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Abstract
As coastal populations surge, the devastation caused by hurricanes becomes more cata-
strophic. Understanding the extent of the damage is essential as this knowledge helps shape 
our plans and decisions to reduce the effects of hurricanes. While community and property-
level damage post-hurricane damage assessments are common, evaluations at the building 
component level, such as roofs, windows, and walls, are rarely conducted. This scarcity is 
attributed to the challenges inherent in automating precise object detections. Moreover, a 
significant disconnection exists between manual damage assessments, typically logged-in 
spreadsheets, and images of the damaged buildings. Extracting historical damage insights 
from these datasets becomes arduous without a digital linkage. This study introduces an 
innovative workflow anchored in state-of-the-art deep learning models to address these 
gaps. The methodology offers enhanced image annotation capabilities by leveraging large-
scale pre-trained instance segmentation models and accurate damaged building component 
segmentation from transformer-based fine-tuning detection models. Coupled with a novel 
data repository structure, this study merges the segmentation mask of hurricane-affected 
components with manual damage assessment data, heralding a transformative approach to 
hurricane-induced building damage assessments and visualization.

Keywords  Hurricane · Hurricane damage assessment · Component-level damage · Deep 
learning · Object detection

1  Introduction

1.1 � General introduction

As coastal regions swell with increasing populations, the aftermath of hurricanes grows 
devastatingly apparent. Understanding and assessing hurricane damage is not just about 
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directing immediate relief or aiding recovery. The broader spectrum encompasses preven-
tive measures, urban planning, and long-term strategies to mitigate future damages, ensur-
ing safer and more resilient infrastructure (Neumann et al. 2015; Nicholls and Small 2002; 
Ngo 2001; Berke et al. 2012).

1.2 � Hurricane damage assessment from manual to digital via remote sensing

Post-hurricane evaluations, particularly of residential buildings, were manually conducted 
in the past. Field teams documented building details and associated imagery aligning with 
the guidelines (FEMA 2016). However, as technology progressed, so did the means of 
assessment. The shift from manual, time-consuming surveys to digital approaches marked 
a significant advancement, enabling faster responses and more detailed analyses.

Traditionally, the post-hurricane damage assessment, especially the evaluation of res-
idential buildings, relied heavily on manual methods (Alzughaibi 2018; Massarra 2012; 
Wengrowski 2019). Expert teams would precisely document the specifics of each building 
and capture relevant images. Manual damage assessment protocols were derived from the 
Rapid Needs Assessment (RNP) and Primary Damage Assessment (PDA) (FEMA 2016). 
The study and refinement of these protocols remain an active area of research, especially 
as data acquisition and processing methods evolve and the roles of various agencies shift 
(Pant 2019; Friedland 2009; Wilson et al. 2015). However, as we ventured further into the 
digital age, the landscape of damage assessment evolved dramatically. This evolution from 
labor-intensive manual surveys to innovative digital techniques represented a monumental 
leap. Not only did it streamline the entire process, making it more efficient, but it also ena-
bled a deeper, more comprehensive analysis of the damage.

The rise of remote sensing technologies has transformed the world of damage assess-
ment. Tools like aerial images(Kanistras et  al. 2013; Zhong et  al. 2020; Schaefer et  al. 
2020), sonar systems (Hayes and Gough 2009; Purser et  al. 2018), light detection and 
ranging (LiDAR) (Zhou and Gong 2018; Gong and Maher 2014; Van Ackere et al. 2019), 
and satellite imagery (Gupta and Shah 2021; Kakooei and Baleghi 2017; Oludare et  al. 
2021) do not just enable more comprehensive data acquisition; they have paved the way 
for advanced methods like machine learning and deep learning to interpret this data. With 
these technologies, regions previously hard to access or evaluate can now be quickly 
assessed, providing insights that are crucial for immediate disaster response.

1.3 � Component‑level damage assessment

When assessing hurricane damage through remote sensing, it is vital to align the evaluation 
technique with the type of information required. Hurricane damage can be broadly catego-
rized into three levels:

1.	 Community-level: This assesses the extent of damage across large affected areas, giving 
an overview of the disaster’s spread.

2.	 Property-level: Here, the focus narrows to individual structures, identifying their state 
post-disaster.

3.	 Component-level: This drills even deeper, evaluating specific elements like roofs, win-
dows, walls, and doors.
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This level of detail is not just about identifying present damages. It offers insights into 
structural weaknesses, aiding in better construction practices for the future. Additionally, 
by integrating deep learning and image segmentation, these damages’ complexity and var-
ied nature can be more accurately identified and classified, furthering the precision of such 
assessments.

