CATEGORIFICATION OF THE INTERNAL BRAID GROUP
ACTION FOR QUANTUM GROUPS I: 2-FUNCTORIALITY

MICHAEL T. ABRAM, LAFFITE LAMBERTO-EGAN, AARON D. LAUDA,
AND DAVID E.V. ROSE

ABSTRACT. We define 2-functors on the categorified quantum group of a simply-laced
Kac-Moody algebra that induce Lusztig’s internal braid group action at the level of
the Grothendieck group.

1. INTRODUCTION

Geometric representation theory has motivated the study of categorical representa-
tion theory. Rather than studying the action of Lie algebras g, or quantum groups
U,(g), on C(g)-vector spaces V with weight decompositions V' = @,V), categorical
representation theory studies the action of these algebras on graded additive categories
VY with decomposition into graded additive subcategories V = @,V,. Rather than
linear maps between spaces, Chevalley generators act by functors &1x: Vi = Viia,,
Fily: Vi — Vh_,, satisfying quantum group relations up to natural isomorphism of
functors. The novel and distinguishing feature of higher representation theory is that
the natural transformations between such functors contain a wealth of information that
is inaccessible within the realm of traditional representation theory.

Indeed, the essence of categorification is to uncover this higher level structure and
use it to further our understanding of traditional representation theory, as well as re-
lated fields. In this article we will focus our attention on the categorical representation
theory of the quantum group U,(g) associated to a simply-laced Kac-Moody algebra
g. Categorified quantum groups are the objects that govern the higher structure and
explicitly describe the natural transformations that arise in categorical representations.
More precisely, we focus on the higher representation theory of Lusztig’s idempotent
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form U := Uq(g). This is a version of the quantum group that arises in geometric rep-
resentation theory and is most appropriate for studying representations with integral
weight decompositions. For the precise definition of U, see Section 2.1.

In most instances when U admits a categorical action as described above, the natural
transformations between functors arise via the action of a categorified quantum group.
The latter is a graded, additive, linear 2-category Ug associated to g. The objects in
Z]Q are elements of the weight lattice A € X of g, and the 1-morphisms are generated
by Chevalley generators &1y: A — A+ a4, F;1a: A = A — ; and identity 1-morphisms
1,: A — A, ie. any l-morphism is given by a finite direct sum of grading shifts of
composites of these generators. The 2-morphisms specify maps between composites of
Chevalley generators. For example, there are 2-morphisms

X,’Z gz]_)\ — 511A<2>> and Tiji gigj]_)\ — gjgz']_)\<—0éi . Oéj>

where here, and for the duration, - denotes the symmetric bilinear form specified by
the Catan datum for g (see Section 2.1). A novel feature of the categorified quantum
group is its diagrammatic generators-and-relations description in which all 2-morphisms
are conveniently encoded in a 2-dimensional graphical calculus, e.g. the generating 2-
morphisms above have the following depiction:

X, = >\+oz]?>\ T, = )\+ozi+ozf>< A
i i J

Key features are that F; and &; are biadjoint, and endomorphisms of compositions of
&’s are given by the so-called KLR algebras developed in [18, 24, 26, 54, 55]. Taken
together, the relations on 2-morphisms provide explicit isomorphisms lifting relations
in U, and further guarantee that KO(UQ) ~ U, where, K, denotes taking the split
Grothendieck ring to decategorify. Otherwise, only shadows of this structure are visible
at the decategorified level, e.g. Lusztig’s canonical basis of U is recovered by taking the
classes in Ky(Ug) of indecomposable 1-morphisms in Uy.

Pioneering work of Chuang and Rouquier demonstrated the importance of the higher
structure in categorical representation theory [18]. At the heart of their work is a
beautiful categorification of the familiar fact that, in any integrable representation V' =
@A V) of sly, the Weyl group action gives rise to an isomorphism

tl: Vy i) V_\

between opposite weight spaces. In the quantum setting, the Weyl group for sl (i.e. the
symmetric group &3) deforms to the two strand braid group B, and the isomorphism
tl, can be written in a completion of U(sly) as the infinite sum

t1 { > pzo(—0) ' FOTEOL,, it A >0,
A= -

(11) Zazo(_q>—)\+aE(—)\+a)F(a)1)\’ if A < O’
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CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 3

where E@ = E%/[a]!, F\* = F?/[a]! are the so-called divided powers, and [a]! =
| - qZ__qulm are quantum factorials. Note that, when acting on an integrable module,
only finitely many terms in this infinite sum are non-zero. From the perspective of
categorification, the crucial observation about equation (1.1) is the occurrence of minus
signs.

For those initiated in the categorification doctrine, the occurrence of minus signs
immediately necessitates the departure from strictly additive categorification. That is,
we can no longer work with additive categories V,, as there is no categorical analogue of
subtraction therein. To accommodate such minus signs within a categorical framework,
one typically passes to derived, or more-generally triangulated, categories, where the
translation functor gives a categorical notion of multiplying by —1. One manner for
doing so is to take the categories of chain complexes Kom(V)) of the weight categories
V) in an additive categorification, and pass to their homotopy categories of complexes
Com(V,). See Section 3.4 for more details on homotopy categories of additive categories
and their Grothendieck groups; we note that we follow [5] in using the non-standard
notation Com to denote the homotopy category, so as not to confuse with our notation
K, for taking the Grothendieck group/ring. Under decategorification, the classes of
such complexes are equal to the alternating sum of the classes of their terms in Ky(V)).

The alternating sum in (1.1) suggests that a categorification of t1, might be achieved
using a chain complex whose differential is built from the 2-morphisms in Ug(sly).
Indeed, Chuang and Rouquier’s work determines chain complexes 71, and 7711}, the so-
called Rickard complexes, that lift t1, and its inverse t~'1, to the categorical setting [18].
The composition of complexes 77711, and 77!71, are both isomorphic to the identity
in Com(Ug(sly)), i.e. the complexes are homotopy equivalent to (but, in fact, not equal
to) 1, in Kom(Uq(sly)). Using this, Chuang and Rouquier lifted the Weyl group action
of sly to define equivalences

71,: Com(Vy) = Com(V_,)

lifting t1, (to be precise, Chuang-Rouquier originally worked in the non-quantum and
abelian/derived setting, with the extension to the quantum and triangulated setting
given in work of Rouquier [55] and Cautis-Kamnitzer [15]).

For general g, the corresponding Weyl group action on integrable representations
deforms to an action of the type-g braid group By in the quantum setting; we will
follow the standard terminology in referring to this as the quantum Weyl group action.
Analogous to the g = sl, case, this action lifts to highly non-trivial braid group actions
in categorical representation theory [15, 55]. To illustrate their far reaching impact in
mathematics, we recall just a handful of their many applications.

e Chuang and Rouquier use the equivalence induced by categorical sly actions on
derived categories of modules over the symmetric group in positive characteristic
to resolve Broué’s Abelian deffect group conjecture for the symmetric group
S, [18].
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e Cautis, Kamnitzer, and Licata use categorical sly actions to resolve a conjec-
ture of Namikawa [48] asserting the existence a of derived equivalence between
cotangent bundles of complementary Grassmannians 7*G(k, N) and T*G(N —
k,N) [16, 13]. These varieties are related by a stratified Mukai flop, and the
problem of constructing such equivalences had previously only been resolved
in the £ = 1 case [22, 47] and for G(2,4) in work of Kawamata [23]. More
generally, Cautis, Kamnitzer, and Licata construct categorical braid group ac-
tions on cotangent bundles to partial flag varieties and Nakajima quiver varieties
[15, 11, 10]

e Categorical representations of sl,,, and the associated braid group actions, can
be used to categorify the sl,, Reshetikhin-Turaev quantum link invariants via
a categorical analogue of the skew Howe duality between gl and gl, [16, 34,
49, 14]. This perspective has led to the solution of a number of conjectures in
link homology [53, 50], and provides a framework for connecting link homologies
defined using wildly different machinery [14, 34, 40].

At the decategorified level, the braid group action on integrable modules of Uq(g)
comes in several flavors

t;,el)\ = Z (_q)ebF’i(a)Ei(b)]-)\ — Z (_Q)EbEi(b)F’i(a)l)\,

(1 2) a,b;a—b=\; a,b;a—b=X\;
b= > (*EF L= Y (—oFYE",,
a,b;—a+b=\; a,b;—a+b=\;

where e = 41, see Section 2.3 for more details. Given the importance of these braid
group actions, it is natural to ask how the braid group action By on an integrable

module interacts with the U,(g) action. This was answered by Lusztig [37, Proposition
37.1.2], who showed that, for each node in the Dynkin'diagram t € I and e = +1,
there exist algebra automorphisms 7}, and T}, of U = U,(g) uniquely defined by the

condition that, for any integrable U-module V', any z € V, and u € 1, U1,, the following
equations hold

t/ elV( )’
T! (u)t! 15(2) = t;"el,,( ).

Related operators were studied in finite type in [58, 57, 35], then generalized to simply-
laced Cartan data in [36] and general Cartan data in [38]. See Section 2.4 for more
details.

The algebra automorphisms 77 , and T}, each define braid group actions on the algebra

uz
(1.3)
uz

U itself that we call the internal braid group action. This internal action plays an
important role, e.g. in the construction of the PBW basis for U. Lusztig goes on
to give precise formulas for the action of T, and T}, on the generators of U, that
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unsurprisingly involve minus signs, e.g.
! . . .
(1.4) T (1 (E5L) = EjEilg o) — BBl ifi-j = —1.

where here s; are the simple reflections in the Weyl group.
We now describe the results contained in this article. Throughout we let g be a
simply-laced Kac-Moody algebra.

1.1. Categorifying 7], and T}.. In Section 4 we define graded, additive 2-functors
T/, T : Ug — Com(Uy). To do so, we first assign explicit chain complexes to generating

,e?’ “1,e”

1-morphisms in U that lift the formulae defining T/, and T

to the assignment

7Z+1(5j1>\) & EEL, g i E&ilg, (1) ifi-j=-1,

e.g. equation (1.4) lifts

where (here, and throughout) & denotes the term in homological degree zero. Func-
toriality then requires that the composite xyl, of composable 1-morphisms y1, and
x1y is sent to the composition of chain complexes T/, (y1x)T;,,(1y), defined using
composition of 1-morphisms in UQ in a manner similar to taking tensor product of chain
complexes. To complete the definition of 7/, and 7;",, we then assign an explicit chain
map T, (a): T (21y) — T, (2'1)) to each generating 2-morphism «a: 1), — 21,

(2

in U, e.g. the 2-morphism X;: ;15 — &1,(2) is sent by T} 41 to

X

& EE1,0)(2) T EE14,)(3)
/ A ]
m(Arer )= 1] It
J 7 oq v ]
& EiEiL, ) — L&, (1)
;i

which is a chain map by the i # j dot sliding relation, see (5) in Definition 3.3. Finally,
we show that the images of relations in Z/{Q are satisfied in Com(Z/{Q) up to homotopy.
Proving that 7, , is a well-defined 2-functor requires an immense number of verifi-
cations. The diagrammatic relations defining I/{Q involve strands colored by the Dynkin
nodes of g, and depend on the adjacency of the colors involved. For example, the
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relation involving the greatest number of strands is:

tej if¢l=kand?-j=-1
A A= ¢ i |e
0Nk RN YY"

0 if 0L kor0-j#—1

where #,; is a scalar defined in Section 3.1. Showing that 7/, preserves this relation for
all 7 and all triples 7, k, ¢ requires considering all possible types of adjacency relations
between the nodes corresponding to i, j, k, ¢, requiring 27 essentially distinct case that
need to be verified. The complexity is further exacerbated by the fact that 7;,, often
only preserves a relation up to homotopy.

