmu 2J LT'hn-d 1]Thrud 2 J

Fig. 8. Proposed parallel LM+FATT trajectory training algorithm for an RNN
controller. piyax stands for maximum i, and B4, and S3;,, signify the decreasing
and increasing factors, respectively.

200 T T T T T
id

100 fe=— Tl |
o A I(Lre'
g 0 | Iq,re’ |
5
° |

-100 r

-200 L L L L

(o] 1 2 3 4 5 6
Time (s)
Fig. 9. Tracking performance in a closed-loop after successful RNN training.

tl'hrnd 1 Frhma 2 J

med 1 .i:mma 2

([coem (coem
med 1 rl'hrud zJ mea 1 |mmu zJ
N 4
Fig. 12.

) E—
J

tnund 1 rrhmu 2 J

trhn-d1 .i'.l'mnd 2 J

Core 28 1

Core 28

(
Qnm 1 lmma zJ
J

(tl'huld 1 ‘Thnnd 2J/

Schematic of the HPC Cluster architecture.

104 F |

Average running time (s)
3
%
T

10-trajectory
20-trajectory
30-trajectory
40-trajectory
50-trajectory
60-trajectory
70-trajectory
80-trajectory
90-trajectory
100-trajectory

0 5 10

Fig. 13.

I
15 20

the number of CPU cores/Matlab workers

25 30 35

40 45 50

Average running time across Matlab workers on the HPC cluster.

228 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

10-trajectory
20-trajectory
30-trajectory
40-trajectory
50-trajectory
14 60-trajectory
70-trajectory
80-trajectory
90-trajectory
100-trajectory

| I I I I |
0 5 10 15 20 25 30 35 40 45 50
the number of CPU cores/Matlab workers

Speedup across Matlab workers on the HPC cluster.

10-trajectory
20-trajectory
30-trajectory
10° i]
@ 40-trajectory
‘q'; 50-trajectory
E 60-trajectory
;‘ 70-trajectory
£ 80-trajectory
E 90-trajectory
S 100-trajectory
[
o
[
]
S 102
Z 10

I \ .
0 5 10 15 20 25 30 35 40 45 50
the number of CPU cores/workers

Fig. 15. Average running time across workers on the HPC cluster.

improve performance. LAPACK is a software library of more complex
linear algebra operations also written in Fortran.

The OpenMPI implementation of the Message Passing Interface
(MPI) standard [42] was utilized to parallelize the workload among
the available worker nodes. An advantage of the Open MPI framework
is that programs are scalable to larger and more powerful clusters. To
parallelize the workload, the MPI program has a sequential part and
parallel parts as illustrated in Fig. 8. The master process in the MPI
program handles the sequential parts and sends messages to each worker
process to manage its parallel part of the workload.

Fig. 15 shows the running time comparison across different num-
bers of workers. The horizontal axis represents the number of CPU
cores/workers, while the vertical axis stands for the average run-
ning time. Fig. 16 shows the speedup comparison on different num-
bers of workers. The horizontal axis represents the number of CPU
cores/workers and the vertical axis stands for the speedup. Compared
with Figs. 13 and 14, the parallel version of the C++ program (Figs. 15
and 16) runs faster than the Matlab version on the HPC cluster. For
example, the maximum speedup of the C++ version is around 8 times
compared to the 6 times speedup of the corresponding Matlab version
for 10-trajectory training. Overall, among the three implementations:
the C++ version on the HPC cluster, the Matlab version on the HPC
cluster, and the Matlab version on the cloud, the C++ version on the
HPC cluster achieves the best results. The next one is the Matlab version
on the HPC cluster, while the Matlab version on the cloud is the slowest
one.

10-trajectory
20-trajectory
30-trajectory
40-trajectory
50-trajectory
14 60-trajectory
70-trajectory
80-trajectory
90-trajectory
100-trajectory | /

I I | I I |
0 5 10 15 20 25 30 35 40 45 50
the number of CPU cores/workers

Speedup across workers on the HPC cluster.

