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Abstract— Objective: Real-time measurement of biological joint 

moment could enhance clinical assessments and generalize 
exoskeleton control. Accessing joint moments outside clinical and 
laboratory settings requires harnessing non-invasive wearable 
sensor data for indirect estimation. Previous approaches have 
been primarily validated during cyclic tasks, such as walking, but 
these methods are likely limited when translating to non-cyclic 
tasks where the mapping from kinematics to moments is not 
unique. Methods: We trained deep learning models to estimate hip 
and knee joint moments from kinematic sensors, 
electromyography (EMG), and simulated pressure insoles from a 
dataset including 10 cyclic and 18 non-cyclic activities. We 
assessed estimation error on combinations of sensor modalities 
during both activity types. Results: Compared to the kinematics-
only baseline, adding EMG reduced RMSE by 16.9% at the hip 
and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE 
by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both 
modalities reduced RMSE by 32.5% at the hip and 41.2% at the 
knee (p<0.05) which was significantly higher than either modality 
individually (p<0.05). All sensor additions improved model 
performance on non-cyclic tasks more than cyclic tasks (p<0.05). 
Conclusion: These results demonstrate that adding kinetic sensor 
information through EMG or insoles improves joint moment 
estimation both individually and jointly. These additional 
modalities are most important during non-cyclic tasks, tasks that 
reflect the variable and sporadic nature of the real-world. 
Significance: Improved joint moment estimation and task 
generalization is pivotal to developing wearable robotic systems 
capable of enhancing mobility in everyday life. 
 

Index Terms— deep learning, electromyography (EMG), 
human kinetics, inertial measurement units (IMUs), joint 
moments, machine learning, pressure insoles, temporal 
convolutional network 

I. INTRODUCTION 
CCURATE estimation of human joint moments using 
wearable sensors could provide a useful signal for health 
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monitoring [1], [2] and exoskeleton control [3], [4] during real-
world activities. The gold standard approach to quantify joint 
moment is through inverse dynamics enabled by optical motion 
capture and in-ground force plates [5]. However, these systems 
are not accessible outside of the lab; thus, recent efforts have 
explored methods for estimating joint moments directly from 
wearable sensors. Three main categories of approaches have 
emerged as possible wearable alternatives: analytical models 
driven by inertial measurement units (IMUs) and instrumented 
insoles [6], electromyography (EMG)-driven models [7], and 
machine learning data-driven models [6], [8]. Deep learning 
methods have shown great promise in accurately estimating 
joint moments with a limited sensor suite of kinematic sensors 
[4], [9] and do not require the same assumptions entailed by 
analytical methods [6]. However, this approach, as well as its 
alternatives, have mostly been tested during limited tasks such 
as walking and running or on a few individual alternate tasks 
[6]. The question remains whether these approaches will be 
viable on highly dynamic, constantly changing tasks. 

The machine learning biological moment estimation 
approach has a potential weakness in these unique non-cyclic 
activities. Most of the current approaches use only kinematic 
sensor inputs such as joint angles and IMUs [4], [8]. However, 
changes in a person’s kinematics do not directly predict changes 
in their joint moment, especially in these unique activities 
because similar kinematic patterns do not necessarily result in 
similar kinetic patterns. Although studies have shown 
promising results in estimating ground reaction forces directly 
from kinematic sensors during standard cyclic activities [9], 
[10], these relationships may not hold in the same way during 
unusual cyclic and non-cyclic tasks as shown in Fig. 1 [11]. 
Thus, a kinematic-based machine learning model is potentially 
lacking distinguishing information for tasks with similar 
kinematics but differing torques or vice versa. 
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To add this missing information, there are two potential 
avenues inspired by both the current musculoskeletal modeling 
techniques and the alternate approaches to moment estimation. 
The inverse approach uses ground reaction forces traced up the 
kinematic chain to the joint of interest to estimate joint 
moments. This line of reasoning has given rise to the gold 
standard of inverse dynamics [5] and the analytical models for 
moment estimation. The forward approach notes that 
fundamentally muscle activations lead to muscle forces which 
are ultimately responsible for the resulting torque exerted on the 
joint. This line of thinking has inspired EMG-driven modeling 
techniques [12], [13]. Although current real-time wearable 
systems cannot directly measure 3D ground reaction forces [14] 
or muscle forces and activation [15], the substitute wearable 
sensors, pressure insoles and EMG, have the potential to 
provide insight into kinetic changes in human movement. 

