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Abstract. We define 2-functors on the categorified quantum group of a simply-laced
Kac-Moody algebra that induce Lusztig’s internal braid group action at the level of
the Grothendieck group.

1. Introduction5

Geometric representation theory has motivated the study of categorical representa-6

tion theory. Rather than studying the action of Lie algebras g, or quantum groups7

Uq(g), on (q)-vector spaces V with weight decompositions V = ⊕λVλ, categorical8

representation theory studies the action of these algebras on graded additive categories9

V with decomposition into graded additive subcategories V = ⊕λVλ. Rather than10

linear maps between spaces, Chevalley generators act by functors Ei1λ : Vλ → Vλ+αi
,11

Fi1λ : Vλ → Vλ−αi
satisfying quantum group relations up to natural isomorphism of12

functors. The novel and distinguishing feature of higher representation theory is that13

the natural transformations between such functors contain a wealth of information that14

is inaccessible within the realm of traditional representation theory.15

Indeed, the essence of categorification is to uncover this higher level structure and16

use it to further our understanding of traditional representation theory, as well as re-17

lated fields. In this article we will focus our attention on the categorical representation18

theory of the quantum group Uq(g) associated to a simply-laced Kac-Moody algebra19

g. Categorified quantum groups are the objects that govern the higher structure and20

explicitly describe the natural transformations that arise in categorical representations.21

More precisely, we focus on the higher representation theory of Lusztig’s idempotent22
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form U̇ := U̇q(g). This is a version of the quantum group that arises in geometric rep-1

resentation theory and is most appropriate for studying representations with integral2

weight decompositions. For the precise definition of U̇, see Section 2.1.3

In most instances when U̇ admits a categorical action as described above, the natural4

transformations between functors arise via the action of a categorified quantum group.5

The latter is a graded, additive, linear 2-category U̇Q associated to g. The objects in6

U̇Q are elements of the weight lattice λ ∈ X of g, and the 1-morphisms are generated7

by Chevalley generators Ei1λ : λ→ λ+ αi, Fi1λ : λ→ λ−αi and identity 1-morphisms8

1λ : λ → λ, i.e. any 1-morphism is given by a finite direct sum of grading shifts of9

composites of these generators. The 2-morphisms specify maps between composites of10

Chevalley generators. For example, there are 2-morphisms11

Xi : Ei1λ → Ei1λ〈2〉, and Tij : EiEj1λ → EjEi1λ〈−αi · αj〉

where here, and for the duration, · denotes the symmetric bilinear form specified by12

the Catan datum for g (see Section 2.1). A novel feature of the categorified quantum13

group is its diagrammatic generators-and-relations description in which all 2-morphisms14

are conveniently encoded in a 2-dimensional graphical calculus, e.g. the generating 2-15

morphisms above have the following depiction:16

Xi := •

i

λλ+ αj
Tij :=

i j

λλ+ αi + αj

Key features are that Fi and Ei are biadjoint, and endomorphisms of compositions of17

Ei’s are given by the so-called KLR algebras developed in [18, 24, 26, 54, 55]. Taken18

together, the relations on 2-morphisms provide explicit isomorphisms lifting relations19

in U̇, and further guarantee that K0(U̇Q) ∼= U̇, where, K0 denotes taking the split20

Grothendieck ring to decategorify . Otherwise, only shadows of this structure are visible21

at the decategorified level, e.g. Lusztig’s canonical basis of U̇ is recovered by taking the22

classes in K0(U̇Q) of indecomposable 1-morphisms in U̇Q.23

Pioneering work of Chuang and Rouquier demonstrated the importance of the higher24

structure in categorical representation theory [18]. At the heart of their work is a25

beautiful categorification of the familiar fact that, in any integrable representation V =26

⊕λVλ of sl2, the Weyl group action gives rise to an isomorphism27

t1λ : Vλ
∼=−→ V−λ

between opposite weight spaces. In the quantum setting, the Weyl group for sl2 (i.e. the28

symmetric group S2) deforms to the two strand braid group B2, and the isomorphism29

t1λ can be written in a completion of U̇(sl2) as the infinite sum30

(1.1) t1λ =

{ ∑
b≥0(−q)bF (λ+b)E(b)1λ, if λ ≥ 0,∑
a≥0(−q)−λ+aE(−λ+a)F (a)1λ, if λ ≤ 0,
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where E(a) = Ea/[a]!, F (a) = F a/[a]! are the so-called divided powers, and [a]! =1 ∏a
m=1

qm−q−m

q−q−1 are quantum factorials. Note that, when acting on an integrable module,2

only finitely many terms in this infinite sum are non-zero. From the perspective of3

categorification, the crucial observation about equation (1.1) is the occurrence of minus4

signs.5

For those initiated in the categorification doctrine, the occurrence of minus signs6

immediately necessitates the departure from strictly additive categorification. That is,7

we can no longer work with additive categories Vλ, as there is no categorical analogue of8

subtraction therein. To accommodate such minus signs within a categorical framework,9

one typically passes to derived, or more-generally triangulated, categories, where the10

translation functor gives a categorical notion of multiplying by −1. One manner for11

doing so is to take the categories of chain complexes Kom(Vλ) of the weight categories12

Vλ in an additive categorification, and pass to their homotopy categories of complexes13

Com(Vλ). See Section 3.4 for more details on homotopy categories of additive categories14

and their Grothendieck groups; we note that we follow [5] in using the non-standard15

notation Com to denote the homotopy category, so as not to confuse with our notation16

K0 for taking the Grothendieck group/ring. Under decategorification, the classes of17

such complexes are equal to the alternating sum of the classes of their terms in K0(Vλ).18

The alternating sum in (1.1) suggests that a categorification of t1λ might be achieved19

using a chain complex whose differential is built from the 2-morphisms in U̇Q(sl2).20

Indeed, Chuang and Rouquier’s work determines chain complexes τ1λ and τ−11λ, the so-21

called Rickard complexes, that lift t1λ and its inverse t−11λ to the categorical setting [18].22

The composition of complexes ττ−11λ and τ−1τ1λ are both isomorphic to the identity23

in Com(U̇Q(sl2)), i.e. the complexes are homotopy equivalent to (but, in fact, not equal24

to) 1λ in Kom(U̇Q(sl2)). Using this, Chuang and Rouquier lifted the Weyl group action25

of sl2 to define equivalences26

τ1λ : Com(Vλ)
∼=−→ Com(V−λ)

lifting t1λ (to be precise, Chuang-Rouquier originally worked in the non-quantum and27

abelian/derived setting, with the extension to the quantum and triangulated setting28

given in work of Rouquier [55] and Cautis-Kamnitzer [15]).29

For general g, the corresponding Weyl group action on integrable representations30

deforms to an action of the type-g braid group Bg in the quantum setting; we will31

follow the standard terminology in referring to this as the quantum Weyl group action.32

Analogous to the g = sl2 case, this action lifts to highly non-trivial braid group actions33

in categorical representation theory [15, 55]. To illustrate their far reaching impact in34

mathematics, we recall just a handful of their many applications.35

• Chuang and Rouquier use the equivalence induced by categorical sl2 actions on36

derived categories of modules over the symmetric group in positive characteristic37

to resolve Broué’s Abelian deffect group conjecture for the symmetric group38

Sn [18].39
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• Cautis, Kamnitzer, and Licata use categorical sl2 actions to resolve a conjec-1

ture of Namikawa [48] asserting the existence a of derived equivalence between2

cotangent bundles of complementary Grassmannians T ∗G(k,N) and T ∗G(N −3

k,N) [16, 13]. These varieties are related by a stratified Mukai flop, and the4

problem of constructing such equivalences had previously only been resolved5

in the k = 1 case [22, 47] and for G(2, 4) in work of Kawamata [23]. More6

generally, Cautis, Kamnitzer, and Licata construct categorical braid group ac-7

tions on cotangent bundles to partial flag varieties and Nakajima quiver varieties8

[15, 11, 10]9

• Categorical representations of slm, and the associated braid group actions, can10

be used to categorify the sln Reshetikhin-Turaev quantum link invariants via11

a categorical analogue of the skew Howe duality between glm and gln [16, 34,12

49, 14]. This perspective has led to the solution of a number of conjectures in13

link homology [53, 50], and provides a framework for connecting link homologies14

defined using wildly different machinery [14, 34, 40].15

At the decategorified level, the braid group action on integrable modules of U̇q(g)16

comes in several flavors17

(1.2)

t
′
i,e1λ =

∑

a,b;a−b=λi

(−q)ebF (a)
i E(b)

i 1λ =
∑

a,b;a−b=λi

(−q)ebE(b)
i F (a)

i 1λ,

t
′′
i,e1λ =

∑

a,b;−a+b=λi

(−q)ebE(a)
i F (b)

i 1λ =
∑

a,b;−a+b=λi

(−q)ebF (b)
i E(a)

i 1λ,

where e = ±1, see Section 2.3 for more details. Given the importance of these braid18

group actions, it is natural to ask how the braid group action Bg on an integrable19

module interacts with the U̇q(g) action. This was answered by Lusztig [37, Proposition20

37.1.2], who showed that, for each node in the Dynkin diagram i ∈ I and e = ±1,21

there exist algebra automorphisms T ′
i,e and T ′′

i,e of U̇ = U̇q(g) uniquely defined by the22

condition that, for any integrable U̇-module V , any z ∈ V , and u ∈ 1νU̇1λ, the following23

equations hold24

T ′
i,e(u)t

′
i,e1λ(z) = t

′
i,e1ν(uz),

T ′′
i,e(u)t

′′
i,e1λ(z) = t

′′
i,e1ν(uz).

(1.3)

Related operators were studied in finite type in [58, 57, 35], then generalized to simply-25

laced Cartan data in [36] and general Cartan data in [38]. See Section 2.4 for more26

details.27

The algebra automorphisms T ′
i,e and T ′′

i,e each define braid group actions on the algebra28

U̇ itself that we call the internal braid group action. This internal action plays an29

important role, e.g. in the construction of the PBW basis for U̇. Lusztig goes on30

to give precise formulas for the action of T ′
i,e and T ′′

i,e on the generators of U̇, that31
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unsurprisingly involve minus signs, e.g.1

(1.4) T ′
i,+1(Ej1λ) = EjEi1si(λ) − qEiEj1si(λ) if i · j = −1.

where here si are the simple reflections in the Weyl group.2

We now describe the results contained in this article. Throughout we let g be a3

simply-laced Kac-Moody algebra.4

1.1. Categorifying T ′
i,e and T ′′

i,e. In Section 4 we define graded, additive 2-functors5

T ′
i,e, T

′′
i,e : U̇Q → Com(U̇Q). To do so, we first assign explicit chain complexes to generating6

1-morphisms in U̇Q that lift the formulae defining T ′
i,e and T ′′

i,e, e.g. equation (1.4) lifts7

to the assignment8

T ′
i,+1(Ej1λ) = ♣ EjEi1si(λ)

j i
−−−−−−−→ EiEj1si(λ)〈1〉 if i · j = −1,

where (here, and throughout) ♣ denotes the term in homological degree zero. Func-
toriality then requires that the composite xy1λ of composable 1-morphisms y1λ′ and
x1λ is sent to the composition of chain complexes T ′

i,+1(y1λ′)T
′
i,+1(x1λ), defined using

composition of 1-morphisms in U̇Q in a manner similar to taking tensor product of chain
complexes. To complete the definition of T ′

i,e and T ′′
i,e, we then assign an explicit chain

map T ′
i,+1(α) : T

′
i,+1(x1λ) → T ′

i,+1(x
′1λ) to each generating 2-morphism α : x1λ → x′1λ

in U̇ , e.g. the 2-morphism Xj : Ej1λ → Ej1λ〈2〉 is sent by T ′
i,+1 to

T ′
i

(
•

j

λλ+ αj

)
:=

♣ EjEi1si(λ)〈2〉

♣ EjEi1si(λ)

•

j i

EiEj1si(λ)〈3〉

EiEj1si(λ)〈1〉

i

•

j

j i

j i

which is a chain map by the i += j dot sliding relation, see (5) in Definition 3.3. Finally,9

we show that the images of relations in U̇Q are satisfied in Com(U̇Q), up to homotopy.10

Proving that T ′
i,+1 is a well-defined 2-functor requires an immense number of verifi-

cations. The diagrammatic relations defining U̇Q involve strands colored by the Dynkin
nodes of g, and depend on the adjacency of the colors involved. For example, the
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relation involving the greatest number of strands is:

λ

$ j k

− λ

$ j k

=






t$j

$ j $

if $ = k and $ · j = −1

0 if $ += k or $ · j += −1

where t$j is a scalar defined in Section 3.1. Showing that T ′
i,+1 preserves this relation for1

all i and all triples j, k, $ requires considering all possible types of adjacency relations2

between the nodes corresponding to i, j, k, $, requiring 27 essentially distinct case that3

need to be verified. The complexity is further exacerbated by the fact that T ′
i,+1 often4

only preserves a relation up to homotopy.5

Unfortunately, we are not aware of a means to define the 2-functors lifting Lusztig’s6

formulae without explicitly constructing the chain homotopies for each relation and7

each possible coloring by nodes i ∈ I. We have made every attempt to provide sufficient8

detail in this work to aid in any future applications of these 2-functors, and in particular9

provide sufficient detail so that the relevant homotopies can be easily extracted.10

Our main result in this article is the following theorem.11

Theorem 1.1. Let g be a simply-laced Kac-Moody algebra, then there is an explicitly12

defined 2-functor13

T ′
i,+1 : U̇Q(g) → Com(U̇Q(g))

so that the induced map [T ′
i,+1] : U̇q(g) ∼= K0(U̇Q(g)) → K0(Com(U̇Q(g))) ∼= U̇q(g)14

agrees with T ′
i,+1.15

At the level of 1-morphisms, such functors have already appeared at the categorical16

level in [14, 15] and were given a geometric interpretation in [21, 20, 63, 64]; however,17

to our knowledge, no information about extending these maps to 2-morphisms has ap-18

peared previously. As such, Theorem 1.1 initiates the study of Lusztig’s operators at19

the 2-categorical level. In fact, we conjecture much more. At the decategorified level,20

Lusztig’s operators are invertible and satisfy the braid relations. These properties, com-21

bined with our forthcoming work, stated in Theorem 1.4 below, suggest the following:22

Conjecture 1.2. Let g be a (simply-laced) Kac-Moody algebra, then T ′
i,+1 extends to23

an autoequivalence of Com(U̇Q(g)) so that the induced automorphism [T ′
i,+1] of U̇q(g) ∼=24

K0(Com(U̇Q(g))) agrees with T ′
i,+1. Moreover, the T ′

i,+1 satisfy the braid relations.25

The extension (of domain) to the homotopy category is a problem in obstruction26

theory that we plan to attack in future work. Having done so, the proof of braid27

relations will be a straightforward (but tedious) check.28
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1.2. Symmetries and the internal braid group action. There are a number of
other (anti)linear (anti)automorphisms σ,ω,ψ defined on U̇, see section 2.2 for their
definitions. These (anti)involutions allow one to pass between the variants T ′

i,e and T ′′
i,e

of the internal braid group generators via conjugation, i.e.

