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HIGHLIGHTS GRAPHICAL ABSTRACT

+ We illustrate the power of Variational Liisoelectronic sequence (]_5252p)
Monte Carlo (VMC) to efficiently op-
timize explicitly correlated wave func- VMC

tions that accurately describe the quar-
tet 1s2s2p state of the Li isoelectronic
sequence with only ten parameters. Z
We implement the gradient descent method
to optimize the wave function, includ-
ing non-linear variational parameters,
which are typically challenging to op-
timize.

We explore how the energy and non-
linear variational parameters scale with
the nuclear charge.

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/djuliannader/ A compact yet accurate approach for representing the wave functions of members of the He and Li isoelectronic
VMCLitio series is using explicitly correlated wave functions. These wave functions, however, often have nonlinear forms,
Keywords: which make them challenging to optimize. In this work, we show how Variational Monte Carlo (VMC) can
Li isoelectronic series efficiently optimize explicitly correlated wave functions that accurately describe the quartet 1s2s2p state of
Variational Monte Carlo the Li isoelectronic sequence with ten or fewer parameters. We find that our compact wave functions correctly
Explicitly-correlated wave functions describe cusp conditions and reproduce at least 99.9% percent of the exact energy.

1. Introduction

The isoelectronic sequence of lithium, consisting of atoms with three
electrons and a nucleus, is the simplest sequence of atomic systems
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that have both open and closed shell ground states, and thus serve
as prototypes for the more complex ground states of heavier alkali-
metal atoms and alkaline-earth cations [1]. The non-relativistic wave
functions of atoms and ions with three electrons such as those in
this sequence are also of great interest to those developing highly
accurate evaluations of relativistic and QED corrections [2,3]. The Li
isoelectronic sequence has therefore become a testbed for quantum
chemical methods, much like He-like atoms were for many decades
after the advent of quantum mechanics.

One particularly interesting state exhibited by members of this
series is the 1s2s2p state, which is the lowest electronic state of the
quartet manifold with total spin .§ = 3/2. Since optical quartet-to-
doublet transitions are difficult to observe experimentally, the exper-
imental uncertainty of this state is too large for it to be used in
Grotrian diagrams [4]. This state of affairs has motivated researchers
to develop more accurate electronic structure techniques and other
means for determining the term values of this quartet state during the
end of the last century [5]. The confirmation that a positron can be
attached to this state to form e*Li renewed interest in its electronic
structure some years later [6-8]. Additionally, the 152s2p state is an
eigenfunction of the angular momentum operators L2 and L, with the
eigenvalues L(L+1) =2 and M, = 0. Its ground state wave function is
therefore not only a function of interelectronic distances (which would
make its electronic structure problem into a six-dimensional problem),
but is also dependent upon angular contributions that make it into a
nine-dimensional problem.

Traditionally, the ground state of such species would be described
using a single determinant with optimized orbitals or a multideter-
minant expansion with linear coefficients. Such linear expansions are
often preferred because they lead to highly accurate energies, can be
solved through standard linear algebra techniques, and automatically
provide one with a physical picture of which electronic excitations con-
tribute most to a state based upon the coefficients obtained. Previous
works using linear expansions have provided benchmark energies for
the 1s2s2p state: Conventional Configuration Interaction (CI) [5,9-11]
with 2519 determinants and the Hylleraas method [12,13] with 1372
Hylleraas functions yielded energies with yHa accurate, as summarized
in Ref. [14]. However, given the number of determinants that were
needed to accurately describe this state, alternative approaches become
attractive.

One set of alternative approaches are so-called explicitly-correlated
approaches that attempt to find the “most compact” representations of
wave functions, sometimes at the expense of overall accuracy [1,15-
17].! Compact, yet accurate wave functions are particularly valuable
if they accurately reproduce cusp conditions. From a practical point
of view, explicitly-correlated compact wave functions are often used in
the study of collisions [19-24] or to ease the computation of the matrix
elements of the numerous singular operators representing relativistic
and QED corrections [3]. One of the best approaches for designing com-
pact wave functions is to include explicit correlation and use nonlinear
variational parameters [25]. However, in contrast with conventional
linear expansions in terms of determinants, the optimization of such
wave functions is challenging since the optimal parameters cannot be
found by solving the secular Schrodinger equation. The potentially
large number of nonlinear parameters additionally presents a steep
challenge for standard minimization algorithms.