Pressure insoles estimate the vertical ground reaction force 
(vGRF) and center of pressure (COP) within the reference 
frame of the foot [16]. Pressure insoles have recently grown in 
popularity for wearable robotic technologies [17], specifically 
for discrete gait event detection and even locomotion mode 
recognition [18]. More recently, analytical methods for moment 
estimation have used continuous signals from insoles as a 
surrogate for force plates, but their success is varied [19]. Only 
a few studies have examined insoles in machine learning 
approaches, two for estimating internal loading [20], [21] and a 
single study using vGRF as an input in hip moment estimation 
for a single treadmill walking speed [22]. An analysis of the 
benefits of insoles on deep learning moment estimation has yet 
to be explored. 

Electromyography (EMG) has the capacity to encode 
information about muscle activation, which relates to muscle 
forces and thereby joint moments. Thus, information from 
surface EMG signals could provide a machine learning model 
with the ability to distinguish between situations where the 

mapping between kinematics and kinetics may be highly 
nondeterministic. EMG inputs in deep learning models have 
conventionally been used for gesture recognition on upper 
limbs, but have also been beneficial for angle and force/torque 
estimation [23]. On upper limbs, various types of neural 
networks have been used to estimate forces at the wrist [24] as 
well as multi-degree-of-freedom torques at the wrist [25]. Work 
on lower limbs has included using deep learning for estimation 
of gait events with EMG [26] as well as several attempts to 
estimate biological moments with EMG and neural networks 
[27]–[29]. In 2008, Hahn and O’Keefe used a neural network 
with EMG, kinematics, and other subject information as inputs 
to estimate lower-limb joint moments [27]. More recent studies 
have used EMG as well as kinematics to estimate ankle 
moments [28] and all three lower-limb joints [29] using deep 
learning models. The benefits and feasibility of estimating 
biological moment during unique non-cyclic tasks has yet to be 
examined and a direct comparison of the benefits of EMG over 
kinematic sensors alone has yet to be performed. 

In this study, a deep learning joint moment estimation 
approach was used to estimate joint moments in both common, 
time-repeatable cyclic activities as well as unique non-cyclic 
activities. Using subject dependent models, we analyzed the 
benefits of adding EMG, simulated instrumented insoles, and 
both as compared to a purely kinematic sensor baseline. Sensors 
were chosen to replicate those most accessible to two devices: 
a hip exoskeleton and a knee exoskeleton, and the associated 
joint moment was selected as the appropriate estimation label. 
Our main hypothesis was that EMG and simulated insoles, both 
individually and together, would improve joint moment 
estimation on left-out-tasks as compared to the kinematic-only 
baseline. This is due to the additional information that these 
sensors provide to distinguish between tasks with similar 
kinematics but different torques. Our secondary hypothesis was 
that the benefit of adding these sensors would be higher for the 

 
Fig. 1.  Several non-cyclic tasks that demonstrate similar kinematic profiles but different kinetic profiles at the hip and knee. The curves are subject average profiles 
drawn from Scherpereel et. al. 
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unique non-cyclic activities over the cyclic activities. Because 
the model architecture received time history information, we 
expect that the cyclic tasks will be easier to model without 
additional information from EMG or simulated insoles than the 
non-cyclic activities. 

II. METHODS 
This study utilized a temporal convolutional network (TCN) 

[4] in concert with different sensor inputs (EMG, virtual 
insoles) to create models that estimate joint moments based on 
wearable sensor data. This allowed a rigorous examination of 
the benefits of including EMG, instrumented insoles, or both in 
estimating joint moments for unique tasks. Due to the left-out-
task training approach, our results represent the expected 
benefit during truly novel tasks. Our experimental approach is 
outlined in Fig. 2. 