Unfortunately, we are not aware of a means to define the 2-functors lifting Lusztig’s
formulae without explicitly constructing the chain homotopies for each relation and
each possible coloring by nodes @ € I. We have made every attempt to provide sufficient
detail in this work to aid in any future applications of these 2-functors, and in particular
provide sufficient detail so that the relevant homotopies can be easily extracted.

Our main result in this article is the following theorem.

Theorem 1.1. Let g be a simply-laced Kac-Moody algebra, then there is an explicitly
defined 2-functor

T 1t Ug(g) — Com(Uy(g))

so that the induced map [T7.,] : Uy(g) = Kotlo(g)) — Ko(Com(lo(g))) = U,(g)
agrees with T7 .

At the level of 1-morphisms, such functors have already appeared at the categorical
level in [14, 15] and were given a geometric interpretation in [21, 20, 63, 64]; however,
to our knowledge, no information about extending these maps to 2-morphisms has ap-
peared previously. As such, Theorem 1.1 initiates the study of Lusztig’s operators at
the 2-categorical level. In fact, we conjecture much more. At the decategorified level,
Lusztig’s operators are invertible and satisfy the braid relations. These properties, com-
bined with our forthcoming work, stated in Theorem 1.4 below, suggest the following:

Conjecture 1.2. Let g be a (simply-laced) Kac-Moody algebra, then 7, extends to
an autoequivalence of Com(Xq(g)) so that the induced automorphism [T 1] of U,(g) =
Ko(Com(Uy(g))) agrees with T} 1. Moreover, the T/, satisfy the braid relations.

The extension (of domain) to the homotopy category is a problem in obstruction
theory that we plan to attack in future work. Having done so, the proof of braid
relations will be a straightforward (but tedious) check.
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CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 7

1.2. Symmetries and the internal braid group action. There are a number of
other (anti)linear (anti)automorphisms o,w,? defined on U, see section 2.2 for their
definitions. These (anti)involutions allow one to pass between the variants T}, and T},
of the internal braid group generators via conjugation, i.e.

(1.5) ol .o=T/, wTi w =T},
(1.6) YT =T _, VT =T ..

In [25] these symmetries were lifted to define 2-functors o, w, ¥ on a certain version of the
categorified quantum group. Each has a natural interpretation in terms of symmetries
of the graphical calculus for UQ, and, in the sly case, were extended to the homotopy
category of complexes in [5].

Recall (or see Section 3.1 below) that the definition of U requires a choice of scalar
parameters (Q; it was recently shown that there is a natural normalization for the cat-
egorified quantum group associated to an arbitrary KLR algebra and choice of @ [4].
This so-called cyclic version of UQ satisfies the property that diagrams that are planar
isotopic relative to their boundaries specify the same 2-morphism in UQ, a property that
only holds up to scalars in previous formulations. Given the utility of the cyclic version,
we also prove the following result, which defines these symmetries in this setting.

Theorem 1.3. There are invertible 2-functors o,w, v defined on the cyclic version of
the categorified quantum group Ug that categorify the symmetries o, w, 9, i.e.

o=, Wl=w [{=v
in Ko(Uo(g)) = U,(g).

Defining these 2-functors requires several subtle aspects involving the choice of scalars
@, so we include the details below in Section 3.5. Using these symmetries, we use the
categorical analogue of (1.5) to define the variants 7 ; and 7, of the internal braid
group action.

1.3. Compatibility with Rickard complexes. As noted above, the defining feature
of the internal braid group action at the decategorified level is its compatibility with
the quantum Weyl group action, given in equation (1.3). In a sequel to this paper [1],
we show that our 2-functors 7, satisfy an analogous compatibility with the Rickard
complexes.

To be precise, note that the first equality in equation (1.3) asserts that the actions of
the elements T (u)t; 1) and t] 1,u on the A weight space of any integrable representa-
tion agree for all v € 1,U1,. Equivalently, for any integrable representation V' = @, V),
there is an equality between the corresponding linear maps 1,Uly — Hom(Vj, V1))
At the categorical level, the operation of composing with the complex 7/, defines a
functor

7 111, (=)1x: Homy, (A, v) = Homcom(ug) (A, 5i(v))
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and we can similarly consider the functor 7/ (—)7; .1, which maps between the same
Hom-categories. The main result of [1] is the following:

Theorem 1.4. For all objects A, v in U, there is an isomorphism of functors
(1.7) 27 gL (5) I = T ()7 1

between Hom-categories Homy, (A, ) — Homcomuy) (A, 5i(v))-

1.4. Applications of the internal braid group action.

1.4.1. PBW basis and their categorifications. In finite type, Lusztig’s internal braid
group action can be used to deduce the quantum PBW theorem for U™ (g), provid-
ing a basis of monomials that are useful in many applications. The KLR algebra
provides a categorification of Ut (g) via its category of projective/finitely generated
modules [24, 26, 55]. Therein, the indecomposable projective modules correspond to
the canonical basis of Ut (g) [60], while the simple modules corresponds to the dual
canonical basis [7, 61]. At the categorical level, the analogues of PBW monomials lead
to a rich theory of standard modules for KLR algebras. In finite type, standard mod-
ules were first described in [30] (see also [6, 9, 19, 42, 43, 20]), and in affine type they
were studied in [31, 29, 59, 44]; in these studies, the focus has been on finding specific
modules over KLR algebras that lift a given PBW monomial. In forthcoming work [41],
McNamara plans to use our 2-functors 7;,, to build projective resolutions of standard
KLR modules, producing a categorical lift of Lusztig’s internal braid group construction
of the PBW basis, and giving a strengthening of Kato’s results on reflection functors
for KLR algebras [20].

1.4.2. Quantum Affine algebras. There is no obstruction to defining the 2-functors 7/,
in arbitrary symmetrizable type, except that the check of well-definedness is much-more
involved. For example, Lusztig provides the explicit formula

—i-l
(18) T (Bdy) = D _(—aV BV EET 10

=0
in arbitrary type (compare to equation (1.4) above), which suggests that the categorified
Lusztig operator 7;; should send &1, to a complex of length 1 —i- /. It is not difficult
to specify a complex lifting equation (1.8), e.g. we could set

T (&) = REET1 sz““ ﬁ’g &\5” 1o, 09 (—i-0).

Lson

Here, the terms in the differential are given using the thick calculus from [27], and an
easy computation therein verifies that they square to zero. The appearance of com-
plexes containing more than two non-zero terms suggests that even more of the defining
relations in UQ may be preserved by 7, only up to homotopy, exacerbating the difficulty
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of checking that these 2-functors are well-defined. Despite this, we note one interesting
application of an extension of our 2-functors to non-simply-laced type: it may be possi-
ble to promote Beck’s description [3] of the loop presentation of affine algebras in terms
of the internal braid group action to the categorical level, giving a categorification of
affine algebras in their loop realization.

1.4.3. Link invariants and skew Howe duality. As referenced above, one can study the
sl, quantum link invariants via U(s[m) representation theory using quantum skew Howe
duality. The latter is the quantum analogue of the duality arising from the commuting
actions of U(sl,,) and Ul(sl,,) on the quantum exterior power AN (CTr®C7). The s, link
invariants admit a formulation in terms of MOY calculus [46] and sl,, webs [32, 28, 45],
certain trivalent graphs which specify the morphisms in a diagrammatic description of
the category of U(sl,) representations.

Cautis, Kamnitzer, and Morrison show that skew Howe duality admits a graphical de-
scription in terms of so-called ladder webs, and use this to give an entirely diagrammatic
description of the full subcategory of quantum sl, representations tensor generated by
the fundamental representations [17]. In this formulation, skew Howe duality specifies a
representation of U(s[m) in which an sl,,, weight A = (A, Ao, ..., \,_1) is sent to the to
the m-tuple (ay, as, ..., a,) that satisfies 0 < a; <mn, >." a; = N and \; = a; — @41,
and weights not satisfying these conditions are sent to zero. This representation maps
the generators of U(sl,,) as follows:

a;+r a;41—"r a;—r a;41+r
1)\ )_) I. | .I ’ E’l(r)]_)\ '_> I’ | .I H I ‘ ‘I ’ F;(T,)]_)\ )_) I’ | .I H I | ‘I
ar  am

al ai—1 a; Qi+l Ai+2 aOm alp ai—1 a; Qi+l Ai+2 aOm

Under this representation, the braiding on the category of U(s[n) is given by the quan-
tum Weyl group action, i.e. diagrammatically, we have:

o e PTATT enn X

Aj—1 a; Gi410;4+2 am ai—1 a; Ai+1ai42 am

In this way, these link invariants can be computed and studied via the elements in
U(sl,,) corresponding to a given link diagram.

Under this correspondence, the internal braid group action plays an interesting role
in the diagrammatic description of quantum sl,, link invariants, as equation (1.3) shows
how to slide the image of an arbitrary element u € U(s[m) through a crossing, i.e. it
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T T'\KT T T...TE,H&)T...T

al Ai—1 Q5 Qi1 Ai42 am al Ai—1 Q5 Qi41 Ai+42 am

gives the equality:

where he we abuse notation in denoting elements in U(s[m) and their images under the
skew Howe representation via the same symbols.

This entire story lifts to the categorical level, allowing for the study of Khovanov [34]
and Khovanov-Rozansky homology [14, 49] following Cautis, Kamnitzer, and Licata’s
pioneering work in using categorical skew Howe duality to study algebro-geometric
categorifications of the sl, link polynomials [16]. The crucial point is that equation
(1.9) lifts to map the Rickard complexes to the chain complexes assigned to crossings
in sl,, link homology.

In the foam-based description of link homology [2, 39, 49], categorical skew Howe
duality maps generators in UQ (sl,) to explicit s, foams, certain singular surfaces that
categorify sl, webs. Theorem 1.4 then explicitly shows how to slide not only webs, but
also foams mapping between them, through crossings in sl,, link homology. At the level
of 1-morphisms (webs), this interaction is key to the stability results used to define s,
analogues of Jones Wenzl projectors [56, 14, 52], and we anticipate that our extension
to the level of 2-morphisms will prove useful for future arguments in link homology.
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and Mikhail Khovanov; the authors sincerely thank him for his generosity with ideas.
We also thank Andrea Appel, Ben Elias, and Peter McNamara for valuable discussions.
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H-98230-17-1-0211, and Simons Collaboration Grant 523992.

2. THE QUANTUM GROUP AND LUSZTIG SYMMETRIES

2.1. The quantum group U,(g).

2.1.1. Root datum. For the remainder of this article we restrict our attention to simply-
laced Kac-Moody algebras. These algebras are associated to a choice of simply-laced
Cartan datum consisting of

e a finite set I, and

e a Z-valued symmetric bilinear form - on ZI satisfying ¢ -« = 2 for all : € I and

i-j€{0,—1}fori#j

and root datum given by:

e a free Z-module X, called the weight lattice,



w N

© 0 N o o »

11

12
13
14

15

16
17

18
19

20

21
22
23
24
25
26

27
28
29
30

CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 11

e a choice of simple roots {o;}ier C X and simple coroots {hi}ier € XV =
Homy (X, Z) that satisfy (h;, o) = 27, where here (-,-): XV x X — Z is the
canonical pairing.

In this case, a;; := (hi, ;) = i -J, 80 (a;)ijer is a symmetric generalized Cartan
matrix. Given an arbitrary weight A\ € X, we will often abbreviate (h;, A) by either
(i, \) or simply by \;. We let {A;};e; C X denote the fundamental weights, which are
characterized by the property that (h;, A;) = d;; for all 4,j € I.

We let X+ C X denote the dominant weights, which are those of the form ) . \;A;
for \; > 0. Associated to a simply-laced Cartan datum is a graph I" without loops or
multiple edges, with a vertex for each ¢ € I and an edge from vertex ¢ to vertex j if and
only ifi-j = —1.