Given this backdrop, a potentially promising technique for op-
timizing these challenging wave functions is the Variational Monte
Carlo (VMC) method. In the VMC method, the parameters within a
given wave function ansatz are optimized to minimize the energy by
iteratively using Monte Carlo sampling to evaluate the energy for a

1 Note that these explicitly-correlated methods differ from the explicitly-
correlated F12 and R12 methods of recent note in the literature [18].
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given set of parameters and then finding an improved set of param-
eters that further minimize the energy [26,27]. While the energies
given the parameters could be evaluated using traditional grid-based
integration methods, this becomes more computationally costly than
random sampling when eight or more dimensions are involved. Monte
Carlo methods thus become the methods of choice for high dimensional
search spaces [26]. Although VMC is most popularly used to optimize
the Jastrow parameters within Slater-Jastrow wave functions [28], it
is equally applicable to wave functions with other forms, including
explicitly-correlated wave functions.

In this manuscript, we thus employ VMC to optimize explicitly
correlated wave functions containing 7 and 10 parameters to describe
the lowest quartet state of the Li isoelectronic sequence. We show
that VMC is able to rapidly find and converge parameters to a set
that minimizes the energy. We find that the optimal parameters in
general fit to Padé functions of the nuclear charge within the error bars.
Our VMC-optimized wave functions yield energies which reproduce at
least 99.9% of the most accurate Hylleraas results. Our work therefore
demonstrates the potential that VMC methods have for optimizing
explicitly-correlated wave functions of difficult to describe, higher
angular momentum states.

2. Wave functions used to describe the Li isoelectronic series
1s2s2p quartet state

Members of the lithium isoelectronic sequence contain a total of
four charged subatomic particles — three electrons and one nucleus —
interacting via the Coulomb potential. Since the motion of the nucleus
is much slower than that of the electrons, in the limit of infinite mass,
it can be assumed to be a fixed, positively-charged center, effectively
reducing the problem from twelve to nine degrees of freedom. We
illustrate such a system, its parameters, and the notation we later
employ for those parameters in Fig. 1.

Based on the conventional atomic shell model, the ground state with
total spin S = 1/2 possesses two electrons that occupy the same orbital
and a third that occupies a different, higher-energy orbital. However,
for quartet states with total spin .§ = 3/2, all of the electrons lie in
different orbitals. This state can be harder to describe because of its
higher-spin and open shell character.

To design an explicitly-correlated wave function that can describe
this state, we first consider the physics of these systems when the
positive nuclear charge, Z, goes to infinity Z — oco. In this limit,
nuclear—electron interactions dominate and the electron—electron in-
teractions can be neglected, reducing the problem to that of three
hydrogen electrons in three different orbitals. In this limit, there ex-
ists an exact solution to the Schrodinger equation in the form of an
anti-symmetrized product of three Coulomb orbitals

ls; ~ e %N

25y ~ (1 +ary)e” 2"

2p3 ~ r3cosfze” "3

wo ~ 151252p;
vy ~ (1 +ary)(r;zcos ;) x

eTMrITmR Ty 1

where @y = Z,a=-Z/2 and &, = a3 = Z/2 [29]. r; and r;; are the
relative distances defined in Fig. 1.

Motivated by Eq. (1), we follow a recipe for designing compact wave
functions described in our previous work [30-32]. The total wave func-
tion, ¥, is the antisymmetrized product of the spatial wave function, y,
and the spin function, y, ¥ = A(y y). The antisymmetrization operator
is defined as

A=1-Pp— Pz - Py+ Py + Py,

where 13, ; permutes the electrons i < j and 13, ;x permutes the (ijk) in-
dices. Since the spin function for the quartet state is totally symmetric,
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Fig. 1. Geometry of a representative member of the lithium isoelectronic sequence consisting of three electrons (blue) and a nucleus (red). Key distances and bond angles, some

of which are used in our explicitly correlated wave functions, are denoted in black.

¥ = aaa, where a denotes the spin-up function, the anti-symmetrization
ends up being only performed on the spatial term y. The spatial wave
function we propose has the following form

v = (1+arp) (r3 c0393) X

e~ M1~ ma3r3 gy tag3r3tasr; s 2

where o; with i = 1,2,3, a; with j > i = 1,2,3, and a are free
variational parameters. The nonlinear variational parameters «; and «;;
represent screening/antiscreening factors for the Coulomb charges in
the nucleus—electron and electron-electron interactions, respectively.
The factor depending on cos 65 leads to the required odd parity, while
the total angular momentum L = 1 guarantees orthogonality with the
152535 quartet state. We denote the wave function in Eq. (2), containing
seven variational parameters, as Ansatz A.

