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Improving Biological Joint Moment Estimation
During Real-World Tasks with EMG and
Instrumented Insoles

Keaton L. Scherpereel®, Dean D. Molinaro, Max K. Shepherd, Omer T. Inan, and Aaron J. Young

Abstract— Objective: Real-time measurement of biological joint
moment could enhance clinical assessments and generalize
exoskeleton control. Accessing joint moments outside clinical and
laboratory settings requires harnessing non-invasive wearable
sensor data for indirect estimation. Previous approaches have
been primarily validated during cyclic tasks, such as walking, but
these methods are likely limited when translating to non-cyclic
tasks where the mapping from kinematics to moments is not
unique. Methods: We trained deep learning models to estimate hip
and knee joint moments from Kkinematic sensors,
electromyography (EMG), and simulated pressure insoles from a
dataset including 10 cyclic and 18 non-cyclic activities. We
assessed estimation error on combinations of sensor modalities
during both activity types. Results: Compared to the kinematics-
only baseline, adding EMG reduced RMSE by 16.9% at the hip
and 30.4% at the knee (p<0.05) and adding insoles reduced RMSE
by 21.7% at the hip and 33.9% at the knee (p<0.05). Adding both
modalities reduced RMSE by 32.5% at the hip and 41.2% at the
knee (p<0.05) which was significantly higher than either modality
individually (p<0.05). All sensor additions improved model
performance on non-cyclic tasks more than cyclic tasks (p<0.05).
Conclusion: These results demonstrate that adding kinetic sensor
information through EMG or insoles improves joint moment
estimation both individually and jointly. These additional
modalities are most important during non-cyclic tasks, tasks that
reflect the variable and sporadic nature of the real-world.
Significance: Improved joint moment estimation and task
generalization is pivotal to developing wearable robotic systems
capable of enhancing mobility in everyday life.

Index Terms— deep learning, electromyography (EMG),
human Kkinetics, inertial measurement units (IMUs), joint
moments, machine learning, pressure insoles, temporal
convolutional network

I. INTRODUCTION

CCURATE estimation of human joint moments using
wearable sensors could provide a useful signal for health
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monitoring [1], [2] and exoskeleton control [3], [4] during real-
world activities. The gold standard approach to quantify joint
moment is through inverse dynamics enabled by optical motion
capture and in-ground force plates [5]. However, these systems
are not accessible outside of the lab; thus, recent efforts have
explored methods for estimating joint moments directly from
wearable sensors. Three main categories of approaches have
emerged as possible wearable alternatives: analytical models
driven by inertial measurement units (IMUs) and instrumented
insoles [6], electromyography (EMG)-driven models [7], and
machine learning data-driven models [6], [8]. Deep learning
methods have shown great promise in accurately estimating
joint moments with a limited sensor suite of kinematic sensors
[4], [9] and do not require the same assumptions entailed by
analytical methods [6]. However, this approach, as well as its
alternatives, have mostly been tested during limited tasks such
as walking and running or on a few individual alternate tasks
[6]. The question remains whether these approaches will be
viable on highly dynamic, constantly changing tasks.

The machine learning biological moment estimation
approach has a potential weakness in these unique non-cyclic
activities. Most of the current approaches use only kinematic
sensor inputs such as joint angles and IMUs [4], [8]. However,
changes in a person’s kinematics do not directly predict changes
in their joint moment, especially in these unique activities
because similar kinematic patterns do not necessarily result in
similar kinetic patterns. Although studies have shown
promising results in estimating ground reaction forces directly
from kinematic sensors during standard cyclic activities [9],
[10], these relationships may not hold in the same way during
unusual cyclic and non-cyclic tasks as shown in Fig. 1 [11].
Thus, a kinematic-based machine learning model is potentially
lacking distinguishing information for tasks with similar
kinematics but differing torques or vice versa.
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Fig. 1. Several non-cyclic tasks that demonstrate similar kinematic profiles but different kinetic profiles at the hip and knee. The curves are subject average profiles

drawn from Scherpereel et. al.