σT ′
i,eσ = T ′′

i,−e ωT ′
i,eω =T ′′

i,e(1.5)

ψT ′
i,eψ = T ′

i,−e ψT ′′
i,eψ =T ′′

i,−e.(1.6)

In [25] these symmetries were lifted to define 2-functors σ,ω,ψ on a certain version of the1

categorified quantum group. Each has a natural interpretation in terms of symmetries2

of the graphical calculus for U̇Q, and, in the sl2 case, were extended to the homotopy3

category of complexes in [5].4

Recall (or see Section 3.1 below) that the definition of U̇Q requires a choice of scalar5

parameters Q; it was recently shown that there is a natural normalization for the cat-6

egorified quantum group associated to an arbitrary KLR algebra and choice of Q [4].7

This so-called cyclic version of U̇Q satisfies the property that diagrams that are planar8

isotopic relative to their boundaries specify the same 2-morphism in U̇Q, a property that9

only holds up to scalars in previous formulations. Given the utility of the cyclic version,10

we also prove the following result, which defines these symmetries in this setting.11

Theorem 1.3. There are invertible 2-functors σ,ω,ψ defined on the cyclic version of12

the categorified quantum group U̇Q that categorify the symmetries σ,ω,ψ, i.e.13

[σ] = σ, [ω] = ω, [ψ] = ψ

in K0(U̇Q(g)) ∼= U̇q(g).14

Defining these 2-functors requires several subtle aspects involving the choice of scalars15

Q, so we include the details below in Section 3.5. Using these symmetries, we use the16

categorical analogue of (1.5) to define the variants T ′
i,−1 and T ′′

i,e of the internal braid17

group action.18

1.3. Compatibility with Rickard complexes. As noted above, the defining feature19

of the internal braid group action at the decategorified level is its compatibility with20

the quantum Weyl group action, given in equation (1.3). In a sequel to this paper [1],21

we show that our 2-functors T ′
i,+1 satisfy an analogous compatibility with the Rickard22

complexes.23

To be precise, note that the first equality in equation (1.3) asserts that the actions of24

the elements T ′
i,e(u)t

′
i,e1λ and t′i,e1νu on the λ weight space of any integrable representa-25

tion agree for all u ∈ 1νU̇1λ. Equivalently, for any integrable representation V = ⊕λVλ26

there is an equality between the corresponding linear maps 1νU̇1λ → Hom(Vλ, Vsi(ν)).27

At the categorical level, the operation of composing with the complex τ ′i,+1 defines a28

functor29

τ ′i,+11ν(−)1λ : HomUQ
(λ, ν) → HomCom(UQ)(λ, si(ν))
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and we can similarly consider the functor T ′
i,e(−)τ ′i,e1λ, which maps between the same1

Hom-categories. The main result of [1] is the following:2

Theorem 1.4. For all objects λ, ν in UQ, there is an isomorphism of functors3

(1.7) ! : τ ′i,+11ν(−)1λ ∼= T ′
i,e(−)τ ′i,e1λ

between Hom-categories HomUQ
(λ, ν) → HomCom(UQ)(λ, si(ν)).4

1.4. Applications of the internal braid group action.5

1.4.1. PBW basis and their categorifications. In finite type, Lusztig’s internal braid6

group action can be used to deduce the quantum PBW theorem for U̇+(g), provid-7

ing a basis of monomials that are useful in many applications. The KLR algebra8

provides a categorification of U̇+(g) via its category of projective/finitely generated9

modules [24, 26, 55]. Therein, the indecomposable projective modules correspond to10

the canonical basis of U̇+(g) [60], while the simple modules corresponds to the dual11

canonical basis [7, 61]. At the categorical level, the analogues of PBW monomials lead12

to a rich theory of standard modules for KLR algebras. In finite type, standard mod-13

ules were first described in [30] (see also [6, 9, 19, 42, 43, 20]), and in affine type they14

were studied in [31, 29, 59, 44]; in these studies, the focus has been on finding specific15

modules over KLR algebras that lift a given PBW monomial. In forthcoming work [41],16

McNamara plans to use our 2-functors T ′
i,+1 to build projective resolutions of standard17

KLR modules, producing a categorical lift of Lusztig’s internal braid group construction18

of the PBW basis, and giving a strengthening of Kato’s results on reflection functors19

for KLR algebras [20].20

1.4.2. Quantum Affine algebras. There is no obstruction to defining the 2-functors T ′
i,+121

in arbitrary symmetrizable type, except that the check of well-definedness is much-more22

involved. For example, Lusztig provides the explicit formula23

(1.8) T ′
i,+1(E$1λ) =

−i·$∑

j=0

(−q)jE(j)
i E$E

(−i·$−j)
i 1si(λ)

in arbitrary type (compare to equation (1.4) above), which suggests that the categorified24

Lusztig operator T ′
i,1 should send E$1λ to a complex of length 1− i · $. It is not difficult25

to specify a complex lifting equation (1.8), e.g. we could set26

T ′
i,1(E$1λ) := ♣E$E

(−i·$)
i 1si(λ) −−−→ EiE$E

(−i·$−1)
i 1si(λ)〈1〉 −−−−→ · · · −−−−→ E (−i·$)

i E$1si(λ)〈−i·$〉.

Here, the terms in the differential are given using the thick calculus from [27], and an27

easy computation therein verifies that they square to zero. The appearance of com-28

plexes containing more than two non-zero terms suggests that even more of the defining29

relations in U̇Q may be preserved by T ′
i,1 only up to homotopy, exacerbating the difficulty30
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of checking that these 2-functors are well-defined. Despite this, we note one interesting1

application of an extension of our 2-functors to non-simply-laced type: it may be possi-2

ble to promote Beck’s description [3] of the loop presentation of affine algebras in terms3

of the internal braid group action to the categorical level, giving a categorification of4

affine algebras in their loop realization.5

1.4.3. Link invariants and skew Howe duality. As referenced above, one can study the6

sln quantum link invariants via U̇(slm) representation theory using quantum skew Howe7

duality. The latter is the quantum analogue of the duality arising from the commuting8

actions of U̇(sln) and U̇(slm) on the quantum exterior power ∧N ( m
q ⊗ n

q ). The sln link9

invariants admit a formulation in terms of MOY calculus [46] and sln webs [32, 28, 45],10

certain trivalent graphs which specify the morphisms in a diagrammatic description of11

the category of U̇(sln) representations.12

Cautis, Kamnitzer, and Morrison show that skew Howe duality admits a graphical de-13

scription in terms of so-called ladder webs, and use this to give an entirely diagrammatic14

description of the full subcategory of quantum sln representations tensor generated by15

the fundamental representations [17]. In this formulation, skew Howe duality specifies a16

representation of U̇(slm) in which an slm weight λ = (λ1,λ2, . . . ,λm−1) is sent to the to17

the m-tuple (a1, a2, . . . , am) that satisfies 0 ≤ ai ≤ n,
∑m

i=1 ai = N and λi = ai − ai+1,18

and weights not satisfying these conditions are sent to zero. This representation maps19

the generators of U̇(slm) as follows:20

1λ .→
. . .

a1 am

, E(r)
i 1λ .→ . . . . . .

a1 ai−1 ai ai+1 ai+2 am

ai+r ai+1−r

r
, F (r)

i 1λ .→ . . . . . .

a1 ai−1 ai ai+1 ai+2 am

ai−r ai+1+r

r

Under this representation, the braiding on the category of U̇(sln) is given by the quan-21

tum Weyl group action, i.e. diagrammatically, we have:22

(1.9) ti1λ .→
a1 ai−1 ai ai+1 amai+2

. . . . . .
t
−1
i 1λ .→

a1 ai−1 ai ai+1 amai+2

. . . . . .

In this way, these link invariants can be computed and studied via the elements in23

U̇(slm) corresponding to a given link diagram.24

Under this correspondence, the internal braid group action plays an interesting role25

in the diagrammatic description of quantum sln link invariants, as equation (1.3) shows26

how to slide the image of an arbitrary element u ∈ U̇(slm) through a crossing, i.e. it27
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gives the equality:1

a1 ai−1 ai ai+1 amai+2

u =

a1 ai−1 ai ai+1 amai+2

. . . . . .

T ′
i,+1(u)

where he we abuse notation in denoting elements in U̇(slm) and their images under the2

skew Howe representation via the same symbols.3

This entire story lifts to the categorical level, allowing for the study of Khovanov [34]4

and Khovanov-Rozansky homology [14, 49] following Cautis, Kamnitzer, and Licata’s5

pioneering work in using categorical skew Howe duality to study algebro-geometric6

categorifications of the sln link polynomials [16]. The crucial point is that equation7

(1.9) lifts to map the Rickard complexes to the chain complexes assigned to crossings8

in sln link homology.9

In the foam-based description of link homology [2, 39, 49], categorical skew Howe10

duality maps generators in U̇Q(slm) to explicit sln foams, certain singular surfaces that11

categorify sln webs. Theorem 1.4 then explicitly shows how to slide not only webs, but12

also foams mapping between them, through crossings in sln link homology. At the level13

of 1-morphisms (webs), this interaction is key to the stability results used to define sln14

analogues of Jones Wenzl projectors [56, 14, 52], and we anticipate that our extension15

to the level of 2-morphisms will prove useful for future arguments in link homology.16
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2. The quantum group and Lusztig symmetries24

2.1. The quantum group Uq(g).25

2.1.1. Root datum. For the remainder of this article we restrict our attention to simply-26

laced Kac-Moody algebras. These algebras are associated to a choice of simply-laced27

Cartan datum consisting of28

• a finite set I, and29

• a -valued symmetric bilinear form · on I satisfying i · i = 2 for all i ∈ I and30

i · j ∈ {0,−1} for i += j31

and root datum given by:32

• a free -module X , called the weight lattice,33
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• a choice of simple roots {αi}i∈I ⊂ X and simple coroots {hi}i∈I ⊂ X∨ =1

Hom (X, ) that satisfy 〈hi,αj〉 = 2 i·j
i·i , where here 〈·, ·〉 : X∨ × X → is the2

canonical pairing.3

In this case, aij := 〈hi,αj〉 = i · j, so (aij)i,j∈I is a symmetric generalized Cartan4

matrix. Given an arbitrary weight λ ∈ X , we will often abbreviate 〈hi,λ〉 by either5

〈i,λ〉 or simply by λi. We let {Λi}i∈I ⊂ X denote the fundamental weights, which are6

characterized by the property that 〈hi,Λj〉 = δij for all i, j ∈ I.7

We let X+ ⊂ X denote the dominant weights, which are those of the form
∑

i λiΛi8

for λi ≥ 0. Associated to a simply-laced Cartan datum is a graph Γ without loops or9

multiple edges, with a vertex for each i ∈ I and an edge from vertex i to vertex j if and10

only if i · j = −1.11

2.1.2. The simply-laced quantum group. The quantum group U = Uq(g) associated to12

a simply-laced root datum is the unital, associative (q)-algebra given by generators13

Ei, Fi, Kµ for i ∈ I and µ ∈ X∨, subject to the relations:14

(a) K0 = 1 and KµKµ′ = Kµ+µ′ for all µ, µ′ ∈ X∨,15

(b) KµEi = q〈µ,αi〉EiKµ for all i ∈ I, µ ∈ X∨,16

(c) KµFi = q−〈µ,αi〉FiKµ for all i ∈ I, µ ∈ X∨,17

(d) EiFj − FjEi = δij
Khi

−K−1
hi

q−q−1 , where we set Ki := Khi
, and18

(e) for all i += j19

∑

a+b=−〈i,αj〉+1

(−1)aE(a)
i EjE

(b)
i = 0 and

∑

a+b=−〈i,αj〉+1

(−1)aF (a)
i FjF

(b)
i = 0

where E(a)
i = Ea

i /[a]!, F
(a)
i = F a

i /[a]!, and [a]! =
∏a

m=1
qm−q−m

q−q−1 .20

2.1.3. The integral idempotented form of quantum group. We will work with the idem-21

potent form of U, which is adapted to the study of U-modules with weight space22

decompositions. This non-unital algebra is equipped with a collection of orthogonal23

idempotents, hence can be described as a (q)-linear category U̇ = U̇q(g), defined as24

follows. The objects of U̇ are elements of X , and the Hom-space between λ, ν ∈ X is25

defined to be26

U̇(λ, ν) := U/

(
∑

µ∈X∨

U(Kµ − q〈µ,λ〉) +
∑

µ∈X∨

(Kµ − q〈µ,ν〉)U

)

.

The identity morphism of λ ∈ X is denoted by 1λ and we will typically abbreviate27

the element 1µx1λ ∈ U̇(λ, µ) determined by x ∈ U by either 1µx or x1λ, e.g. we have28

Ei1λ = 1λ+αi
Ei and Fi1λ = 1λ−αi

Fi. Composition in U̇ is induced by multiplication in29

U, i.e.30

(1µx1ν)(1νy1λ) = 1µxy1λ
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for x, y ∈ U, λ, µ, ν ∈ X . The idempotent form U̇ admits an integral form, defined as1

the [q, q−1]-lattice AU̇ ⊂ U̇ spanned by products of divided powers E(a)
i 1λ and F (a)

i 1λ.2

2.2. (Anti)linear (anti)automorphisms of U̇. There are several [q, q−1]-(anti)linear3

(anti)automorphisms that will be used in this paper. For f ∈ (q), let f .→ f̄ be the4

-linear involution of (q) that sends q to q−1.5

• The (q)-linear algebra anti-involution σ : U → U is given by

σ(Ei) = Ei , σ(Fi) = Fi , σ(Ki) = K−1
i ,

σ(fx) = fσ(x) for f ∈ (q) and x ∈ U,

σ(xy) = σ(y)σ(x) for x, y ∈ U.

• The (q)-linear algebra involution ω : U → U is given by

ω(Ei) = Fi , ω(Fi) = Ei , ω(Ki) = K−1
i ,

ω(fx) = fω(x) for f ∈ (q) and x ∈ U,

ω(xy) = ω(x)ω(y) for x, y ∈ U.

• The (q)-antilinear algebra involution ψ : U → U is given by

ψ(Ei) = Ei , ψ(Fi) = Fi , ψ(Ki) = K−1
i ,

ψ(fx) = f̄ψ(x) for f ∈ (q) and x ∈ U,

ψ(xy) = ψ(x)ψ(y) for x, y ∈ U.

These (anti)linear (anti)involutions pairwise commute and generate the group G =6

( 2)3 of (anti)linear (anti)automorphisms acting on U. The (anti)involutions σ, ω, and7

ψ all extend to U̇ and AU̇ by setting8

σ(1λ) = 1−λ , ω(1λ) = 1−λ , ψ(1λ) = 1λ.

and taking the induced maps on each summand 1λ′U̇1λ.9

2.3. Quantum Weyl group action on integrable U̇-modules. Let V = ⊕λVλ be
an integrable U̇-module, then, for e = ±1, Lusztig [37, 5.2.1] defines linear maps t′i,e,
t′′i,e : V → V by

t
′
i,e(z) =

∑

a,b,c;a−b+c=λi

(−1)bqe(−ac+b)F (a)
i E(b)

i F (c)
i z,

t
′′
i,e(z) =

∑

a,b,c;−a+b−c=λi

(−1)bqe(−ac+b)E(a)
i F (b)

i E(c)
i z,

for z ∈ Vλ that are commonly called the quantum Weyl group elements. They are
mutually inverse automorphisms (specifically, they satisfy t′i,et

′′
i,−e = Id = t′′i,−et

′
i,e) that

satisfy the relations

t
′
i,et

′
j,et

′
i,e = t

′
j,et

′
i,et

′
j,e and t

′′
i,et

′′
j,et

′′
i,e = t

′′
j,et

′′
i,et

′′
j,e if i · j = −1



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION 13

t
′
i,et

′
j,e = t

′
j,et

′
i,e and t

′′
i,et

′′
j,e = t

′′
j,et

′′
i,e if i · j = 0

and thus define an action of type g braid group on any integrable module [37, Theorem
39.4.3]. This action on a particular weight space can be conveniently described by the
infinite sums

t
′
i,e1λ =

∑

a,b,c;a−b+c=λi

(−1)bqe(−ac+b)F (a)
i E(b)

i F (c)
i 1λ

t
′′
i,e1λ =

∑

a,b,c;−a+b−c=λi

(−1)bqe(−ac+b)E(a)
i F (b)

i E(c)
i 1λ

of elements in U̇, from which the maps t′i,e ,t
′′
i,e can be recovered by taking the sum over1

all λ ∈ X . It was shown in [17, Lemma 6.1.1] that these elements admit the simpler2

form given in equation (1.2) above, i.e. in fact all terms with c += 0 cancel.3

2.4. Lusztig’s internal braid group action. For each i ∈ I and e = ±1, Lusztig4

defines algebra automorphisms T ′
i,e and T ′′

i,e of U̇ = U̇q(g) defined uniquely by the5

compatibility with the quantum Weyl group action given in equation (1.3) above. They6

are given explicitly in [37, 41.1.2] by7

(2.1)

T ′
i,e(1λ) = 1si(λ)

T ′
i,e(E$1λ) =






−q−e(2+λi)Fi1si(λ) if i = $

E$Ei1si(λ) − qeEiE$1si(λ) if i · $ = −1

E$1si(λ) if i · $ = 0

T ′
i,e(F$1λ) =






−qe(λi)Ei1si(λ) if i = $

FiF$1si(λ) − q−eF$Fi1si(λ) if i · $ = −1

F$1si(λ) if i · $ = 0

and

T ′′
i,e(1λ) = 1si(λ)

T ′′
i,e(E$1λ) =






−q−e(λi)Fi1si(λ) if i = $

EiE$1si(λ) − q−eE$Ei1si(λ) if i · $ = −1

E$1si(λ) if i · $ = 0

T ′′
i,e(F$1λ) =






−qe(λi−2)Ei1si(λ) if i = $

F$Fi1si(λ) − qeFiF$1si(λ) if i · $ = −1

F$1si(λ) if i · $ = 0

where si is the Weyl group element corresponding to the simple root αi, i.e. si(λ) =8

λ − 〈i,λ〉αi. Lusztig further shows [37, 41.1.1] that (T ′
i,e)

−1 = T ′′
i,−e, and that these9

automorphisms interact with the automorphisms from Section 2.2 as in equation (1.5)10
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above. As a consequence, we see that both T ′
i,e and T ′′

i,e are invariant under conjugation1

by the triple composite σωψ.2

In what follows, we focus our attention on the automorphisms T ′
i,1, since similar

results can be deduced for T ′′
i,−1, T

′′
i,1, and T ′

i,−1 using equation (1.5). When the context
is clear, we will abbreviate T ′

i,1 by T ′
i . In [37, 39.2.4 and 39.2.5], Lusztig shows that the

T ′
i satisfy

T ′
iT

′
$T

′
i = T ′

$T
′
iT

′
$ if i · $ = −1

T ′
iT

′
$ = T ′

$T
′
i if i · $ = 0

and hence defined a type g braid group action on U̇.3

3. The categorified quantum group4

In this section, we recall the definition of the categorified quantum group UQ(g),5

specifically the cyclic version from [4], and establish a number of additional properties6

needed for our arguments.7

3.1. Choice of scalars Q. Let k be a field, not necessarily algebraically closed, or8

characteristic zero.9

Definition 3.1. A choice of scalars Q associated to a simply-laced Cartan datum,10

consist of elements {tij}i,j∈I satisfying:11

• tii = 1 for all i ∈ I and tij ∈ k× for i += j,12

• tij = tji when aij = 0.13

We say that a choice of scalars Q is integral if tij = ±1 for all i, j ∈ I.14

The choice of scalars Q controls the form of the KLR algebra RQ that categorifies15

the positive half of the quantum group U̇, and the 2-category UQ(g) is governed by the16

products vij = t−1
ij tji taken over all pairs i, j ∈ I, which can be viewed as a k×-valued17

1-cocycle on the graph Γ associated to the Cartan datum.18

Definition 3.2. A choice of bubble parameters C consists of elements ci,λ ∈ k× for i ∈ I19

and λ ∈ X . We say that they are compatible with the scalars Q if20

(3.1) ci,λ+αj
/ci,λ = tij .