While assessments at the community (Gupta et al. 2019a; Weber and Kané 2020; Gupta 
and Shah 2021; Gupta et al. 2019b) and property levels (Zhuet al. 2021; Yeom et al. 2019; 
Daud et al. 2022; Lindell and Prater 2003) are commonplace, component-level assessment 
is less frequent (Hatzikyriakou et  al. 2016; Zhou and Gong 2018; Ou et  al. 2021), and 
the reasons for this are multifaceted. The detailed and intricate nature of component-level 
assessment demands a coarser analysis of specific elements, and the depth of analysis often 
consumes more time and resources. Furthermore, automating such detailed assessments 
presents its own set of challenges, especially when trying to discern diverse and often sub-
tle types of damage specific to building components. However, it is essential to understand 
that this coarse assessment transcends precise damage identification. It provides a deeper 
understanding of structural vulnerabilities, thereby informing improved construction stand-
ards and practices for future resilience. With the integration of advanced technologies like 
deep learning and image segmentation, we can enhance the accuracy and precision of these 
component-level evaluations, capturing the nuances of diverse damage types.

1.4 � Deep learning, from CNN to transformers in damage assessment

Deep learning, especially within the realm of computer vision, has emerged as a trans-
formative tool for hurricane damage assessment. Utilizing advanced neural networks, 
notably Convolutional Neural Networks (CNNs) such as You Only Look Once (YOLO) 
(Redmon et al. 2016) and regional convolutional neural networks (Mask R-CNN) (He et al. 
2017), excel at analyzing image data to identify, classify, and assess damages inflicted by 
hurricanes. At the community and property level, CNNs are highly effective due to their 
ability to recognize patterns over large spatial scales. These networks can efficiently scan 
wide-area satellite or aerial images and differentiate between damaged and undamaged 
regions or structures based on color variations, textures, and spatial patterns that indicate 
large-scale damage. Numerous successful studies have employed CNNs for natural disaster 
object detection, particularly at community and property levels, including building damage 
assessment (Nex et al. 2019; Valentijn et al. 2020; Bhuyan et al. 2023), land cover change 
detection (Khan et al. 2017; Lv et al. 2022), landslide mapping (Kikuchi et al. 2023; Gao 
and Ding 2022), street-level change detection (JST 2015; Lenjani et  al. 2020), and roof 
material classification (Kim et al. 2021).

In addressing component-level damage assessment, the precision required to analyze 
specific structural elements—like windows, doors, roofs, and walls—presents notable chal-
lenges. Traditional CNNs, including advanced variants like Mask-RCNN (Inc 2018), can 
effectively detect general damage to a building. However, identifying specific, intricate 
damages such as a cracked windowpane or dislodged roof tiles demands a level of detail 
and sensitivity beyond what general detection provides. Shadows, occlusions, and the het-
erogeneity in building design, materials, and orientation further complicate the task, mak-
ing certain damages difficult to distinguish. Moreover, the feasibility of creating a com-
prehensive training dataset that covers the extensive range of possible damage patterns, 
especially in severely damaged buildings, becomes a significant limitation. Severely dam-
aged structures often exhibit unique and irregular damage patterns, as depicted in Fig. 1, 
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where buildings are near collapse with leaning walls and scattered roof beams. Such vari-
ability and unpredictability in damage patterns pose a substantial challenge for traditional 
CNN architectures, emphasizing the practical limitations in preparing datasets that can 
accurately represent every possible scenario of post-disaster damage.

Image annotation at the component-level for damage assessment is significantly more 
challenging than at community or property-levels. This added complexity comes from 
the detailed attention needed for individual building parts. Annotators have to spot and 
label specific damages, which can appear in many subtle forms. For example, a roof might 
exhibit a spectrum of issues, from missing shingles to barely noticeable punctures. Further-
more, images often present overlapping or adjoining building components. For instance, 
an image might capture both a damaged awning and the window beneath it. Separating 
and annotating these overlapping components becomes a meticulous task. The angle and 
distance from which an image is captured can further complicate the assessment. Vary-
ing perspectives might distort or hide essential details, demanding a keen eye and a deep 
familiarity with architectural nuances. This mix of required precision, expertise, and the 
need for distinct component visibility makes component-level assessment time-consuming 
and intricate, emphasizing its intricacy compared to broader assessments.

Transformers (Vaswani et al. 2017) have recently demonstrated remarkable capabilities 
in diverse areas, including computer vision (Xie et al. 2021; Zhao et al. 2021). Unlike tradi-
tional CNNs that process data sequentially, transformers can simultaneously attend to dif-
ferent parts of the input data, capturing intricate relationships. When applied to computer 
vision, transformers, such as Vision Transformers (ViTs) (OpenAI), can capture long-range 
dependencies and relationships in images, offering a global perspective that the localized 
view of CNNs may overlook. Several recent studies have demonstrated the effectiveness of 
transformers in natural disaster damage assessment (Da et al. 2022; Kaur et al. 2023; Asad 
et al. 2023; Tounsi and Temimi 2023). However, these investigations primarily focus on 
community and property-level evaluations, with component-level assessment still largely 
unexplored.