As a generalization, we also consider inserting the following rational
expressions into the exponents of the orbitals

14 ¢r;
a;r; .
"1+ dir

ar; = a;f; = 3)
These terms interpolate the effective Coulomb charges between their
values at small and large distances. Calculations show that only some
terms in the exponential lead to a significant difference, beyond sta-
tistical fluctuations, when replaced by Eq. (3). This leads to Ansatz B,
given by

v = (1+4+ar) (r3 cos93) X

e~ Mm@ aziztanfptazrztasng 4

which has 11 variational parameters. Our variational calculations show
that a3 can be fixed to Z/2, with no impact on the variational energy,
effectively reducing the number of variational parameters to 10. This
can be understood because, upon introducing the substitution azr; —
asf3, the screening charge of the nucleus as seen from the third electron
at short distances is Z, leading a; — Z /2 according to Eq. (1).

Given these numbers of parameters, in the following, we optimize
the parameters for the 7-parameter Ansatz A and the 10-parameter
Ansatz B using Variational Monte Carlo.

3. Variational Monte Carlo

Variational Monte Carlo [26,27,33] is based upon the variational
principle, which states that the variational energy of a system is given
by

_aw X,/ dR¥T(R,0)H¥ (R, 6)

CooAP) Y, [ dRPI(R, 0P (R,0)

> Ey, )

where R = {r|,r,,r;} and ¢ = o0,,0,,03 denote the positions and
spins of the three particles (here, electrons), respectively, and E, is the
exact ground state energy. The variational energy, E, is estimated via
the numerical evaluation of a nine-dimensional integral over the nine
particle positions which can be performed via Monte Carlo methods.

To make Eq. (5) more directly amenable to Monte Carlo sampling,
it can be rewritten as
o _ 2o IRPR ) e ©

v Y, /dRPR,0)

where P(R,0) is a probability distribution of the form P(R,0) =
PT(R,0)? (R, 6). The quantity %R:)’) is known as the local energy, E; .
In the VMC method, P is sampled to generate a set of N configurations
in {R, s} space that are used to estimate the integral above. A common
way to sample such configurations is provided by the Metropolis algo-
rithm. The spin variable, o, can be integrated out analytically, both in
the numerator and denominator of Eq. (6). This is because, for quartet
states, there is only one spin function corresponding to the total spin
S = 3/2 and projection S, on which the Hamiltonian does not act. The
local energy is then evaluated based upon the configurations sampled
and averaged to approximate the variational energy.

Other expectation values can also be calculated within the VMC
framework by replacing the local energy in Eq. (6) by the quantity
of interest. In particular, we are interested in computing the following
ratio between expectation values

. (3057 -
NeT ey

in order to estimate the cusp condition Cy, ~ Z, as a measure of the

quality of the wave function in the vicinity of the Coulomb singularities.
The accuracy of the variational energy and other quantities so

obtained depends upon the wave function parameterization, which can

be optimized as described below. For a more detailed review of the

VMC method, we refer the reader to Refs. [26,27,33-35].

4. Optimization of the wave function ansatz

In order to reach the lowest variational energy possible given the
wave function ansatz, the wave function’s parameters must be opti-
mized. This can be achieved by performing gradient descent based upon
the variational energies obtained using the VMC sampling described
above. The derivative of the energy with respect to the variational
parameters p is given by [27]

oy (PISCPIAIY) — (PIHIY) S (P 1¥)
o - @y
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Fig. 2. Energy of neutral Lithium in the 152s2p state as a function of the number of VMC iterations. Ansatz A energies and error bars are given in purple, while Ansatz B energies

and error bars are given in green.
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Within the framework of VMC, we can calculate the derivatives in
Eq. (8) using the equations [36]

(A = /'}/*W%dR:/P(R)ELdR ©
0¥
(P10,¥) = /W*W”Tdk=/P(R)FL”dR 10)
How
(P1H10,¥) = /‘I’*WTde=/P(R)GidR, 11)

and evaluate the related integrals in one single calculation based on
the Metropolis algorithm. We update the variational parameters p;
corresponding to the next iteration k + 1 according to

o(H
P+l =Pr+ 4, (%) 12)
k

where 1, is an update rate which can be tuned for each variational
parameter p in order to accelerate convergence.