A. Network Architecture 
The network was designed based on the TCN introduced by 

Bai et. al.  [30]. This model architecture was chosen based on 
its ability to incorporate significant time history information 
without excessive model complexity, as well as previous data 
demonstrating its ability to accurately predict biological 
moments [4]. Inputs to the model are sequences of time-history 
data where the length of time history is determined by the kernel 
size for the convolutional layers as well as the depth of the 
network. Dilated causal convolution is used to increase the size 
of the input time series. The kernel size for the convolutional 
layers was set to four, and we chose a depth of five layers. Each 
layer consisted of a set of two convolutions with weight 
normalization and rectified linear unit (ReLU) activation 
functions with a dropout term to avoid overfitting. Each hidden 
layer consisted of fifty nodes. This particular architecture 
represents an effective time history of 0.93s given a 200Hz 
sampling rate. The details of the generic TCN architecture are 
included in Bai et. al. [30]. The depth, kernel size, learning rate, 
and dropout are parameters that were set based on previous 
testing with this network for estimating hip moments from 
purely mechanical sensors [4]. This network architecture 
employed input-level sensor fusion where information from the 
various sensor modalities (EMGs, joint angles, IMUs, and 
virtual insoles) were allowed to influence each other from the 

beginning of the network. 
Inputs consisted of only the sensors relevant to the specific 

exoskeleton (hip or knee). For a sensor suite simulating a knee 
exoskeleton, the baseline kinematic sensors included knee 
angle, knee velocity, a shank IMU, and a thigh IMU similar to 
Lee et al. [31]. EMG inputs consisted of four channels of EMG 
from knee spanning muscles: vastus lateralis (VL), rectus 
femoris (RF), biceps femoris (BF), and medial gastrocnemius 
(MG). For a system simulating a hip exoskeleton, the baseline 
kinematic sensors included hip angle, hip velocity, a thigh IMU 
and a pelvis IMU inspired by a combination of research devices 
[32], [33]. EMG inputs consisted of four channels of EMG from 
hip spanning muscles: rectus femoris (RF), gluteus medius 
(GMed), gluteus maximus (GMax), and biceps femoris (BF). 
For both analyses, virtual insoles consisted of vGRF in the 
frame of the foot as well as COP for both the anteroposterior 
and mediolateral directions. This is summarized in Fig. 3. 

Training was performed in mini-batches for 15 epochs. To 
choose this number, we trained models similar to those 
presented here (subject-dependent models with kinematic 
sensors to estimate knee joint moment) with a completely 
separate dataset [34]–[37] to determine the average point at 
which the models stopped improving. Model weights were 
initialized to random values. Mean squared error was used for 
the loss function. 

B. Data Overview 
The data used in this experiment consist of bilateral data for 

12 subjects performing various unique tasks. These tasks 
included conventional biomechanics tasks (e.g., walking, 
running, ramps and stairs), athletic maneuvers (e.g., lunges), 
tasks of daily living (e.g., sit-to-stand, turns, and lifting), and 
responses to external perturbations (e.g., tug of war and walking 
over obstacles). The dataset was divided into 10 cyclic and 18 
non-cyclic task groups. This study was approved under Georgia 
Tech Institutional Review Board H17240 (07/12/2017). We 
have open-sourced these data and further details on the 
groupings and data collection methods can be found in that 
publication [11]. 

The mocap joint angles (VICON, UK), IMUs (Avanti 
Wireless EMG, Delsys, Natick, MA), and virtual insole data 
(Bertec Corporation, Columbus, Ohio) from the dataset at 
200Hz were fed directly into the model (Angles: rad, velocity: 