For component-level damage assessment, utilizing fine-tuning with transformers can be 
particularly impactful. Fine-tuning is a technique often employed in deep learning to adapt 
a pre-trained model to a new but related task. Fine-tuning leverages initially trained knowl-
edge by taking a large pre-trained model and continuing the training on a smaller, task-
specific dataset (typically a smaller custom dataset). Transformers trained on large data-
sets capture extensive information, and by fine-tuning them on specific tasks like hurricane 
damage assessment, they can be tailored to recognize intricate patterns and details that are 
vital for accurate results, potentially outperforming models like CNNs.

Fig. 1   Complex and unique damage patterns from destroyed buildings, post-Hurricane Harvey
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1.5 � Manual data and image disconnection

Over the past decades, extensive post-hurricane damage data has been meticulously com-
piled. Historically, these manual assessments from hurricane sites have been detailed and 
archived in spreadsheets, often accompanied by images of the affected buildings. A major 
issue is that the detailed spreadsheet data is not directly connected to its matching images. 
For example, to correlate spreadsheet data with its corresponding images, one must labo-
riously align the damage data with images using side-by-side comparisons. This task 
becomes even more daunting considering the unstructured and varied nature of damage 
patterns that each building component can exhibit. The challenge lies not only in interpret-
ing these intricate patterns but also in the absence of platforms that adeptly merge these 
images with manual damage assessment data.

Thus, while technology has greatly advanced the depth and precision of modern damage 
assessments, a significant void remains. Despite their potential wealth of insights, these 
archived manual assessments are gathering dust due to the technical challenges of integra-
tion. It is imperative to not only harness modern methodologies for ongoing and future 
assessments but also tap into this historical data, bridging the past with the present for 
a more comprehensive understanding of hurricane impacts over time. Finally, integrating 
historical data may be the sole approach to capture diverse building details like physical 
address, GPS, structure type, and other information that could evolve or change over time.

1.6 � Conclusion and contribution

Addressing the complexities of component-level hurricane building damage assessment 
and manual assessments digital disconnection, this study introduces a new workflow, lev-
eraging state-of-the-art deep learning models for refined semi-automated analysis. Spe-
cifically, it utilizes large-scale pre-trained instance segmentation models for efficient and 
precise image annotation and transformer-based fine-tuning for object detection. The pre-
trained instance segmentation model is adopted for precise image annotation. This capa-
bility is pivotal for assessing hurricane-caused building damage, where complex damage 
patterns often require detailed polygon-shaped segmentation masks. Manually creating 
such masks can be an arduous and time-consuming process. Then, fine-tuning allows a 
pre-trained model to be tailored using a specialized dataset specific to the detection task, 
such as damaged building components. This approach enables the model to comprehend 
the nuances of the targeted dataset while building upon the knowledge from its compre-
hensive initial training. It does not lose the foundational knowledge and capabilities accu-
mulated during its broader-scale initial training, which is crucial for holistic understanding. 
Moreover, this study recommends a new natural disaster data repository structure designed 
to visualize segmented images of hurricane-affected building components, seamlessly inte-
grating them with manual damage assessment data.

This study harnesses state-of-the-art deep-learning models to streamline the evaluation 
of component-level hurricane damages. By digitally combining them with manual dam-
age assessment data, this study transforms how we assess and understand the impact of 
these natural disasters on building components. The contribution of this work lies in the 
utilization of sophisticated models which collectively introduce a transformative approach 
to damage assessment practices. The rapid and precise image labeling offered by large-
scale pre-trained instance segmentation models expedites the identification of intricate 
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damage patterns, while transformer-network-based fine-tuning refined predictions under 
limited training data enhances the precision of damage evaluation. Through these innova-
tive methods, the study enhances our understanding of the multifaceted variables impact-
ing hurricane-induced damage and furnishes practical tools to expedite post-disaster deci-
sion-making processes. Furthermore, integrating segmented image merging with manual 
damage assessment is a novel concept presenting a synergistic approach that combines the 
precision of advanced computer vision with the reliability of human expertise. This fusion 
not only refines accuracy but also paves the way for more comprehensive damage analyses, 
solidifying it as a promising innovation in disaster management and assessment.