2.1.2. The simply-laced quantum group. The quantum group U = U,(g) associated to
a simply-laced root datum is the unital, associative Q(q)-algebra given by generators
E;, F;, K, fori e I and p € XV, subject to the relations:

(a) Ko =1and K,K,, = K, 4, for all p,p// € XV,

)
(b)KE—q“’O‘ZEK forallie I, pe XV,
¢) K, F,=q W FK, foralliel, pe XY,
)
)

-1
d) E;F; — FjE; = 0, Kzi qil , where we set K; := K}, and
(e) for all i # j
S (—)'EYEEY =0 and > () EYREY =0
a+b=—(i,0;5)+1 a+b=—(i,0;5)+1
where E{ = E¢/[a]l, F*) = F#/[a]!, and [a]! = []},_, £=L"

2.1.3. The integral idempotented form of quantum group. We will work with the idem-
potent form of U, which is adapted to the study of U-modules with weight space
decompositions. ThlS non-unital algebra is equipped with a collection of orthogonal
idempotents, hence can be described as a Q(q)-linear category U = U, (g), defined as

follows. The objects of U are elements of X, and the Hom-space between \,v € X is
defined to be

U\ v) :=U/ ( S UK, — ¢+ > (K, - q<“’”>)U> .

nexy nexy
The identity morphism of A € X is denoted by 1, and we will typically abbreviate
the element 1,21, € U(\, 1) determined by x € U by either 1,2 or z1,, e.g. we have
Eily =1 44, E; and F;1) = 1,_,,F;. Composition in U is induced by multiplication in
U, ie
(1,21,)(1,y1y) = 1,2yly
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1 forz,y € U, A\, u,v € X. The idempotent form U admits an integral form, defined as

2 the Z[q, ¢ ']-lattice 4U C U spanned by products of divided powers E“1, and Fi(a)l A\

7

2.2. (Anti)linear (anti)automorphisms of U. There are several Z[q, ¢~']-(anti)linear

(anti)automorphisms that will be used in this paper. For f € Q(q), let f + f be the

5 Q-linear involution of Q(q) that sends ¢ to ¢~

e The Q(g)-linear algebra anti-involution g: U — U is given by
o(E)=E; , o(F)=F, , o(K;) =K,
o(fz) = fa(z) for f € Q(g) and z € U,
o(zy) = a(y)a(z) forz,y € U.

e The Q(g)-linear algebra involution w: U — U is given by
wE)=F , wF)=FE , wkK;=K",
W(fx) = fw(x) for f € Q(q) and x € U,
w(zy) = w(z)w(y) forz,y e U.

e The Q(g)-antilinear algebra involution ¢: U — U is given by

V(E)=E; , Y(F)=F V(K;) = K,

Y(fr) = fo(x) for f € Q(¢) and z € U,
Y(zy) = Y(2)Y(y) forz,y € U.

These (anti)linear (anti)involutions pairwise commute and generate the group G =
7 (Z3)? of (anti)linear (anti)automorphisms acting on U. The (anti)involutions ¢, w, and
8 1 all extend to U and 4U by setting

o(ly)=1n, wly) =15, (1)) =1\

o and taking the induced maps on each summand 1, Ul1,.

=]

2.3. Quantum Weyl group action on integrable U-modules. Let V = @,V, be
an integrable U-module, then, for e = +1, Lusztig 37, 5.2.1] defines linear maps t; ,
ti.: V=V by

t(2)= Y (—1)hgleet? FORYEE,
a,b,c;a—b+c=X\;
t7.(2) = ST~ EQFO B,

a,b,c;—a+b—c=M\;
for z € V) that are commonly called the quantum Weyl group elements. They are
mutually inverse automorphisms (specifically, they satisfy t; .t/ . =1Id =t __t; ) that
satisfy the relations

t tht =ttt and t/t/ t/ =t/ t/t" ifi-j=—1

i,ej,ei,e 7,e " i,e"j,e i,e"j,e"i,e 7,ei,e-j,e
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ttth =ttt and tVt]_ =ttt/ ifi-j=0

276 ]76 ]76 Z7e Z7e ]76 ]76 276

and thus define an action of type g braid group on any integrable module [37, Theorem
39.4.3]. This action on a particular weight space can be conveniently described by the
infinite sums

t) 1, = Z (—1)bge-aetd) p@ pO) ple)q
’ a,b,c;a—b+c=\;
t! 1y = S (e EY EY B,

a,b,c;—a+b—c=X\;

of elements in U, from which the maps t; . ;t;. can be recovered by taking the sum over

all A € X. It was shown in [17, Lemma 6.1.1] that these elements admit the simpler
form given in equation (1.2) above, i.e. in fact all terms with ¢ # 0 cancel.

2.4. Lusztig’s internal braid group action. For each ¢ € I and e = +1, Lusztig
defines algebra automorphisms 7], and T}, of U = U,(g) defined uniquely by the
compatibility with the quantum Weyl group action given in equation (1.3) above. They
are given explicitly in [37, 41.1.2] by

T (1x) = 15,00

(g CPIEF,, 0 if i = ¢
Til’e(EglA) =4 BBl — BBl ifi-f=-1
(2.1) ( Eels, ) ifi-0=0
( —qe()‘i)Eilsi()\) ifi=1¢
Tz'/,e(FélA) = FiF g0 —q “FiFilg ) ifi-£=-1
| Filoo ifi-0=0

and

T7. (1)) = g,

(g QD1 ifi=1¢
TI(Ely) = BBl —q BBl ifi-f=—1
| Eelyn ifi-£=0
("M 2B, 0 if i =1
T (Fely) =  FiFilso) — ¢°FiFlg 0y ifi- 0= —1
| Felaon ifi-0=0

8 where s; is the Weyl group element corresponding to the simple root «, ie. s;(\) =

A — (i, \)oy. Lusztig further shows [37, 41.1.1] that (7},)"' = T}’_,, and that these

7_67

10 automorphisms interact with the automorphisms from Section 2.2 as in equation (1.5)
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above. As a consequence, we see that both T} and T}, are invariant under conjugation
by the triple composite ocw).

In what follows, we focus our attention on the automorphisms T},, since similar
results can be deduced for T} |, T/}, and T} _, using equation (1.5). When the context
is clear, we will abbreviate 77, by Tj. In [37, 39.2.4 and 39.2.5], Lusztig shows that the
T! satisfy

T/TIT! = T/TT, ifi- £ = —1
T/T) =T)T, ifi- (=0

and hence defined a type g braid group action on U.

3. THE CATEGORIFIED QUANTUM GROUP

In this section, we recall the definition of the categorified quantum group Ug(g),
specifically the cyclic version from [4], and establish a number of additional properties
needed for our arguments.

3.1. Choice of scalars ). Let k be a field, not necessarily algebraically closed, or
characteristic zero.

Definition 3.1. A choice of scalars () associated to a simply-laced Cartan datum,
consist of elements {t;;}; jes satisfying:

o t; =1foralli eI and t;; € k* for ¢ # j,

[} tij = tji when Q5 = 0.

We say that a choice of scalars @) is integral if t;; = +1 for all 4,5 € I.

The choice of scalars ) controls the form of the KLR algebra R that categorifies
the positive half of the quantum group U, and the 2-category Ug(g) is governed by the
products v;; = ti_jltji taken over all pairs ¢, j € I, which can be viewed as a k*-valued
1-cocycle on the graph I' associated to the Cartan datum.

Definition 3.2. A choice of bubble parameters C consists of elements ¢; y € k* fori e I
and A € X. We say that they are compatible with the scalars @) if

(31) Ci7)\+aj/ci7)\ = tij-

Given any choice of scalars (), we obtain a compatible choice of bubble parameters by
fixing c; » for a representative in every coset of the root lattice in the weight lattice, and
then extending to entire weight lattice using equation (3.1). For a compatible choice,
note that the bubble parameters remain constant along an sly-string since

n
Cixtna; = Li;Cix = Cix.
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3.2. Definition of the 2-category Uy(g). Recall that a graded linear category is an
additive category equipped with an auto-equivalence (1) called the shift (see e.g. [2]),
and a graded additive 2-category is a category enriched in graded linear categories.
Throughout, we will use (t) to denote the auto-equivalence given by applying (1) ¢
times, and (—t) to denote the auto-equivalence obtained by applying the inverse of (1)
t times.

[ N B L I \C I

Definition 3.3. Fix a choice of scalars () and compatible bubble parameters C', then
8 the 2-category Ug := Uy'(g) is the graded linear 2-category with:

~

9 e Objects: A € X,
10 e l-morphisms: formal direct sums of shifts of compositions of the generating
11 1-morphisms:
1y, Lo = Laya,&ila = &1y, 1o, Fi = Lo, Fily = Fily
12 fori e [ and A € X.

e 2-morphisms: Hom-spaces are k-vector spaces spanned by (horizontal and ver-
tical) compositions of the following decorated tangle-like diagrams.

e p AL S ELQ) e
A><; A EELL = EELN(—i - ) }{j N FiFil, = FiFdy(—i- j)
Ko R E T Xt EFLy o FiEd,
i ] T ]
kif 1, = FEL(L+N) ’&ZJ 1y = EFL(1I—N)
A A
N REL = L1+ A EFL = (1= )

13 Note that we follow the grading conventions in [12, 34], which are opposite to those
14 from [25]. We read such diagrams from right to left and bottom to top, and the identity
15 2-morphisms of the 1-morphisms &;1, and F;1, are depicted by upward and downward
16 oriented segments labeled by 7, respectively.

17 The following local relations are imposed on the 2-morphisms.

18 (1) Right and left adjunction:
Aty A+ ;| A Aty
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% N )\%)\—Fai
)\+ai )\ )\—I—Oéz

MA
)\‘FO&Z'

(2) Dot cyclicity:

)\m
)\—l—Oéi

(3) Crossing cyclicity:

Do
i J

<

et

J

. M

The next three relations imply that the £’s (and F’s) carry an action of the
KLR algebra associated to Q).

(4) Quadratic KLR:

(5) Dot slide:

( 0 if i = 7,

tij ifi-j =0,
i J

t;j + ty ife-7=-1
L i j i J
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(6) Cubic KLR:

AT A= il i
i J lk il J k

0 ifi£kori-j#—1
(7) Mixed EF: fori # j
51 )
i j il |7 i J il |J
(8) Bubble relations:
A .
i ~ Jeipldy, ifm=0 i A B c;ildh ifm=0
A Vem |0 if m<0 B e S N if m<0

(9) Extended sl relations:
These final relations are the most-involved, and require the introduction of fake
bubbles — positive degree endomorphisms of 1, that are denoted by a bubble
carrying a formal label by a negative number of dots. They are defined by

A —en > Q A@ if0<j<—X\+1

Z‘ b
G = at+b=j MN—14+a —X\j—1+b
b>1

i 0 if <0,

when \; < 0, and by

S
0 Vo —adl X Ty ) io<j<n+1

a+£Tj Ai—1+a —X\;i—1+b
—Xi—1+j ez cp -
I 0 if 7 <0.

when A; > 0. The extended sl, relations are then as follows, where we employ

the convention here (and throughout) that all summations are “increasing”, i.e.
Z Xap,e is zero if pp < 0.

a+b+c
=

P

-2 2g
Al i i atbte  —NiTltb

=Nl Ty
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Al

)\ %
g
. i i a+b+c Ai—1+b

7 % ST Cﬂi
Remark 3.4. We will find it helpful to work with the reduced presentation for U
where we restrict to the following generating 2-morphisms:

Aoy /+\ A 811)\ — 521)\<2> />< G gigjl)\ - 89521)\<—Z ,]>
i i J
NI 1, = F&ELL(1+ N) o 1, = EF1(1—N\)
oA oA
\[i\ )\Egll)\—)l)\<1—|—)\z> /Z\/)\glfll)\—)l)\<1—)\l>

Indeed, the downward dot 2-morphism and sideways and downward crossings can be
defined in various ways by composing the upward versions with caps and cups, and
the cyclicity relations show that they do not depend on the choices made in doing so.
Further, Brundan [8] has shown that this presentation can be further simplified to agree
with the one given by Rouquier [54] that requires a smaller set of axioms, together with
the requirement that certain 2-morphisms are (abstractly) invertible. Although this
further reduced presentation is helpful in checking that biadjointness and cyclicity hold
in various 2-representations, it is not useful in our present work, as showing that the
required maps are invertible essentially requires verifying the omitted axioms in U.