 
Fig. 2.  Overview of our approach for estimating biological joint moments on a task independent basis. Wearable signals were collected over many different tasks 
of daily living and then used as inputs to a temporal convolutional network (TCN) to estimate biological moment. 
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rad/s, IMU data: Accel Gs Gyro rad/s, Insoles: Force N/kg COP 
m). For EMG processing, the raw EMG signal was centered by 
subtracting the mean, then bandpass filtered between 30 and 
300 Hz using a 4th order forward-reverse Butterworth filter. 
Then the signal was rectified and lowpass filtered at 6Hz with 
another 4th order forward-reverse Butterworth filter. This 
envelope was then downsampled to match the frequency of the 
rest of the mechanical sensors (200 Hz). We scaled the 
magnitude of the EMG envelope to be similar to the magnitudes 
of the other input signals by changing the units (constant scaling 
factor of 10,000) because we chose not to use feature 
normalization in keeping with Molinaro et al. [4]. This was 
performed for each channel of EMG. Other additional EMG 
features such as EMG frequency features (short time Fourier 
transform analysis and wavelet analysis) were tested, but no 
substantial improvement in estimation error was obtained so 
these were not included in the final analyses. Labels for the 
model were joint moments calculated with inverse dynamics 
based on kinematics from motion capture, ground reaction 
forces from in-ground and treadmill force plates, and a subject 
specific model created in OpenSim [11]. The joint moments 
were scaled by subject mass (Nm/kg) to allow easier 
comparison across participants. 

To increase the data available for training the model, the left 
leg data were mirrored to match the coordinate system of the 
right leg allowing a single leg model that can be trained and 
tested on both legs. This strategy has been used for kinematic 
sensors [38]. To verify that we could use a similar strategy for 
EMG, we ran a direct comparison between models trained 
separately for the left and right leg and models trained with both 
right and left leg data. We found that training with combined 
right and left leg EMG did not decrease performance of the 
estimator. 

C. Model Training/Testing and Evaluation 
To train and test these models, a leave-one-group-out cross-

fold validation was performed. Groups of trials were left out 
such as walking (at three speeds), running (for two speeds), 

sitting (two chair heights), declined walking (two inclination 
angles), etc. Training was then performed on all of the held-in 
tasks for the given subject, and the model was used to predict 
the torques of the left-out group of tasks. This was then folded 
across all of the task groups and performed individually for 
each subject to yield the final results. To evaluate the model’s 
performance and compare different approaches, root mean 
squared error (RMSE) was calculated between the ground-truth 
joint moment labels and the estimated labels to demonstrate the 
overall performance of the model. To further evaluate how well 
the shape of the estimate matched the ground truth moment, R2 
was calculated based on a best fit line between the ground truth 
joint moment and the estimate for each participant and task 
group (e.g. walk) as a whole (subtasks within each task such as 
walking speeds are combined before computing a single best fit 
line). Mean absolute error (MAE) at peak joint moments was 
also examined. These were then compared between models and 
across subjects to establish the benefits of the different 
approaches. 

While this examination of left-out-task performance provides 
a rigorous comparison of the impact of sensor additions, the 
question remains whether all of these tasks are necessary to 
achieve the observed accuracy and if not, which tasks are the 
most important to include when generalizing to left out tasks. 
To answer these questions, a forward task selection algorithm 
was used to sequentially select the most important task for 
improving the model’s ability to generalize to the rest of the 
tasks. To select the initial task, a model was trained using each 
individual task from each participant as the training set and then 
testing on the rest of the tasks for that participant. The task that 
produced the lowest moment estimation RMSE on the rest of 
the tasks across participants was selected. After this initial 
iteration, the following tasks were selected by sequentially 
testing each of the remaining tasks (those not chosen yet) and 
choosing the specific task that, when added to the training set, 
resulted in the greatest reduction in RMSE for the rest of the 
remaining tasks as compared to not including that specific task. 
This was performed for the sensor case that included all sensor 
types (kinematics, EMG, and insoles). 