2 � Proposed methodology

As illustrated in Fig.  2, the workflow begins with preparing training image data. This 
involves the collection of a diverse array of RGB images showcasing hurricane-induced 
building damage, each sized at 1080 × 810 pixels. These images form the bedrock for train-
ing the model to identify and outline various objects precisely. After data collection, the 
Segment Anything Model (SAM), a pre-trained instance segmentation model, is utilized 
for annotating the images, thereby ensuring efficient and high-precision labeling in readi-
ness for the next phase. The model’s core is powered by DETR (Detection Transformer), 
integrated with a ResNet-50 backbone, chosen for its robust object detection capabilities, 
blending the strengths of transformer models with deep residual networks. Training and 
validation data loaders are prepared to supply the model with annotated images, format-
ted in alignment with the COCO dataset standards, a prevalent format for object detec-
tion tasks. The DETR model undergoes fine-tuning to detect building components dam-
aged by hurricanes. This process adjusts the pre-trained DETR model, initially trained on 
the COCO dataset, to accommodate the unique dataset and labels pertaining to hurricane 
damage assessment. The final step integrates the processed images with manual damage 
assessment data. A simple label-matching script facilitates the overlay of manual damage 
assessments onto the segmentation masks, achieving a comprehensive visualization. This 

Fig. 2   Overall workflow
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integration is carried out to produce a holistic visualization, with the output layer dimen-
sions specified, ensuring a detailed representation of the damage assessment.

2.1 � Image annotation with pre‑trained segmentation model

Foundation models in the domain of natural language processing (NLP) have become 
immensely popular and transformative (Min et al. 2021). OpenAI’s GPT (Generative Pre-
trained Transformer) (Brown et  al. 2020) stands out as one of the pioneering models in 
this area, leveraging vast datasets with trillions of tokens. These models are trained to pre-
dict the next word in a sentence and are distinguished by their massive scale and diverse 
training data. As a testament to their success in NLP, similar concepts began to emerge in 
other domains, notably computer vision. The field of computer vision, specifically image 
segmentation, involves extensive specialization. Traditionally, tasks like biomedical image 
analysis (Yang et al. 2023; Bloice et al. 2019; Kwon et al. 2020), photo editing(Lee et al. 
2020; Zhu et al. 2020; Elharrouss et al. 2020), or autonomous driving(Huang et al. 2018; 
Chen et al. 2015; Song et al. 2019) required models trained for specific tasks, demanding 
domain expertise, specialized data collection, and lengthy training.

The Segment Anything project, inspired by the success of foundation models in NLP, 
is one of the most recognized pre-trained models that sought to revolutionize this domain 
by democratizing image segmentation (Brown et al. 2020). The segment anything model 
(SAM) is influenced by the success of NLP foundation models, aiming to democratize 
image segmentation. SAM is an automatic segmentation model that requires minimal 
human involvement and bypasses individual dataset training. SAM uses deep learning and 
has been trained on a staggering 1 billion masks across 11 million images. With a simple 
Python inference, users can prompt SAM by various methods, including clicking on image 
points or drawing bounding boxes. SAM’s utility in handling unstructured data is particu-
larly evident in the assessment of the aftermath of natural disasters like hurricanes. Post-
hurricane building damage presents intricate patterns that are challenging to identify and 
annotate, especially given the vast amounts of visual data that must be processed swiftly 
for timely response and rehabilitation efforts. Manual annotation, although meticulous, is 
time-consuming and susceptible to human error, particularly when delineating the multi-
faceted damage patterns onto polygon-shaped segmentation masks. SAM, however, swiftly 
and accurately interprets these complex patterns, minimizing manual labeling effort.

A Python-based script utilized with LabelMe (Wada 2021) was developed for the SAM-
based image labeling inspired by Roboflow (Skalski 2023). Once an image is loaded, the 
user can draw a rectangle around any object they are interested in. The tool then auto-
matically masks the area inside that rectangle and emphasizes the one critical identifiable 
object. Finally, it displays the original photo with the highlighted area and another version 
focusing on just the shaded object, allowing users to see the details clearly. If necessary, 
the generated mask can be edited before assigning a label. This process can be repeated 
until the mask has been generated and labeled to all desired objects in the image (Fig. 3).

2.2 � DETR with fine‑tuning

Before the advent of transformers in object detection, the realm of computer vision was 
predominantly influenced by Convolutional Neural Network (CNN) models. Pioneer-
ing models like Mask-RCNN (Inc 2018) and YOLO (Redmon et al. 2016) were instru-
mental in driving advancements in this field. However, as technology evolved, recent 
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transformer models have begun to surpass these traditional CNNs, heralding a new era 
in object detection. One of the standout contributors to this shift has been the Detection 
Transformer (DETR) (Carion et al. 2020).

DETR was conceived in response to the limitations associated with traditional CNN-
based object detection. CNN relied heavily on mechanisms such as anchor boxes and 
region proposals, which often added complexity and limited efficiency. With an aspi-
ration to streamline object detection and overcome the restrictions of earlier methods, 
DETR was developed to integrate the transformative capabilities of transformer archi-
tectures into the world of visual data.