To add this missing information, there are two potential
avenues inspired by both the current musculoskeletal modeling
techniques and the alternate approaches to moment estimation.
The inverse approach uses ground reaction forces traced up the
kinematic chain to the joint of interest to estimate joint
moments. This line of reasoning has given rise to the gold
standard of inverse dynamics [5] and the analytical models for
moment estimation. The forward approach notes that
fundamentally muscle activations lead to muscle forces which
are ultimately responsible for the resulting torque exerted on the
joint. This line of thinking has inspired EMG-driven modeling
techniques [12], [13]. Although current real-time wearable
systems cannot directly measure 3D ground reaction forces [14]
or muscle forces and activation [15], the substitute wearable
sensors, pressure insoles and EMG, have the potential to
provide insight into kinetic changes in human movement.

Pressure insoles estimate the vertical ground reaction force
(vGRF) and center of pressure (COP) within the reference
frame of the foot [16]. Pressure insoles have recently grown in
popularity for wearable robotic technologies [17], specifically
for discrete gait event detection and even locomotion mode
recognition [18]. More recently, analytical methods for moment
estimation have used continuous signals from insoles as a
surrogate for force plates, but their success is varied [19]. Only
a few studies have examined insoles in machine learning
approaches, two for estimating internal loading [20], [21] and a
single study using vGRF as an input in hip moment estimation
for a single treadmill walking speed [22]. An analysis of the
benefits of insoles on deep learning moment estimation has yet
to be explored.

Electromyography (EMG) has the capacity to encode
information about muscle activation, which relates to muscle
forces and thereby joint moments. Thus, information from
surface EMG signals could provide a machine learning model
with the ability to distinguish between situations where the

mapping between kinematics and kinetics may be highly
nondeterministic. EMG inputs in deep learning models have
conventionally been used for gesture recognition on upper
limbs, but have also been beneficial for angle and force/torque
estimation [23]. On upper limbs, various types of neural
networks have been used to estimate forces at the wrist [24] as
well as multi-degree-of-freedom torques at the wrist [25]. Work
on lower limbs has included using deep learning for estimation
of gait events with EMG [26] as well as several attempts to
estimate biological moments with EMG and neural networks
[27]-{29]. In 2008, Hahn and O’Keefe used a neural network
with EMG, kinematics, and other subject information as inputs
to estimate lower-limb joint moments [27]. More recent studies
have used EMG as well as kinematics to estimate ankle
moments [28] and all three lower-limb joints [29] using deep
learning models. The benefits and feasibility of estimating
biological moment during unique non-cyclic tasks has yet to be
examined and a direct comparison of the benefits of EMG over
kinematic sensors alone has yet to be performed.

In this study, a deep learning joint moment estimation
approach was used to estimate joint moments in both common,
time-repeatable cyclic activities as well as unique non-cyclic
activities. Using subject dependent models, we analyzed the
benefits of adding EMG, simulated instrumented insoles, and
both as compared to a purely kinematic sensor baseline. Sensors
were chosen to replicate those most accessible to two devices:
a hip exoskeleton and a knee exoskeleton, and the associated
joint moment was selected as the appropriate estimation label.
Our main hypothesis was that EMG and simulated insoles, both
individually and together, would improve joint moment
estimation on left-out-tasks as compared to the kinematic-only
baseline. This is due to the additional information that these
sensors provide to distinguish between tasks with similar
kinematics but different torques. Our secondary hypothesis was
that the benefit of adding these sensors would be higher for the
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Fig. 2. Overview of our approach for estimating biological joint moments on a task independent basis. Wearable signals were collected over many different tasks
of daily living and then used as inputs to a temporal convolutional network (TCN) to estimate biological moment.

unique non-cyclic activities over the cyclic activities. Because
the model architecture received time history information, we
expect that the cyclic tasks will be easier to model without
additional information from EMG or simulated insoles than the
non-cyclic activities.

