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Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-
specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control frame-
work that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a
temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root
mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-
specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb posi-
tive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This
advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making

exoskeleton control technology viable for a broad community.

INTRODUCTION

Realizing lower-limb exoskeleton technology in the real world would
enable human mobility to reach new feats, making heavy boxes feel
lighter in the warehouse (1), increasing the success rate of search and
rescue operations (2), or even enabling new innovations in athletic
training and exercise. To date, lower-limb exoskeletons have had sub-
stantial success in improving human mobility, including augmenting
human energetics by offloading or adding to the mechanical work
done by the underlying human musculature (3-9). Although the tan-
gible benefits and potential societal effects of these devices continue
to be found, we fail to see this technology deployed in the real world.
So, the question remains, what is preventing exoskeleton technology
from being realized “in the wild”?

One critical challenge lies within the exoskeleton controller (3, 4,
10, 11). Generally, exoskeleton controllers are divided into three lay-
ers: high-level, mid-level, and low-level (12). The high-level layer
estimates user and environmental states, such as ambulation mode
(9, 13-17) or ground slope (18, 19), used to modulate assistance
with changes in user joint demands. The state estimates are passed
to the mid-level layer, which computes desired assistance on the ba-
sis of predefined control laws, such as spline-based assistance trajec-
tories (8, 20, 21). The low-level layer then converts the desired
exoskeleton assistance into actuator commands, often using motor-
level state feedback control. Although human-in-the-loop optimiza-
tion (8, 20-22) and on-the-fly metabolic cost estimation (23, 24) can
optimize and personalize assistance, these methods require reopti-
mizing controller gains for each high-level state, an inherently time-
intensive process. Further, these advances in mid-level control are
dependent on accurate high-level state estimates. Although physics-
driven (9, 17, 25) and data-driven (13-16, 18, 19, 26-28) models can
estimate one or more high-level states, defining, estimating, and
subsequently optimizing high-level and mid-level controllers for all
of the possible states needed to parameterize human movement in-
the-wild is intractable.
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Instead, instantaneous estimates of the user’s underlying joint
moments could replace conventional high-level states (29-39). Be-
cause lower-limb joint moments naturally vary across ambulation
modes and conditions (40), lower-limb joint moments could serve
as a single, continuous high-level state for modulating exoskeleton
assistance. However, human joint moments cannot be directly
measured but are instead computed post hoc using high-fidelity
motion capture and six-axis force plate measurements from sta-
tionary in-lab equipment (41). Replacing these in-lab systems with
current wearable sensor technology results in incomplete informa-
tion, such as missing ground shear forces (42), and requires poten-
tially cumbersome kinematic sensing of the distal joints along the
limb. These limitations hinder the viability of analytical inverse
dynamics solutions from wearable sensors alone, especially for
more proximal joints.