5. Numerical details

To perform these VMC calculations, we wrote a Fortran-based code
which optimizes wave functions in the form of Ansatz A (Eq. (2))
and Ansatz B (Eq. (4)) for lithium in its 1s2s2p quartet state. The
optimization is carried out using the gradient descent method during
which VMC is used to determine energies and gradients and stochastic
gradient is iteratively used to update the parameters based upon these
gradients. One iteration typically consists of 107 Metropolis steps. We
view the wave function as optimized when the variational energy
converges, i.e., does not further decrease, within statistical error bars,
after 50 consecutive iterations. It is worthwhile to mention that the
optimization can be started from different starting configurations of
parameters to reduce the risk of finding a local minimum. The num-
ber of iterations needed to obtain energy convergence, i.e., when all
variational parameters reach equilibrium and oscillate around their
optimal values, highly depends on the descent parameter A. Practical
calculations show that some parameters reach equilibrium faster than
others. Thus, we used different descent parameters for the different
wave function parameters: Ay =2 fori =1,2,3, )“a,,- =02 fori < j,
and 4, = 10. With these descent parameters, we observe convergence

after ~50 iterations (see Fig. 2, for instance) and compute expectation
values after this convergence has been attained. We wrote a specialized
code to estimate the cusp parameter Eq. (7) once parameters have been
optimized and expectation values have been converged.

6. Results
6.1. Variationally optimized wave functions and energies

Using the VMC approach described above, we optimized the explicitly-
correlated wave functions given by Ansatz A (Eq. (2)) and Ansatz B
(Eq. (4)) for neutral lithium and its isoelectronic sequence with nuclear
charges between 3 — 10 in the 1s2s2p state. A good initial set of
variational parameters is that given by the analytical solution for the
infinite nuclear charge (Eq. (1)),i.e,q; =Z,a=-Z/2, ¢y =3 = Z /2,
and a;; = 0. For instance, we show in Fig. 2 the energy for the neutral
Li as a function of the VMC iterations. One can see that the energy
decreases monotonically following the gradient descent optimization
and converges for both ansatz in less than 50 iterations. Once the
energy has converged within statistical error bars, estimates of the
variational energy and cusp parameters are made.

These results are presented in Table 1 alongside the most accurate
published theoretical results produced by Hylleraas CI (HCI) for the
electronic Schrédinger equation with fixed nuclei [13]. We also include
the experimental energies for the ground states, which contain rela-
tivistic and QED contributions as well as non-BO effects, in Table 1.
One can notice that the difference between the HCI and experimen-
tal results appears beyond the fourth significant digit. However, the
energies free of corrections are correctly reproduced by both ansatz.
Significant differences, beyond statistical errors, appear between the
energies predicted by Ansatz A and B for small nuclear charges, but
disappear for larger values. The percent energy differences between
Ansatz A’s predictions and the exact energies lie within roughly 0.01-
0.1% for Z = 3 — 10, while those for Ansatz B lie within 0.01-0.05%
over the same range of Z values. The percentage of correlation energy
recovered by our Ansatz is also included in Table 1 since this can be a
more sensitive measure of errors that also provides insight into how
significant a role correlation plays in the electronic structure of the
species studied. To obtain the Hartree Fock energies, we use the form
of the wave function given by Ansatz A but set the two-body Jastrow
terms to zero by setting «;; = 0 for i, j = 1,2,3. The energies obtained
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Variational energies, E,, in Hartrees and cusp parameter, Cy,, in atomic units for Li-like ions in the 1s2s2p quartet state in comparison with
the most accurate previous results, E,.; (Hylleraas CI) [13]. Experimental values, E,,, [37], that contain relativistic and QED contributions

exp

are also included for nuclear charges Z = 3 — 5. The last digit in parentheses indicates the statistical error. In the last column, the energies

predicted using the Majorana formula, E,,, are noted.