Statistics across different sensor input types and task types 
(cyclic and noncyclic) were computed using a two-way 
repeated measures analysis of variance (ANOVA) test with a 
significance level of α = 0.05. Participants were the random 
factor while sensor combinations and task types were the 
independent variables. Moment estimation RMSE was the 
dependent variable and was first averaged across trials within 
the same task group and same participant and then averaged 
across task groups within the same participant. This means that 
we compare a single value per participant per sensor set. To 
further explore these effects, we ran separate simple main effect 
one-way ANOVAs for each task delineation (all, cyclic, and 
non-cyclic) at each joint (hip and knee) to compare the four 
sensors combinations (kinematics, kinematics + EMG, 
kinematics + insoles, kinematics + EMG + insoles). To parse 
out pairwise differences between different sensor additions, we 
applied paired t-tests with Bonferroni correction for the six 
possible comparisons. On each individual task, we ran 

 
Fig. 3.  Detailed view of sensors and locations used as inputs to the model. 
Angles were computed using motion capture trajectories and wearable sensors 
were placed for the surface electromyography (EMGs) and the inertial 
measurement units (IMUs). Dotted sensor symbols indicate the posterior side. 
Insoles were simulated based on vertical ground reaction force (vGRF) and 
center of pressure (mediolateral: COPML and anterior-posterior: COPAP) 
transformed from the force plate to the reference frame of the foot. EMG 
sensors for the hip included: rectus femoris (RF), gluteus medius (GMed), 
biceps femoris (BF), and gluteus maximus (GMax). For the knee, BF and RF 
were again used as well as the vastus lateralis (VL), and medial gastrocnemius 
(MG). 
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comparisons between sensor combinations. Due to the number 
of comparisons, we controlled the false discovery rate (q < 
0.05) using the method proposed by Benjamini & Hochberg 
[39]. This test controls for both the comparison of sensors 
within task and its use across tasks. To test the second 
hypothesis, the difference in RMSE with respect to the 
kinematic baseline was computed for each task and sensor 
addition within each subject (1). 

𝑅𝑀𝑆𝐸 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑠𝑒𝑛𝑠𝑜𝑟)

= 𝑅𝑀𝑆𝐸𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠+𝑠𝑒𝑛𝑠𝑜𝑟

− 𝑅𝑀𝑆𝐸𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐𝑠  
( 1 ) 

The difference was then averaged separately across cyclic and 
non-cyclic tasks within each subject. The reduction in RMSE 
for cyclic and non-cyclic activities was compared with a paired 
t-test for each sensor combination. This tested whether adding 
additional sensors showed more benefit during noncyclic tasks 
than cyclic tasks. All statistical analyses were performed in 
Matlab (MathWorks, Natick, MA). 

III. RESULTS 
Our two-way ANOVA across sensor additions and task types 

(with subjects as a fixed effect) revealed statistically significant 
decreases in RMSE from adding different sensor inputs in the 
deep learning model for both the hip (F=91.70, dfM=3, dfE=33, 
p < 0.01) and knee (F=204.64, dfM=3, dfE=33, p < 0.01). It also 
revealed a statistically significant difference between cyclic and 
non-cyclic tasks at both the hip (F=32.49, dfM=1, dfE=11, p < 
0.01) and knee (F=34.51, dfM=1, dfE=11, p < 0.01) and a 
significant interaction effect between sensors and task type at 
both the hip (F=45.43, dfM=3, dfE=33, p < 0.01) and knee 
(F=16.49, dfM=3, dfE=33, p < 0.01). Because of these 
significant effects, we further explored these differences with 
simple main effects ANOVAs across sensor additions for 
different task types (all, cyclic, and non-cyclic) each of which 
showed statistical significance at both the hip and knee (p < 
0.01). These were followed up by pairwise multiple 
comparisons tests as shown in Fig. 4a&b. When comparing 
results across all tasks, the models with EMG (Hip RMSE: 
0.233 Nm/kg, Knee RMSE: 0.154 Nm/kg), simulated insoles 