3.3. Additional relations in Uy. Here, we collect additional useful relations that will
be used in later sections.

3.3.1. Curl relations. Dotted curls can be reduced to simpler diagrams using the fol-

lowing.
)\ fli )\ )\ Z)\ g1
SRR D D ol o I

i fi+f Ai—1+f2 B g1+g2 —Xj—1+go
=m—\; =m+X\;

7

Note that in [33, 12] the m = 0 cases of these relations were included in the defining
list of relations, but it was shown in [4, Lemma 3.2] that these relations (for arbitrary
m) follow from the relations presented above.

3.3.2. Infinite Grassmannian relations. These relations are obtained by equating the
terms homogeneous in ¢ in the expression below.

A A A D
X +1F t++ X2 ta+---) <Q1+Q t+---+:{} ta+---)=1dh

—Ai—1 —Ai—1+1 —Ai—1l+a i—141 i—14a
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For low powers of ¢, these relations encode the definition of fake bubbles in terms of
(real) bubbles, and, for higher powers of ¢, they follow from the curl and extended
slo-relations.

3.3.3. Bubble slides. In what follows, we make use of the shorthand notation for bubbles
from [27]

A A A A
P e (i,\)— 14« P e —(5,\) =14«

As long as a > 0, this notation makes sense even when # + o < 0, in which case these
are the fake bubbles defined in the previous section.

Counterclockwise bubbles can be slid through upward oriented lines via the following
relations:

( a )\'—i—Oé] a—f
f;o(oz—l—l—f)Q { if 1 =

NS
A A+ A+
%\ % = tU Y %\ Q { if Ai5 = 1
‘ L RN} L S’ Ata—1
J J
A+
tij v % if a;; =0
Q-i—a
\ J

A+ Q; A+ (a—2) M+(a—1) +a
? — J J J
o L
A tij' fzzo(_ti_jltji)f if a; = —1
A+(a—f)
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and we have similar relations involving clockwise bubbles:

( A
« a—f
Z(a+1— )Wt C if i =j
A
\ A A
Z:: % = ti % @ + t,j%\ 1 if a;; = —1
Ma—1 Ao
[ RNl ; j
j A
%\ y if Q5 = 0
[ Bxet
(At ) )\+a2{ )\+al+
i — 27 Q if i = j
A ;@((;_2) % M(a—1 Ao |
i — j
%\ Q N ’ o )\ + Q; f
l R -1 -1 g . .
j tij fZ:O(_tij tj,-)fQ f % if a;; = —1.
J

\

Both types of bubbles can then be slid through downward oriented lines using these
relations and the cyclicity of Ug(g).

3.3.4. Triple intersections. We have

(3.2)

i NGk il ¥ Nk

( A o

i
3 @ DN L O S T
atbtetrd Wb atbtetd . LR
=Ny [ T ey
0 else

\

which is [33, Proposition 5.8] when i = j = k, and follows from cyclicity, the mixed EF
relation, and the cubic KLR relation in the other case.

3.4. The 2-categories U, Kom(Uy), and Com(Uy)).

3.4.1. Categories of complezes. Given an additive category M, we let Kom(M) denote
the category of bounded complexes in M. By convention, we work with cochain com-
plexes, so an object (X, d) of Kom(M) is a collection of objects X' in M together with

maps

LE = (R G
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such that d;;1d; = 0 and only finitely many of the X%s are nonzero. A morphism
f:(X,d) = (Y,d') in Kom(M) consists of a collection of morphisms f;: X’ — Y in
M such that fi+1di = d;fl

Recall that morphisms f,g: (X,d) — (Y,d) in Kom(M) are called (chain) homo-
topic, denoted by f ~ g, if there exist morphisms h’: X* — Y1 such that f; — ¢; =
hitid; + d,_,h' for all i. A morphism of complexes is said to be null-homotopic if it is
homotopic to the zero map.

Definition 3.5. The homotopy category Com(M) is the additive category with the
same objects as Kom(M) with morphisms given by morphisms in Kom(M) modulo
null-homotopic morphisms.

We say that two complexes (X,dx) and (Y,dy) are homotopy equivalent provided
they are isomorphic in Com(M), and denote this by X ~ Y.

If M is monoidal, then Kom(M) is also monoidal, with the tensor product (XY, d)
of (X,dx) and (Y, dy) defined as follows:

(3.3) (XY)' = € XY, di= Y (dx),Idys + (—1)"Tdxr(dy)s

r4+s=t r4+s=t
Here, we denote the tensor product of objects and morphisms in M by juxtaposition.
Given chain maps f: (X,dx) — (X', dx/) and g: (Y,dy) — (Y’,dy+) define the tensor
product fg: (XY,d) — (X'Y’,d’) of chain maps by setting

(3.4) fi= D fo.

r4+s=1i
It is straightforward to check that if f ~ f" and g ~ ¢/, then fg ~ f'¢’, so Com(M)
inherits a monoidal structure from Kom(M).

Remark 3.6. More generally!, if C is an additive 2-category, we can consider the 2-
categories Kom(C) and Com(C) obtained by taking complexes in each Hom-category.
The above description of tensor product of complexes specifies how to take horizontal
composition in Kom(C) and Com(C).

3.4.2. Karoubi envelope. The Karoubi envelope Kar(M) of a category M is the univer-
sal enlargement of M in which all idempotents split. Recall that we say an idempotent

e: b — bin a category M splits if there exist morphisms b % v/ 2y b such that e = hg
and gh = Idy. The Karoubi envelope Kar(M) admits an explicit description as the
category whose objects are pairs (b, e), where e: b — b is an idempotent of M, and
where morphisms are triples of the form

(e, f,€): (be) = (V,¢)
for f: b — bV in M satisfying f = €¢'f = fe. Composition is induced from composition
in M, and the identity morphism is (e, e, e): (b,e) — (b, e).

IRecall that a monoidal category can be interpreted as a 2-category with only one object.
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The identity map Id,: b — b is an idempotent, and the assignment b — (b,1d,)
defines a fully faithful functor M — Kar(M), and this functor is universal among
functors from M to idempotent split categories. If M is additive then so is Kar(M)
and this embedding is additive; in this case, for (b,e) € Kar(M), we have that b =
im e @ im (Id, — e) where im e := (b, e). See [33, Section 9] and references therein for
more details.

The following result shows that the Karoubi envelope interacts nicely with passage
to (homotopy) categories of complexes.

Proposition 3.7 ([5, Propositions 3.6 and 3.7]). For any additive category M there is
a canonical equivalence Kom (Kar(M)) = Kar (Kom(M)). Moreover, if M is k-linear
with finite-dimensional Hom-spaces, then there is a canonical equivalence Com (K ar(M))

Kar (Com(M)).
3.4.3. Karoubi envelope of Ug.

~

Definition 3.8. The additive 2-category Z]Q has the same objects as Uy and has Hom-
categories given by Ug (A, X') = Kar (Ug(\, N)).

Horizontal composition in Uy is induced from composition in Uy using the universal
property of the Karoubi envelope, and we similarly obtain an additive, fully-faithful
2-functor Uy — Z]Q that is universal with respect to splitting idempotents in the Hom-
categories Ug (X, ). The significance of the 2-category Uq(g) is given by the following
theorem.

Theorem 3.9. ([33, 25, 62]) There is an isomorphism : 4U = Ko(Uy(g)) where
Ko(Ug) denotes the split Grothendieck ring of Uy,.

For g = sly, this theorem also holds over Z by the results in [27].

3.4.4. Karoubian envelopes of Kom(U) and Com(U). Following Remark 3.6 above, we
consider the 2-categories Kom (i) and Com(Ug). Noting that the 2-Hom-spaces U (x, y(t))
are finite-dimensional k-vector space for each t € Z, Proposition3.7 gives equivalences

Kar(Kom(Up)) = Kom(Ug) , Kar(Com(Uy)) = Com(Uo).

We arrange the various 2-categories built from Uy into the following organizational
diagram, wherein the horizontal arrows denote passage to the Karoubian envelope, and
vertical arrows denote the canonical maps between the various categories of complexes.

Z/{Q( Z/{ = KCL’/‘(UQ)

[

Kom(Uy) ——— Kom(Uy) = Kar(Kom(iA))

| !

Com(Ug) —— Com(Uqg) = Kar(Com(U))
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Theorem 3.9 and the main result of [51] imply that
Ko (Kar (Com(Up))) = Ko (Com (Kar(Uy))) = Ko (Kar(Uy)) =2 Ko(Ug) = AU

where we employ the triangulated Grothendieck group for the categories of complexes.
We can hence view the Karoubi envelope of the homotopy category Com(Uy) as a

categorification of the integral idempotent form 4U of the quantum group.

3.5. Symmetries of Categorified Quantum Groups. In this section, we use sym-
metries of the diagrammatic relations in Uy to define 2-functors o, w, and ¢ (for a
general choice of scalars () and bubble parameters C') that lift the symmetries of quan-
tum groups from Section 2.2 This extends the work of Khovanov and Lauda in [25],
who defined such functors in the specific case where ¢;; =1 = ¢; ) for all 7,5 € I and
A € X. These 2-functors extend naturally to 2-functors on Uy, Kom(Ug), and Com(Uy)
[5], and induce the corresponding quantum group symmetries ¢, w, and ¢ on AU upon
passing to K. For this reason, we refer to them as symmetry 2-functors.

Rather than being 2-endofunctors of Uy, some of these symmetries map between
versions U and U, of the categorified quantum group corresponding to different bubble
parameters. (Caveat lector: Ug, should not be confused with U from [12] which instead
corresponds to a different choice of scalars @).) We define U, to be the 2-category given
in Definition 3.3, but with the bubble parameters for Uy replaced by primed bubble
parameters (¢; )" 1= cl_i - The primed bubble parameters are still compatible with the
choice of scalars @) (used for both Uq and Ug,), since

(Cirta;) B Ci_,i(Haj) _ Ci—a

(Ci,)\>/ B Ci_,i)\ B Ci,—)\—aj

- tzj

In addition to mapping between versions of the categorified quantum group correspond-
ing to different bubble parameters, the symmetry 2-functors possess various flavors of
contravariance. Nevertheless, they are morally pairwise-commuting involutions, as the
double application of a given symmetry is the identity and the result of a composition
does not depend on the order, despite the domain and codomain being different versions
of the categorified quantum group. Given this, we will slightly abuse notation and refer
to the symmetry and its inverse by the same symbol.

3.5.1. Forms of 2-categorical contravariance. Recall that a contravariant functor C —
D can be rephrased in terms of a (covariant) functor C — D°P, where D°P is the opposite
category, defined to have the same objects as in D, but with D°P(x,y) := D(y, z), i.e.
the direction of the morphisms is opposite to that in D. For a 2-category C, we can take
the opposite 2-category in various ways, depending on whether we take the opposite at
the 1-morphism or 2-morphism level (or both). Denote by C°P the 2-category with the
same objects as C, and where we’ve taken the opposite with respect to 1-morphisms,
i.e. for objects x,y in C, we let the Hom-categories be given by C°(z,y) := C(y, x).
Let C® denote the 2-category with the same objects and 1-morphisms as C, but with
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opposite 2-morphisms, i.e. for objects z,y in C, we let the Hom-categories be given by
C(z,y) := C(z,y)°®. Finally, C®°P is the 2-category in which we've taken opposite
1-morphisms and 2-morphisms, i.e. C°P(x,y) := C(y, ).