Ansatz A Ansatz B

Z E, Cre E o (%) E, Cne E o (%) Eycr E,., Ey

3 —5.3629(1) 2.99199(3) 62 —5.3650(1) 2.99259(3) 77 —5.3680 —5.3660 —5.362
4 —10.0610(2) 3.97481(7) 63 —-10.0631(2) 3.97700(2) 77 —-10.0666 —-10.0675 —10.064
5 -16.2617(4) 4.95491(9) 64 —-16.2636(4) 4.95798(9) 76 -16.2676 -16.2714 -16.265
6 —23.9636(6) 5.9325(1) 64 —23.9653(6) 5.9375(1) 74 —23.9696 —23.967
7 —33.1659(8) 6.9103(2) 63 —33.1673(8) 6.9119(2) 71 -33.1720 -33.168
8 —43.868(1) 7.8865(3) 59 —43.870(1) 7.8912(3) 71 —43.8748 —43.870
9 —56.070(2) 8.8616(4) 58 —56.072(2) 8.8680(4) 69 -56.0777 -56.071
10 —69.773(5) 9.8358(5) 54 —69.773(5) 9.8417(5) 54 —69.7808 -69.773

using this form coincide with those reported in Ref. [10] to four digits
for neutral lithium. From the Table, we observe that, for small nuclear
charges, our Ansatz is capable of recovering 62 and 77 percent of the
correlation energy, respectively. It is worthwhile to mention that this
quartet state (.S = 3/2) is more weakly correlated than the doublet
states (S = 1/2) in which two electrons lie in the same orbital; that
is, the Hartree-Fock energy of the quartet is closer to the exact energy
than that of the doublet states. For large nuclear charge, the correlation
energy vanishes because, for infinite nuclear charge, Eq. (1) is the exact
solution.

6.2. Variationally-optimized cusp parameters

The cusp conditions (given by Kato’s Theorem) establish that the
exact wave function of a system composed of Coulombic charges should
reproduce the condition given by Eq. (7) in order to remove divergences
in the local energy at the electron-nucleus coalescence points [38].
Thus, beyond the energy, one observable of interest is the cusp param-
eter, Cy,, which indicates how capable the electronic wave function
is of removing the Coulomb singularity at the position of the nucleus.
The accuracy with which the cusp parameter can be computed is also a
good measure of the accuracy of the wave function given its sensitivity
to the electronic structure around the nucleus. We find that 98%-99%
of the cusp parameter is reproduced by both ansatz, indicating the
high quality of the wave functions in the vicinity of the nucleus. Even
though the difference between the Ansatz A and B energies is within
statistical error bars for Z = 10, we find that the cusp condition is
always better described by Ansatz B. Satisfying the cusp conditions is a
relevant asset in quantum Monte Carlo calculations since it significantly
reduces the variance of the local energy during random sampling [39].
It is also known that fulfilling cusp conditions is necessary to obtain
an adequate description of the electron energy distributions in double
photoionization [40].

6.3. The Majorana formula and parameter scaling

With optimized wave function parameters in hand, one may ask
how these parameters scale with the nuclear charge. To more deeply
appreciate how this scaling differs from previous analytical results,
we first compare how our parameters vary with predictions from the
Majorana Formula and perturbative treatments to it.

In his pioneering work that sought a simple, analytical expression
for the wave function of helium in its ground state, E. Majorana noticed
that the dominant contributions to the ground state energy of He-like
atoms comes from a quadratic function of their nuclear charge. This led
him to propose the Majorana Formula [41]

2
EM=—(Z—15—6> . a3
This formula can be derived analytically by taking the expectation
value of the Hamiltonian with a wave function composed of the product
of two 1s orbitals

0= e—a(r] +ry) (14)

with a variational parameter «. After variational minimization, the
optimal value of « as a function of the nuclear charge, Z, is given by

5
a(Z)—Z—E. (15)
Note that « varies linearly with the nuclear charge, as is also observed
in our plots of our one-body variational parameters in Fig. 3. The Ma-
jorana Formula with its optimized « recovers roughly 98% of the exact
energy of helium, an accuracy similar to that provided by Hartree-Fock
theory.