 
Fig. 4.  Summary of results from comparing different sensor inputs in a deep learning model for joint moment estimation. Hip (a) and knee (b) moment estimation 
errors (RMSE) across sensor additions are presented for all of the tasks and then broken down into cyclic and non-cyclic tasks. The corresponding R2 value for the 
hip (c) and knee (d) are also shown. Error bars represent the standard deviation across the 12 subjects. 
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(Hip RMSE: 0.219 Nm/kg, Knee RMSE: 0.146 Nm/kg), and 
EMG + insoles (Hip RMSE: 0.189 Nm/kg, Knee RMSE: 0.130 
Nm/kg) all showed statistically significant reductions in joint 
moment estimation error as compared to the kinematic baseline 
(Hip RMSE: 0.280 Nm/kg, Knee RMSE: 0.221 Nm/kg). This 
was also the case when broken down between cyclic and non-
cyclic tasks. Similar results can be seen for R2 in Fig. 4c&d 
where an increase in R2 indicates a better match between the 
shape of the estimate and the shape of the ground truth moment. 
Again, a two-way ANOVA revealed statistically significant 
effects for sensors (hip: F=99.26, dfM=3, dfE=33, p < 0.01; 
knee: F=215.27, dfM=3, dfE=33, p < 0.01), tasks (hip: F=9.04, 
dfM=1, dfE=11, p = 0.012; knee: F=15.84, dfM=1, dfE=11, p 
< 0.01), and the interaction effect (hip: F=35.60, dfM=3, 
dfE=33, p < 0.01; knee: F=21.79, dfM=3, dfE=33, p < 0.01) 
with significant simple main effects ANOVAs (p < 0.01). 
Across all tasks, R2 significantly increased when adding EMG 
(Hip R2: 0.68, Knee R2: 0.81), insoles (Hip R2: 0.69, Knee R2: 
0.83), and both EMG and insoles (Hip R2: 0.76, Knee R2: 0.86) 
as compared to the kinematic only baseline (Hip R2: 0.56, Knee 
R2: 0.62). This also held when separated into cyclic and non-
cyclic tasks. Across task groups, models with EMG + insoles 
had lower estimation error and a higher R2 value than models 
with either EMG or insoles individually (p < 0.01). When 
broken down into cyclic and non-cyclic tasks, this held for the 
non-cyclic tasks (p < 0.01), but not in cyclic task RMSE at the 
knee or R2 at either joint. No statistically significant difference 
was detected between adding EMG versus adding insoles 

across all tasks. However, when broken down by cyclic and 
non-cyclic, there was a detectable difference in RMSE between 
adding EMG and insoles at the hip during non-cyclic tasks and 
in R2 at the knee for cyclic activities (p < 0.05), both favoring 
insoles over EMG. However, the opposite can be seen favoring 
EMG over insoles for R2 at the hip. Similar results are shown 
in the online supplement for mean absolute error at the peak 
joint moments. 

The results for specific task groups for both the hip and knee 
are shown in Fig. 5 broken into cyclic and non-cyclic tasks to 
show the performance differences on each specific task group. 
Performance on different task groups varies significantly based 
on the complexity of the task, but more of the non-cyclic tasks 
demonstrate statistically significant differences based on sensor 
additions than the cyclic tasks. Changes relative to kinematics 
for each individual task are provided in the online supplement. 

The results from the reduction in RMSE of noncyclic versus 
cyclic tasks are shown in Fig. 6. All three additional sensor 
combinations showed a statistically significant improvement in 
the noncyclic activities as compared to the cyclic activities for 
both hip and knee (p < 0.01). 

Task selection optimization results are presented in Fig. 
7a&b for the hip and knee. The performance of kinematic 
+EMG + insole models trained with the tasks up to that iteration 
are subtracted from the corresponding participant and task 
results presented in Fig. 5. Thus, zero represents performance 
equivalent to the performance from Fig. 4-5 with many fewer 
tasks in the training set. At the hip, RMSE drops to within 5% 

 
Fig. 5.  Results broken down by task groups for the hip (a) and the knee (b). This is shown based on the performance for each left out task from a model trained on 
the other tasks. Lines above the bars show the standard deviation across the 12 subjects. Statistically significant comparisons as determined by controlling the false 
rate of discovery are indicated with colored bars above each task. 
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of the RMSE of the average left-out-task accuracy for this 
sensor set in the first 9 tasks and for the knee this occurs within 
the first 11 tasks. A similar result can be seen for R2 in Fig. 
7c&d.  

IV. DISCUSSION 
As hypothesized, adding kinetic sensor information in the 

form of EMG or insoles significantly aided in estimating joint 
moments using a deep learning model. This contributes a 
formal comparison of these unique sensor modalities that has 
not yet been explored, and it expands joint moment estimation 
to unique non-cyclic activities where we show that these 
additional sensor inputs are more essential. 