II. METHODS

This study utilized a temporal convolutional network (TCN)
[4] in concert with different sensor inputs (EMG, virtual
insoles) to create models that estimate joint moments based on
wearable sensor data. This allowed a rigorous examination of
the benefits of including EMG, instrumented insoles, or both in
estimating joint moments for unique tasks. Due to the left-out-
task training approach, our results represent the expected
benefit during truly novel tasks. Our experimental approach is
outlined in Fig. 2.

A. Network Architecture

The network was designed based on the TCN introduced by
Bai et. al. [30]. This model architecture was chosen based on
its ability to incorporate significant time history information
without excessive model complexity, as well as previous data
demonstrating its ability to accurately predict biological
moments [4]. Inputs to the model are sequences of time-history
data where the length of time history is determined by the kernel
size for the convolutional layers as well as the depth of the
network. Dilated causal convolution is used to increase the size
of the input time series. The kernel size for the convolutional
layers was set to four, and we chose a depth of five layers. Each
layer consisted of a set of two convolutions with weight
normalization and rectified linear unit (ReLU) activation
functions with a dropout term to avoid overfitting. Each hidden
layer consisted of fifty nodes. This particular architecture
represents an effective time history of 0.93s given a 200Hz
sampling rate. The details of the generic TCN architecture are
included in Bai et. al. [30]. The depth, kernel size, learning rate,
and dropout are parameters that were set based on previous
testing with this network for estimating hip moments from
purely mechanical sensors [4]. This network architecture
employed input-level sensor fusion where information from the
various sensor modalities (EMGs, joint angles, IMUs, and
virtual insoles) were allowed to influence each other from the

beginning of the network.

Inputs consisted of only the sensors relevant to the specific
exoskeleton (hip or knee). For a sensor suite simulating a knee
exoskeleton, the baseline kinematic sensors included knee
angle, knee velocity, a shank IMU, and a thigh IMU similar to
Lee et al. [31]. EMG inputs consisted of four channels of EMG
from knee spanning muscles: vastus lateralis (VL), rectus
femoris (RF), biceps femoris (BF), and medial gastrocnemius
(MG). For a system simulating a hip exoskeleton, the baseline
kinematic sensors included hip angle, hip velocity, a thigh IMU
and a pelvis IMU inspired by a combination of research devices
[32], [33]. EMG inputs consisted of four channels of EMG from
hip spanning muscles: rectus femoris (RF), gluteus medius
(GMed), gluteus maximus (GMax), and biceps femoris (BF).
For both analyses, virtual insoles consisted of VGRF in the
frame of the foot as well as COP for both the anteroposterior
and mediolateral directions. This is summarized in Fig. 3.

Training was performed in mini-batches for 15 epochs. To
choose this number, we trained models similar to those
presented here (subject-dependent models with kinematic
sensors to estimate knee joint moment) with a completely
separate dataset [34]-[37] to determine the average point at
which the models stopped improving. Model weights were
initialized to random values. Mean squared error was used for
the loss function.

B. Data Overview

The data used in this experiment consist of bilateral data for
12 subjects performing various unique tasks. These tasks
included conventional biomechanics tasks (e.g., walking,
running, ramps and stairs), athletic maneuvers (e.g., lunges),
tasks of daily living (e.g., sit-to-stand, turns, and lifting), and
responses to external perturbations (e.g., tug of war and walking
over obstacles). The dataset was divided into 10 cyclic and 18
non-cyclic task groups. This study was approved under Georgia
Tech Institutional Review Board H17240 (07/12/2017). We
have open-sourced these data and further details on the
groupings and data collection methods can be found in that
publication [11].