Further corrections to the Majorana Formula can be obtained via the
1/Z expansion [41]. If the wavefunction in Eq. (14) is multiplied by an
exponential factor e"12 , where r |, is the distance between the electrons
and g another variational parameter, the error of the variational energy
decreases to roughly 1%. Note that this exponential is similar in form to
the electron—electron terms present in our Ansatz and these corrections
can shed light on how we should expect our electron-electron parame-
ters to scale. Although the integrals needed to estimate the expectation
value of the Hamiltonian can be obtained analytically, the optimization
of the variational parameters requires estimating the roots of a fifth-
degree polynomial which can only be performed numerically [42].
However, one can observe that the following Padé approximant

_ataZ

= : 16
by + b, Z (16)

B(Z)
correctly describes the optimal values of g, found in Ref. [42], for
nuclear charges between Z = 2 — 20. The fitting parameters are a, =
1.16, a; = =3.11, by = —2.11, and b; = 18.12. Notice that linear functions
are particular cases of Padé functions if by = 1 and b = 0.

In the last column of Table 1, we include the results provided by
the Majorana Formula for the lithium 1s2s2p sequence to compare to
our variational results. In Fig. 4, we plot (a) the Majorana Formula
for the 1s2s2p state and (b-1) the optimized wavefunction parameters
with error bars as a function of the nuclear charge alongside the fits
(whose forms are specified in Table 2). It is evident from the plots
that parameters «,, a,, and a3 (plots c—e) scale roughly linearly with
Z, which is in good agreement with Eq. (15). In these cases, the error
bars are smaller than can readily be discerned (their exact values can be
found in the Supplemental Materials). The other variational parameters
are better approximated by Padé functions motivated by Eq. (16). The
fits, including the evaluation of the Majorana Formula, are presented
in Table 2.

Also, by analytic continuation of the Padé functions in Table 2, we
were able to estimate the critical charge [32] Z, ~ 1.26 — 1.27 (for
which Ansatz A and B lose square normalizability), thus predicting the
stability of the quartet state 1s2s2p for the anion He™ (Z = 2).

7. Conclusions
In summary, in this manuscript, we optimized ultra-compact,

explicitly-correlated wave functions for neutral lithium and its iso-
electronic sequence with nuclear charges Z = 3 to Z = 10 in the
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Fits to the energy (Majorana formula energy given in first row) and to
the optimal variational parameters as a function of the nuclear charge.
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lowest quartet state 1s2s2p using the variational Monte Carlo method.
We found that VMC yielded accurate wave function parameters that
resulted in energies competitive with the accuracy of energies produced
by CI (~77% of the correlation energy for small nuclear charges).
We also fit these parameters to linear and Padé functions of the
nuclear charge, revealing how they change with charge. Uniquely,
we have used our VMC approach to study the critical charges of this
isoelectronic series, showing that VMC can reproduce 98% or more
of the predicted critical charges. The estimate of critical charges in
small atomic systems and their behavior close to the threshold is an
active area of research [43-45]. Our results illustrate the power of
VMC when it is used along with explicitly-correlated wave functions
and indicate that VMC is able to reproduce 99.9% of the exact energy
with only 10 nonlinear variational parameters for the problems studied

here. This work moreover highlights the efficiency with which VMC can
evaluate energies and other integrals needed to perform wave function
optimization when the number of degrees of freedom is larger than
8, at which point MC integration becomes more efficient than other
integration methods.

We can further improve the accuracy of our wave functions in two
ways: by using (i) a linear superposition [17] of wave functions in
the form of Ansatz A with different variational parameters,”> or (ii)
our optimized wave functions in tandem with other projector QMC
methods (typically Diffusion Monte Carlo) that can further improve
their structures and minimize their energies. VMC-optimized wave
functions are often used as reliable trial wave functions that other, even
higher accuracy QMC methods can then refine.

However, before adding more electrons to the atomic system, it is
also worth examining explicitly-correlated wave functions for doublet
excited states with total spin .§ = 1/2, where the symmetrization of the
total wave function A(¢y), including the Jastrow factor, is not trivial.
Spin contamination will appear for any state if the wave function is not
properly antisymmetrized [46].

Furthermore, explicitly-correlated wave functions are useful as start-
ing points to explore the electronic structure of atoms embedded in
media [47] or in magnetic fields. Even if the magnetic field is on
the order typical of those observed in neutron stars, 10'2-10'? G, and
magnetic white dwarfs, 103-10'° G, the wave function can be approxi-
mated by taking the product of the explicitly-correlated wave function
in the zero field case and the Landau orbitals for each electron [48,49].
We look forward to the further development and application of these
algorithms to tackle these exciting challenges.

2 In Ref. [17], the authors found that the energy of the He ground state
converges taking the sum of only four compact, explicitly-correlated wave
functions.
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