In general, EMG or insoles added additional information that 
improved model performance. For RMSE during non-cyclic 
tasks at the hip and R2 during cyclic tasks at the knee there are 
statistical difference between adding only EMG versus adding 
only insoles. This indicates that either the EMG added less 
relevant information for these tasks at that joint compared to the 
insoles or that the EMG information could not be utilized as 
well without the added information from the insoles. The 
opposite can be seen for the hip R2 during cyclic tasks. This 
contrasts with our assumption that proximal joints would 
benefit less from insoles given that ground reaction forces must 
be traced farther up the kinematic chain, and unmeasured shear 
forces have a larger effective moment arm. The counterintuitive 
result for RMSE at the hip may be due to the fact that fewer 
EMGs were available for direct sagittal plane actuation at the 
hip and the only accessible hip flexor muscle (rectus femoris) 
is a biarticular muscle where placement may play a role in 
which action (hip flexion or knee extension) is captured more 
clearly in the signal [40]. 

Including both EMG and insoles compared to either on their 
own showed significant benefits overall, but this difference was 
more substantial in the non-cyclic activities than the cyclic 
activities. This demonstrates that the information provided by 
these modalities is unique, though they may contain some 
overlapping information. The lack of significance for some 
comparisons during cyclic activities may reflect that the model 
cannot benefit from this additional information due to the 

repeatable nature of the activity. Thus, the time history 
embedded in the model architecture may provide enough 
information to accurately predict moments without the need for 
as much additional information. 

The task-by-task breakdown demonstrates that more 
statistically significant differences are detectible in the non-
cyclic tasks than in the cyclic tasks. This may be due to the fact 
that these activities lie more often on the extremes of the sensor 
input ranges. Thus, when left out of training, these tasks require 
the model to extrapolate to new unique conditions which may 
be easier with more information. Particularly at the hip, the 
most commonly heretofore tested tasks like walking, running, 
stairs, and ramps do not show significant improvements with 
additional sensing while the less commonly tested cyclic and 
non-cyclic activities do. This may explain the lack of apparent 
benefit to including EMG at the hip and knee in Camargo et al. 
[29]. 

Differences between cyclic and non-cyclic activities are 
hinted at in the previous analyses but to further elucidate this 
effect, we compared the relative improvement of these sensor 
additions from non-cyclic to cyclic tasks. In all cases, adding 
additional sensors had a statistically larger reduction in moment 
estimation error during the non-cyclic activities than during 
cyclic activities. This is most likely due to the inherently more 
challenging nature of non-cyclic tasks as highlighted by the 
similar kinematics but different kinetics shown in Fig. 1. 

The task optimization results demonstrate that while the 
above analyses used 27 tasks as the training set and then 
evaluated performance on the left-out task, similar performance 
can be achieved with only ~10 tasks in the training set. Also, 
although the ordering differs, seven out of the first ten tasks are 
shared between the hip and the knee optimizations. These 
results indicate that this moment estimation approach could be 
feasible for real-time implementation while promising a small 
subset of tasks necessary for task generalization. Again, non-
cyclic tasks are more highly represented in the most important 
tasks than are the cyclic tasks. 

A direct comparison to current joint estimation models is 
difficult because this study explores subject dependent models 
trained on many unique tasks in a left-out-task group manner 
whereas other studies examine small subsets of tasks with 