The mocap joint angles (VICON, UK), IMUs (Avanti
Wireless EMG, Delsys, Natick, MA), and virtual insole data
(Bertec Corporation, Columbus, Ohio) from the dataset at
200Hz were fed directly into the model (Angles: rad, velocity:
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rad/s, IMU data: Accel Gs Gyro rad/s, Insoles: Force N/kg COP
m). For EMG processing, the raw EMG signal was centered by
subtracting the mean, then bandpass filtered between 30 and
300 Hz using a 4th order forward-reverse Butterworth filter.
Then the signal was rectified and lowpass filtered at 6Hz with
another 4" order forward-reverse Butterworth filter. This
envelope was then downsampled to match the frequency of the
rest of the mechanical sensors (200 Hz). We scaled the
magnitude of the EMG envelope to be similar to the magnitudes
of the other input signals by changing the units (constant scaling
factor of 10,000) because we chose not to use feature
normalization in keeping with Molinaro et al. [4]. This was
performed for each channel of EMG. Other additional EMG
features such as EMG frequency features (short time Fourier
transform analysis and wavelet analysis) were tested, but no
substantial improvement in estimation error was obtained so
these were not included in the final analyses. Labels for the
model were joint moments calculated with inverse dynamics
based on kinematics from motion capture, ground reaction
forces from in-ground and treadmill force plates, and a subject
specific model created in OpenSim [11]. The joint moments
were scaled by subject mass (Nm/kg) to allow easier
comparison across participants.

To increase the data available for training the model, the left
leg data were mirrored to match the coordinate system of the
right leg allowing a single leg model that can be trained and
tested on both legs. This strategy has been used for kinematic
sensors [38]. To verify that we could use a similar strategy for
EMG, we ran a direct comparison between models trained
separately for the left and right leg and models trained with both
right and left leg data. We found that training with combined
right and left leg EMG did not decrease performance of the
estimator.

C. Model Training/Testing and Evaluation

To train and test these models, a leave-one-group-out cross-
fold validation was performed. Groups of trials were left out
such as walking (at three speeds), running (for two speeds),
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Fig. 3. Detailed view of sensors and locations used as inputs to the model.
Angles were computed using motion capture trajectories and wearable sensors
were placed for the surface electromyography (EMGs) and the inertial
measurement units (IMUs). Dotted sensor symbols indicate the posterior side.
Insoles were simulated based on vertical ground reaction force (vVGRF) and
center of pressure (mediolateral: COPy; and anterior-posterior: COPyp)
transformed from the force plate to the reference frame of the foot. EMG
sensors for the hip included: rectus femoris (RF), gluteus medius (GMed),
biceps femoris (BF), and gluteus maximus (GMax). For the knee, BF and RF
were again used as well as the vastus lateralis (VL), and medial gastrocnemius
(MG).

sitting (two chair heights), declined walking (two inclination
angles), etc. Training was then performed on all of the held-in
tasks for the given subject, and the model was used to predict
the torques of the left-out group of tasks. This was then folded
across all of the task groups and performed individually for
each subject to yield the final results. To evaluate the model’s
performance and compare different approaches, root mean
squared error (RMSE) was calculated between the ground-truth
joint moment labels and the estimated labels to demonstrate the
overall performance of the model. To further evaluate how well
the shape of the estimate matched the ground truth moment, R?
was calculated based on a best fit line between the ground truth
joint moment and the estimate for each participant and task
group (e.g. walk) as a whole (subtasks within each task such as
walking speeds are combined before computing a single best fit
line). Mean absolute error (MAE) at peak joint moments was
also examined. These were then compared between models and
across subjects to establish the benefits of the different
approaches.