Given any choice of scalars Q, we obtain a compatible choice of bubble parameters by21

fixing ci,λ for a representative in every coset of the root lattice in the weight lattice, and22

then extending to entire weight lattice using equation (3.1). For a compatible choice,23

note that the bubble parameters remain constant along an sl2-string since24

ci,λ+nαi
= tniici,λ = ci,λ.
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3.2. Definition of the 2-category UQ(g). Recall that a graded linear category is an1

additive category equipped with an auto-equivalence 〈1〉 called the shift (see e.g. [2]),2

and a graded additive 2-category is a category enriched in graded linear categories.3

Throughout, we will use 〈t〉 to denote the auto-equivalence given by applying 〈1〉 t4

times, and 〈−t〉 to denote the auto-equivalence obtained by applying the inverse of 〈1〉5

t times.6

Definition 3.3. Fix a choice of scalars Q and compatible bubble parameters C, then7

the 2-category UQ := U cyc
Q (g) is the graded linear 2-category with:8

• Objects: λ ∈ X ,9

• 1-morphisms: formal direct sums of shifts of compositions of the generating10

1-morphisms:11

1λ , 1λ+αi
Ei = 1λ+αi

Ei1λ = Ei1λ , 1λ−αi
Fi = 1λ−αi

Fi1λ = Fi1λ

for i ∈ I and λ ∈ X .12

• 2-morphisms: Hom-spaces are k-vector spaces spanned by (horizontal and ver-
tical) compositions of the following decorated tangle-like diagrams.

•

i

λλ+αi : Ei1λ → Ei1λ〈2〉 •

i

λλ−αi : Fi1λ → Fi1λ〈2〉

i j
λ : EiEj1λ → EjEi1λ〈−i · j〉

i j
λ : FiFj1λ → FjFi1λ〈−i · j〉

i j
λ : FiEj1λ → EjFi1λ

i j
λ : EiFj1λ → FjEi1λ

i
λ

: 1λ → FiEi1λ〈1 + λi〉
i

λ

: 1λ → EiFi1λ〈1− λi〉

i λ : FiEi1λ → 1λ〈1 + λi〉 i λ : EiFi1λ → 1λ〈1− λi〉

Note that we follow the grading conventions in [12, 34], which are opposite to those13

from [25]. We read such diagrams from right to left and bottom to top, and the identity14

2-morphisms of the 1-morphisms Ei1λ and Fi1λ are depicted by upward and downward15

oriented segments labeled by i, respectively.16

The following local relations are imposed on the 2-morphisms.17

(1) Right and left adjunction:18

λ

λ+ αi

=
λλ+ αi

,

λ+ αi

λ

=

λ+ αiλ
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λ

λ+ αi

=

λλ+ αi

,

λ+ αi

λ

=
λ + αiλ

(2) Dot cyclicity:

λ+ αi

λ
•

= •
λ λ+ αi

=

λ+ αi

λ

•

(3) Crossing cyclicity:

i j
λ = λ

j i

ji

= λ

ij

i j

j i
λ = λ

i j

ij

= λ

ji

j i

ij
λ =

λ

ji

j i

=
λ

i j

ij

The next three relations imply that the E ’s (and F ′s) carry an action of the1

KLR algebra associated to Q.2

(4) Quadratic KLR:3

λ

i j

=






0 if i = j,

tij
i j

if i · j = 0,

tij
•

i j

+ tji
•

i j

if i · j = −1

(5) Dot slide:4

•i j
− •

i j
= •

i j
− •i j

=





i i

if i = j

0 if i += j
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(6) Cubic KLR:1

λ

i j k

− λ

i j k

=






tij

i j i

if i = k and i · j = −1

0 if i += k or i · j += −1

(7) Mixed EF : for i += j

λ

i j

= λ
i j

,
λ

i j

= λ
i j

(8) Bubble relations:2

i

•
λi−1+m

λ

=

{
ci,λId1λ

if m = 0

0 if m < 0
,

i

•
−λi−1+m

λ

=

{
c−1
i,λId1λ

if m = 0

0 if m < 0

(9) Extended sl2 relations:3

These final relations are the most-involved, and require the introduction of fake4

bubbles – positive degree endomorphisms of 1λ that are denoted by a bubble5

carrying a formal label by a negative number of dots. They are defined by6

i

•
λi−1+j

λ
=






− ci,λ
∑

a+b=j
b≥1

i

•
λi−1+a

i

•
−λi−1+b

λ
if 0 < j < −λi + 1

0 if j ≤ 0.

when λi < 0, and by7

i

•
−λi−1+j

λ
=






− c−1
i,λ

∑

a+b=j
a≥1

i

•
λi−1+a

i

•
−λi−1+b

λ
if 0 < j < λi + 1

0 if j ≤ 0.

when λi > 0. The extended sl2 relations are then as follows, where we employ8

the convention here (and throughout) that all summations are “increasing”, i.e.9 ∑

a+b+c
=µ

Xa,b,c is zero if µ < 0.10

i i

λ = −
λ

i i

+
∑

a+b+c
=λi−1

λ

•c

• a
i

•
−λi−1+b

i

i
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1

i i

λ = −
λ

i i

+
∑

a+b+c
=−λi−1 •c

•a
i

•
λi−1+b

i

i
λ

Remark 3.4. We will find it helpful to work with the reduced presentation for UQ

where we restrict to the following generating 2-morphisms:

•

i

λλ+αi : Ei1λ → Ei1λ〈2〉
i j

λ : EiEj1λ → EjEi1λ〈−i · j〉

i
λ

: 1λ → FiEi1λ〈1 + λi〉
i

λ

: 1λ → EiFi1λ〈1− λi〉

i λ : FiEi1λ → 1λ〈1 + λi〉 i λ : EiFi1λ → 1λ〈1− λi〉

Indeed, the downward dot 2-morphism and sideways and downward crossings can be2

defined in various ways by composing the upward versions with caps and cups, and3

the cyclicity relations show that they do not depend on the choices made in doing so.4

Further, Brundan [8] has shown that this presentation can be further simplified to agree5

with the one given by Rouquier [54] that requires a smaller set of axioms, together with6

the requirement that certain 2-morphisms are (abstractly) invertible. Although this7

further reduced presentation is helpful in checking that biadjointness and cyclicity hold8

in various 2-representations, it is not useful in our present work, as showing that the9

required maps are invertible essentially requires verifying the omitted axioms in UQ.10

3.3. Additional relations in UQ. Here, we collect additional useful relations that will11

be used in later sections.12

3.3.1. Curl relations. Dotted curls can be reduced to simpler diagrams using the fol-13

lowing.14

λ
•m

i

= −
∑

f1+f2
=m−λi

λ

i

i

•
λi−1+f2

•f1
,

λ
•m

i

=
∑

g1+g2
=m+λi

i

λ
i

•
−λi−1+g2

•g1

Note that in [33, 12] the m = 0 cases of these relations were included in the defining15

list of relations, but it was shown in [4, Lemma 3.2] that these relations (for arbitrary16

m) follow from the relations presented above.17

3.3.2. Infinite Grassmannian relations. These relations are obtained by equating the18

terms homogeneous in t in the expression below.19

(
i

•
−λi−1

λ
+

i

•
−λi−1+1

λ
t + · · ·+

i

•
−λi−1+α

λ
tα + · · ·

)(
i

•
λi−1

λ
+

i

•
λi−1+1

λ
t + · · ·+

i

•
λi−1+α

λ
tα + · · ·

)
= Id1λ
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For low powers of t, these relations encode the definition of fake bubbles in terms of1

(real) bubbles, and, for higher powers of t, they follow from the curl and extended2

sl2-relations.3

3.3.3. Bubble slides. In what follows, we make use of the shorthand notation for bubbles4

from [27]5

λ
i

•
♠+α

:=

λ
i

•
〈i,λ〉−1+α

λ
i

•
♠+α

:=

λ
i

•
−〈i,λ〉−1+α

As long as α ≥ 0, this notation makes sense even when ♠+ α < 0, in which case these6

are the fake bubbles defined in the previous section.7

Counterclockwise bubbles can be slid through upward oriented lines via the following
relations:

λ

j

i

•
♠+α

=






∑α
f=0

(α+ 1− f)

λ+ αj

j

i

•
♠+f

•α−f

if i = j

tij

λ+ αj

j

i

•
♠+α

+ tji

λ+ αj

j

i

•
♠+α−1

•
if aij = −1

tij

λ+ αj

j

i

•
♠+α

if aij = 0

λ+ αj

j

i

•
♠+α

=






λ

j

i

•
♠+(α−2)

• 2

− 2
λ

j

i

•
♠+(α−1)

•
+

λ

j

i

•
♠+α

if i = j

t−1
ij

∑α
f=0

(−t−1
ij tji)f

λ

j

i

•
♠+(α−f)

•f

if aij = −1
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and we have similar relations involving clockwise bubbles:

λ

j

i

•
♠+α

=






∑α
f=0

(α + 1− f)

λ

j

i

•
♠+f

•α−f

if i = j

tji

λ

j

i

•
♠+α−1

•
+ tij

λ

j

i

•
♠+α

if aij = −1

tji

λ

j

i

•
♠+α

if aij = 0

λ

j

i

•
♠+α

=






λ+ αi

j

i

•
♠+(α−2)

• 2
− 2

λ + αi

j

i

•
♠+(α−1)

•
+

λ+ αi

j

i

•
♠+α

if i = j

t−1
ij

∑α
f=0

(−t−1
ij tji)f

λ+ αj

j

i

•
♠+α−f

•f

if aij = −1.

Both types of bubbles can then be slid through downward oriented lines using these1

relations and the cyclicity of UQ(g).2

3.3.4. Triple intersections. We have3

(3.2)

λ

i j k

− λ

i j k

=






∑

a+b+c+d
=λi

λ

•c

• a
i

•
♠+b

i

i

i

•d +
∑

a+b+c+d
=−λi−2

λ

•c

• a
i

•
♠+b

i

i

i

•d if i = j = k

0 else

which is [33, Proposition 5.8] when i = j = k, and follows from cyclicity, the mixed EF4

relation, and the cubic KLR relation in the other case.5

3.4. The 2-categories U̇Q, Kom(U̇Q), and Com(U̇Q).6

3.4.1. Categories of complexes. Given an additive category M, we let Kom(M) denote7

the category of bounded complexes in M. By convention, we work with cochain com-8

plexes, so an object (X, d) of Kom(M) is a collection of objects X i in M together with9

maps10

· · ·
di−2
−−→ X i−1 di−1

−−→ X i di−→ X i+1 di+1
−−→ · · ·
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such that di+1di = 0 and only finitely many of the X i’s are nonzero. A morphism1

f : (X, d) → (Y, d′) in Kom(M) consists of a collection of morphisms fi : X i → Y i in2

M such that fi+1di = d′ifi.3

Recall that morphisms f, g : (X, d) → (Y, d′) in Kom(M) are called (chain) homo-4

topic, denoted by f ∼ g, if there exist morphisms hi : X i → Y i−1 such that fi − gi =5

hi+1di + d′i−1h
i for all i. A morphism of complexes is said to be null-homotopic if it is6

homotopic to the zero map.7

Definition 3.5. The homotopy category Com(M) is the additive category with the8

same objects as Kom(M) with morphisms given by morphisms in Kom(M) modulo9

null-homotopic morphisms.10

We say that two complexes (X, dX) and (Y, dY ) are homotopy equivalent provided11

they are isomorphic in Com(M), and denote this by X 2 Y .12

If M is monoidal, then Kom(M) is also monoidal, with the tensor product (XY, d)13

of (X, dX) and (Y, dY ) defined as follows:14

(3.3) (XY )i =
⊕

r+s=i

XrY s , di :=
∑

r+s=i

(dX)rIdY s + (−1)rIdXr(dY )s

Here, we denote the tensor product of objects and morphisms in M by juxtaposition.15

Given chain maps f : (X, dX) → (X ′, dX′) and g : (Y, dY ) → (Y ′, dY ′) define the tensor16

product fg : (XY, d) → (X ′Y ′, d′) of chain maps by setting17

(3.4) fi =
⊕

r+s=i

frgs.

It is straightforward to check that if f ∼ f ′ and g ∼ g′, then fg ∼ f ′g′, so Com(M)18

inherits a monoidal structure from Kom(M).19

Remark 3.6. More generally1, if C is an additive 2-category, we can consider the 2-20

categories Kom(C) and Com(C) obtained by taking complexes in each Hom-category.21

The above description of tensor product of complexes specifies how to take horizontal22

composition in Kom(C) and Com(C).23

3.4.2. Karoubi envelope. The Karoubi envelope Kar(M) of a category M is the univer-24

sal enlargement of M in which all idempotents split. Recall that we say an idempotent25

e : b → b in a category M splits if there exist morphisms b
g
−→ b′

h
−→ b such that e = hg26

and gh = Idb′ . The Karoubi envelope Kar(M) admits an explicit description as the27

category whose objects are pairs (b, e), where e : b → b is an idempotent of M, and28

where morphisms are triples of the form29

(e, f, e′) : (b, e) → (b′, e′)

for f : b → b′ in M satisfying f = e′f = fe. Composition is induced from composition30

in M, and the identity morphism is (e, e, e) : (b, e) → (b, e).31

1Recall that a monoidal category can be interpreted as a 2-category with only one object.
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The identity map Idb : b → b is an idempotent, and the assignment b .→ (b, Idb)1

defines a fully faithful functor M ↪→ Kar(M), and this functor is universal among2

functors from M to idempotent split categories. If M is additive then so is Kar(M)3

and this embedding is additive; in this case, for (b, e) ∈ Kar(M), we have that b ∼=4

im e ⊕ im (Idb − e) where im e := (b, e). See [33, Section 9] and references therein for5

more details.6

The following result shows that the Karoubi envelope interacts nicely with passage7

to (homotopy) categories of complexes.8

Proposition 3.7 ([5, Propositions 3.6 and 3.7]). For any additive category M there is9

a canonical equivalence Kom (Kar(M)) ∼= Kar (Kom(M)) . Moreover, if M is k-linear10

with finite-dimensional Hom-spaces, then there is a canonical equivalence Com (Kar(M)) ∼=11

Kar (Com(M)) .12

3.4.3. Karoubi envelope of UQ.13

Definition 3.8. The additive 2-category U̇Q has the same objects as UQ and has Hom-14

categories given by U̇Q(λ,λ′) = Kar (UQ(λ,λ′)).15

Horizontal composition in U̇Q is induced from composition in UQ using the universal16

property of the Karoubi envelope, and we similarly obtain an additive, fully-faithful17

2-functor UQ → U̇Q that is universal with respect to splitting idempotents in the Hom-18

categories U̇Q(λ,λ′). The significance of the 2-category U̇Q(g) is given by the following19

theorem.20

Theorem 3.9. ([33, 25, 62]) There is an isomorphism γ : AU̇
∼=
−→ K0(U̇Q(g)) where21

K0(U̇Q) denotes the split Grothendieck ring of U̇Q.22

For g = sl2, this theorem also holds over by the results in [27].23

3.4.4. Karoubian envelopes of Kom(U) and Com(U). Following Remark 3.6 above, we24

consider the 2-categories Kom(UQ) and Com(UQ). Noting that the 2-Hom-spaces UQ(x, y〈t〉)25

are finite-dimensional k-vector space for each t ∈ , Proposition3.7 gives equivalences26

Kar(Kom(UQ)) ∼= Kom(U̇Q) , Kar(Com(UQ)) ∼= Com(U̇Q).