DETR is a model that carries transformer-based structures, typically seen in NLP, 
with object detection paradigms. DETR uniquely sidesteps the conventional reliance on 
anchor boxes and region proposals. Instead, it utilizes a fixed set of learned object que-
ries, which are then passed through its decoder to generate predictions. The model envi-
sions object detection as a direct set prediction challenge, obviating the need for proce-
dures such as non-maximum suppression and streamlining post-processing.

Fine-tuning in the context of deep learning and object detection involves adapt-
ing a pre-trained neural network to cater to a specific task or domain. It involves lev-
eraging the foundational knowledge embedded in a model—gained from training on 
a large dataset—and refining it further using a smaller, specialized dataset to hone its 
proficiency in a particular domain. In DETR, fine-tuning begins with a model that’s 
already been trained on expansive datasets such as COCO (Lin et al. 2014). This model, 
equipped with a broad understanding of various object features, is subjected to further 
training on a smaller targeted dataset, the SAM-labeled training data of building compo-
nents in this context. The subsequent training narrows down the model’s focus, adjust-
ing its internal parameters and learned representations to specialize in the intricacies of 
the specific task at hand.

DETR, by design, brings to the table a unique set-based global loss and a transformer 
encoder-decoder architecture. This combination allows it to holistically reason about 
the relations of objects within the broader image context, making it adept at discerning 
intricate details. When this ability is paired with fine-tuning, DETR becomes highly 
specialized in identifying even the most unstructured and intricate patterns, such as 
those seen in post-hurricane building damage. By utilizing custom annotated building 

Fig. 3   Example of SAM-based image labeling
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component datasets, the fine-tuning process meticulously directs the model’s attention, 
enabling it to accurately discern the disordered and complex aftermaths of hurricanes.

3 � Data sets

Hurricane Harvey, a Category 4 storm with winds reaching 130 mph and a 12-foot 
storm surge, struck near Port Aransas, TX, on August 25, 2017, resulting in up to $1 
billion in damages in the area. The dataset for this study was derived from ground-level 
digital images provided by teams from Rutgers University, Princeton University, and the 
University of Texas at Austin (Magazine 2018). A manual damage assessment followed, 
which included manually geo-coding each image to its corresponding physical address 
for accurate damage rating. This process documented general building information and 
detailed damage to components such as doors, windows, walls, roofs, and garages. A 
total of 1,220 images, 305 images from 62 residential buildings in Bayside, TX, and 915 
images from 225 residential buildings in Port Aransas, TX, were compiled. The number 
of images per building varied, with at least one and up to seven images per building to 
ensure comprehensive coverage. Bayside and Port Aransas, both affected by Hurricane 
Harvey, are expected to show similar damage patterns, aside from differences in storm 
surge impact.

During the annotation of training images, label classes were categorized into two 
primary damage groups: damaged and undamaged. This distinction was imperative for 
effectively classifying hurricane-affected building components. While initially consider-
ing a more granular approach with four damage categories (affected, minor, major, and 
destroyed), it became evident that this led to a significant drop in mean Average Preci-
sion during the training. This decline was attributed to the segmentation of an already 
limited training dataset, coupled with challenges in differentiating between minor and 
major damage. Consequently, the finalized classes for annotation are Roof-Dmg, Roof-
NoDmg, Wall-Dmg, Wall-NoDmg, Window-Dmg, Window-NoDmg, Door-Dmg, Door-
NoDmg, Garage-Dmg, and Garage-NoDmg.

4 � Results discussion

4.1 � Detection result

The source images, prior to processing, were grouped into four FEMA-defined dam-
age categories to facilitate a nuanced evaluation of the model’s detection capabilities 
(FEMA 2016). This categorization was employed to stratify the images according to 
the overall damage extent for comparison purposes, not as a direct part of the training 
dataset preprocessing. The categories are as follows: (1) Affected: Homes where dam-
age is predominantly cosmetic; (2) Minor Damage: Homes with repairable non-struc-
tural issues; (3) Major Damage: Homes with structural impairments or other significant 
issues necessitating extensive repairs; and (4) Destroyed: Homes deemed a total loss. 
The test results depicted in Fig. 4 reflect the model’s varying degrees of effectiveness in 
detecting component-level damage.
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4.2 � Performance metrics

First, the intersection over union (IOU) metric, a coefficient of similarity for two sets of 
data, was employed (Naturelles 1864). The IOU. metric calculates the degree of overlap 
between a predicted detection (B) and the ground truth (A) and divides it by the area of 
their union. The performance of the object detection method is based on AP@ IoU = 0.50, 
which refers to AP for IoU ≥ 0.5, for each object category, shown on the below table com-
puted from COCO Evaluator.