 
Fig. 6.  RMSE difference relative to the kinematic baseline for each sensor addition during non-cyclic tasks and cyclic tasks for the hip (a) and the knee (b). Error 
bars represent standard deviation across the 12 subjects. Asterisks indicate statistical significance. 
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subject independent models and without full task withholding. 
However, it is useful to note that even with tasks completely 
withheld and the requirement that the model generalize to a 
wide range of tasks, the accuracy of the models presented here 
is in line with other studies examining joint moment estimation. 
Molinaro et al. reported hip moment estimation errors of 0.13 
Nm/kg for walking, ramps and stairs with slight increases due 
to left out slopes and speeds [4]. This is slightly better than the 
kinematic baseline presented here perhaps due to our training 
paradigm leaving out the entire walking group at once and using 
a subject dependent model with much less training data. Our 
results for walking (0.070 range normalized RMSE for the hip 
and 0.063 for the knee) are also slightly above Hossain et al. 
who included more sensors [9] but lower than Mundt et. al. 
[41]. Thus, our performance on cyclic tasks has similar error 
magnitudes to previous studies that do this without generalizing 
to new tasks. For the non-cyclic tasks, only a few papers have 
examined tasks that could be similar, but the ranges are again 
comparable. Chaaban et al. presented knee extension moment 
estimation during jumping of 0.028 (normalized to BW*HT) 

for an independent model with only thigh IMUs [42] whereas 
our results for a similar activity are lower at 0.0143 but with 
both thigh and shank IMUs. Thus, while our model can estimate 
many more tasks than previous deep learning approaches, it still 
maintains comparable accuracy for similar activities, showing 
the great extensibility of deep learning. Beyond comparisons to 
deep learning approaches, our results can be compared to both 
analytical and EMG-driven approaches with similar restrictions 
as above prohibiting a direct comparison. To compare to 
analytical models, Wang et al. present results using IMUs and 
instrumented insoles for several cyclic and non-cyclic 
activities. Across subjects their error was 0.37 Nm/kg at the 
knee and 0.85 Nm/kg at the hip which are much higher than 
those presented here even with only kinematic sensors [19]. To 
compare to EMG-driven models, Sartori et al. reported their 
lowest errors of 23.75 Nm at the knee and 26.06 Nm at the hip 
for the stance phase of walking, side-stepping, cross-stepping, 
and running combined. Although there is no direct comparison, 
our results averaged across running and walking for the entire 
gait cycle are 17.9 Nm for the hip and 12.0 Nm for the knee 

 
Fig. 7.  Task optimization performance compared to the corresponding leave one task out performance are shown in terms of moment estimation error (RMSE) 
for the hip (a) and the knee (b) and also in terms of R2 for the hip (c) and knee (d). Each datapoint represents the average performance on a given task group across 
all 12 participants when including kinematics, EMG, and insoles. Error bars were omitted for visual clarity.  
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with kinematics and EMG. These results demonstrate that the 
key contributions from our analyses rest upon baseline results 
that fit well within the current literature.  

 There are several limitations of this work. First, these models 
are subject dependent due to the nature of EMG as a very 
subject specific signal. Future work could explore the 
usefulness of EMG in independent systems but this was beyond 
the scope of this work and likely would still necessitate some 
subject specific data incorporated through adaptive or transfer 
learning approaches [43], [44]. Second, although the IMUs and 
EMGs were real sensors, the insole portion of this analysis was 
run with simulated insoles. This means that these results 
represent the best possible case for the benefit of instrumented 
insoles. Real-time studies with physical insoles may reveal that 
the current state-of-the-art sensors may not provide as much 
benefit as shown here. To maintain as fair a comparison as 
possible, we also present the best-case EMG results by using 
non-causal filtering techniques. Real-time estimation would 
require causal filtering techniques which may result in a slight 
decrease in performance, but that decrease can be mitigated by 
optimizing the filtering strategy. Third, if this strategy were 
applied to exoskeleton control, changes in kinematics and 
possible interaction noise in sensor signals could have an 
impact on model performance. 

V. CONCLUSION 
This study demonstrates that EMG and insoles can provide 

highly useful information in estimating joint moments for 
wearable systems. While they show some benefit in normal 
cyclic activities like walking and running, the situations where 
these additional sensors become highly important is during 
unique non-cyclic activities where the relationship between 
kinematics and kinetics may be highly nondeterministic. This 
study provides pivotal information for device designers 
choosing sensor inputs for both wearable robotic devices and 
health monitoring devices. This study also provides another 
step to encourage scientists in these fields to begin testing on 
more activities than just the conventional gait lab activities in 
order to advance technologies that can be deployed in real-
world scenarios. 
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