We arrange the various 2-categories built from UQ into the following organizational27

diagram, wherein the horizontal arrows denote passage to the Karoubian envelope, and28

vertical arrows denote the canonical maps between the various categories of complexes.29

UQ U̇ = Kar(UQ)

Kom(UQ) Kom(U̇Q) ∼= Kar(Kom(U))

Com(UQ) Com(U̇Q) ∼= Kar(Com(U))
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Theorem 3.9 and the main result of [51] imply that1

K0 (Kar (Com(UQ))) ∼= K0 (Com (Kar(UQ))) ∼= K0 (Kar(UQ)) ∼= K0(U̇Q) ∼= AU̇

where we employ the triangulated Grothendieck group for the categories of complexes.2

We can hence view the Karoubi envelope of the homotopy category Com(UQ) as a3

categorification of the integral idempotent form AU̇ of the quantum group.4

3.5. Symmetries of Categorified Quantum Groups. In this section, we use sym-5

metries of the diagrammatic relations in UQ to define 2-functors σ, ω, and ψ (for a6

general choice of scalars Q and bubble parameters C) that lift the symmetries of quan-7

tum groups from Section 2.2 This extends the work of Khovanov and Lauda in [25],8

who defined such functors in the specific case where tij = 1 = ci,λ for all i, j ∈ I and9

λ ∈ X . These 2-functors extend naturally to 2-functors on U̇Q, Kom(U̇Q), and Com(U̇Q)10

[5], and induce the corresponding quantum group symmetries σ, ω, and ψ on AU̇ upon11

passing to K0. For this reason, we refer to them as symmetry 2-functors.12

Rather than being 2-endofunctors of UQ, some of these symmetries map between13

versions UQ and U ′
Q of the categorified quantum group corresponding to different bubble14

parameters. (Caveat lector: U ′
Q should not be confused with UQ′ from [12] which instead15

corresponds to a different choice of scalars Q.) We define U ′
Q to be the 2-category given16

in Definition 3.3, but with the bubble parameters for UQ replaced by primed bubble17

parameters (ci,λ)′ := c−1
i,−λ. The primed bubble parameters are still compatible with the18

choice of scalars Q (used for both UQ and U ′
Q), since19

(ci,λ+αj
)′

(ci,λ)′
=

c−1
i,−(λ+αj)

c−1
i,−λ

=
ci,−λ

ci,−λ−αj

= tij .

In addition to mapping between versions of the categorified quantum group correspond-20

ing to different bubble parameters, the symmetry 2-functors possess various flavors of21

contravariance. Nevertheless, they are morally pairwise-commuting involutions, as the22

double application of a given symmetry is the identity and the result of a composition23

does not depend on the order, despite the domain and codomain being different versions24

of the categorified quantum group. Given this, we will slightly abuse notation and refer25

to the symmetry and its inverse by the same symbol.26

3.5.1. Forms of 2-categorical contravariance. Recall that a contravariant functor C →27

D can be rephrased in terms of a (covariant) functorC → Dop, whereDop is the opposite28

category, defined to have the same objects as in D, but with Dop(x, y) := D(y, x), i.e.29

the direction of the morphisms is opposite to that in D. For a 2-category C, we can take30

the opposite 2-category in various ways, depending on whether we take the opposite at31

the 1-morphism or 2-morphism level (or both). Denote by Cop the 2-category with the32

same objects as C, and where we’ve taken the opposite with respect to 1-morphisms,33

i.e. for objects x, y in C, we let the Hom-categories be given by Cop(x, y) := C(y, x).34

Let Cco denote the 2-category with the same objects and 1-morphisms as C, but with35
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opposite 2-morphisms, i.e. for objects x, y in C, we let the Hom-categories be given by1

Cco(x, y) := C(x, y)op. Finally, Ccoop is the 2-category in which we’ve taken opposite2

1-morphisms and 2-morphisms, i.e. Ccoop(x, y) := C(y, x)op.3

In the case of UQ, functors between these opposite 2-categories correspond to [q, q−1]-
(anti)linear algebra (anti)automorphisms of AU̇ upon taking the Grothendieck group,
as summarized in the following table:

2-functor Induced map on AU̇

U̇Q → U̇Q [q, q−1]-linear homomorphism
U̇Q → U̇op

Q [q, q−1]-linear antihomomorphism
U̇Q → U̇ co

Q [q, q−1]-antilinear homomorphism
U̇Q → U̇ coop

Q [q, q−1]-antilinear antihomomorphism

In the following sections, we will explicitly describe σ, ω, and ψ. To do so, we will4

use the notational convention from [25] that E−i := Fi.5

3.5.2. The 2-functor σ : UQ →
(
U ′
Q

)op
. Consider the operation on the diagrammatic

calculus or UQ that reflects a diagram across a vertical axis, replaces λ↔ −λ, and scales
all ii-crossings by −1. This operation is contravariant for composition of 1-morphisms,
covariant for composition of 2-morphisms, preserves the degree of a diagram, and takes
relations in UQ to those in U ′

Q. As such, it defines an invertible 2-functor given explicitly
as follows:

σ : UQ →
(
U ′
Q

)op

λ .→ −λ

1µE±i1E±i2 · · · E±im1λ〈t〉 .→ 1−λE±im · · · E±i2E±i11−µ〈t〉

i j
.→ (−1)δij

j i
,

i j
.→ (−1)δij

j i
,

i j
.→ (−1)δij

j i
,

i j
.→ (−1)δij

j i

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ

.→ , • .→ • , .→ , • .→ •

This extends to a 2-functor σ : Kom(UQ) → Kom(U ′
Q)

op defined on 1-morphisms via6

(X, d) .→
(
· · · → σ(X i−1)

(−1)i−1σ(di−1)
−−−−−−−−−→ σ(X i)

(−1)iσ(di)
−−−−−−→ σ(X i+1) → · · ·

)

and on 2-morphisms by applying σ component-wise. The alternating differential is7

essential here to preserve composition of 1-morphisms (contravariantly), due to the sign8

conventions in taking horizontal composition of complexes.9
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3.5.3. The 2-functor ω : UQ → U ′
Q. Consider the operation on the diagrammatic calcu-

lus for UQ that reverses the orientation of each strand, replaces λ↔ −λ, and scales all
ii-crossings by −1. This operation is covariant for composition of both 1-morphisms
and 2-morphisms, preserves the degree of a diagram, and takes relations in UQ to those
in U ′

Q. This defines an invertible 2-functor given explicitly as follows:

ω : UQ → U ′
Q

λ .→ −λ

1µE±i1E±i2 · · · E±im1λ〈t〉 .→ 1−µE∓i1E∓i2 · · · E∓im1−λ〈t〉

i j
.→ (−1)δij

i j
,

i j
.→ (−1)δij

i j
,

i j
.→ (−1)δij

i j
,

i j
.→ (−1)δij

i j

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ
,

i

λ
.→

i

−λ

.→ , • .→ • , .→ , • .→ •

This again extends to a 2-functor ω : Kom(UQ) → Kom(U ′
Q) defined on 1-morphisms via1

(X, d) .→
(
· · · → ω(X i−1)

ω(di−1)
−−−−→ ω(X i)

ω(di)
−−−→ ω(X i+1) → · · ·

)

and on 2-morphisms by applying ω component-wise.2

3.5.4. The 2-functor ψ : UQ → (UQ)
co
. Consider the operation on the diagrammatic

calculus for UQ that reflects a diagram across a horizontal axis, and reverses the ori-
entation. This operation is covariant for composition of 1-morphisms, contravariant
for composition of 2-morphisms, and preserves the relations in UQ. It determines an
invertible 2-functor given explicitly as follows:

ψ : UQ → (UQ)
co

λ .→ λ

1µE±i1E±i2 · · · E±im1λ〈t〉 .→ 1µE±i1E±i2 · · · E±im1λ〈−t〉

i j
.→

j i
,

i j
.→

j i
,

i j
.→

j i
,

i j
.→

j i

i

λ
.→

i λ ,
i

λ
.→

i λ ,
i

λ
.→

i λ ,
i

λ
.→

i λ

.→ , • .→ • , .→ , • .→ •
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Note that ψ must negate grading shift in order to be degree-preserving, due to 2-1

morphism contravariance. As such, it descends to an antilinear map on the Grothendieck2

group. This extends to a 2-functor ψ : Kom(UQ) → Kom(UQ)co given on 1-morphisms3

by4

(X, d) .→
(
· · · → ψ(X i+1)

ψ(di)
−−−→ ψ(X i)

ψ(di−1)
−−−−→ ψ(X i−1) → · · ·

)

and on 2-morphisms by applying ψ component-wise. Implicit in this formula is that ψ5

negates the homological degree, i.e. for (X, d) in Kom(U) we have ψ(X)i = ψ(X−i).6

3.5.5. Properties of symmetries of categorified quantum groups. The symmetries σ, ω,7

and ψ are graded, additive, k-linear 2-functors, and it is immediate from their definitions8

that each squares to the identity. Moreover, the induced 2-functors on categories of9

complexes descend to homotopy categories. The following result is immediate from the10

above definitions.11

Theorem 1.3. Under the isomorphism K0(U̇Q) ∼= AU̇ ∼= K0(U̇ ′
Q) (see Theorem 3.9),12

the 2-functors defined above descend to the corresponding symmetries: [σ] = σ, [ω] =13

ω, [ψ] = ψ.14

Remark 3.10. The symmetry ωψ (which reflects a diagram across a horizontal axis,15

sends λ to −λ, and scales all ii-crossings by −1) is closely related to the Chevalley16

involution introduced in [8]. There, Brundan uses this to move between the 2-categories17

U co
Q and UQ′ associated to different choices of scalars. In the cyclic setting, changing the18

choice of scalars from Q to Q′ is no longer necessary, provided we change the choice of19

bubble parameters from C to C ′ as above.20

4. Defining the categorical Lusztig operator T ′
i,121

In this section, we explicitly define additive, k-linear 2-functors T ′
i,1 : UQ → Com(UQ)22

for each i ∈ I. In Section 4.1 we define T ′
i,1 on objects and generating 1-morphisms,23

and extend via additive 2-functoriality to all 1-morphisms, i.e. we send the horizontal24

composition of generators to the appropriate horizontal composition of the complexes25

giving their images, via equation (3.3), and map direct sums to the corresponding direct26

sums. In Section 4.2, we extend this definition to the 2-morphisms in UQ, assigning27

explicit chain maps to generating 2-morphisms, again extending to all 2-morphisms as28

required by additive 2-functoriality.29

Section 5 is then devoted to showing that T ′
i,1 is well-defined, i.e. showing that it30

preserves all defining relations on 2-morphisms of U , up to chain homotopy. We also ex-31

plicitly compute the chain homotopies involved. We note that this check is considerably32

lengthened due to the many relations that must be checked, and the piecewise nature33

of the definition of the (categorified) Lusztig operator, specifically, its dependency on34

the value of the bilinear form on I.35
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Theorem 1.1. Let g be a simply-laced Kac-Moody algebra, then the data given below1

defines a 2-functor2

T ′
i,+1 : U̇Q(g) → Com(U̇Q(g))

such that the induced map on K0(U̇Q(g)) ∼= U̇q(g) satisfies [T ′
i,+1] = T ′

i,+1 : U̇q(g) →3

U̇q(g).4

Given this, we then define the other versions of the categorified Lusztig operators5

using the symmetries of categorified quantum groups from Section 3.5.6

Definition 4.1. Let7

T ′′
i,−1 := σT ′

i,1σ , T ′′
i,1 := ωT ′

i,1ω , T ′
i,−1 := ψT ′

i,1ψ

where in each case we apply T ′
i,1 on the appropriate version of the categorified quantum8

group, as determined by the codomain of the categorified symmetry.9

The following result now follows from Theorems 1.1 and 1.3.10

Corollary 4.2. Upon passing to K0(U̇Q(g)), we have:

[T ′′
i,−1] = [σT ′

i,1σ] = [σ][T ′
i,1][σ] = σT ′

i,1σ = T ′′
i,−1

[T ′′
i,1] = [ωT ′

i,1ω] = [ω][T ′
i,1][ω] = ωT ′

i,1ω = T ′′
i,1

[T ′
i,−1] = [ψT ′

i,1ψ] = [ψ][T ′
i,1][ψ] = ψT ′

i,1ψ = T ′
i,−1

Recall from the introduction that, while a similar categorification has previously11

been defined on 1-morphisms [14], our definition extends to the 2-morphisms in U̇Q(g),12

meaning that our categorified Lusztig operators help illuminate the higher structure of13

categorified quantum groups.14

We now proceed with the definition, regularly abbreviating T ′
i,1 simply by T ′

i . In15

addition, we will make use of color in the diagrammatic calculus for U̇Q in specifying T ′
i16

as follows: strands which are i-labeled (i.e. their label agrees with subscript on T ′
i ) will17

be black, those whose labels j and j′ satisfy i · j = −1 = i · j′ will be blue and magenta18

(respectively), and those with label k satisfying i · k = 0 will be green, unless stated19

otherwise.20

4.1. T ′
i,1 on objects and 1-morphisms. On objects, we define the 2-functor T ′

i,1 by21

T ′
i (λ) = si(λ)

where si is the corresponding Weyl group element, defined by si(λ) = λ − λiαi. On
generating 1-morphisms, we define

T ′
i (1λ) = ♣ 1si(λ)
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T ′
i (E$1λ) =






Fi1si(λ)〈−2− λi〉 −→ ♣ 0 if i = $

♣ E$Ei1si(λ)
$ i−−−−→ EiE$1si(λ)〈1〉 if i · $ = −1

♣ E$1si(λ) if i · $ = 0

T ′
i (F$1λ) =






♣ 0 −→ Ei1si(λ)〈λi〉 if i = $

F$Fi1si(λ)〈−1〉 $ i−−−−→ ♣ FiF$1si(λ) if i · $ = −1

♣ F$1si(λ) if i · $ = 0

where we have omitted all non-zero terms in these complexes, and we follow our con-1

vention in denoting homological degree zero with a ♣. Since each of these complexes2

has at most two nonzero terms, it is trivial that the square of the differential is zero.3

4.2. Definition of T ′
i,1 on 2-morphisms. The 2-functor T ′

i,1 is given on generating 2-4

morphisms as follows. In these equations, we let our strand labels satisfy i·j = −1 = i·j′5

and i · k = 0, and follow the color conventions specified above. We will omit labelling6

the weight si(λ) in the far right region of the diagrams in the codomain, and in most7

cases will also only show the non-zero terms in our complexes. Additionally, we will8

depict complexes of the form9

W
(αβ )
−−→ X ⊕ Y

( γ δ )
−−−→ Z

as anti-commutative squares with arrows labeled by the corresponding maps, e.g. equa-10

tion (4.1) depicts a chain map between such complexes. In all cases, the chain map11

condition easily follows from the defining relations in U̇Q.12

4.2.1. Definition of T ′
i,1 on upwards dot 2-morphisms.

T ′
i

(
•

i

λλ+ αi

)
:=

Fi1si(λ)〈−λi〉

Fi1si(λ)〈−2− λi〉

•

i
, T ′

i

(
•

k

λλ+ αk

)
:=

♣ Ek1si(λ)〈2〉

♣ Ek1si(λ)