While this examination of left-out-task performance provides
a rigorous comparison of the impact of sensor additions, the
question remains whether all of these tasks are necessary to
achieve the observed accuracy and if not, which tasks are the
most important to include when generalizing to left out tasks.
To answer these questions, a forward task selection algorithm
was used to sequentially select the most important task for
improving the model’s ability to generalize to the rest of the
tasks. To select the initial task, a model was trained using each
individual task from each participant as the training set and then
testing on the rest of the tasks for that participant. The task that
produced the lowest moment estimation RMSE on the rest of
the tasks across participants was selected. After this initial
iteration, the following tasks were selected by sequentially
testing each of the remaining tasks (those not chosen yet) and
choosing the specific task that, when added to the training set,
resulted in the greatest reduction in RMSE for the rest of the
remaining tasks as compared to not including that specific task.
This was performed for the sensor case that included all sensor
types (kinematics, EMG, and insoles).

Statistics across different sensor input types and task types
(cyclic and noncyclic) were computed using a two-way
repeated measures analysis of variance (ANOVA) test with a
significance level of a = 0.05. Participants were the random
factor while sensor combinations and task types were the
independent variables. Moment estimation RMSE was the
dependent variable and was first averaged across trials within
the same task group and same participant and then averaged
across task groups within the same participant. This means that
we compare a single value per participant per sensor set. To
further explore these effects, we ran separate simple main effect
one-way ANOVAs for each task delineation (all, cyclic, and
non-cyclic) at each joint (hip and knee) to compare the four
sensors combinations (kinematics, kinematics + EMG,
kinematics + insoles, kinematics + EMG + insoles). To parse
out pairwise differences between different sensor additions, we
applied paired t-tests with Bonferroni correction for the six
possible comparisons. On each individual task, we ran
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Fig. 4. Summary of results from comparing different sensor inputs in a deep learning model for joint moment estimation. Hip (a) and knee (b) moment estimation
errors (RMSE) across sensor additions are presented for all of the tasks and then broken down into cyclic and non-cyclic tasks. The corresponding R? value for the
hip (c) and knee (d) are also shown. Error bars represent the standard deviation across the 12 subjects.

comparisons between sensor combinations. Due to the number
of comparisons, we controlled the false discovery rate (q <
0.05) using the method proposed by Benjamini & Hochberg
[39]. This test controls for both the comparison of sensors
within task and its use across tasks. To test the second
hypothesis, the difference in RMSE with respect to the
kinematic baseline was computed for each task and sensor
addition within each subject (1).
RMSE Dif ference (sensor)
= RMSEyinematics+sensor
- RMSEkinematics
(1)

The difference was then averaged separately across cyclic and
non-cyclic tasks within each subject. The reduction in RMSE
for cyclic and non-cyclic activities was compared with a paired
t-test for each sensor combination. This tested whether adding
additional sensors showed more benefit during noncyclic tasks
than cyclic tasks. All statistical analyses were performed in
Matlab (MathWorks, Natick, MA).