In the case of Uy, functors between these opposite 2-categories correspond to Z[q, ¢~}
(anti)linear algebra (anti)automorphisms of AU upon taking the Grothendieck group,
as summarized in the following table:

‘ 2-functor ‘ Induced map on 4,U ‘

Ug — Uy | Z[g,q ']-linear homomorphism

Uy — U | Z[q, ¢~ ']-linear antihomomorphism

Ug — UG Zq, ¢~ ']-antilinear homomorphism
lg. a7

]
Uy — U o | Z !]-antilinear antihomomorphism

In the following sections, we will explicitly describe o, w, and . To do so, we will
use the notational convention from [25] that £_; := F;.

3.5.2. The 2-functor o: Uy — (L{é)OP. Consider the operation on the diagrammatic
calculus or U that reflects a diagram across a vertical axis, replaces A <> —\, and scales
all 72-crossings by —1. This operation is contravariant for composition of 1-morphisms,
covariant for composition of 2-morphisms, preserves the degree of a diagram, and takes
relations in Ug to those in U,. As such, it defines an invertible 2-functor given explicitly
as follows:

o: Uy — (UH)™
A =
1,0, 8wy Exi 1n(t) = 10\Euiy -+ - ExiyExiy 1, (8)

D S O O O I e S S CR VL

i J J i i ] J i

Y i i i i —\
e A m%qu,%HuAMNHm

TeT 3t Iel, tee

This extends to a 2-functor o: Kom(Ug) — Kom(U, )P defined on 1-morphisms via

(=1 o(di—1) (=1)o(ds

(X@H(H%dWﬂ o (X) )amMy+~)
and on 2-morphisms by applying ¢ component-wise. The alternating differential is
essential here to preserve composition of 1-morphisms (contravariantly), due to the sign

conventions in taking horizontal composition of complexes.
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3.5.3. The 2-functor w: Ug — Ug,. Consider the operation on the diagrammatic calcu-
lus for U that reverses the orientation of each strand, replaces A <+ —\, and scales all
1i-crossings by —1. This operation is covariant for composition of both 1-morphisms
and 2-morphisms, preserves the degree of a diagram, and takes relations in U to those
in Ug,. This defines an invertible 2-functor given explicitly as follows:

w: Z/{Q — Z/{é
A= =)
1,848, Exiny IN(t) = 1844, Exiy -+ - Exiy Loa (D)

)

i ] i ] v ] v ]

A - i i i i A -\
i i A —A A A i

[ e R e

This again extends to a 2-functor w: Kom(Uy) — Kom(U,) defined on 1-morphisms via

w(di—1) w(d;)

(X,d) — (---—)w(Xi_l) w(Xi) w(Xiﬂ)_)___)

and on 2-morphisms by applying w component-wise.

3.5.4. The 2-functor v: Uy — (Ug)®. Consider the operation on the diagrammatic
calculus for Uy that reflects a diagram across a horizontal axis, and reverses the ori-
entation. This operation is covariant for composition of 1-morphisms, contravariant
for composition of 2-morphisms, and preserves the relations in Uy. It determines an
invertible 2-functor given explicitly as follows:

Vi Ug — (Ug)™
A=A
1,800, 8xiy - Exin, 1n(t) = 1,810, Exiy -+ - Exi, In(—1)

S S S R G

) J

A i i i i A
QH?UA ) UAHmfa UH(\A c e

[ e R A R

DG T O O S O e R O GV
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Note that 1 must negate grading shift in order to be degree-preserving, due to 2-
morphism contravariance. As such, it descends to an antilinear map on the Grothendieck
group. This extends to a 2-functor ¢: Kom(Uy) — Kom(Ug)® given on 1-morphisms
by

) P(d;) P(di—1)

and on 2-morphisms by applying ¢ component-wise. Implicit in this formula is that
negates the homological degree, i.e. for (X,d) in Kom(U) we have (X)" = (X 7).

3.5.5. Properties of symmetries of categorified quantum groups. The symmetries o, w,
and ¢ are graded, additive, k-linear 2-functors, and it is immediate from their definitions
that each squares to the identity. Moreover, the induced 2-functors on categories of
complexes descend to homotopy categories. The following result is immediate from the
above definitions.

Theorem 1.3. Under the isomorphism Ko(Ug) = 4U = Ko(aé?) (see Theorem 3.9),
the 2-functors defined above descend to the corresponding symmetries: [o] = o, [w] =

w, Y] = .

Remark 3.10. The symmetry wt (which reflects a diagram across a horizontal axis,
sends A to —A\, and scales all ii-crossings by —1) is closely related to the Chevalley
involution introduced in [8]. There, Brundan uses this to move between the 2-categories
UG and Ug associated to different choices of scalars. In the cyclic setting, changing the
choice of scalars from ) to @)’ is no longer necessary, provided we change the choice of
bubble parameters from C to C’ as above.

4. DEFINING THE CATEGORICAL LUSZTIG OPERATOR T/,

In this section, we explicitly define additive, k-linear 2-functors T/, : Uy — Com(Uq)
for each ¢ € I. In Section 4.1 we define 7;; on objects and generating 1-morphisms,
and extend via additive 2-functoriality to all 1-morphisms, i.e. we send the horizontal
composition of generators to the appropriate horizontal composition of the complexes
giving their images, via equation (3.3), and map direct sums to the corresponding direct
sums. In Section 4.2, we extend this definition to the 2-morphisms in Uy, assigning
explicit chain maps to generating 2-morphisms, again extending to all 2-morphisms as
required by additive 2-functoriality.

Section 5 is then devoted to showing that 7, is well-defined, i.e. showing that it
preserves all defining relations on 2-morphisms of ¢, up to chain homotopy. We also ex-
plicitly compute the chain homotopies involved. We note that this check is considerably
lengthened due to the many relations that must be checked, and the piecewise nature
of the definition of the (categorified) Lusztig operator, specifically, its dependency on
the value of the bilinear form on I.



10

11
12
13
14
15
16
17
18
19
20

21

CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 27

Theorem 1.1. Let g be a simply-laced Kac-Moody algebra, then the data given below
defines a 2-functor

T 1t Uo(g) — Com(Ug(g))

such that the induced map on Ky(Ug(g)) = U,(g) satisfies (Ta) =T U,(g) —
Uq(g)-

Given this, we then define the other versions of the categorified Lusztig operators
using the symmetries of categorified quantum groups from Section 3.5.

Definition 4.1. Let
77/—1 = 07210 ) 77/1 = W771W ) 77—1 = ¢771¢

where in each case we apply 7, on the appropriate version of the categorified quantum
group, as determined by the codomain of the categorified symmetry.

The following result now follows from Theorems 1.1 and 1.3.

Corollary 4.2. Upon passing to Ko(Ug(g)), we have:

[72/—1] = [‘77210'] =[o HT’/ Jlo] = T 19 Tz”—l
[Ti4) = [wTiw] = W[TH]w] = wTi w = T},
T4 = WTihv) = WITLIW] = ¢TIy =

Recall from the introduction that, while a similar categoriﬁcation has previously
been defined on 1-morphisms [14], our definition extends to the 2-morphisms in UQ(g),
meaning that our categorified Lusztig operators help illuminate the higher structure of
categorified quantum groups.

We now proceed with the definition, regularly abbreviating 7, simply by 7. In
addition, we will make use of color in the diagrammatic calculus for Z/{Q in specifying T
as follows: strands which are i-labeled (i.e. their label agrees with subscript on 7;) will
be black, those whose labels j and j’ satisfy i-j = —1 = ¢ - j’ will be blue and magenta
(respectively), and those with label k satisfying i - & = 0 will be , unless stated
otherwise.

4.1. T/, on objects and 1-morphisms. On objects, we define the 2-functor 7/, by
T/ (A) = si(A)

where s; is the corresponding Weyl group element, defined by s;(A\) = A — \ja;. On
generating 1-morphisms, we define

T/ (1)) = & 15,0
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( Elsi(>\)<_2_)‘i> —>* 0 ifi=1/

T (Eely) = X .
&8881 —)ggg Sz(>\<1> if71-0=—
\ & &1, ifi-0=0

/FL) — 2
Ti(Fely) FeFilgo(—1) = & FiF ) ifi-0=—

\ & Fil, o iti-f=0

where we have omitted all non-zero terms in these complexes, and we follow our con-
vention in denoting homological degree zero with a &. Since each of these complexes
has at most two nonzero terms, it is trivial that the square of the differential is zero.

4.2. Definition of 7/, on 2-morphisms. The 2-functor T, is given on generating 2-
morphisms as follows. In these equations, we let our strand labels satisfy i-j = —1 = ¢-5’
and 7 - k = 0, and follow the color conventions specified above. We will omit labelling
the weight s;(A) in the far right region of the diagrams in the codomain, and in most
cases will also only show the non-zero terms in our complexes. Additionally, we will
depict complexes of the form

(%) (4 9)

W-—XoY — 72

as anti-commutative squares with arrows labeled by the corresponding maps, e.g. equa-
tion (4.1) depicts a chain map between such complexes. In all cases, the chain map
condition easily follows from the defining relations in Uy,.

4.2.1. Definition of T}, on upwards dot 2-morphisms.

Filg,on (=) & 10 (2)

ﬁ,(A+aifA):: iT ,77<>\+ak;)\):: lj

Filg,o)(—=2—N\) & &1, 00
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Ei&1s o (2) L £E1, (3
(Aot '_-?' €iLs, (0 (2) — &1, (3)
K )] Tt
J i A>< i J
& EE1 ) —— EEi1, (1)
4.2.2. Definition of T/, on upwards crossing 2-morphisms.
FiFilg,o) (=8 —2X;) & Ep &l ) (—k k)
P Rk w0 ]
i1 ) k K k K
FiFilg, (=6 —2X;) & Eliwls
EpFila (=2 —\i) Fi&ilan (=2 = \;)
PR AN
Filrlay (=2 = ) EnFilsn(=2 =)
EEFLon{—1 = Ai) =% & EEF Lo~ )
() ke
i v J o —l A>< v 1 J
Fi&iELan(—1 = Xi) =5 & Fi&i&il o (—Ni)
FEEL o (—A) L & FEEL,
2 (30) - 5 m& o

EETF L (—2— M) 10 & EEF1,0)(—1 - A

29
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X

& EEEL, o~ k) LD S EE o)1 — G- k)

-l e

J

& & 8815, L &8 (1)

e

& EEEL o~k ) L g6, 001 — k- )

) N s X)

*5k5352132(x) kI gkgzgj]-sz()\)< >
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(4.1)
EyEiElg ({1 —J-J")

/ gigjfgigj 1Si(>\) <2 - ] ' ]/>
* 5]/525]5,152(,\)<—] ©J > i
T R

¥ et
_t;jl
t 8,1 vig TAX\T iJ 17
POy Ji 1]
}{ T, ?'gigjgj’gilsio\)“) T X
i IV
&EEEEL SR
jCiCjrCils;(\)

joig Ei&&iE1, (1)

In this last diagram, we have omitted the differentials on the codomain, so as not to
overcrowd it; they are given analogously to those in the domain, with j <> j’. Recall
also that v;; 1= ti_jltji.