•

k
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T ′
i

(
•

j

λλ+ αj

)
:=

♣ EjEi1si(λ)〈2〉

♣ EjEi1si(λ)

•

j i

EiEj1si(λ)〈3〉

EiEj1si(λ)〈1〉

i

•

j

j i

j i

4.2.2. Definition of T ′
i,1 on upwards crossing 2-morphisms.

T ′
i

(

i i

λ
)

:=

FiFi1si(λ)〈−8 − 2λi〉

FiFi1si(λ)〈−6 − 2λi〉

−
i i

, T ′
i

(

k k′

λ
)

:=

♣ Ek′Ek1si(λ)〈−k · k′〉

♣ EkEk′1si(λ)

k k′

T ′
i

(

i k

λ
)

:=

EkFi1si(λ)〈−2− λi〉

FiEk1si(λ)〈−2− λi〉

i k
tki , T ′

i

(

k i

λ
)

:=

FiEk1si(λ)〈−2− λi〉

EkFi1si(λ)〈−2− λi〉

k i

1

T ′
i

(

i j

λ
)

:=

EjEiFi1si(λ)〈−1− λi〉

FiEjEi1si(λ)〈−1− λi〉

i j i

♣ EiEjFi1si(λ)〈−λi〉

♣ FiEiEj1si(λ)〈−λi〉

−
i i j

ij i

i j i

−

2

T ′
i

(

j i

λ
)

:=

FiEjEi1si(λ)〈−λi〉

EjEiFi1si(λ)〈−2 − λi〉

i ij

•
tij −tij

i ij

•

♣ FiEiEj1si(λ)〈1− λi〉

♣ EiEjFi1si(λ)〈−1− λi〉

j ii

tij
•

−tij
j ii

•

ij i

i j i

−
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1

T ′
i

(

j k

λ
)

:=

♣ EkEjEi1si(λ)〈−j · k〉

♣ EjEiEk1si(λ)

t−1
ki

i kj

EkEiEj1si(λ)〈1− j · k〉

EiEjEk1si(λ)〈1〉

t−1
ki

j ki

kj i

k j i

2

T ′
i

(

k j

λ
)

:=

♣ EjEiEk1si(λ)〈−k · j〉

♣ EkEjEi1si(λ)

k j i

EiEjEk1si(λ)〈1− k · j〉

EkEiEj1si(λ)〈1〉

k i j

k j i

kj i

T ′
i

(

j j′

λ
)

:=3
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(4.1)

♣ EjEiEj′Ei1si(λ)

EiEjEj′Ei1si(λ)〈1〉

EjEiEiEj′1si(λ)〈1〉

EiEjEiEj′1si(λ)〈2〉

j i ij′

j′ iij

j′ ii
−

j

j i j′i

♣ Ej′EiEjEi1si(λ)〈−j · j′〉

EiEj′EjEi1si(λ)〈1− j · j′〉

Ej′EiEiEj1si(λ)〈1− j · j′〉

EiEj′EiEj1si(λ)〈2− j · j′〉

i j′ ij

t−1
ij j i j′i

−t−1
ij

i i jj
−δjj′vij

j j′ ii
t−1
ij tij′

t−1
ij

j j′ ii

t−1
ij

i i j′j

In this last diagram, we have omitted the differentials on the codomain, so as not to1

overcrowd it; they are given analogously to those in the domain, with j ↔ j′. Recall2

also that vij := t−1
ij tji.3

4.2.3. Definition of T ′
i,1 on cap and cup 2-morphisms.

T ′
i

(
i λ

)
:=

♣ 1si(λ)〈1− λi〉

♣ FiEi1si(λ)

ici,λ , T ′
i

(

i

λ
)

:=

♣ 1si(λ)

♣ EiFi1si(λ)〈1 + λi〉

i
c−1
i,λ

T ′
i

(

i

λ
)

:=

♣ 1si(λ)

♣ FiEi1si(λ)〈1− λi〉

i
ci,λ , T ′

i

(
i λ

)
:=

♣ 1si(λ)〈1 + λi〉

♣ EiFi1si(λ)

i
c−1
i,λ
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Note that the maps have the correct degree since the rightmost region in all the images1

is labeled by si(λ), and 1± 〈i, si(λ)〉 = 1± 〈i,λ− λiαi〉 = 1± λi ∓ 2λi = 1∓ λi.2

T ′
i

(
k λ

)
:=

♣ 1si(λ)〈1− λk〉

♣ EkFk1si(λ)

k
tλiki , T ′

i

(

k

λ
)

:=

♣ 1si(λ)

♣ FkEk1si(λ)〈1 + λk〉

k
t−λiki

T ′
i

(

k

λ
)

:=

♣ 1si(λ)

♣ EkFk1si(λ)〈1− λk〉

k
, T ′

i

(
k λ

)
:=

♣ 1si(λ)〈1 + λk〉

♣ FkEk1si(λ)

k

Again, the maps have the correct degree since 1± 〈k, si(λ)〉 = 1± 〈k,λ−λiαi〉 = 1±λk.3

T ′
i

(
j λ

)
:=

FjFiEjEi1si(λ)〈λj〉

♣ FiFjEjEi1si(λ)〈1 + λj〉

♣ FjFiEiEj1si(λ)〈1 + λj〉

FiFjEiEj1si(λ)〈2 + λj〉

−

0 ♣ 1si(λ) 0

(−1)λjcj,λ (−1)λj+1cj,λ
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1

T ′
i

(
j λ

)
:=

EjEiFjFi1si(λ)〈λj − 2〉

♣ EiEjFjFi1si(λ)〈λj − 1〉

♣ EjEiFiFj1si(λ)〈λj − 1〉

EiEjFiFj1si(λ)〈λj〉

−

0 ♣ 1si(λ) 0

(−1)λj+1c−1
j,λ (−1)λjc−1

j,λ

2

T ′
i

(
j λ

)
:=

EjEiFjFi1si(λ)〈−λj〉

♣ EiEjFjFi1si(λ)〈1− λj〉

♣ EjEiFiFj1si(λ)〈1− λj〉

EiEjFiFj1si(λ)〈2− λj〉

−

0 ♣ 1si(λ) 0

(−tij)λic
−1
i,λ−αj

(−1)λjcj,λ (−tij)λic
−1
i,λ−αj

(−1)λjcj,λ

3

T ′
i

(
j λ

)
:=

FjFiEjEi1si(λ)〈−2− λj〉

♣ FiFjEjEi1si(λ)〈−1− λj〉

♣ FjFiEiEj1si(λ)〈−1 − λj〉

FiFjEiEj1si(λ)〈−λj〉

−

0 ♣ 1si(λ) 0

(−tij)1−λici,λ(−1)λjc−1
j,λ (−tij)1−λici,λ(−1)λjc−1

j,λ

As above, a simple computation shows that the maps have the correct degree, e.g.

deg
(

si(λ)
)
= 1 + 〈j, si(λ)〉+ 1 + 〈i, si(λ) + αj
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= 2 + λj − λi(j · i) + λi − λi(i · i) + i · j = 1 + λj

5. Proof that categorified Lusztig operators are well-defined1

In this section we show that T ′
i,1 is well-defined, i.e. that T ′

i,1 preserves the defining2

relations in UQ, up to chain homotopy. We’ll see, however, that many cases do not3

require a chain homotopy. For example T ′
i,1 preserves on the nose any relation that does4

not involve j-labeled strands (for i · j = −1), since here the complexes involved have5

only one non-zero term (in the same homological degree), precluding the existence of6

non-trivial chain homotopies. A complete proof consists of checking many cases for each7

relation, since T ′
i,1 is defined in a piecewise manner that depends on the connectivity of8

the graph associated to the simply-laced root datum.9

To simplify this task, we’ll work with the presentation of UQ implicit in Remark 3.4.10

Specifically, we view downward dot and sideways and downward crossing 2-morphisms11

as defined in terms of cap/cup 2-morphisms and their upward analogues (in the case12

of downward dots, we choose the presentation in terms of right-oriented caps/cups).13

It follows that T ′
i,1 is already fixed on these 2-morphisms (by 2-functoriality), and we14

record its value on these composite 2-morphisms in Appendix A. We make extensive15

use of these computations in the sections that follow.16

Throughout, we will continue with our convention that the labels j, j′ ∈ I satisfy17

i · j = −1 = i · j′ and correspond to blue and magenta strands, while the labels k, k′ ∈ I18

satisfy i · k = 0 = i · k′ and correspond to green strands. We also let $ ∈ I denote an19

arbitrary label.20

5.1. Adjunction relations. We verify the right and left adjunction relations given in21

Definition 3.3 relation (1).22

Proposition 5.1. For all $ ∈ I the equalities

T ′
i

(
λ

$

)
= T ′

i

(

$

λ
)

= T ′
i

(
λ
$

)

T ′
i

(
λ

$

)
= T ′

i

(

$

λ
)

= T ′
i

(
λ
$

)

hold in Com(UQ).23

Proof. When $ = i or $ = k with i · k = 0, these relations follow from a straightforward24

computation, provided one is careful with the relevant parameters. For example, the25

first equality follows from the computation:26

T ′
i

(
λ

i

)
= ci,λ+αi

c−1
i,λ

i

si(λ) =
i

si(λ) = T ′
i

(

i

λ
)

when $ = i, and from27

T ′
i

(
λ

k

)
= t(λi+i·k)−λi

ki

k

si(λ) =
k

si(λ) = T ′
i

(

k

λ
)
.
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when $ = k. We omit the other checks, as they are completely analogous.1

For $ = j, the coefficients are more delicate. As T ′
i (Ej1λ) is a 2-term chain complex,

we will use an ordered pair to describe its chain endomorphisms (with the convention
that the first term in the pair corresponds to lower homological degree).

T ′
i




j λ

λ+ αj


 =

(

ij

(−1)λj+2c−1
j,λ+αj

(−1)λjcj,λ
,

ji

(−1)(λj+2)+1c−1
j,λ+αj

(−1)λj+1cj,λ

)

=

(

j i

si(λ) ,
i j

si(λ)
)

= T ′
i

(

j

λ

)

T ′
i



 j λ

λ− αj



 =

(
ij

(−1)λj+1c−1
j,λ

(−1)(λj−2)+1cj,λ−αj

,
ji

(−1)λjc−1
j,λ

(−1)λj−2cj,λ−αj

)

=

(

j i

si(λ) ,
i j

si(λ)
)

= T ′
i

(

j

λ

)

T ′
i



 j λ

λ+ αj



 =
(−tij)1−λici,λ(−1)λjc−1

j,λ

(−tij)λi−1c−1
i,λ(−1)λj+2cj,λ+αj

(

j i

,

i j

)

=

(

j i

si(λ) ,
i j

si(λ)
)

= T ′
i

(

j

λ

)

T ′
i




j λ

λ− αj


 =
(−tij)1−(λi+1)ci,λ−αj

(−1)λj−2c−1
j,λ−αj

(−tij)λic
−1
i,λ−αj

(−1)λjcj,λ

(
j i

,
i j
)

=

(

j i

si(λ) ,
i j

si(λ)
)

= T ′
i

(

j

λ

)

!2

5.2. Dot cyclicity. We verify the dot cyclicity relation given in Definition 3.3 relation3

(2). Recall that, in our presentation given by Remark 3.4, the downward dot morphism4

is defined in terms of the upward dot morphism and rightward cap/cup morphisms.5

Dot cyclicity is then equivalent to the following.6

Proposition 5.2. For $ ∈ I, the relation7

T ′
i

(
• λ

$

)
= T ′

i

(
•

$

λ
)
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holds in Com(UQ).1

Proof. We compute the left-hand side, and verify the relations by comparing to the
results of Section A.1, which give the value of T ′

i on downward oriented dot 2-morphisms.

T ′
i

(
• λ

i

)
= ci,λc

−1
i,λ−αi

• = •

i
=: T ′

i

(
•

i

λ
)

T ′
i

(
• λ

j

)
=

(−tij)1−(λi+1)ci,λ−αj
(−1)λj−2c−1

j,λ−αj

(−tij)λic
−1
i,λ−αj

(−1)λjcj,λ

(

ij

• ,

ji

•

)

=

(
•

j i

si(λ) ,
i

•

j

si(λ)
)

=: T ′
i

(
•

j

λ

)

T ′
i

(
• λ

k

)
= • = •

k
=: T ′

i

(
•

k

λ
)

!2

5.3. Crossing cyclicity. We now verify the crossing cyclicity realtions given in Defini-3

tion 3.3 relation (3). Note that it suffices to prove cyclicity for the downward crossing,4

as the relations for the sideways crossings follow from this and the adjunction rela-5

tions. As before, we will use the value of the downward crossing from Section A.3,6

where (by definition) it is given in terms of the upward crossing and rightward cap/cup7

2-morphisms.8

Proposition 5.3. For all $, $′ ∈ I, the equation9

T ′
i





$ $′

λ



 = T ′
i

(

$ $′

λ
)

holds in Com(UQ).10

Proof. We compute the left-hand side, considering the three possibilities for each $, $′ ∈ I11

in relation to the fixed node i ∈ I. For both stands labeled i, we have12

T ′
i





i i

λ



 = −ci,λci,λ−αi
c−1
i,λ−2αi

c−1
i,λ−αi

i i

= −
i i

=: T ′
i

(

i i

λ
)

For strands labeled i and j, we have

T ′
i




i j

λ



 =
c−1
i,λ−αi−αj

(−tij)1−(λi+1)ci,λ−αj
(−1)λj−2c−1

j,λ−αj

ci,λ(−tij)λi−2c−1
i,λ−αi−αj

(−1)λj+1cj,λ−αi

(

i j i

− ,
i i j

)
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=

(

i j i

t−1
ij t−1

ji ,−t−1
ij t−1

ji
i i j

)
=: T ′

i

(

i j

λ
)

T ′
i




j i

λ



 =
(−tij)2−λici,λ−αj

(−1)λj−1c−1
j,λ−αi

c−1
i,λ

tijci,λ−αj
(−tij)λic

−1
i,λ−αj

(−1)λjcj,λ

(

i ij
•

−
i ij
•

,
j ii

•
−

j ii
•

)

= t2ijtji

(

i ij
•

−
i ij
•

,
j ii
•

−
j ii

•

)
=: T ′

i

(

j i

λ
)

For crossings in which at least one strand is k-labeled and no strand is j-labeled, the
relations are trivial to check. We compute:

T ′
i




k k′

λ



 =

k k′

=
k k′

=: T ′
i

(

k k′

λ
)

T ′
i





i k

λ



 = c−1
i,λ−αi−αk

ci,λtki

i k

=
i k

t2ki =: T ′
i

(

i k

λ
)

T ′
i





k i

λ



 = ci,λ−αk
c−1
i,λ−αi

k i

=
k i

t−1
ki =: T ′

i

(

k i

λ
)

For strands labelled j and k, we compute:

T ′
i




j k

λ



 =
(−tij)1−(λi+1)ci,λ−αj−αk

(−1)λj−2−j·kc−1
j,λ−αj−αk

t−1
ki (−tij)λic

−1
i,λ−αj

(−1)λjcj,λ

(

i kj

,
j ki

)

= (−1)j·kt−2
ki tjk

(

i kj

,
j ki

)
=: T ′

i

(

j k

λ
)

T ′
i




k j

λ



 =
(−tij)1−(λi+1)ci,λ−αj

(−1)λj−2c−1
j,λ−αj

(−tij)λic
−1
i,λ−αk−αj

(−1)λj−j·kcj,λ−αk

(

k j i

,
k i j

)

= (−1)j·ktkit
−1
jk

(

k j i

,
k i j

)
= T ′

i

(

k j

λ
)
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Finally, in the case of a crossing between strands labeled j and j′, it’s clear that1

T ′
i




j j′



 = C · T ′
i

(

j j′

λ
)

for some scalar C. A direct computation shows that2

C = t−1
ij tij′ci,λ−αj′

c−1
i,λ−αj

cj,λc
−1
j,λ−αj′

cj′,λ−αj
c−1
j′,λ(cj′,λ−αj

c−1
j′,λcj,λc

−1
j,λ−αj′

)−1 = 1

!3

5.4. Quadratic KLR.4

Proposition 5.4. T ′
i preserves the quadratic KLR relation.5

Proof. We verify relation (4) in Definition 3.3, first considering the cases that do not
require homotopies. We compute:

T ′
i

(

i i

)
= (−1)2

i i

= 0

T ′
i

(

k k′

)

=
k k′

=






0 if k = k′

T ′
i

(
tkk′

k k′

)
if k · k′ = 0

T ′
i

(
tkk′

•

k k′

+ tk′k
k

•

k′

)
if k · k′ = −1

T ′
i

(

k i

)
= tki

k i

= tki
k i

= T ′
i

(
tki

k i

)

T ′
i

(

i k

)

= tki
i k

= tki
i k

= T ′
i

(
tki

i k

)

Our next four cases concern endomorphisms of chain complexes concentrated in two ad-
jacent homological degrees; we denote endomorphisms of such complexes using ordered
pairs. We compute:

T ′
i

(

k j

)
=



t−1
ki

k j i

, t−1
ki

k i j




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=






(
tkj

k j i

, tkj
k i j

)
if j · k = 0

(
tkj

•

k j i

+ tjk
k

•

j i

, tkj
•

k i j

+ tjk
k i

•

j

)
if j · k = −1

=






T ′
i

(
tkj

k j

)
if j · k = 0

T ′
i

(
tkj

•

k j

+ tjk
k

•

j

)
if j · k = −1

and similarly:1

T ′
i

(

j k

)
=



t−1
ki

i kj

, t−1
ki

j ki



 =






T ′
i

(
tjk

j k

)
if j · k = 0

T ′
i

(
tjk

•

j k

+ tkj
j

•

k

)
if j · k = −1

The remaining cases only hold up to chain homotopy. We compute:

T ′
i

(

j i

)
= tij




i ij

• −

i ij

• ,

j ii

• −

j ii

•





= tij



−

ij

•

i

+

ij

•

i

, −

i j

•

i

+

i j

•

i





=



−

j i i

+ tji

ij

•

i

+ tij

ij

•

i

, −

i j i

+ tji

i j

•

i

+ tij

i j

•

i





= T ′
i

(
tij

j

•

i

+ tji
•

j i

)
+

(
−

j i i

, −
i j i

)

where in the second step we make use of the equality2

i i

• −
i i

• = −
i

•
i

+
i

•
i

which holds in any weight. The result now follows since the chain endomorphism(
−

j i i

, −
i j i

)
is null-homotopic with homotopy h : T ′

i (EjEi1λ) → T ′
i (EjEi1λ〈2〉)
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given by:

EjEiFi1si(λ)〈−λi〉

EjEiFi1si(λ)〈−2− λi〉

♣EiEjFi1si(λ)〈1− λi〉

♣EiEjFi1si(λ)〈−1− λi〉

−

We similarly compute:

T ′
i

(

i j

)

= tij




i j i

•

−

•

i j i

,

•

i i j

−

•

i i j





=



−

j ii

+ tji

ij

•

i

+ tij

ij

•

i

, −

i ji

+ tji

i j

•

i

+ tij

i j

•

i





= T ′
i

(

tij
j

•

i

+ tji
•

ji

)

+

(
−

j ii

, −
i ji

)

where in this case we use the equality1

i i

•
−

i i

•
=

i

•
i

−
i

•
i

which again holds in any weight. The relation is verified since the chain endomorphism2 (
−

j ii

, −
i ji

)
is null-homotopic, with homotopy given by3

FiEjEi1si(λ)〈1− λi〉

FiEjEi1si(λ)〈−1− λi〉

♣FiEiEj1si(λ)〈2− λi〉

♣FiEiEj1si(λ)〈−λi〉
−

−

Finally, we compute the case in which strands are labeled j and j′ with i·j = −1 = i·j′.4

In this case,5

T ′
i (EjEj′1λ) = ♣EjEiEj′Ei1si(λ) → EjEiEiEj′1si(λ)〈1〉⊕EiEjEj′Ei1si(λ)〈1〉 → EiEjEiEj′1si(λ)〈2〉

and we denote the relevant endomorphism as an ordered triple. We abuse notation
for the component mapping between the terms in homological degree one: technically
this should be given by a 2 × 2 matrix, but, in the interest of space, we add all terms
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in the relevant matrix, as the components are distinguished by their (co)domains. We
compute:

T ′
i




j j′



 = t−1
ij t

−1
ij′




i j′ ij

, δjj′t2ji
i i j′j

+

i i j′j

− tjiδjj′

i i
j′j

+ tij

i i j′j

+tijtij′

j j′ ii

+

j j′ ii

+ tij′

j j′
ii

− tjiδjj′

j j′ ii

,

j i ji





= t−1
ij t

−1
ij′





tij

i j′ ij

•

+ tji

i j′ ij

•

,

i i j′j

+ tij

i i j′j

+ tijtij′

j j′ ii

+ tij′

j j′
ii

,

tj′i

j i j′i

•

+ tij′

j i j′i

•





which vanishes if j = j′, as desired. If j += j′, we instead have

=





t−1
ij′

i j′j i

, t−1
ij t

−1
ij′

i i j′j

+ t−1
ij′

i i j′j

+

j j′ ii

+ t−1
ij

j j′
ii

,−t−1
ij

j i j′i





.
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If j · j′ = 0 this simplifies to

= T ′
i

(
tjj′

j j′

)
+ tjj′



t−1
ij′

j i j′ i

, vij′
i i

•

j′j

− vij
i i

•

j j′
−

j i i j′

+tij′

i i j′j

+ t−1
ij

j′ iji

,−t−1
ij

j′i j i





and if j · j′ = −1 we have

= T ′
i

(

tjj′
•

j j′
+ tj′j

j

•

j′

)

+



tjj′t
−1
ij′ •

j i j′ i

+ tj′jt
−1
ij′

j i j′ i

• , (tjj′vij′ − tj′jvij)
i i

•

j′

•

j

+tj′jvij′
i i

•

j′j

2 − tjj′vij
i i

•

j

2

j′
− tjj′

•

j i i j′
− tj′j

j i i

•

j′
+ tjj′t

−1
ij′

•

j i i j′

+tj′jt
−1
ij′

•

j i i j′

+ tjj′t
−1
ij

•

i j j′ i

+ tj′jt
−1
ij

•

i j j′ i

,−tjj′t
−1
ij

i j i j′

• − tj′jt
−1
ij •

i j i j′



 .

In both cases, the second summand (i.e. the “error term” preventing the relation from
holding on the nose) is null-homotopic. The nonzero terms of both null-homotopies
are given in the following diagram by the arrows labeled with the brackets (with the
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homotopy for the j · j′ = 0 case on the first line, and the j · j′ = −1 case on the second).

♣ EjEiEj′Ei1si(λ)

EiEjEj′Ei1si(λ)〈1〉

EjEiEiEj′1si(λ)〈1〉

EiEjEiEj′1si(λ)〈2〉

−

♣ EjEiEj′Ei1si(λ)〈−2j · j′〉

EiEjEj′Ei1si(λ)〈−2j · j′ + 1〉

EjEiEiEj′1si(λ)〈−2j · j′ + 1〉

EiEjEiEj′1si(λ)〈−2j · j′ + 2〉

}+tj′jt
−1
ij′

i i

•
j′j

tjj′t
−1
ij′

i i j′
•
j

tjj′t
−1
ij′

i i j′j

{
i j j′i

•−tjj′t
−1
ij

i j
•
j′i

−tj′jt
−1
ij

i j j′i

−tjj′t
−1
ij

!1

5.5. Dot slide.2

Proposition 5.5. T ′
i preserve the KLR dot sliding relation.3

Proof. We verify relation (5) from Definition 3.3, only exhibiting the computations for
crossings involving j- and j′-labeled strands (for j · i = −1 = j′ · i), as all others are
completely straightforward. For ij-crossings with dotted i-labeled strand, we compute:

T ′
i

(

i j

•
i j

•
−

)

=





i j i

•
−

i j i

•
, −

i i j
•

+

i i j

•




=





i j

i

, −

j

i

i



 =





j i

i

, −
i

i j





which is null-homotopic, as desired, via the homotopy:

EjEiFi1si(λ)〈1− λi〉

FiEjEi1si(λ)〈−1− λi〉

♣ EiEjFi1si(λ)〈2− λi〉

♣ FiEiEj1si(λ)〈−λi〉

−

−
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For the ij-crossing with dotted j-labeled strand, we have:1

T ′
i

(

i j

•
)

=





i j i

•
, −

i i j

•


 =





i j i
•

, −

i i j

•



 = T ′
i

(

i j

•

)

.

For dotted ji-crossings, neither case requires a chain homotopy, so we omit the compu-2

tations, which are straightforward.3

Finally,we consider dotted jj′-crossings. As in the proof of Proposition 5.4, our chain
maps here map between complexes supported in three adjacent homological degrees,
and we denote them as ordered triples. We have

T ′
i

(

j j′
•

j j′

•−
)

= t−1
ij




j i j′ i

•
−

j i j′ i

•

,

j i i j′
•

−

j i i j′

•

−
i i j

•

j

δjj′tji

+
i i

•

jj

δjj′tji +

i j j′ i
•

−

i j j′ i

•
+

j j′ ii

•tij′ −
j j′ ii

•
tij′ ,−

i j i j′
•

+

i j i j′

•




= δjj′



t−1
ij

j i j i

+
j i j i

, t−1
ij

j i i j

− vij
i i j

•

j

+ vij
i i

•

jj

+t−1
ij

i j j i

+
i j j i

,−t−1
ij

i j i j

+
i j i j





=






T ′
i

(

j j

)
+



t−1
ij

j i j i

, t−1
ij

j i i j

− vij
i i j

•

j

+ vij
i i

•

jj

−
j i i j

+t−1
ij

i j j i

,−t−1
ij

i j i j



 if j = j′

0 if j += j′.
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The relation thus holds on the nose unless j = j′, in which case the “error term” is1

null-homotopic, with homotopy given by:2

♣ EjEiEjEi1si(λ)

EiEjEjEi1si(λ)〈1〉

EjEiEiEj1si(λ)〈1〉

EiEjEiEj1si(λ)〈2〉

♣ EjEiEjEi1si(λ)

EiEjEjEi1si(λ)〈1〉

EjEiEiEj1si(λ)〈1〉

EiEjEiEj1si(λ)〈2〉

−

t−1
ij

i i jj

i j ji

−t−1
ij

The verification that T ′
i

(

j j′

•
j j′
•−
)

∼ δjj′T ′
i

(

j j

)
is almost identical to the above3

case, so we omit the details. !4

5.6. Cubic KLR.5

Proposition 5.6. T ′
i preserves the cubic KLR relation.6

Proof. We verify relation (6) in Definition 3.3, i.e. the “Reidemeister III”-like KLR7

relation. There are 27 cases to consider, depending on whether the label $ of each8

strand satisfies i · $ = 2,−1, or 0. To cover multiple cases at once, we will make use of9

the following notation, setting10

∆abc =

{
tab if a = c and a · b = −1

0 else

Note that ∆abc = ∆cba.11

The relation holds on nose (i.e. does not require a non-zero homotopy), except for12

the strand labelings in the following list:13

iji , jkj′ , jij′ , jj′j

where we continue with our conventions for strand labelings (i · j = −1 = i · j′ and14

i · k = 0 = i · k′). In the interest of space, we will explicitly exhibit three representative15

cases that do not require homotopies (to give the flavor of the computations required),16

exhibit the homotopy and verify the relation in the iji-labeled case, and exhibit the17

homotopy (but not include all the computations involved for the verification) in the18

remaining three cases.19
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In the jii-labeled case, the relation holds on the nose via the following computation,
where, as above, we denote the chain map as an ordered pair.

T ′
i





j i i

−

j i i



 =

t2ij




−

•

•

j i i i

+
•

•

j i i i

+
•

•

j i i i

−
•

•

j i i i

+ •

•

j i i i

−
•

•

j i i i

− •

•

j i i i

+
•

•

j i i i

,

− •

•

i j i i

+ •

•

i j i i

+ •

•

i j i i

− •

•

i j i i

+
•

•

i j i i

−
•

•

i j i i

−
•

•

i j i i

+
•

•

i j i i





To simplify, we use the dot slide relation to move all dots to the top, and apply the
cubic KLR relation to cancel terms, arriving at:

= t2ij





•

j i i i

−

•

j i i i

−

j i i i

−

•

j i i i

+

•

j i i i

−

•

j i i i

+

•

j i i i

,

−

•

i j i i

+

•

i j i i

−

•

i j i i

−

i j i i

+

•

i j i i

+

•

i j i i

−

•

i j i i





= 0.

For the jik-labeled case, we have:

T ′
i





j i k



 = tij



 •

j i i k

− •

j i i k

, •

i j i k

− •

i j i k




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= tij





•

j i i k

−

•

j i i k

,

•

i j i k

−

•

i j i k




= T ′

i





j i k





where in the middle step we use dot sliding, and equation (3.2).1

The kjk′-labeled case is given by:

T ′
i





k j k′



 =




t−1
k′i

k j i k′

, t−1
k′i

k i j k′





=



t−1
k′i

k j i k′

+∆kjk′t
−1
k′i

k j i k′

, t−1
k′i

k i j k′

+∆kjk′t
−1
k′i

k i j k′





= T ′
i





k j k′

+∆kjk′

k j k′





and all others that don’t require a non-zero homotopy are given similarly to these cases.2

We now consider the cases listed above that require chain homotopies. Considering3

the iji-labeled case, we compute that4

T ′
i





i j i

−

i j i

− tij

i j i



 = (ϕ1,ϕ2)

where

ϕ1 =− tij

•

i j i i

+ tij

•

i j i i

+ tij
•

i j i i

− tij
•

i j i i

− tij

i j i i

= tij
∑

a+b+c+d
=〈i,si(λ)〉−2 •b

d• •♠+c

•
a+1

i j i

i

i

+ tij

i j i

i

− tij
∑

a+b+c+d
=〈i,si(λ)〉−2 •b

d+1• •♠+c

•
a

i j i

i

i

− tij
∑

a+b+c
=〈i,si(λ)〉−1 •b

•♠+c

•
a

i j i

i

i
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= −tij
∑

b+c+d
=〈i,si(λ)〉−1 •b

d• •
♠+c

i j i

i

i

+ tij

i j i i

i

= −tij

i j i i

i

and

ϕ2 = −tij

•

i i j i

+ tij

•

i i j i

+ tij
•

i i j i

− tij
•

i i j i

− tij

i i j i

= −tij
∑

a+b+c+d
=〈i,si(λ)+αj 〉−1

•
b

•d •♠+c

i i j i

+ tij

i i j i

= −tij

i i j i

In both computations, we make extensive use of equation (3.2). It follows that this1

chain map is null-homotopic, with homotopy given by:2

FiEjEiFi1si(λ)〈−2λi − 5〉

FiEjEiFi1si(λ)〈−2λi − 5〉

FiEiEjFi1si(λ)〈−2λi − 4〉

FiEiEjFi1si(λ)〈−2λi − 4〉

tij

−

−

For the remaining cases, we provide the explicit homotopy between the relevant maps.3

We have4

T ′
i





j k j′



 ∼ T ′
i




j k j′

+∆jkj′

j k j′




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via the homotopy1

♣Ej′EiEkEjEi1si(λ) EiEj′EkEjEi1si(λ)〈1〉 ⊕ Ej′EiEkEiEj1si(λ)〈1〉 EiEj′EkEiEj1si(λ)〈2〉

♣EjEiEkEj′Ei1si(λ) EiEjEkEj′Ei1si(λ)〈1〉 ⊕ EjEiEkEiEj′1si(λ)〈1〉 EiEjEkEiEj′1si(λ)〈2〉

( 0 h1 )
(

0
h2

)

with2

h1 = ∆jkj′t
−1
ki t

−1
ij

j i k i j′

, h2 = −∆jkj′t
−1
ki t

−1
ij

i j k i j′

For the jij′-labeled case, we have3

T ′
i





j i j′



 ∼ T ′
i




j i j′

+∆jij′

j i j′





with chain homotopy given by (here we indicate the signs on the differential since they4

are not the usual ones, due to the homological shift on T ′
i (Ei1λ)):5

Ej′EiFiEjEi1si(λ)〈−1− λi〉
EiEj′FiEjEi1si(λ)〈−λi〉

⊕
Ej′EiFiEiEj1si(λ)〈−λi〉

EiEj′FiEiEj1si(λ)〈1− λi〉

EjEiFiEj′Ei1si(λ)〈−1− λi〉
EiEjFiEj′Ei1si(λ)〈−λi〉

⊕
EjEiFiEiEj′1si(λ)〈−λi〉

EiEjFiEiEj′1si(λ)〈1− λi〉

(+− ) ( + +)