III. RESULTS

Our two-way ANOV A across sensor additions and task types
(with subjects as a fixed effect) revealed statistically significant
decreases in RMSE from adding different sensor inputs in the
deep learning model for both the hip (F=91.70, dfM=3, dfE=33,
p <0.01) and knee (F=204.64, dfM=3, dfE=33, p <0.01). It also
revealed a statistically significant difference between cyclic and
non-cyclic tasks at both the hip (F=32.49, dfM=1, dfE=11, p <
0.01) and knee (F=34.51, dfM=1, dfE=11, p < 0.01) and a
significant interaction effect between sensors and task type at
both the hip (F=45.43, dfM=3, dfE=33, p < 0.01) and knee
(F=16.49, dfM=3, dfE=33, p < 0.01). Because of these
significant effects, we further explored these differences with
simple main effects ANOVAs across sensor additions for
different task types (all, cyclic, and non-cyclic) each of which
showed statistical significance at both the hip and knee (p <
0.01). These were followed up by pairwise multiple
comparisons tests as shown in Fig. 4a&b. When comparing
results across all tasks, the models with EMG (Hip RMSE:
0.233 Nm/kg, Knee RMSE: 0.154 Nm/kg), simulated insoles
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(Hip RMSE: 0.219 Nm/kg, Knee RMSE: 0.146 Nm/kg), and
EMG + insoles (Hip RMSE: 0.189 Nm/kg, Knee RMSE: 0.130
Nm/kg) all showed statistically significant reductions in joint
moment estimation error as compared to the kinematic baseline
(Hip RMSE: 0.280 Nm/kg, Knee RMSE: 0.221 Nm/kg). This
was also the case when broken down between cyclic and non-
cyclic tasks. Similar results can be seen for R? in Fig. 4c&d
where an increase in R? indicates a better match between the
shape of the estimate and the shape of the ground truth moment.
Again, a two-way ANOVA revealed statistically significant
effects for sensors (hip: F=99.26, dfM=3, dfE=33, p < 0.01;
knee: F=215.27, dfM=3, dfE=33, p < 0.01), tasks (hip: F=9.04,
dftM=1, dfE=11, p = 0.012; knee: F=15.84, dfM=1, dfE=11, p
< 0.01), and the interaction effect (hip: F=35.60, dfM=3,
dfE=33, p < 0.01; knee: F=21.79, dfM=3, dfE=33, p < 0.01)
with significant simple main effects ANOVAs (p < 0.01).
Across all tasks, R? significantly increased when adding EMG
(Hip R%: 0.68, Knee R%: 0.81), insoles (Hip R?: 0.69, Knee R%:
0.83), and both EMG and insoles (Hip R?: 0.76, Knee R?: 0.86)
as compared to the kinematic only baseline (Hip R?: 0.56, Knee
R2: 0.62). This also held when separated into cyclic and non-
cyclic tasks. Across task groups, models with EMG + insoles
had lower estimation error and a higher R? value than models
with either EMG or insoles individually (p < 0.01). When
broken down into cyclic and non-cyclic tasks, this held for the
non-cyclic tasks (p < 0.01), but not in cyclic task RMSE at the
knee or R? at either joint. No statistically significant difference
was detected between adding EMG versus adding insoles

across all tasks. However, when broken down by cyclic and
non-cyclic, there was a detectable difference in RMSE between
adding EMG and insoles at the hip during non-cyclic tasks and
in R? at the knee for cyclic activities (p < 0.05), both favoring
insoles over EMG. However, the opposite can be seen favoring
EMG over insoles for R? at the hip. Similar results are shown
in the online supplement for mean absolute error at the peak
joint moments.

The results for specific task groups for both the hip and knee
are shown in Fig. 5 broken into cyclic and non-cyclic tasks to
show the performance differences on each specific task group.
Performance on different task groups varies significantly based
on the complexity of the task, but more of the non-cyclic tasks
demonstrate statistically significant differences based on sensor
additions than the cyclic tasks. Changes relative to kinematics
for each individual task are provided in the online supplement.

The results from the reduction in RMSE of noncyclic versus
cyclic tasks are shown in Fig. 6. All three additional sensor
combinations showed a statistically significant improvement in
the noncyclic activities as compared to the cyclic activities for
both hip and knee (p <0.01).

Task selection optimization results are presented in Fig.
7a&b for the hip and knee. The performance of kinematic
+EMG + insole models trained with the tasks up to that iteration
are subtracted from the corresponding participant and task
results presented in Fig. 5. Thus, zero represents performance
equivalent to the performance from Fig. 4-5 with many fewer
tasks in the training set. At the hip, RMSE drops to within 5%
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Fig. 6. RMSE difference relative to the kinematic baseline for each sensor addition during non-cyclic tasks and cyclic tasks for the hip (a) and the knee (b). Error
bars represent standard deviation across the 12 subjects. Asterisks indicate statistical significance.

of the RMSE of the average left-out-task accuracy for this
sensor set in the first 9 tasks and for the knee this occurs within
the first 11 tasks. A similar result can be seen for R? in Fig.
Te&d.