VI. CONCLUSION

This paper investigated how to use parallel computing to accelerate
the LM algorithm for training an RNN controller in a closed-loop
control system. The proposed parallel trajectory training algorithm
incorporates LM and FATT algorithms. The training programs were
implemented using both Matlab and C++. The developed programs
were tested on two computing platforms, namely the Amazon EC2
Cloud and an HPC cluster. Performance comparison results show
that the parallel training algorithm can provide a significant speedup
compared to its non-parallelized counterparts. Specifically, the C++
implementation achieves better speedup than the corresponding MAT-
LAB implementation. The program running on HPC clusters can further
yield even better speedup than that on cloud platforms. The significant
speedup performance makes it suitable to train RNN controllers with a
large number of trajectories and long-duration trajectories.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of the
United States under Grants 2131214 and 2131175. The authors thank
anonymous reviewers for their insightful comments and inputs.

REFERENCES

[1] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quart. Appl. Math., vol. 2, pp. 164—168, 1944.

[2] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431-441, 1963.

[3] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design.
Boston, MA, USA: PWS, 2002, pp. 19-23.

[4] L. Chan and C. Szeto, “Training recurrent network with block-diagonal
approximated Levenberg-Marquardt algorithm,” in Proc. IEEE Int. Joint
Conf. Neural Netw., 1999, pp. 1521-1526.

[5] Y. Kwak, “An accelerated Levenberg-Marquardt algorithm for feedfor-
ward network,” J. Korean Data Inf. Sci. Soc., vol.23,no. 5, pp. 1027-1035,
2012.

[6] T. Tawara, Levenberg-Marquardt with sparse block matrices on the
GPU. [Online]. Available: https://on-demand.gputechconf.com/gtc/
2012/presentations/S0231-Levenberg-Marquardt- Using- Block-Sparse-
Matrices-on-CUDA.pdf

[71 N. N. R. Ranga Suri, D. Deodhare, and P. Nagabhushan, ‘“Parallel
Levenberg-Marquardt-based neural network training on Linux clusters - a
case study,” in Proc. 3rd Indian Conf. Comput. Vis. Graph. Image Process.,
2002, pp. 1-6.

[8] J. Cao, K. A. Novstrup, A. Goyal, S. P. Midkiff, and J. M. Caruthers,
“A parallel levenberg-marquardt algorithm,” in Proc. 23rd Int. Conf.
Supercomput, 2009, pp. 450-459. [Online]. Available: https://doi.org/10.
1145/1542275.1542338

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Przybylski, B. Thiel, J. Keller-Findeisen, B. Stock, and M. Bates,
“Gpufit: An open-source toolkit for GPU-accelerated curve fitting,” Sci.
Rep. vol. 7, 2017, Art. no. 15722. [Online]. Available: https://doi.org/10.
1038/s41598--017-15313-9

X. Zhu and D. Zhang, “Efficient parallel Levenberg-Marquardt model
fitting towards real-time automated parametric imaging microscopy,”
PLo0S One, vol. 8, no. 10, 2013, Art. no. €76665. [Online]. Available:
https://doi.org/10.1371/journal.pone.0076665

Y. Lin, D. O’Malley, and V. V. Vesselinov, “A computationally efficient
parallel Levenberg-Marquardt algorithm for highly parameterized inverse
model analyses,” Water Resour. Res., vol. 52, no. 9, pp. 6948—-6977, 2016.
[online]. Available: https://doi.org/10.1002/2016WR019028

S.Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Vector control of a grid-
connected rectifier/inverter using an artificial neural network,” in Proc.
IEEE Int. Joint Conf. Neural Netw., Brisbane Australia, 2012, pp. 1-7.
R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Comput., vol. 1, no. 2,
pp. 270-280, 1989.

H. Jaeger, “Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the “echo state network™,” Gesellschaft fiir Mathematik
und Datenverarbeitung Report, 2002, Art. no. 159.

F. Gomez, J. Schmidhuber, R. Miikkulainen, and M. Mitchell, “Acceler-
ated neural evolution through cooperatively coevolved synapses,” J. Mach.
Learn. Res., vol. 9, no. 5, pp. 937-965, 2008.

S. Ma and J. Chuanyi, “A unified approach on fast training of feedforward
and recurrent networks using EM algorithm,” IEEE Trans. Signal Process.,
vol. 46, no. 8, pp. 2270-2274, Aug. 1998.