(+− ) ( + +)

( h1
1 h1

2 )
(

h2
1

h2
2

)

for6

h1
1 = −

i j i j′ i

, h1
2 = −

j i

i

i j′

, h2
1 =

i j i i j′

, h2
2 = −

i j

i

i j′

For the final case with jj′j-labeled strands, we have7

T ′
i





j j′ j



 ∼ T ′
i




j j′ j

+∆jj′j

j j′ j







50 ABRAM, LAMBERTO-EGAN, LAUDA, AND ROSE

The relevant homotopy maps between chain complexes given at the triple composition1

of two term chain complexes, and is non-zero only when j += j′. We’ll exhibit the2

homotopy assuming this, and that j · j′ = 0, as the homotopy is more involved in the3

j · j′ = −1 case. The latter is only possible when the graph Γ corresponding to our4

Cartan datum has a length-three cycle (which in finite- or affine-type only occurs for5

ŝl3).6

The relevant homotopy is given as follows, where here, in the interest of space, we7

employ the notation from [25] in denoting E$1···$k := E$1 · · · E$k . We also indicate the8

signs of the non-zero terms in the differentials, which are all given up to sign by the9

relevant ji- (or j′i-) crossing.10

♣Ejij′iji

Eijj′iji〈1〉
⊕

Ejiij′ji〈1〉
⊕

Ejij′iij〈1〉

Eijij′ji〈2〉
⊕

Eijj′iij〈2〉
⊕

Ejiij′ij〈2〉

♣Eijij′ij〈3〉

(+
+
+

)
(− + 0
− 0 +
0 − +

)

( + − +)

( 0 0 h1
3 )





0 0 0
0 0 h2

23

0 h2
32 h2

33





(

0
0
h3
3

)

Herein, the maps in the homotopy are given by:11

h1
3 = t−1

ij vijt
−1
ij′ tjj′

j i j′ i i j

, h3
3 = −t−1

ij vijt
−1
ij′ tjj′

i j i j′ i j

12

h2
32 = −t−1

ij vijt
−1
ij′ tjj′

i j j′ i i j

, h2
33 = −vijt

−1
ij′ tjj′

j i i j′ i j

, h2
23 = −t−1

ij vijt
−1
ij′ tjj′

j i i i i j

!13

5.7. Bubble relations. We now verify that T ′
i preserves relation (8) in Definition 3.314

.15

Proposition 5.7.

T ′
i



 $

•
λi−1+m

λ


 =

{
c$,λId1si(λ)

if m = 0

0 if m < 0
, T ′

i



 $

•
−λi−1+m

λ


 =

{
c−1
$,λId1si(λ)

if m = 0

0 if m < 0
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Proof. We’ll give the proof only in the clockwise case, as the counter-clockwise case is1

completely analogous. The computations in Section A.4 show that2

T ′
i




$

•
〈$,λ〉−1+m

λ


 =






c2i,λ
i

•
−〈i,si(λ)〉−1+m

si(λ)

if $ = i

tλiki
k

•
〈k,si(λ)〉−1+m

si(λ)
if $ = k

tλiji c
−1
i,λ

m∑

h=0

(−vij)
−h

j

•
♠+m−h

i

•
♠+h

si(λ)

if $ = j

which immediately gives the result in the m < 0 case.3

For m = 0, we compute:

c2i,λ
i

•
−〈i,si(λ)〉−1

si(λ)

= c2i,λc
−1
i,si(λ)

Id1si(λ)
= c2i,λc

−1
i,λ−λiαi

Id1si(λ)
= c2i,λc

−1
i,λId1si(λ)

= ci,λId1si(λ)

tλiki
k

•
〈k,si(λ)〉−1

si(λ)

= tλikick,si(λ)Id1si(λ)
= tλikick,λ−λiαi

Id1si(λ)
= tλikit

−λi
ki ck,λId1si(λ)

= ck,λId1si(λ)

tλiji c
−1
i,λ

j

•
♣+0

i

•
♣+0

si(λ) = tλiji c
−1
i,λcj,si(λ)ci,si(λ)Id1si(λ)

= tλiji cj,λ−λiαi
Id1si(λ)

= tλiji cj,λt
−λi
ji Id1si(λ)

= cj,λId1si(λ)

!4

In Section A.4 we verify that the infinite Grassmannian relations from Section 3.3.25

are preserved by T ′
i .6

5.8. Mixed EF relation. We now verify relation (7) in Definition 3.3.7

Proposition 5.8. T ′
i preserves the mixed EF relations.8

Proof. All cases involving k-labeled strands hold on the nose, and are trivial to verify.9

The following computations exhibit half the requisite checks, and the remaining follow10

almost identically. Throughout, we make extensive use of the computations from Section11

A.2.12

T ′
i




k k′

−

k′k



 =

k k′

−

k′k

= 0 , T ′
i




i k

−

ik



 = t−1
ki

i k

−

ik

= 0
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T ′
i




k j

−

jk



 =




k j i

−

jk i

,

k i j

−

jk i



 = 0

1

T ′
i




j k

−

j k



 =




i kj

−

j ki

,

j ki

−

j ki



 = 0.

We now consider the cases requiring homotopies. We compute

T ′
i




j i

−

j i



 =




t−1
ij

i ij

•

− t−1
ij

i ij

•
−

ij i

, −t−1
ij

j ii

•
+ t−1

ij

j ii

•

−

i j i





=



−
j i i

• − t−1
ij tji

•

j i i

,−t−1
ij

i j i



 =



−t−1
ij

j i i

,−t−1
ij

i j i





which is null-homotopic, with homotopy given by2

EjEiEi1si(λ)〈λi〉

EjEiEi1si(λ)〈λi〉

EiEjEi1si(λ)〈λi + 1〉

EiEjEi1si(λ)〈λi + 1〉
i j i

−t−1
ij

ij i

ij i

and

T ′
i




i j

−

ji



 =




t−1
ij

i j i

• − t−1
ij

i j i
•

−

i j i

, −t−1
ij

i i j
•

+ t−1
ij

i i j

•
−

i ji





=



t−1
ij

i j i

,
ji i

•
+ t−1

ij tji
•

ji i



 =



t−1
ij

i j i

, t−1
ij

ji i




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is null-homotopic with homotopy given by

EiEjEi1si(λ)〈λi − 1〉

EiEjEi1si(λ)〈λi − 1〉

EiEiEj1si(λ)〈λi〉

EiEiEj1si(λ)〈λi〉

−t−1
ij

ji i

i j i
−

i j i
−

Similar computations show that1

T ′
i




j i

−

j i



 =



t−1
ij

j i i

, t−1
ij

i j i





which is null-homotopic via the homotopy2

FjFiFi1si(λ)〈−λi − 3〉

FjFiFi1si(λ)〈−λi − 3〉

FiFjFi1si(λ)〈−λi − 2〉

FiFjFi1si(λ)〈−λi − 2〉

i j

t−1
ij

i

ij i

ij i

and that3

T ′
i




i j

−

ji



 =



−t−1
ij

j ii

, −t−1
ij

ji i





which is null-homotopic with homotopy given by4

FiFjFi1si(λ)〈−λi − 4〉

FiFjFi1si(λ)〈−λi − 4〉

FiFiFj1si(λ)〈−λi − 3〉

FiFiFj1si(λ)〈−λi − 3〉

t−1
ij

ji i

i j i
−

i j i
−

The final case, involving j- and j′-labeled strands (with j += j′), will be addressed in5

Proposition 5.10 below. !6
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5.9. Extended sl2 relations. We now verify relation (9) in Definition 3.3.1

Proposition 5.9. T ′
i preserves the the extended sl2 relations in the i- and k-labeled2

cases.3

Proof. In these cases, the relations hold on the nose, as we confirm.

T ′
i




i i

+

i i

−
∑

a+b+c
=λi−1

•
b

•♠+c

•
a

i

i λ


 = (−1)2

i i

+

i i

− c2i,λc
−2
i,λ

∑

a+b+c
=λi−1

•
b

•♠+c

•
a

i

i si(λ)

=

i i

+

i i

−
∑

a+b+c=
−〈i,si(λ)〉−1

•
b

•♠+c

•
a

i

i si(λ)

= 0

T ′
i




i i

+

i i

−
∑

a+b+c
=−λi−1

•
b

•♠+c

•
a

i

i λ


 = (−1)2

i i

+

i i

− c2i,λc
−2
i,λ

∑

a+b+c
=−λi−1

•
b

•♠+c

•
a

i

i si(λ)

=

i i

+

i i

−
∑

a+b+c=
〈i,si(λ)〉−1

•
b

•♠+c

•
a

i

i si(λ)

= 0

T ′
i




k k

+

k k

−
∑

a+b+c
=λk−1

•
b

•♠+c
•
a

k

k λ


 =

k k

+

k k

− tλikit
−λi
ki

∑

a+b+c
=λk−1

•
b

•♠+c

•
a

k

k si(λ)

=

k k

+

k k

−
∑

a+b+c=
〈k,si(λ)〉−1

•
b

•♠+c
•
a

k

k si(λ)

= 0

T ′
i




k k

+

k k

−
∑

a+b+c
=−λk−1

•
b

•♠+c

•
a

k

k λ


 =

k k

+

k k

− tλikit
−λi
ki

∑

a+b+c
=−λk−1

•
b

•♠+c

•
a

k

k si(λ)

=

k k

+

k k

−
∑

a+b+c=
−〈k,si(λ)〉−1

•
b

•♠+c

•
a

k

k si(λ)

= 0

!4

We conclude by considering the outstanding relations, i.e. the j-labeled extended5

sl2 relations, and the jj′-labeled mixed EF relation. These are the most-involved6
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relations, in part because the homotopies involved are not-necessarily unique. In-1

deed, if Hom(X, Y ) denotes the chain complex of all homogeneous maps (that are2

not-necessarily degree zero, or chain maps) between complexes X and Y , then given3

any element α ∈ Hom−2(X, Y ), the element d(α) = dY α − αdX can be added to4

any homotopy h without affecting dY h + hdX . Our previous cases have not admit-5

ted such an α, but in the present case there exist (many) such α, given by any map6

EiEj′FiFj1si(λ)〈1〉 → Ej′EiFjFi1si(λ)〈−1〉.7

Proposition 5.10. The relation8

(5.1) T ′
i



−

j′ j

+ (−1)δjj′

j′ j

+ δjj′
∑

a+b+c=
λj−1

•
b

•
♠+c

•
a

j

j λ


 ∼ 0

holds in Com(UQ).9

Proof. The left-hand side of (5.1) is given by the following:10

(5.2)

♣Ej′EiFjFi1si(λ)〈−1〉 EiEj′FjFi1si(λ) ⊕ Ej′EiFiFj1si(λ) EiEj′FiFj1si(λ)〈1〉

♣Ej′EiFjFi1si(λ)〈−1〉 EiEj′FjFi1si(λ) ⊕ Ej′EiFiFj1si(λ) EiEj′FiFj1si(λ)〈1〉

ϕ1 (ϕ2 ϕ4
ϕ3 ϕ5 ) ϕ6

where the components of the chain map are given as follows (which can be verified by
completely simplifying both sides of the equalities):

ϕ1 =

i j ij′

+ (−1)δjj′

i j ij′

= (−1)δjj′
∑

d+e+f
=−λi−1

•
d

i

•♠+f•e

i jj′

i

+ δjj′tji
∑

a+c=
λi+λj−1

•
a

j

•♠+c

j i i

j

+ δjj′
∑

a+b+c=
λi+λj−2

•
a

j

•♠+c

•
b

j i i

j

+ δjj′tij
∑

a+b+c=
λi+λj−2

•
a

j

•♠+c

•
b

j i i

j
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ϕ2 = −t2jiδjj′

i i

j

j

j

+

j′ j ii

+ (−1)δjj′

j′ j ii

− δjj′tij
∑

a+b+c
=λj−1

c∑

h=0

(−vij)
−λi−h

•a j

•
♠+c−h

i

•
♠+h•

b
ji

j i

= δjj′tji
∑

a+c=
λi+λj−1

•a

j

•♠+c

i j i

j

+ t−1
ij′ (−1)δjj′

∑

d+e+f+g
=−λi−2

(−vij′)
g

•d
i

•♠+fg • •e

jj′i

i

+ δjj′tji
∑

a+b+c=
λi+λj−1

•a

j

•♠+c

•
b

iji

j

+ δjj′tij
∑

a+b+c=
λi+λj−2

•a•

j

•♠+c

•
b

iji

j

ϕ3 = δjj′tji

i i

j

j

− tij

j′ ji

i

− δjj′tij
∑

a+b+c
=λj−1

c∑

h=0

(−vij)
−λi−h

•
a

j

•
♠+c−h

i

•
♠+h•

bji

i j

= δjj′tji
∑

a+c=
λi+λj−1

•a

j

•♠+c

i j i

j

− tijt
−1
ij′ (−1)δjj′

∑

e+f+g
=−λi−1

(−vij′)
g i

•
♠+f

g • •
e

j ij′

i

− δjj′tij
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•b

i j

ij

ϕ4 = tij′

j′ j

i

i

− δjj′tji

i ij

j

+ δjj′tij
∑

a+b+c
=λj−1

c∑

h=0

(−vij)
−λi−h

•
a j

•
♠+c−h

i

•
♠+h•b

ij

j i
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= (−1)δjj′





∑

d+e+f=
−λi−1

•
d

j′

i

•♠+f

•e

ji

i

− t−1
ij′

∑

d+e+f+g
=−λi−2

(−vij′)
g •d

•g

j′ i

i

•♠+f•
e

j

i 


+ δjj′tij

∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•b

j i

ij

− δjj′tji
∑

a+b+c=
λi+λj−1

•a

j

•♠+c

•
b

j i i

j

+ δjj′
∑

a+b+c=
λi+λj−2

•
a

j

•♠+c

•
b

j i i

j

− δjj′tij
∑

a+b+c=
λi+λj−2

•a•

j

•♠+c

•
b

j i i

j

ϕ5 = −tijtij′

j′ j

i

i

i

+

i i jj′

+ (−1)δjj′

i i jj′

+ δjj′tij
∑

a+b+c
=λj−1

c∑

h=0

(−vij)
−λi−h

•
a

j

•
♠+c−h

i

•
♠+h•b

ij

i j

= tijt
−1
ij′ (−1)δjj′

∑

d+f+g=
−λi−1

(−vij′)
g i

•♠+f

g • •e

j′ i j

i

+ (−1)δjj′
∑

d+e+f
=−λi−1

•
d

i

•♠+f

j′ j
•
e

i

i

+ δjj′
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•b

j i i

j

+ δjj′tij
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•b

j i

ij

+ δjj′tij
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•b

j i

ij

ϕ6 =

j′ i ji

+ (−1)δjj′

j′ i ji
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= tijt
−1
ij′ (−1)δjj′

∑

e+f+g
=−λi−1

(−vij′)
g i

•♠+fg • •e

i j′ j

i

+ t−1
ij′ (−1)δjj′

∑

d+e+f+g
=−λi−2

(−vij′)
g •d

i

•♠+fg • •e

i j′ j

i

+ δjj′tji
∑

a+b+c=
λi+λj−1

•a

j

•♠+c

•
b

i j i

j

+ δjj′tij
∑

a+b+c=
λi+λj−2

•• a

j

•♠+c

•
b

i j i

j

+ δjj′tij
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•
b

i j

i j

The chain map given in equation (5.2) is thus null-homotopic, with homotopy given1

by2

♣Ej′EiFjFi1si(λ)〈−1〉 EiEj′FjFi1si(λ) ⊕ Ej′EiFiFj1si(λ) EiEj′FiFj1si(λ)〈1〉

♣Ej′EiFjFi1si(λ)〈−1〉 EiEj′FjFi1si(λ) ⊕ Ej′EiFiFj1si(λ) EiEj′FiFj1si(λ)〈1〉

(h1
1 h1

2 )
(

h2
1

h2
2

)

where

h1
1 = δjj′tji

∑

a+c=
λi+λj−1

•
a

•♠+c

i j

j

i

h1
2 = (−1)δjj′

∑

d+e+f
=−λi−1

•
d

i

•♠+f•e

j′ i j

i

+ δjj′
∑

a+b+c=
λi+λj−2

•
a

j

•♠+c

•
b

j i

j

i

+ δjj′tij
∑

a+b+c=
λi+λj−2

•
a

•♠+c

•
b

j i

j i

h2
1 = −t−1

ij′ (−1)δjj′
∑

d+e+f+g
=−λi−2

(−vij′)
g

•d
i

•♠+fg• •e

i j′ j

i

− δjj′tji
∑

a+b+c=
λi+λj−1

•a

j

•♠+c

•
b

i j i

j

− δjj′tij
∑

a+b+c=
λi+λj−2

•• a

j

•♠+c

•
b

i j i

j
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h2
2 = tijt

−1
ij′ (−1)δjj′

∑

e+f+g
=−λi−1

(−vij′)
g i

•♠+fg • •e

i j′ j

i

+ δjj′tij
∑

a+b+c=
λi+λj−2

•a

j

•♠+c

•
b

i j

i j

!1

It remains to verify the FE version of equation (5.1). We can proceed to compute2

as above, but in this case we can obtain the relation via a trick using the symmetry ω.3