Table  1 shows the evaluation result for the DETR training with 50 epochs, gradi-
ent clipping value of 0.1, accumulated gradient batches of 8, logging steps of 5, and 
41.5  M parameters, including 41.3  M trainable parameters and 222  K non-tradable 
parameters. Total training took about 1 h, and the resulting model parameter had a size 
of 108 MB. Based on the results obtained, an AP50 score of 0.621 indicates a fine-per-
forming object detection model. The dimensions of annotated objects can vary signifi-
cantly based on the severity and extent of damage. Generally, building components such 
as windows, doors, and garages can be categorized into small or medium-sized objects, 
whereas roofs and walls typically fall under the large object category. The average pre-
cision (AP) scores for small, medium, and large objects were found to be 0.475, 0.582, 

Fig. 4   Examples of damaged building component segmentation results
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and 0.620, respectively. These scores reflect a model that performs moderately well, 
with performance improving as the size of the target object increases. Additionally, it 
is important to consider the quality and resolution of the images. Many of the smaller 
objects displayed relatively low resolution because the images were captured from a dis-
tance to prioritize safety during the reconnaissance of the damaged houses.

Mask R-CNN (He et  al. 2017), equipped with a ResNet-101-FPN backbone, was 
trained using the identical dataset to facilitate a comprehensive comparison. Mask 
R-CNN enhances the Faster R-CNN framework by introducing a segmentation mask 
prediction branch for each Region of Interest (RoI) alongside the conventional classi-
fication and bounding box regression branches. The ResNet-101-FPN backbone, nota-
ble for its complexity, provides a detailed multi-scale feature representation, optimizing 
the model for detecting objects of varying sizes. The performance comparison result is 
shown in Table 2.

When evaluating Average Precision (AP) across IoU thresholds from 0.5 to 0.95, 
DETR fine-tuning with the COCO dataset attained an AP of 0.432, surpassing Mask 
R-CNN’s performance, which stood at 0.389. This discrepancy suggests DETR’s supe-
rior capability in consistently detecting objects across a spectrum of IoU thresholds, pos-
sibly due to its enhanced ability to understand the overall context of damaged building 
components. At the specific IoU threshold of 0.5 (AP@0.5), DETR and Mask R-CNN 
demonstrated nearly equivalent performance, with DETR marginally leading (0.621 vs. 
0.617). This parity indicates that both frameworks effectively identify damaged build-
ing components under less rigorous overlap criteria. These findings underscore DETR’s 
efficacy in object detection tasks within post-disaster damage assessment. DETR’s edge 
in performance across various IoU thresholds can be ascribed to its innovative detection 
approach, combining fine-tuning and a distinct model structure, which renders it more 
adept at handling complex detection scenarios. Conversely, Mask R-CNN’s slightly 
diminished performance, especially at higher IoU thresholds, could stem from multiple 
challenges, including the difficulty of segmenting extensively damaged components, the 
diversity in types of damage, and the intricacy of disaster-impacted scenes.

Table 1   Evaluation of DETR training

Average precision (AP.) @[ IoU = 0.50:0.95 Area = all maxDets = 100 0.432

Average precision (AP.) @[ IoU = 0.50 Area = all maxDets = 100 0.621
Average precision (AP.) @[ IoU = 0.75 Area = all maxDets = 100 0.578
Average precision (AP.) @[ IoU = 0.50:0.95 Area = small maxDets = 100 0.475
Average precision (AP.) @[ IoU = 0.50:0.95 Area = medium maxDets = 100 0.582
Average precision (AP.) @[ IoU = 0.50:0.95 Area = large maxDets = 100 0.620

Table 2   Performance comparison between DETR and Mask-RCNN

Framework Backbone Dataset AP[0.5,0.95] AP0.5

DETR ResNet-50 Hurricane Harvey affected 
buildings (1,220 images)