S.K.Ngand G.J. McLachlan, “Using the EM algorithm to train neural net-
works: Misconceptions and a new algorithm for multiclass classification,”
IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 738-749, May 2004.

X. Fu, S. Li, and I. Jaithwa, “Implement optimal vector control for LCL-
filter-based grid-connected converters by using recurrent neural networks,”
IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4443-4454, Jul. 2015.

Y. Tanoto, W. Ongsakul, and C. O.P. Marpaung, “Levenberg-Marquardt re-
current networks for long term electricity peak load forecasting,” Telecom-
mun. Comput. Electron. Control, vol. 9, no. 2, pp. 257-266, 2011.

X. Fu, S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Training
recurrent neural networks with the Levenberg—Marquardt algorithm for
optimal control of a grid-connected converter,” I[EEE Trans. Neural Netw.
Learn. Syst., vol. 26, no. 9, pp. 1900-1912, Sep. 2015.

Texas Instruments, Digitally controlled solar micro inverter design using
C2000 Piccolo microcontroller user’s guide, 2014. [Online]. Available:
https://www.ti.com/lit/ug/tidu405b/tidu405b.pdf

W. Wu, Y. Sun, Z. Lin, T. Tang, F. Blaabjerg, and H. S. Chung, “A new
LCL-filter with in-series parallel resonant circuit for single-phase grid-
tied inverter,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 46404644,
Sep. 2014.

[23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

(31]
[32]

[33]
[34]

[35]
[36]

[37]
(38]
[39]
[40]

[41]
[42]

229

R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photo-
voltaic and Wind Power Systems. Hoboken, NJ, USA: Wiley, 2011.

J. Sturtz, X. Fu, C. D. Hingu, and L. Qingge, “A novel weight dropout
approach to accelerate the neural network controller embedded imple-
mentation on FPGA for a solar inverter,” in Proc. IEEE Int. Conf. Smart
Comput., Nashville, TN, USA, 2023, pp. 157-163.

W. Waithaka, X. Fu, A. Hadi, R. Challoo, and S. Li, “DSP implementation
of anovel recurrent neural network controller into a TI solar microinverter,”
in Proc. IEEE PES Gen. Meeting, 2021, pp. 1-5.

X. Fu, S. Li, D. C. Wunsch, and E. Alonso, “Local stability and conver-
gence analysis of neural network controllers with error integral inputs,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7, pp. 3751-3763,
Jul. 2023.

F. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: An in-
troduction,” IEEE Comput. Intell. Mag., vol. 4,no. 2, pp. 39-47, May 2009.
R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE Trans.
Neural Netw., vol. 8, no. 5, pp. 997-1007, Sep. 1997.

Amazon EC2 instance Types. [Online]. Available: https://aws.amazon.
com/ec2/instance-types/

Matlab. Available: https://www.mathworks.com/products/matlab.html

C. Lameter, “NUMA (Non-Uniform Memory Access): An overview:
NUMA becomes more common because memory controllers get close
to execution units on microprocessors,” Queue, vol. 11, no. 7, pp. 40-51,
Jul. 2013.

AlmaLinux OS Foundation, Almalinux. [Online]. Available: https:/
almalinux.org/

Slurm: Workload Manager. [Online]. Available: https://slurm.schedmd.
com/overview.html

C++17. [Online]. Available: https://en.cppreference.com/w/cpp/17

Free Software Foundation, Inc, G++(1) - Linux man page. [Online].
Available: https://linux.die.net/man/1/g++

C. Sanderson and R. Curtin, “Armadillo: A template-based C++ library
for linear algebra,” J. Open Source Softw., vol. 1, 2016, Art. no. 26.

C. Sanderson and R. Curtin, “A user-friendly hybrid sparse matrix class
in C++,” Lecture Notes Comput. Sci., vol. 10931, pp. 422-430, 2018.
BLAS. [Online]. Available: https://netlib.org/blas/

LAPACK. [Online]. Available: https://netlib.org/lapack/

OpenBLAS. [Online]. Available: https://github.com/xianyi/OpenBLAS
Open MPI: Open Source High Performance Computing. [Online]. Avail-
able: https://www.open-mpi.org/