IV. DISCUSSION

As hypothesized, adding kinetic sensor information in the
form of EMG or insoles significantly aided in estimating joint
moments using a deep learning model. This contributes a
formal comparison of these unique sensor modalities that has
not yet been explored, and it expands joint moment estimation
to unique non-cyclic activities where we show that these
additional sensor inputs are more essential.

In general, EMG or insoles added additional information that
improved model performance. For RMSE during non-cyclic
tasks at the hip and R? during cyclic tasks at the knee there are
statistical difference between adding only EMG versus adding
only insoles. This indicates that either the EMG added less
relevant information for these tasks at that joint compared to the
insoles or that the EMG information could not be utilized as
well without the added information from the insoles. The
opposite can be seen for the hip R? during cyclic tasks. This
contrasts with our assumption that proximal joints would
benefit less from insoles given that ground reaction forces must
be traced farther up the kinematic chain, and unmeasured shear
forces have a larger effective moment arm. The counterintuitive
result for RMSE at the hip may be due to the fact that fewer
EMGs were available for direct sagittal plane actuation at the
hip and the only accessible hip flexor muscle (rectus femoris)
is a biarticular muscle where placement may play a role in
which action (hip flexion or knee extension) is captured more
clearly in the signal [40].

Including both EMG and insoles compared to either on their
own showed significant benefits overall, but this difference was
more substantial in the non-cyclic activities than the cyclic
activities. This demonstrates that the information provided by
these modalities is unique, though they may contain some
overlapping information. The lack of significance for some
comparisons during cyclic activities may reflect that the model
cannot benefit from this additional information due to the

repeatable nature of the activity. Thus, the time history
embedded in the model architecture may provide enough
information to accurately predict moments without the need for
as much additional information.

The task-by-task breakdown demonstrates that more
statistically significant differences are detectible in the non-
cyclic tasks than in the cyclic tasks. This may be due to the fact
that these activities lie more often on the extremes of the sensor
input ranges. Thus, when left out of training, these tasks require
the model to extrapolate to new unique conditions which may
be easier with more information. Particularly at the hip, the
most commonly heretofore tested tasks like walking, running,
stairs, and ramps do not show significant improvements with
additional sensing while the less commonly tested cyclic and
non-cyclic activities do. This may explain the lack of apparent
benefit to including EMG at the hip and knee in Camargo et al.
[29].

Differences between cyclic and non-cyclic activities are
hinted at in the previous analyses but to further elucidate this
effect, we compared the relative improvement of these sensor
additions from non-cyclic to cyclic tasks. In all cases, adding
additional sensors had a statistically larger reduction in moment
estimation error during the non-cyclic activities than during
cyclic activities. This is most likely due to the inherently more
challenging nature of non-cyclic tasks as highlighted by the
similar kinematics but different kinetics shown in Fig. 1.

The task optimization results demonstrate that while the
above analyses used 27 tasks as the training set and then
evaluated performance on the left-out task, similar performance
can be achieved with only ~10 tasks in the training set. Also,
although the ordering differs, seven out of the first ten tasks are
shared between the hip and the knee optimizations. These
results indicate that this moment estimation approach could be
feasible for real-time implementation while promising a small
subset of tasks necessary for task generalization. Again, non-
cyclic tasks are more highly represented in the most important
tasks than are the cyclic tasks.