0.432 0.621

Mask R-CNN ResNet-101-FPN 0.389 0.617
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A comprehensive evaluation using traditional performance metrics, precision and 
recall was used to better understand the automated component-level damage assessment 
performance. Tables 3 and 4 below show the precision-recall analysis for undamaged and 
damaged component detection. A notable difference in the performance metrics between 
undamaged and damaged roofs exists. Damaged roofs registered a precision of 0.54, sig-
nificantly lower by 32% compared to the undamaged counterpart of 0.86. The ground-level 
perspective from which many images were captured restricted visibility to only parts of 
the roof, further complicating the differentiation between roofs and walls, as evinced by 
the elevated False Negative (FN) values. In contrast, walls were consistently well-repre-
sented in images due to the ground-level perspective. This facilitated the quality and quan-
tity wall annotation and the model’s performance, with a precision of 0.90 and a recall of 
0.94, while the damaged ones hold similarly impressive values of 0.92 and 0.88, respec-
tively. This data indicates that the model robustly detects and differentiates walls irrespec-
tive of their damage status. For windows, doors, and garages, moderate precision values 
were noted. However, a considerable count of False Positives (FP) and FNs were recorded, 
attributed largely to their shared rectangular morphology. Particularly, windows and doors 
exhibited elevated FP and FN rates. Enhanced feature discrimination or a diversified train-
ing dataset could mitigate this ambiguity. Lastly, damaged garages demonstrated subopti-
mal precision and recall values of 0.44 and 0.66, respectively. A primary contributor to this 
underperformance was the prevalence of broken or absent garage doors, leading to pro-
nounced indoor shadows. Such shadows have been consistently recognized as detrimental 
factors in object detection algorithms. Addressing shadow effects or integrating illumina-
tion normalization might bolster detection accuracy in such scenarios.

4.3 � Challenges in automated component‑level damage assessment

Building damage patterns can be intricate and multifaceted. Beyond these complexities, 
several other factors play a crucial role in ensuring a precise and comprehensive automated 

Table 3   Undamaged component 
precision-recall analysis

Roof Wall Window Door Garage

TP 412 626 920 302 157
FP 51 42 334 62 52
FN 69 72 317 58 78
Precision 0.86 0.90 0.74 0.84 0.67
Recall 0.89 0.94 0.73 0.83 0.75

Table 4   Damaged component 
precision-recall analysis

Roof Wall Window Door Garage

TP 227 347 633 152 67
FP 87 48 385 45 35
FN 196 31 216 73 84
Precision 0.54 0.92 0.75 0.68 0.44
Recall 0.72 0.88 0.62 0.77 0.66
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component-level damage assessment. The following delve into some of these pivotal 
considerations.

•	 Post-disaster alteration: A building in this state retains noticeable remnants of its orig-
inal form, making it optimal for data acquisition and processing. However, recovery 
efforts typically commence within 72 h following a natural disaster, altering the initial 
damage. Consequently, subsequent analyses may not directly correlate with the dis-
aster’s cause, diminishing the effectiveness of understanding the damage mechanism. 
Often, debris piles (Fig.  5a) emerge as a result of accumulating damaged materials. 
These should not serve as primary sources for damage assessment unless the objective 
is to identify and quantify the overall debris.

•	 Data bias: Given that the vast majority of the training data originates from residen-
tial buildings, the detection process struggles with structures of a distinct type. For 
instance, Fig. 5b displays a damaged boat rack, which fundamentally differs from the 
training data. Consequently, damage detection on such datasets warrants re-evaluation. 
While the training data predominantly features exposed wooden structural components, 
a boat rack mainly consists of steel columns and beams.

•	 Obscured damage: Post-disaster structures are often shielded with blue tarpaulins 
(Fig. 5c) to prevent further damage. Such measures obscure the extent of building dam-
age, rendering them unsuitable for detailed component-level damage assessment.

•	 Classification blind spot: Some structures display tilted or misaligned columns (Fig. 5d) 
due to the lateral forces exerted by hurricane events, greatly compromising their integ-
rity and stability. However, some of these buildings may be mistakenly classified as 
undamaged, given the absence of labeled classes for tilted columns. Separate training 

Fig. 5   Key challenges in automated damage assessment
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data should be curated to account for such damages and enable accurate reclassifica-
tion.

•	 Component absence challenge: The algorithm might identify buildings with walls and 
windows that seem structurally intact. Yet, a missing roof (Fig. 5e), evident from top-
down analysis, signals considerable damage, emphasizing the necessity of a holistic 
assessment method. The complete absence of a component poses significant challenges 
in damage evaluation. This issue is among the most daunting in automated damage 
assessment, as specialized models are needed to distinguish missing elements—easily 
spotted by human observers but potentially overlooked by detection algorithms.

5 � Integration of segmented component and manual damage 
assessment data

Many esteemed natural disaster data platforms, including repositories of the National Oce-
anic and Atmospheric Administration (NOAA) and the United States Geological Survey 
(USGS), primarily serve as repositories for raw image data without extensive data curation. 
While they offer significant storage capacities, their data structures have a notable absence 
of uniformity and compatibility. A few sophisticated natural disaster repositories (Gur-
ram et al. 2017; Park et al. 2019) employ deep learning techniques for data curation, like 
object detection and visualization. However, none currently bridges the gap between exten-
sive manual damage assessment data and the corresponding post-disaster building images 
archived for decades. This study proposes a Hurricane Image Analysis Viewer (HIAV) to 
overcome the limitations of current natural disaster repositories. This prototype seamlessly 
integrates segmented building component images with manual damage assessment out-
comes. Developed using HTML, JavaScript, and PHP for backend support, HIAV’s central 
feature is its digital association between segmented building elements and damage assess-
ment data. Within HIAV, the primary interface comprises a data filter (Fig. 6). Sections A 
(General building information) and B (Hurricane building damage) facilitate the extraction 
of manual damage assessment findings. Users can engage with each category through text 
or a selection mechanism. Upon selecting the desired data, hitting the search button refines 
the image list to match the criteria.