Recent advances in data-driven approaches have improved the
mapping between wearable sensor data and user joint moments,
even with little to no user-specific data (29-31, 34-39). Using these
methods, researchers have conducted initial experiments using in-
stantaneous joint moment estimates in the exoskeleton control loop
(29-31, 37-39). For instance, Gasparri ef al. (31) introduced an an-
kle exoskeleton controller based on a quadratic fit between foot
force sensor data and user ankle moments during level walking. This
work was extended to incline/decline walking, stair ascent/descent,
and even mixed terrain with notable outcomes across able-body and
clinical populations (37-39). Although promising, it remains un-
clear how this approach would extend to joints beyond the ankle or
generalize to additional tasks where the mapping between foot force
sensor measurements and joint moments is more complex. Alterna-
tively, energy-shaping methods have been developed for assisting
the hip, knee, and ankle during multiple ambulation modes and
during sit-stand cycles (29, 30). These approaches have demonstrat-
ed impressive offline estimation results and potential benefits in
lower-limb muscle activation; however, substantial user benefits and
online estimation accuracy relative to ground-truth inverse dynam-
ics have not yet been demonstrated. As such, the development of a
unified exoskeleton controller capable of autonomously assisting the
user across a wide variety of ambulation modes and intensities has
remained an open topic of research—maintaining the divide be-
tween in-lab exoskeleton technology and real-world benefits.
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In this study, we present an end-to-end framework for control-
ling a lower-limb robotic exoskeleton based on instantaneous esti-
mates of the user’s joint moments using deep learning, deemed
unified joint moment control (Movie 1 and Fig. 1). We validated the
unified controller using our autonomous hip exoskeleton (figs. S1
and S2) because hip-centric assistance has substantially improved
human energetics during several ambulation modes in previous
studies (3, 7, 9, 43, 44), likely by offloading the large positive power
requirements of the hip joint (45) while minimizing any metabolic
penalties caused by distal-borne mass (46). Computing hip mo-
ments from inverse dynamics requires distal joint kinematics (41),
suggesting the need for complex, cumbersome sensor suites. In-
stead, we used a temporal convolutional network (TCN) (47) to es-
timate the total hip flexion/extension moments of the user, including
both the biological hip moment and the exoskeleton torque, on the
basis of kinematic data from embedded exoskeleton sensors (fig. S3).
In addition, the structure of the TCN leveraged temporal informa-
tion in the input data as a substitute for multijoint sensing, resulting
in accurate hip moment estimates without any user-specific calibra-
tion or other user state information, such as ambulation mode.
Thus, when integrated into the exoskeleton controller via a scale,
delay, and filter at the mid-level layer (fig. S4), the hip moment esti-
mates enabled the exoskeleton controller to autonomously modu-
late assistance across a wide range of ambulatory conditions without
any manual experimenter or user intervention.
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Movie 1. A summary of the results of this study is provided, including rep-
resentative trials demonstrating the online performance of the unified
controller.
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Fig. 1. Unified joint moment control. A photograph of an individual walking with the autonomous, robotic hip exoskeleton is shown. ATCN, trained using time-
synced exoskeleton data and ground-truth labels (depicted left of the photograph), used data from the encoders and IMUs mounted on the exoskeleton to esti-
mate the user's hip moments. When implemented on the device, instantaneous hip moment estimates from the TCN were converted to desired exoskeleton
assistance using a mid-level control layer, which scaled, delayed, and filtered the estimates. Mid-level scaling provided a percentage of the total estimated mo-
ment as assistance, delay increased the positive mechanical work done by the exoskeleton, and filtering smoothed the assistance. By training the hip moment
estimator with data from a variety of conditions, the controller seamlessly adapted assistance across different users, ambulation modes, and ambulation intensi-

ties without the need for user-specific calibration data.
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To validate our approach, we measured user metabolic cost, the
rate of whole-body human energy expenditure needed to move,
during level-ground walking and 5° ramp ascent, because both de-
mand large amounts of work from the hip joint (40, 45). Given the
lightweight design of our exoskeleton and the natural changes in
assistance of the unified controller across participants and across
modes, we hypothesized that walking with the exoskeleton using the
unified controller (Unified Control) would reduce user metabolic
cost during both level-ground and incline walking compared with
wearing the exoskeleton without assistance (Zero Torque) and com-
pared with walking without the exoskeleton (No Exo) (H1). As an
additional benchmark, we also measured user metabolic cost
when walking with exoskeleton assistance from previously opti-
mized splines (20, 21) (Spline Control), representing the state of the
art in mode-specific, “off-the-shelf” exoskeleton control. To further
decompose the energetic effects of our system on the user, we quan-
tified the effect of the unified controller on user lower-limb positive
joint work compared with No Exo. We hypothesized that Unified
Control would enable users to substitute their hip joint work with
that of the exoskeleton (48), reducing their lower-limb positive me-
chanical work compared with No Exo (H2).