A direct comparison to current joint estimation models is
difficult because this study explores subject dependent models
trained on many unique tasks in a left-out-task group manner
whereas other studies examine small subsets of tasks with
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Fig. 7. Task optimization performance compared to the corresponding leave one task out performance are shown in terms of moment estimation error (RMSE)
for the hip (a) and the knee (b) and also in terms of R? for the hip (c) and knee (d). Each datapoint represents the average performance on a given task group across
all 12 participants when including kinematics, EMG, and insoles. Error bars were omitted for visual clarity.

subject independent models and without full task withholding.
However, it is useful to note that even with tasks completely
withheld and the requirement that the model generalize to a
wide range of tasks, the accuracy of the models presented here
is in line with other studies examining joint moment estimation.
Molinaro ef al. reported hip moment estimation errors of 0.13
Nm/kg for walking, ramps and stairs with slight increases due
to left out slopes and speeds [4]. This is slightly better than the
kinematic baseline presented here perhaps due to our training
paradigm leaving out the entire walking group at once and using
a subject dependent model with much less training data. Our
results for walking (0.070 range normalized RMSE for the hip
and 0.063 for the knee) are also slightly above Hossain et al.
who included more sensors [9] but lower than Mundt ez. al.
[41]. Thus, our performance on cyclic tasks has similar error
magnitudes to previous studies that do this without generalizing
to new tasks. For the non-cyclic tasks, only a few papers have
examined tasks that could be similar, but the ranges are again
comparable. Chaaban et al. presented knee extension moment
estimation during jumping of 0.028 (normalized to BW*HT)

for an independent model with only thigh IMUs [42] whereas
our results for a similar activity are lower at 0.0143 but with
both thigh and shank IMUs. Thus, while our model can estimate
many more tasks than previous deep learning approaches, it still
maintains comparable accuracy for similar activities, showing
the great extensibility of deep learning. Beyond comparisons to
deep learning approaches, our results can be compared to both
analytical and EMG-driven approaches with similar restrictions
as above prohibiting a direct comparison. To compare to
analytical models, Wang et al. present results using IMUs and
instrumented insoles for several cyclic and non-cyclic
activities. Across subjects their error was 0.37 Nm/kg at the
knee and 0.85 Nm/kg at the hip which are much higher than
those presented here even with only kinematic sensors [19]. To
compare to EMG-driven models, Sartori et al. reported their
lowest errors of 23.75 Nm at the knee and 26.06 Nm at the hip
for the stance phase of walking, side-stepping, cross-stepping,
and running combined. Although there is no direct comparison,
our results averaged across running and walking for the entire
gait cycle are 17.9 Nm for the hip and 12.0 Nm for the knee
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with kinematics and EMG. These results demonstrate that the
key contributions from our analyses rest upon baseline results
that fit well within the current literature.

There are several limitations of this work. First, these models
are subject dependent due to the nature of EMG as a very
subject specific signal. Future work could explore the
usefulness of EMG in independent systems but this was beyond
the scope of this work and likely would still necessitate some
subject specific data incorporated through adaptive or transfer
learning approaches [43], [44]. Second, although the IMUs and
EMGs were real sensors, the insole portion of this analysis was
run with simulated insoles. This means that these results
represent the best possible case for the benefit of instrumented
insoles. Real-time studies with physical insoles may reveal that
the current state-of-the-art sensors may not provide as much
benefit as shown here. To maintain as fair a comparison as
possible, we also present the best-case EMG results by using
non-causal filtering techniques. Real-time estimation would
require causal filtering techniques which may result in a slight
decrease in performance, but that decrease can be mitigated by
optimizing the filtering strategy. Third, if this strategy were
applied to exoskeleton control, changes in kinematics and
possible interaction noise in sensor signals could have an
impact on model performance.

V. CONCLUSION

This study demonstrates that EMG and insoles can provide
highly useful information in estimating joint moments for
wearable systems. While they show some benefit in normal
cyclic activities like walking and running, the situations where
these additional sensors become highly important is during
unique non-cyclic activities where the relationship between
kinematics and kinetics may be highly nondeterministic. This
study provides pivotal information for device designers
choosing sensor inputs for both wearable robotic devices and
health monitoring devices. This study also provides another
step to encourage scientists in these fields to begin testing on
more activities than just the conventional gait lab activities in
order to advance technologies that can be deployed in real-
world scenarios.
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