After selecting the necessary filters, the user can use the “Search” button to update the 
list of images based on the selected filters. A “Reset” button also clears all filters and resets 

Fig. 6   Data filter tool by sections
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the image list to its original state. The image list displays each image along with its name, 
and each image has a checkbox next to it. The user can select one or multiple images by 
checking the corresponding checkboxes. Once the desired images are selected, the user 
can click the “Download” button to download the selected images. A “Select All” but-
ton allows the user to select all images in the list with a single click. This can be useful if 
the user wants to download all images simultaneously. Upon selecting the desired filters, 
users can click the “Search” button to refine the image list accordingly. A “Reset” button is 
available to clear all filters, reverting the list to its default state. Images are presented with 
accompanying names and checkboxes for selection. Users can choose individual or mul-
tiple images by checking the associated checkboxes. To download chosen images, hit the 
“Download” button. For convenience, a “Select All” button is provided, allowing users to 
select and download the entire image list in one go. Following the image selection, HIAV 
transitions to the image visualization phase. This section showcases the original image and 
its version with component segmentation results (Figs. 7 and 8).

6 � Conclusions, limitations, and future work

This research delved into refining the assessment of hurricane-caused building damage, 
introducing an advanced workflow that bridges the gap between segmented images of dam-
aged components and their corresponding manual damage assessments. An in-depth per-
formance evaluation was conducted by implementing the transformer-network-based fine-
tuning object detection, trained meticulously to understand the intricacies of post-hurricane 
damages. The results highlighted the model’s capabilities, revealing that it excelled in 
detecting larger components like walls while encountering challenges with smaller or more 
ambiguous components like windows and doors. External challenges, post-disaster alterna-
tion, data bias, obscured damage, classification blind spot, and component absence chal-
lenges notably influenced the model’s efficacy. HIAV was proposed, offering a comprehen-
sive platform to integrate segmented images seamlessly with manual damage assessment 
outcomes. It is evident that while the proposed methodology has made significant strides in 
automating building component-level damage assessments post-hurricanes, there remains 
scope for further refinement. This study, however, undoubtedly lays the foundation for 
future endeavors to enhance our understanding and response to the aftermath of hurricanes.

Fig. 7   Image list and visualization
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One potential limitation in accurately assessing hurricane-induced building damage 
could be data bias. Despite the considerable size of the training dataset, it might not 
fully encompass the diverse range of damage types and building characteristics, high-
lighting the need for additional data to improve the model’s comprehensiveness and 
precision. This necessity becomes even more pronounced when considering the vari-
ability in damage sources characteristic of different hurricanes. For example, the dev-
astation from Hurricane Sandy in 2012 was largely due to storm surge, whereas wind 
was the primary factor for Hurricane Harvey in 2017, and Hurricane Michael in 2018 
showcased the combined forces of wind and storm surge. To ensure the model’s effec-
tiveness across various scenarios, the dataset should include a broad spectrum of dam-
age instances. Moreover, the timing of image acquisition is critical; preferably securing 
images within 72 h post-hurricane is ideal for capturing the initial damages before any 
recovery efforts alter the scene. This approach guarantees that the training data accu-
rately reflects the direct consequences of hurricanes, which is essential for a precise 
assessment of their impact.

Reflecting on the scope for further advancement and acknowledging the current 
constraints of the proposed approach, the subsequent key areas are identified for future 
work:

•	 Incorporate a more diverse and comprehensive dataset that includes a wider variety of 
building types and damage conditions to reduce bias and improve the model’s robust-
ness.

•	 Move beyond binary classification by introducing a multi-tiered damage severity scale, 
which could provide a more detailed and accurate damage assessment.

Fig. 8   Example of damage data of the selected image
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•	 Developing an application for real-time damage assessment, to help emergency 
responders efficiently allocate resources and respond swiftly in the aftermath of a disas-
ter.

•	 Enhancing existing post-disaster data repositories by integrating our workflow and data 
viewer, enabling more effective data analysis and interpretation to aid recovery and 
planning.

•	 Building a larger, more inclusive database that captures a wide array of natural disas-
ters, aiming to improve the development of models capable of assessing damage across 
different disaster types for a global response initiative.
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