4.2.3. Definition of T/, on cap and cup 2-morphisms.

L 181‘()\)(1 - )‘z> & gi]:ilsi(A)“ + )\Z>
o . A\
72’(/&): %fﬂ , 77<\;f):: Ci—J{/K/T
* Egilsi()\) & 151-()\)
& Fifilo,on(1 =) & 1,0 (1+ )
A DY .
()= ] w7

& 1,0 & EFils
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1 Note that the maps have the correct degree since the rightmost region in all the images
2 is labeled by s;(A), and 1 £ (7, 8;(A)) =1+ (i, A — Nay) =1 E£ N F2N =1F N\

& 18i(>\)<1 — )\k> & fké‘klsi()\)ﬂ + )\k>
kA ok , A Y
T ( ) = 1 T T ( k ) = k
& EFils o & 1,0
& EFils o0 (1 — M) & 101+ Ap)
!/ )\ 72 k )\ k
o) e
& 1,0 & Fi.& 1,0

3 Again, the maps have the correct degree since 1+ (k, s;(\)) = 14+ (k, A — Njay) = 1+ Ay

& FiFiEEL (1 + Aj)

A

FiFi€i€ils, ) (A)) FiF;EE 1,02+ Aj)
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0 0
<1V“%VFQ//
o & EEFFilo
() |l
EEFFlyn — 2) EEFFilyo(\)

T, | R

&ngth,X—l

& EEFFilg
)
Ei&iFiFils, (=) E&FiFiLs,0)(2 = A))

/Afl

fjﬂgjgilsi(>x)<_2 - )‘]> '/—_.i'/—_.jgigj]-si(k)<_)‘j>

T P

& FiFiEE L, (—1 = ;)
As above, a simple computation shows that the maps have the correct degree, e.g.

deg () =1 Gosi) + 1+ (i) +
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5. PROOF THAT CATEGORIFIED LUSZTIG OPERATORS ARE WELL-DEFINED

In this section we show that 7, is well-defined, i.e. that 7/, preserves the defining
relations in Ug, up to chain homotopy. We'll see, however, that many cases do not
require a chain homotopy. For example 77 1 preserves on the nose any relation that does
not involve j-labeled strands (for i - j = —1), since here the complexes involved have
only one non-zero term (in the same homological degree), precluding the existence of
non-trivial chain homotopies. A complete proof consists of checking many cases for each
relation, since 7/, is defined in a piecewise manner that depends on the connectivity of
the graph associated to the simply-laced root datum.

To simplify this task, we’ll work with the presentation of Uy implicit in Remark 3.4.
Specifically, we view downward dot and sideways and downward crossing 2-morphisms
as defined in terms of cap/cup 2-morphisms and their upward analogues (in the case
of downward dots, we choose the presentation in terms of right-oriented caps/cups).
It follows that 7, is already fixed on these 2-morphisms (by 2-functoriality), and we
record its value on these composite 2-morphisms in Appendix A. We make extensive
use of these computations in the sections that follow.

Throughout, we will continue with our convention that the labels 7, j € I satisfy
1-7 = —1 =1i-j" and correspond to blue and magenta strands, while the labels k, k' € I
satisfy i - k = 0 = i - k' and correspond to strands. We also let ¢ € I denote an
arbitrary label.

5.1. Adjunction relations. We verify the right and left adjunction relations given in
Definition 3.3 relation (1).

Proposition 5.1. For all ¢ € I the equalities

w( D) - (1) -7 (LN,
o () ()

Proof. When ¢ =i or ¢ = k with ¢ - k£ = 0, these relations follow from a straightforward
computation, provided one is careful with the relevant parameters. For example, the
first equality follows from the computation:

T (l N )‘) = ci,x+aic{j?d silA) _ l si(A) — (T A)

(2

when ¢ = i, and from

k

k k



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 35

1 when ¢ = k. We omit the other checks, as they are completely analogous.
For ¢ = j, the coefficients are more delicate. As 7;/(€;1,) is a 2-term chain complex,
we will use an ordered pair to describe its chain endomorphisms (with the convention
that the first term in the pair corresponds to lower homological degree).

e :<(_1)Aj+fcﬁ+aj AN Llc_i*a
7T (=1)%eja

) by _ i i
T W R N SV Rtos
Ao (~)P 24, ()¢,

=

> .

=
>

—tiy) e (=1 e

5.2. Dot cyclicity. We verify the dot cyclicity relation given in Definition 3.3 relation
(2). Recall that, in our presentation given by Remark 3.4, the downward dot morphism
is defined in terms of the upward dot morphism and rightward cap/cup morphisms.
Dot cyclicity is then equivalent to the following.

(o I

7 Proposition 5.2. For ¢ € I, the relation

T()-(i)
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holds in Com(Uy).

Proof. We compute the left-hand side, and verify the relations by comparing to the
results of Section A.1, which give the value of 7 on downward oriented dot 2-morphisms.

7 (@W‘Aﬁl pen(?)
( Z ) (Ai+1) C Aas (_1))\._26 1_ ‘
K A = ’ ’ e
E ({@ ) (i)™ einma, (=1 V50 <w | @>

O

5.3. Crossing cyclicity. We now verify the crossing cyclicity realtions given in Defini-
tion 3.3 relation (3). Note that it suffices to prove cyclicity for the downward crossing,
as the relations for the sideways crossings follow from this and the adjunction rela-
tions. As before, we will use the value of the downward crossing from Section A.3,
where (by definition) it is given in terms of the upward crossing and rightward cap/cup
2-morphisms.

Proposition 5.3. For all £,/ € I, the equation

o
holds in Com(U).

Proof. We compute the left-hand side, considering the three possibilities for each ¢, ¢ €
in relation to the fixed node 7 € I. For both stands labeled i, we have

(3

For strands labeled 7 and j, we have

T T N O e S R B % %
' cia(— tw)/\i_%i_,i_ai_aj(—1)’\j+lc Aeai
iJ
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v J
(s 5 ) 30 %)
Z . tijcivA—O‘j(_tU))\zcz_){ oy ch)‘
]
J i i J i i i J ot v J e T

For crossings in which at least one strand is k-labeled and no strand is j-labeled, the
relations are trivial to check. We compute:

T, )\ = = = ., ( )\)
' koK "\ kW
kk' kk'
7;/ @ )\ Cli a; akczv)‘tki @ = tiz /k i 7; ( \//k>\)
ik ik
7;/ I\J Al = Ci)\—oékci_,)%—ai M :t];l;\i = i/( k\z)\)
ki ki

For strands labelled j and k, we compute:

T A Z ) O e e (CDV G, f v) f )
' th (=ti) o (1) e AVSSR Y
wwum:
7 1 k : J k
J . )1 (s +1)Ci,)\—aj(_1))\ —2C]>1\ o
? )Alcl_i Ozk a ( 1>>\j_].kc.]7>\—ak

wwgmww
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1 Finally, in the case of a crossing between strands labeled j and 5, it’s clear that

JJ

2 for some scalar C'. A direct computation shows that

C= tij tm’cz,k—ayCi,,\—ajcj,/\cj,,\—aj,CJ’,/\—ajCj',A(CJ’,A—ajCj',ACJ,/\Cj,,\—aj,) =1

4 5.4. Quadratic KLR.
5 Proposition 5.4. T preserves the quadratic KLR relation.

Proof. We verify relation (4) in Definition 3.3, first considering the cases that do not
require homotopies. We compute:

ﬁ'<§>:<—1>2§ 0

T 1 (2
/

0 if k=K

) T/ (tw ) itk-k=0
k K

kK
k 77 (tkk’ * + tk’k i lf k . k/ == _1
\ kK k k'

()il

k 1

77( ) _tkz = tkl 7; (tsz )
Zk: ik i ik

Our next four cases concern endomorphisms of chain complexes concentrated in two ad-
jacent homological degrees; we denote endomorphisms of such complexes using ordered
pairs. We compute:

)
/

YN
77 <): t—il ( ’t—il (
(€)== =5



and similarly:

()
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(]

(

= | i

ki

kJ i kJ i

k J

7! (tkj ! T + ik ?

k J kJ

R
-1 -1
Tt

JCI@ ZCI@

W + tik W :

The remaining cases only hold up to chain homotopy. We compute:

()

=t

(]

w(u]iont

1114

J i q

J
+ tj;
J

) 7

o5

—i—tUT
J

jD ifjk=0
W] rullf) woe-
) ifj k=1
T tj,f]) ifj k=0
77<tjk£k+tkj1;) ifj-k=—
] lnH
(45 ]

1%

where in the second step we make use of the equality

which holds in any weight.

R-%-

The result now follows since the chain endomorphism

et

1 1

(— %gl, - %gl) is null-homotopic with homotopy h : 7/ (€;&1,) — T/ (E;E€:1x(2))
J i 1 J
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given by:

Xl
Ei&Filgo(—Ni) —————— EEFil, (1 —N\y)

N\L
K
EEF Ly (=2 = Xi) ———— &L Fily (=1 =N

We similarly compute:

()T - )

(o] 3l ]

7

GIRRHECERES

where in this case we use the equality

&-% -l

P4 i1

which again holds in any weight. The relation is verified since the chain endomorphism

(—l%g , —l%g ) is null-homotopic, with homotopy given by

1 J 1 11 J

-
Fi€i€ils, (1 = Ai) > &F&EEL () (2 — )
%

Fifi€ils, (1 — Ai) ————— ®F&E L, 00 (=)

Finally, we compute the case in which strands are labeled j and j' with i-j = —1 = i-j'.

In this case,
T (E€51y) = &E;EE E L (n) — E;EEE L0 (1) BEEE;EL (0 (1) — EEEET,0(2)

and we denote the relevant endomorphism as an ordered triple. We abuse notation
for the component mapping between the terms in homological degree one: technically
this should be given by a 2 x 2 matrix, but, in the interest of space, we add all terms
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in the relevant matrix, as the components are distinguished by their (co)domains. We
compute:

T § = ti_jlti_j,l ) 5]]’%2]%[ + — t5i055 + i
J 7 Ji o id
Joi ot J

<

Jov g J i 17
+tz‘jtw + tijr — 15055 ,
zj]z 0,
i 7T i 73
v J g T J 1]
=t |ty + titii + tig
= Uy Ly | Yig tji tij ijlij ij’
iJ Ji (N,
ioioig i T
Jj i 7 Jj i3 Joi @7
]Z +tlj
i J i i 7 17

which vanishes if j = j/, as desired. If j # j’, we instead have

- -1 1— - -1
iJd 3

Joi iy

Jjoii7
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If j - 7/ = 0 this simplifies to

Joaig i J 3 ijoig

and if j - j' = —1 we have

=T ( ? T + tJ'JT ?) JJltz_] ‘ + 1ty Jt_ + s (trvigr — tj’jvij)$ >< {
+tj’jvijﬂ >< ,2 JJ"UZJE >< ] Ly ? T T T JJT T T $ + bt

J i i)
Jj i ijJ i1 Jj i ijJ Jgoi g
J i i j
+t] Jtu + t]J'tU + tJ ]tu ’ tJJ'tZJ t] Jtzy

Joioij i g g igj iJ ] iJ i

In both cases, the second summand (i.e. the “error term” preventing the relation from
holding on the nose) is null-homotopic. The nonzero terms of both null-homotopies
are given in the following diagram by the arrows labeled with the brackets (with the
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homotopy for the j-j" = 0 case on the first line, and the j-j* = —1 case on the second).

E&EEELs, (=25 7' +1>

KT o

& 5 EEily, 27 -4+ 92

& &EEEL0)(=2] - Fhe %TT/ (=27 -J +2)
\

it 17

R -1
i o]
11 T4 -1 -1
' degienmMr A\ )t
' i1y S ErY

2 5.5. Dot slide.

3 Proposition 5.5. 7 preserve the KLR dot sliding relation.

Proof. We verify relation (5) from Definition 3.3, only exhibiting the computations for
crossings involving j- and j’-labeled strands (for j -7 = —1 = j' - 1), as all others are
completely straightforward. For ¢j-crossings with dotted i-labeled strand, we compute:

(724)- (%) - K18 X

i 7 i J

(D) (-

i J

which is null-homotopic, as desired, via the homotopy:

EEF L1 = Ai) —— & EEFiL5,0)(2 = i)
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For the ij-crossing with dotted j-labeled strand, we have:

O D 1))

For dotted ji-crossings, neither case requires a chain homotopy, so we omit the compu-
tations, which are straightforward.