Indeed, note that, up to scalar factors, each map determining T ′
i

(
j′ j

λ
)
is given by4

applying ω to the corresponding component in T ′
i

(
j j′
λ
)
and exchanging the roles of5

j and j′. Upon taking the composition, the discrepancies between the relevant scalars6

cancel, and we find that the maps determining T ′
i





j j′



 are given by applying ω7

to the ϕi’s. Similarly, the other terms in the relation are obtained by those in equation8

(5.1) via ω. It follows that we can “apply ω” to the proof of Proposition 5.10 (in weight9

−λ) to obtain the following.10

Corollary 5.11. The relation11

T ′
i



−

j′ j

+ (−1)δjj′

j′ j

+ δjj′
∑

a+b+c=
−λj−1

•b
•♠+c

•
a

j

j λ



 ∼ 0

holds in Com(UQ).12

Appendix A. Computation of T ′
i,1 for composite 2-morphisms13

In light of Remark 3.4, we can compute the value of T ′
i,1 on downward dot and sideways14

and downward crossing 2-morphisms in terms of the presentation of these 2-morphisms15

in terms of upward dot and crossing 2-morphisms and cap/cup 2-morphisms. In Sections16

A.1, A.2, and A.3, we compute this value, and in Section A.4, we compute the value17

of T ′
i,1 on bubbles. Throughout, we employ our conventions that i · j = −1 = i · j′ and18

i · k = 0 = i · k′, but assume no other relation between j, j′, k, and k′.19

A.1. Value of T ′
i,1 for downward dot 2-morphisms. We compute T ′

i,1 on downward20

dot 2-morphisms using the right cyclicity relation. Each of the following is a direct21
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consequence of the definitions in Sections 4.2.1 and 4.2.3.1

T ′
i

(
•

i

λ
)

:= T ′
i

(
•

λ
)

=

Ei1si(λ)〈2 + λi〉

Ei1si(λ)〈λi〉

•

i
, T ′

i

(
•

k

λ
)

:= T ′
i

(
•

λ
)

=

♣Fk1si(λ)〈2〉

♣Fk1si(λ)

•

k

2

T ′
i

(
•

j

λ
)

:= T ′
i

(
•

λ
)

=

FjFi1si(λ)〈1〉

FjFi1si(λ)〈−1〉

•

j i

♣FiFj1si(λ)〈2〉

♣FiFj1si(λ)

i

•

j

j i

j i

This agrees with the value in terms of left cyclicity, which is verified in Section 5.2.3

A.2. Value of T ′
i,1 on sideways crossing 2-morphisms. We explicitly compute the4

value on sideways crossings in terms of the images of upward crossings, caps, and cups.5

As above, each follows via a direct (but sometimes tedious) computation using the6

definitions in Sections 4.2.2 and 4.2.3. In the interest of space, we will omit displaying7

the domain and codomain of the image when they are 1-term compexes, as, save for the8

relevant shifts, they can be read from the diagram.9

T ′
i

(

i i

λ
)

:= −

i i

, T ′
i

(

i i

λ
)

:= −

i i
10

T ′
i

(

i j

λ
)

:= T ′
i

( )
=

FjFiFi1si(λ)〈−3− λi〉

FiFjFi1si(λ)〈−4− λi〉

tijtji
i j i

•

−tijtji
i j i

•

♣FiFjFi1si(λ)〈−2− λi〉

♣FiFiFj1si(λ)〈−3− λi〉

tijtji
i i j

•

−tijtji
i i j
•

ij i

i
−

j i

11

T ′
i

(

j i

λ
)

:= T ′
i

( )
=

FiFjFi1si(λ)〈−4− λi〉

FjFiFi1si(λ)〈−3− λi〉

i ij

t−2
ij t

−1
ji

♣ FiFiFj1si(λ)〈−3− λi〉

♣ FiFjFi1si(λ)〈−2− λi〉

j ii

−t−2
ij t−1

ji

ij i

i j i
−
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T ′
i

(

j i

λ
)

:= T ′
i

( )
=

EiEjEi1si(λ)〈λi − 1〉

EjEiEi1si(λ)〈λi〉

i ij

t−1
ij

EiEiEj1si(λ)〈λi〉

EiEjEi1si(λ)〈λi + 1〉

j ii

−t−1
ij

ij i

i j i
−

1

T ′
i

(

i j

λ
)

:= T ′
i

( )
=

EjEiEi1si(λ)〈λi〉

EiEjEi1si(λ)〈λi − 1〉

i j i

•

−
i j i
•

EiEjEi1si(λ)〈λi + 1〉

EiEiEj1si(λ)〈λi〉

i i j
•

−
i i j

•

ij i

−
i j i

2

T ′
i

(

i k

λ
)

:= T ′
i

( )
= t−2

ki

i k

, T ′
i

(

k i

λ
)

:= T ′
i

( )
= tki

k i3

T ′
i

(

k i

λ
)

:= T ′
i

( )
=

k i

, T ′
i

(

i k

λ
)

:= T ′
i

( )
= t−1

ik

i k4

T ′
i

(

k k′

λ
)

:= T ′
i

( )
=

k k′

, T ′
i

(

k′ k

λ
)

:= T ′
i

( )
=

k′ k
5

T ′
i

(

j k

λ
)

:= T ′
i

( )

=

♣ FkEjEi1si(λ)

♣ EjEiFk1si(λ)

i kj

tki

FkEiEj1si(λ)〈1〉

EiEjFk1si(λ)〈1〉
j ki

tki

kj i

k j i

6

T ′
i

(

k j

λ
)

:= T ′
i

( )
=

♣ EjEiFk1si(λ)

♣ FkEjEi1si(λ)

k j i

t−1
ki

EiEjFk1si(λ)〈1〉

FkEiEj1si(λ)〈1〉
k i j

t−1
ki

k j i

kj i
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T ′
i

(

k j

λ
)

:= T ′
i

( )
=

FjFiEk1si(λ)〈−1〉

EkFjFi1si(λ)〈−1〉
k j i

(−1)j·k

t−1
ki tjk

♣ FiFjEk1si(λ)

♣ EkFiFj1si(λ)

k i j

(−1)j·k

t−1
ki tjk

k j i

kj i

1

T ′
i

(

j k

λ
)

:= T ′
i

( )
=

EkFjFi1si(λ)〈−1〉

FjFiEk1si(λ)〈−1〉
i kj

(−1)j·k

tikt
−1
jk

♣ EkFiFj1si(λ)

♣ FiFjEk1si(λ)

j ki

(−1)j·k

tikt
−1
jk

kj i

k j i

T ′
i

(
j′ j

(−1)j·j
′
t−1
jj′

λ
)
:= T ′

i

(
(−1)j·j

′
t−1
jj′

)
=2

Ej′EiFjFi1si(λ)〈−1〉

♣ EiEj′FjFi1si(λ)

♣ Ej′EiFiFj1si(λ)

EiEj′FiFj1si(λ)〈1〉j′ i ij

j iij′

j ii
−

j′

j′ i ji

FjFiEj′Ei1si(λ)〈−1〉

♣ FiFjEj′Ei1si(λ)

♣ FjFiEiEj′1si(λ)

FiFjEiEj′1si(λ)〈1〉

i j ij′
t−1
ij j′ i ji

t−1
ij

j′ j

−t−1
ij tij′

i

i

i i

δjj′vij
j

j

−t−1
ij

j′ j ii

t−1
ij

i i jj′
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T ′
i

(
j j′

(−1)j·j
′+1tjj′

λ
)
:= T ′

i

(
(−1)j·j

′+1tjj′

)
=1

FjFiEj′Ei1si(λ)〈−1〉

♣ FiFjEj′Ei1si(λ)

♣ FjFiEiEj′1si(λ)

FiFjEiEj′1si(λ)〈1〉j i ij′

j′ i
−

ij

j′ ii j

j i j′i

Ej′EiFjFi1si(λ)〈−1〉

♣ EiEj′FjFi1si(λ)

♣ Ej′EiFiFj1si(λ)

EiEj′FiFj1si(λ)〈1〉

i j′ ij

tij j i j′i

tij

j j′
t2ij

i

i
i i

−δjj′tijtj′i
j

j

tij
j j′ ii

−tij
i i j′j

A.3. Value of T ′
i,1 on downwards crossing 2-morphisms.

T ′
i

(

i i

λ
)

:= T ′
i







 = −

i i

, T ′
i

(

k k′

λ
)

:= T ′
i







 =

k k′

T ′
i

(

i k

λ
)

:= T ′
i







 = t2ki
i k

, T ′
i

(

k i

λ
)

:= T ′
i







 = t−1
ki

k i

T ′
i

(
i j

λ
)
:= T ′

i







 =

♣ FjFiEi1si(λ)〈λi − 1〉

♣ EiFjFi1si(λ)〈λi − 1〉

i j i

t−1
ij t−1

ji

FiFjEi1si(λ)〈λi〉

EiFiFj1si(λ)〈λi〉

−t−1
ij t−1

ji
i i j

ij i

i j i
−
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1

T ′
i

(
j i

λ
)
:= T ′

i







 =

♣ EiFjFi1si(λ)〈λi + 1〉

♣ FjFiEi1si(λ)〈λi − 1〉

i i

t2ijtji
j
•

−t2ijtji
i ij
•

EiFiFj1si(λ)〈λi + 2〉

FiFjEi1si(λ)〈λi〉

j i

t2ijtji
i

•

−t2ijtji
j ii

•

ij i

i j i
−

T ′
i

(

j k

λ
)

:= T ′
i







2

=

♣ FkFjFi1si(λ)〈−1− j · k〉

♣ FjFiFk1si(λ)〈−1〉

(−1)j·k

t−2
ki tjk

i kj

FkFiFj1si(λ)〈−j · k〉

FiFjFk1si(λ)

(−1)j·k

t−2
ki tjk

j ki

kj i

k j i

T ′
i

(

k j

λ
)

:= T ′
i







3

=

♣ FjFiFk1si(λ)〈−1− j · k〉

♣ FkFjFi1si(λ)〈−1〉

k j

(−1)j·k

tkit
−1
jk

i

FiFjFk1si(λ)〈−j · k〉

FkFiFj1si(λ)

k i

(−1)j·k

tkit
−1
jk

j

k j i

kj i
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T ′
i

(

j j′

λt−1
jj′ tj′j

)
= T ′

i



t−1
jj′tj′j



 =

FjFiFj′Fi1si(λ)〈−2〉

FiFjFj′Fi1si(λ)〈−1〉

FjFiFiFj′1si(λ)〈−1〉

♣ FiFjFiFj′1si(λ)

j i ij′

j′ ii
−

j

j′ ii j

j i j′i

Fj′FiFjFi1si(λ)〈−2− j · j′〉

FiFj′FjFi1si(λ)〈−1− j · j′〉

Fj′FiFiFj1si(λ)〈−1− j · j′〉

♣ FiFj′FiFj1si(λ)〈−j · j′〉

i j′ ij

−t−1
ij j i j′i

t−1
ij

i i jj
−δjj′vij

j j′ ii
t−1
ij tij′

t−1
ij

j j′ ii

t−1
ij

i i j′j

A.4. Computation of T ′
i,1 on bubble 2-morphisms. We compute the image of bub-1

ble 2-morphisms, and use them to explicitly verify that T ′
i,1 preserves the infinite Grass-2

mannian relation.3

T ′
i




i

•
〈i,λ〉−1+α

λ


 = c2i,λ
i

•
〈i,λ〉−1+α

si(λ)

= c2i,λ
i

•
−〈i,si(λ)〉−1+α

si(λ)

T ′
i




i

•
−〈i,λ〉−1+α

λ


 = c−2
i,λ

i

•
−〈i,λ〉−1+α

si(λ)

= c−2
i,λ

i

•
〈i,si(λ)〉−1+α

si(λ)

T ′
i




k

•
〈k,λ〉−1+α

λ


 = tλiki
k

•
〈k,λ〉−1+α

si(λ)

= tλiki
k

•
〈k,si(λ)〉−1+α

si(λ)
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T ′
i




k

•
−〈k,λ〉−1+α

λ


 = t−λiki

k

•
−〈k,λ〉−1+α

si(λ)

= t−λiki

k

•
−〈k,si(λ)〉−1+α

si(λ)

For j-labelled bubbles, we make use of the bubble sliding relations from Section 3.3.3.
(Note that, in the first equation, the number of dots on the black circles equals zero for
both summands.)

T ′
i




j

•
〈j,λ〉−1+α

λ


 =(−tij)
1+λic−1

i,λ




•

〈j,si(λ)−αi〉−1+α−λi−1

•
〈i,si(λ)〉−1+λi+1

j
i

si(λ)

−
•

〈i,si(λ)−αj〉−1+λi

•
〈j,si(λ)〉−1+α−λi

i j

si(λ)





=(−tij)
1+λic−1

i,λ




α∑

h=
max(0,λi+1)

t−1
ji (−vji)

h−λi−1
j

•
♠+α−h

i

•
♠+h

si(λ)

−
min(λi,α)∑

h=0

t−1
ij (−vij)

λi−h
j

•
♠+α−h

i

•
♠+h

si(λ)




=tλiji c
−1
i,λ

α∑

h=0

(−vij)
−h

j

•
♠+α−h

i

•
♠+h

si(λ)

Similarly, the image of the counter-clockwise bubble is given by:

T ′
i




j

•
−〈j,λ〉−1+α

λ


 =(−tij)
−λici,λtij




min(−λi,α)∑

h=0

t−1
ij (−vij)

−λi−h
j

•
♠+α−h

i

•
♠+h

si(λ)

−
α∑

h=
max(0,−λi)

t−1
ji (−vji)

λi−1+h
j

•
♠+α−h

i

•
♠+h

si(λ)





=t−λiji ci,λ

α∑

h=0

(−vij)
−h

j

•
♠+α−h

i

•
♠+h

si(λ)

(In both cases, recall our convention that any sums with non-increasing index are by1

definition zero.)2

These computations for the images of bubbles under T ′
i,1 are only valid when the3

number of dots is positive; however, our next result shows that they also hold for4

bubbles with a negative number of dots (i.e. for fake bubbles, see Definition 3.3 (8)).5
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Lemma 1. T ′
i,1 preserves the infinite Grassmannian relation, i.e.1

T ′
i

((
$

•
−〈i,λ〉−1

λ
+ · · ·+

$

•
−〈i,λ〉−1+α

λ
tα + · · ·

)(
$

•
〈i,λ〉−1

λ
+ · · ·+

$

•
〈i,λ〉−1+α

λ
tα + · · ·

))
= Id1si(λ)

Proof. The only non-trivial case is when the bubbles are j-labeled (for i · j = −1), and
here we compute the relation in degree α as follows.

T ′
i

(
∑

g+h=α

j

•
λi−1+g

j

•
−λi−1+h

λ
)

=
∑

r+s+t+u=α

(−vij)
−s−u

j

•
♠+r

i

•
♠+s

j

•
♠+t

i

•
♠+u

si(λ)

=
∑

k+s+u=α

(−vij)
−s−u

i

•
♠+s

i

•
♠+u

si(λ)
(
∑

r+t=k

j

•
♠+r

j

•
♠+t

si(λ)
)

=
∑

k+s+u=α

δ0,k(−vij)
−s−u

i

•
♠+s

i

•
♠+u

si(λ)

=
∑

s+u=α

(−vij)
−s−u

i

•
♠+s

i

•
♠+u

si(λ) = (−vij)
−αδ0,αId1si(λ)
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