Finally,we consider dotted jj’-crossings. As in the proof of Proposition 5.4, our chain
maps here map between complexes supported in three adjacent homological degrees,
and we denote them as ordered triples. We have

(357505 - 2 £, - 5 ol

Jgoig Jjoioqg

o] R+ U= 258 -l 1 K K

v J g v J g v J iy 13 vy
—op |t | )+ T (18 —u X ] [ X
Joi J i Ji iJ Ji iJ
J i J 1 Joi i J
vt )+ T T = (1 |+ 1T
- i J J i i J i J
v J g i J 1]
(H | ! 19—t X vu [ KT TTTT
JJ ‘ ' Ji i JioiJ ioioid
J i1
+twt§%\ if j =4
T 1
[ 0 ifj# 5
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The relation thus holds on the nose unless j = j’, in which case the “error term” is
null-homotopic, with homotopy given by:

N EEEE L (1) T T
7 7 EEiEE L0 (2)

& EEEELL) T
~ KT

E;EEE L, (D)

-1
]
gigjgjgilsi()\)“ v Jad
& EEEEL %ﬂj L, (2)
E;&&iE L0 (1)

The verification that 7; ( A}{—% ) ~ 0T (T T) is almost identical to the above

VI j
case, so we omit the details. O

5.6. Cubic KLR.
Proposition 5.6. 7/ preserves the cubic KLR relation.

Proof. We verify relation (6) in Definition 3.3, i.e. the “Reidemeister I1I”-like KLR
relation. There are 27 cases to consider, depending on whether the label ¢ of each
strand satisfies 7 - £ = 2, —1, or 0. To cover multiple cases at once, we will make use of
the following notation, setting

A, — tw fa=canda-b=-1
0 else

Note that Age = A
The relation holds on nose (i.e. does not require a non-zero homotopy), except for
the strand labelings in the following list:

iji , gki', gii' o, 33
where we continue with our conventions for strand labelings (i-j = —1 = i - 5/ and
i-k=0=1i-k"). In the interest of space, we will explicitly exhibit three representative
cases that do not require homotopies (to give the flavor of the computations required),
exhibit the homotopy and verify the relation in the iji-labeled case, and exhibit the

homotopy (but not include all the computations involved for the verification) in the
remaining three cases.
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In the jii-labeled case, the relation holds on the nose via the following computation,
where, as above, we denote the chain map as an ordered pair.

T, g_% -
J o1 o1 7 11
Jii1 Jii 1 Jii1 Jiiq Jiiq Joii1 Jii1 Jioiq

To simplify, we use the dot slide relation to move all dots to the top, and apply the
cubic KLR relation to cancel terms, arriving at:

Joii1 Jiiq Jii 1 J i1 Jiiq Jiiq Jii1
1711 ) 1] 11 1] 11 i 7 11 1] 11 1] 11

For the jik-labeled case, we have:

J i ik J i ik iJ ik i J ik



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 47

J 2 k 7 i i

=
-

1 where in the middle step we use dot sliding, and equation (3.2).
The kjk’-labeled case is given by:

ol

! o -1 -1
T = |ty Ui
EJK . |
Ik kjoik ki gk
/\
-1 -1 -1
= |ty + Akjk'tk’i Ui + Akjk’tk’
kJik' kJik' kijk' kijk'
!
=T + Agjrr
k J K k J K

and all others that don’t require a non-zero homotopy are given similarly to these cases.
We now consider the cases listed above that require chain homotopies. Considering
4 the iji-labeled case, we compute that

i J 1 i ] 1 i J i

Z]ZZ Z]ZZ Z]ZZ Z]ZZ

a+1 Yl /\aj
= tij Z d Qc + tij — tij Z @\ +c
J

where

=T

a+b+c+d a+b+c+d a+b+c
— (i (A))—2 A (83 (A))—2 (irss(A))—

i Ji i) % i J %

.

i



48 ABRAM, LAMBERTO-EGAN, LAUDA, AND ROSE
i g "

—tij Z d Z + tij = —tij

N-c

i _ b
BN

.

i J i i

i i J i 4 J i i1 J i i i J 4

= —ti d @‘”c +
a+b+c+d
=(i,5:(A\)+a;)— id g

ii J i i1 J

~
<.
=

and

In both computations, we make extensive use of equation (3.2). It follows that this
chain map is null-homotopic, with homotopy given by:

Fi&iEiFils, (2N — 5) ———— F:&EEFils, 0 (—2X — 4)

—lA><Al

For the remaining cases, we provide the explicit homotopy between the relevant maps.
We have

\

ik J
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1 via the homotopy

&E; EELEEiL ) — EEiEREiE L, (1) B EjEELEE L0 (1) — EEjEEE;L5,0)(2)
N \
REEEENEN (0 — EEEEEN (1) B EEEREE 0 (1) — EE;EEEL4,00(2)
2 with
ht = Ajrt ! B = At
Jikaj i J kg

3 For the jij'-labeled case, we have

T! ~T! + Ajije

71y i g i i g
4 with chain homotopy given by (here we indicate the signs on the differential since they
5 are not the usual ones, due to the homological shift on 7(&;1,)):

) EEIFEE e~ N
VT E Ly (=1 — Ay ) T ot >%&5m&5jlsiw<1—xi>
EpEiFi&i&iLs,00(—Ni)
2
(3)

B EEFErELe (N
ELEFEnELy (1 — ) )y TS 2l >&&5ﬁ&5¢1siw<1—xi>
EET & Ls, 0 (=)

A )
1 1 2 2
h1:_ >h2:_ ah1: ,h2:—

J i v ]

i J g ijidg (V] i ]

(hin3)

6 for

7 For the final case with jj’j-labeled strands, we have

T ~ T/ + A5

J 37 J 37 i o§ g
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The relevant homotopy maps between chain complexes given at the triple composition
of two term chain complexes, and is non-zero only when j # j'. We'll exhibit the
homotopy assuming this, and that j - 7/ = 0, as the homotopy is more involved in the
j-j = —1 case. The latter is only possible when the graph I' corresponding to our
Cartan datum has a length-three cycle (which in finite- or affine-type only occurs for
sly).

The relevant homotopy is given as follows, where here, in the interest of space, we
employ the notation from [25] in denoting &,...., := &, -+ E,. We also indicate the
signs of the non-zero terms in the differentials, which are all given up to sign by the
10 relevant ji- (or j'i-) crossing.

o A W N =

© 0 N o

(%) &jj'égi(w (59 2) gijiyégi@ .
b + -+
&Ejijriji ——— Ejigjrii(1) ——— Eijjnif(2) ———— *Eijijuis (3)

© ©®
W Ejijriij (1) . Ejiigrij(2) %W
0 0 h, 3

2 2
0 h’32 h33

11 Herein, the maps in the homotopy are given by:

hy = tij Uljtij’tjj' , hy= tij Uljtij’ tjjr
Jig vig v i3 0
12
hgy = —t;; Vijtiitj , hyy = Vijt twme , hoy = —t; Vijtiitj
L Joid 4] .
v 27 1 1]
13 O

14 5.7. Bubble relations. We now verify that 7, preserves relation (8) in Definition 3.3
15

Proposition 5.7.

A
f{ : coaldy ifm=0 4{ 3 ¢ dy fm=0
T/ _ ) s;(\) ’ T/ — 0, s;(N)
! {O ifm<0 ! A m 0 ifm<0
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1 Proof. We'll give the proof only in the clockwise case, as the counter-clockwise case is
2 completely analogous. The computations in Section A.4 show that

( i Sz()\)

ci if 0=
—(,5i(\))—1+m
A si(A)
é k) KA

T/ Q =9 if £ =k

N2 14+m (k.si(A D —14m

m j i Sl()\)
ey (—Uij)_hQ Q if €=
L h=0 AN+m—h &+h

3 which immediately gives the result in the m < 0 case.
For m = 0, we compute:

si(M)
2 2 1 _ 2 -1 —
Cia - Ci,Aci,si()\)Idlsi(,\) - Ci,Aci,)\—AiaiIdlsi(A) zACz AIdl ) C%)\Idlsi(x)
(3,8:(N)—1
si(A)
i Y - -
e o =tcksmldy, ) = thickacxe Iy, ) = it eealdy, ) = cealdy ()
(k,s:(A))—1
A —1 y s ( i A
_ . o N
t]z Z)\/Q/Q ! t]z Z)\C] 55(N) Cisi (A Idls e tjiCJ,A—Aiaz-Idlsi(A)
&+0 &+0
Z f— .
t C] )\t Idlsi(k) = ij)\Idlsi(A)
4 O

5 In Section A.4 we verify that the infinite Grassmannian relations from Section 3.3.2
6 are preserved by T/

7 5.8. Mixed EF relation. We now verify relation (7) in Definition 3.3.
8 Proposition 5.8. 7. preserves the mixed E'F relations.

9 Proof. All cases involving k-labeled strands hold on the nose, and are trivial to verify.
10 The following computations exhibit half the requisite checks, and the remaining follow

11 almost identically. Throughout, we make extensive use of the computations from Section
12 A2

k K kK k K kK ik ki ik ki
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(4 -1)-( 1L -1)-
() ?E-H; i)

We now consider the cases requiring homotopies. We compute

/ I -1 —1 -1
T; %2 - T l = | 1 — 1y - . + 1 - [
Lo i J

Joe J i

7 4 J 11 i 7o i 7o ) 7
_ — _ 41 41
J i 1 Ji i $y I SN

2 which is null-homotopic, with homotopy given by

X1

Ei&E L) () s Ei€iEL (N + 1)
i J o
gjgigilsi()\)<>\i> >< T gigjgilsi()\)o\i -+ 1)
J o4
and
7 §§—H B ) T I R SR
i J i J L L
1] 1 Dy 7Y 11 ]
(R KoK ) (0 o B
i i J i i J 3 .k
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is null-homotopic with homotopy given by

-1°X

E&i€ils, (A — 1) Ll EEiEi1s, (M)

1 Similar computations show that

! _ —1 —1
J 1 i VIR AR 1] 1

i i
2 which is null-homotopic via the homotopy
FiFF Loy~ = 3) — s R Filyo(-Xi — 2)
-1
tij
v J o
FiFiFils,oy{—Ai =3) ———— FiFFils, o0 (—Ai — 2)

J i o1

/ o -1 -1
i R AR

J i J

3 and that

4 which is null-homotopic with homotopy given by

-l X

FiFiFilg, (=X —4) SR ELEEN FiFiFils,oy(=Xi — 3)
-1
t;
vt

FiFiFilson(—Ai —4) ———— FFFL00(—Ai — 3)

T ] 4

53

5 The final case, involving j- and j’-labeled strands (with 7 # j'), will be addressed in

6 Proposition 5.10 below.

O
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1 5.9. Extended sl, relations. We now verify relation (9) in Definition 3.3.

2 Proposition 5.9. 7 preserves the the extended sl relations in the i- and k-labeled
3 cases.

Proof. In these cases, the relations hold on the nose, as we confirm.

Nl N si()
(5] g W) s ¥
LY agbte MY i i a:Jf\?J—rfN

1 7 ) ) by 1 1 1 (2 )

o \;ﬁsl()\)
IR
| o

i i1 atbte=
—(i,5:(N))—1

~

i 1 a+b+c=
vt (4,5i(A)—1
ok )\ o’k SZ()\)
a a
/ Ntc i 1—\i Ntc
7; + - E : 1.7 k. - + - tkztkz g., k.
a+b+c a+b+c
k k k k =\,—1 k Kk kK =Ar—1
. k Sz()\)
SRR SR Y
a+b+c= ok
Bk B R st
. ko) . k 82()\)
! ‘—l—c _ )\Z —>\,L ‘+C
T + - E b k’ = + — ity E , b k'
a+b+c ® a+b+c *
k k k k =—Ap—1 k Kk kK =—Ap—1
o'k Sl()\)
a
= + — E b Ate =0
a+b+c= ok
Bk R R sy
a ]

5 We conclude by considering the outstanding relations, i.e. the j-labeled extended
6 sly relations, and the jj’-labeled mixed E'F relation. These are the most-involved
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relations, in part because the homotopies involved are not-necessarily unique. In-
deed, if Hom(X,Y) denotes the chain complex of all homogeneous maps (that are
not-necessarily degree zero, or chain maps) between complexes X and Y, then given
any element o € Hom ?(X,Y), the element d(a) = dya — adx can be added to
any homotopy h without affecting dyh + hdx. Our previous cases have not admit-
ted such an «, but in the present case there exist (many) such «, given by any map
E&pFiFils (1) = EpETF;Fils, ) (—1).

Proposition 5.10. The relation

Vi A
’ - a +C
(51) 7; - § + (—1)6” T J/ + 5]']'/ Z . j@ ~0

i g 77 “Jgi_’ﬁ: "
holds in Com(U).

Proof. The left-hand side of (5.1) is given by the following:
(5.2)
&EjEF i Filgn)(—1) — E&pFjFilg o © Ep&EiFiFilg,0) —— EEp FiF;1s,00(1)

T (& :z:ﬁ T

&EjEFFilyn(—1) — E&p FiFilson) @ EpEiFiF L) — EEpFiF il (1)

where the components of the chain map are given as follows (which can be verified by
completely simplifying both sides of the equalities):

we ||| 5 [Hgeon =

T atc=
=—Xi—1 3'4 ) Ait+Aj—1

R NERR
el

2
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i Ji

% al) j
Y R B R ¢4
Y2 = — ;055 + + (=1)% 43’ Vi Z Z( vij) i
[ g—l—b—i—c h=0 @

rLYy =Aj
v 4 R 1371

C.

C
a
_ —Xi—h . #+c—h
3 = 0jjrt;i — tij =ty Y > (—vy) ™ 3
~ iﬁffi h=0 Atk
1] 7 (2 .7/ J Z,?b

J
= St Y @ — byt (=)%Y (=)
5%

a+tc= et+f+g
AitAj—1 =—X\—1
] 1
7 Ji Jji
A g
(&
— _>\’L_h MNtc—h
Pa = tije — 0jrtji + 0ty Y () i
- b
~ SV (T2 4



Y6 =

CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 57

{Q}f + 8ty Y

a+b+c=
i +)\j —2

a+b+c h=0
=X-1 (73 4+

[ § ; §
1J " Q_‘_(_l) 7 @_F(Sjj/
d+e+f a+b+c=
Z—)\i—l )\i+)\J—2
iJ Ji

R 17 1
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= ity (=12 Y (—vyy)? Q+t CY L () Q

etf+g d+e+f+g

=—Xi—1 =—X\—2
vy

1 The chain map given in equation (5.2) is thus null-homotopic, with homotopy given
2 by

*EjEFiFilo(—1) — EETF;Filg0) ® EpE:TFiTF 1,00 — E&p FiFile (1)

h2
o) )
\ h%

®E{ET; Fily,in(—1) — EE3F;Filsn) ® EpEFiFilo) — EE5 FiFily (1)

where

1 _
hi =Gt Y
a+tc=
)\i+>\j—1
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iJ

O

It remains to verify the F'E version of equation (5.1). We can proceed to compute
as above, but in this case we can obtain the relation via a trick using the symmetry w.

Indeed, note that, up to scalar factors, each map determining 7,/ ( ,><7)‘> is given by
J
applying w to the corresponding component in 7 ( %9‘) and exchanging the roles of
J

j and j'. Upon taking the composition, the discrepancies between the relevant scalars

cancel, and we find that the maps determining 7 are given by applying w
73

to the ¢;’s. Similarly, the other terms in the relation are obtained by those in equation

(5.1) via w. It follows that we can “apply w” to the proof of Proposition 5.10 (in weight

—\) to obtain the following.

Corollary 5.11. The relation

holds in Com(U).

APPENDIX A. COMPUTATION OF 7/, FOR COMPOSITE 2-MORPHISMS

In light of Remark 3.4, we can compute the value of 7, on downward dot and sideways
and downward crossing 2-morphisms in terms of the presentation of these 2-morphisms
in terms of upward dot and crossing 2-morphisms and cap/cup 2-morphisms. In Sections
A1, A2, and A.3, we compute this value, and in Section A.4, we compute the value
of T/} on bubbles. Throughout, we employ our conventions that i-j = —1 =i - j" and
1-k=0=1-k, but assume no other relation between 7, j', k, and &'.

A.1. Value of T/, for downward dot 2-morphisms. We compute 7;; on downward
dot 2-morphisms using the right cyclicity relation. Each of the following is a direct
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consequence of the definitions in Sections 4.2.1 and 4.2.3.

8i18¢(>x)<2 —+ )\i> *Fklsi(A)@)
() =m(tp)- 1))
Eils, o0 (Ai) T 1s,00)

o

fjfilsi(A) <_1> j% ‘?‘]:i]:jlsi(k)

3
A/~
Sée—
>
N———
i

(1479

w

© 0 N o O b

10

11

This agrees with the value in terms of left cyclicity, which is verified in Section 5.2.

A.2. Value of T/, on sideways crossing 2-morphisms. We explicitly compute the
value on sideways crossings in terms of the images of upward crossings, caps, and cups.
As above, each follows via a direct (but sometimes tedious) computation using the
definitions in Sections 4.2.2 and 4.2.3. In the interest of space, we will omit displaying
the domain and codomain of the image when they are 1-term compexes, as, save for the
relevant shifts, they can be read from the diagram.

)= = X

FiFiFilaoy (=3 = Ai) =5 SF T Fily (=2 — A

v J 1
—tijtji

v J 1

FiF;iFilaoy(—4 — X)L S FFFila (-3

£

~

-l X
—L X

FiFiFiloo(—4 — M)~ & FFFiLo o) (=3 — \)

= 2!

ij Ujt

J i 1

—2,—

‘Fj}—i}—ilsi()\)<_3 - )\z> jﬂl 3 ﬂfjﬂlsi@)<—2 — )\z>
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~_
Il

(UA1)- %

(7)ol

61

T

EEE L, (N — 1) L5 EEE1, ) (N)

-1

%1

EiEE L (N) —5 EEE L, 0N + 1)

<1

g]gzgzlsl()\)<)\ > % 85 g 13 ()\

v J o

%f

11X

5851MAQ-—D4———a5851MA(>

ki

& F.EE 1,

JENR

J v k

& E;EFL

& E;EFLLy

J

& Fi.EE1,

ﬁ(?ﬁ):ﬁ
)= ()

—

()=~

()

Kk

3

%}"ké'g 1,00

1)

fd]
i J k

N~ 88 Fily (1)

7 1k

N —— EEjFRLg 0
%

}k&\
k i J
kJ 1

N —— Fr€i&ily
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]-"]-"5k a(—1) e FFE W

(U R

EFiFilaoy (1)1 & EFFila 0

b

EFi Fily o (—1)1 Y & EFFi1,0

() m L

FiF&ly, o (—1) 2t & FFE1,0

R (1)
-F'-Figj’gl )\< 1> i/ jCiCg Lsi(A)
— | /
i, FiFi&i€ls
ti_jl AN _t—lt,,,U\ wij'l]
R i Z;,?’j
* 55 /‘/—"‘/—‘.152.()\) _TT/%
TR
(A EENFiFilg, 1
E/EF Filan(—1) 7T L {l)
X H

TS ee s FEF L
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LT <(_1)j-j’+1tj]%,)\> =T ((_1)j-j’+1tj]ﬁg) —

& gzgjff}lesl()\)

/

EyEF;Fils, (1)

T

E&p FiFilg,0n(1)

— | /
/d' & ]:i]:jlsi()\)
—0jjrts tﬂ'% i tij
tii i Ji 2 Uz ij
jj 171 tijj>n'<j' Y
& FiFi€p €l 11X
KT =
Juga FiFi€i&jLs (1
fjfigjfgilsi()\)<_1> ; ] Z(A)< >
X1

N e EREE L

A.3. Value of 7/, on downwards crossing 2-morphisms.

r( )= () -3¢ ()
m( /)= ()= 7w ()= ((5) e

ik

A1

& EF; Flaoy\ — 1) S FF 1 00 ()
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T X

&5??%9A4&%5??L0Aﬁ4)

—t3ti
J oo
& FFE10 Q—J%ﬁﬁfﬁhg@
- w ()= (L)
X
& T FiFilyo(—1—j - BYL5 FFFL <
2t]kf\) x fx)

&FFHZQ(D—%——effﬂZQ
s () T(@)
k 2

&ffﬂ, (—1—j- k) R Ry <

amy

& Fkﬁﬂlsi(x)<_1> k]% kaf 1 si(X)
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(A
Tt A) — 7| t-1t.,. Nl =
7 <]] 77 % 7 79"73°J \v/

FiFpFiFilsoy(—1—7-3")

o ® FiFpFiF il (=i i)
fj'Efjﬂlsi(A)<—2 —7°J >

n FiFiFils,on(=1—7-3"

J 3"
t;jl 41
—t;jl —6]»]»/1)1']' \LXL 1 J ij,
RER Jv 1]
FiF; FiFils,on(—1)

% 5

I

& FiFiFiFiLs,on
FiFiFiFilg,n(—2)
JovJ o .ijzfzfjflsl(A)<_1>

1 A.4. Computation of 7/, on bubble 2-morphisms. We compute the image of bub-
2 ble 2-morphisms, and use them to explicitly verify that T, preserves the infinite Grass-
3 mannian relation.

A . si(N) . si(N)
/ 2 _ 2
7 (i, —1+a _Ci’)\<@+a a CZA—(i,si()\»—l—l-a
; A ; 5i(A) ; si(A)
! =2 2
7 —(i N —1+a CM—(z N—lta Bl Ci,A(Ls/i(Q))—l-i-a
[ .)\ L iim o 5i()
(k,\)—14a (k,\)—14a (k,5:(A))—14a
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a A N si(A) ok si(A)
7; 'Y = tkl ' o = tkz ' ®
— (k) —1+a —(k\)—1+a —(kys: () —1+a

For j-labelled bubbles, we make use of the bubble sliding relations from Section 3.3.3.
(Note that, in the first equation, the number of dots on the black circles equals zero for
both summands.)

A

!/ . 1+>\1 —1
T; 5 =(—tij) ey
7,A)— 14+«

J

(1,81 (N) = 14+Ai+1

- J 4 S; A
h= A+a—h &+h
max(0,\;+1)
min(\;,) . .
— o Y Sl()\)
- e A Y
h=0 Ma—h &+h
1N Sy iy siA)
:tjiczg; (_Uij) "
=0 Ata—h &+h
Similarly, the image of the counter-clockwise bubble is given by:
j A min(—\;,) j .
/ Q _ X\ -1 ~Xi—h \Z@\ si(N)
T; =(—tij) cinty >t (=)
— (. A) —1+a h=0 Aa+a—h &+h
- 1 Ai—1+h ’ y ()
- X ) g
h— Ata—h A+h
max(0,—X\;)
e 3 () L s
h=0 Ata—h M+h

(In both cases, recall our convention that any sums with non-increasing index are by
definition zero.)

These computations for the images of bubbles under 7, are only valid when the
number of dots is positive; however, our next result shows that they also hold for
bubbles with a negative number of dots (i.e. for fake bubbles, see Definition 3.3 (8)).
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Lemma 1. 7T/, preserves the infinite Grassmannian relation, i.e.

, A A A A
: o o —1d
7; ((@;—1 - + —<§)\)}—1+a + Ql T + <i@;+a + 1s,00

Proof. The only non-trivial case is when the bubbles are j-labeled (for 7 - j = —1), and
here we compute the relation in degree « as follows.

r(2 0T ) T cwrdy Gt W

A Ms e+t Mt

gt+h=a Xi—14g —X\;—1+h r+s+ttu=a
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