In addition, we quantified the accuracy of our deep learning-
based hip moment estimator when integrated into the exoskeleton
controller (deployed online) during level-ground walking, ramp
ascent/descent, and stair ascent/descent under 35 total conditions of
varying walking speeds, ground slopes, and stair heights. Further
simulating real-world conditions, the TCN was also tested during
neutral standing, during transitions between walking and standing,
and during conditions that were not included in the training set. We
tested the TCN online, because closing the loop between estimator
outputs and human-exoskeleton dynamics can lead to error propa-
gation undetected in offline analyses (49). We compared our ap-
proach with a Baseline method designed to emulate bioinspired
exoskeleton controllers from previous studies (7, 26). The Baseline
method predicted the average hip moment profile as a function of
gait phase, computed a priori from the training set, for each ambula-
tion mode and assumed a perfectly accurate ambulation mode and
gait phase oracle (the best-case scenario). Because the TCN should
model changes in hip moments across users, across intensities, and
across strides, we hypothesized that the TCN estimates would have
a lower root mean square error (RMSE) and a higher R* with respect
to the ground-truth hip moments compared with the Baseline
method (H3 and H4, respectively).

Thus, this work presents and validates a unified exoskeleton con-
troller, which leveraged deep learning to accurately map exoskeleton
sensor data to user hip moments. The controller autonomously adapted
assistance with changes in user joint demand across a wide range of
walking speeds, ground slopes, and stair heights without any tuning
or experimenter intervention. Using the unified controller, we mea-
sured significant improvements in user metabolic cost, relative to No
Exo and Zero Torque, and in lower-limb positive joint work, relative
to No Exo (Zero Torque was not collected), during level-ground and
incline walking. We also found that the TCN significantly outper-
formed the Baseline method for estimating user hip moments across
a variety of conditions. Further, we have released the time-synced
time series data of human biomechanics and exoskeleton sensor data
used in this study (34 total participants across the four phases of ex-
perimental data collections) in conjunction with this publication, in-
creasing the accessibility of machine learning-enabled exoskeleton
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technology. With these advancements in exoskeleton control and
with the corresponding dataset released with this study, exoskeleton
technology moves ever closer to being realized in daily life.

RESULTS

Augmenting human metabolic cost during level-ground
walking and ramp ascent

User metabolic cost was measured from 10 participants during
level-ground walking and 5° ramp ascent under four conditions:
Unified Control using a TCN trained from 14 participants of data
(from phases 1 and 2 of the experimental protocol), Spline Control,
No Exo, and Zero Torque (Fig. 2). The TCN training set included
level-ground walking, ramp ascent/descent, stair ascent/descent,
standing, and stand-to-walk and walk-to-stand transitions. During
level-ground walking, Unified Control significantly reduced meta-
bolic cost by 0.12 + 0.13 W/kg (5.4 = 5.6%) compared with No Exo
(P=0.0219) and by 0.32 + 0.07 W/kg (12.7 + 2.8%) compared with
Zero Torque (P = 6 X 10™*), shown in Fig. 2B. Further, during ramp
ascent, Unified Control resulted in significant metabolic cost reduc-
tions of 0.57 + 0.24 W/kg (10.3 + 4.4%) compared with No Exo
(P=4x10"% and of 1.06 + 0.31 W/kg (17.8 + 5.1%) compared
with Zero Torque (P = 3 X 107", shown in Fig. 2E. The unified
controller had no significant difference in metabolic cost during
level-ground walking compared to Spline Control, with a difference
in metabolic cost of less than 0.01 W/kg between the two conditions
(P = 1.0); however, during ramp ascent, the unified controller sig-
nificantly reduced metabolic cost by 0.27 + 0.15 W/kg (5.3 + 2.8%)
compared with Spline Control (P = 0.0025).

Reducing joint-level positive mechanical work of the user

To analyze the effect of our controller at the joint level, lower-limb me-
chanical work was measured across the same 10 participants under
the Unified Control and No Exo conditions. The unified controller
was deployed using the same hip moment estimator that was used
when measuring user metabolic cost. As shown in Fig. 3, the total
positive mechanical work of the user’s lower-limb joints (sum of hip,
knee, and ankle positive work in the sagittal plane) was significantly
lower with Unified Control compared with No Exo during both level-
ground walking [change 0f 0.16 +0.05 J/kg (17.5 +5.7%); P=5X 1079
and ramp ascent [change of 0.16 + 0.08 J/kg (11.7 + 6.2%);
P=2x10""]. At the individual joint level, we found that Unified Con-
trol significantly reduced the positive mechanical work of the hip joint
by 0.12 + 0.04 J/kg (29.2 + 10.9%) during level-ground walking
(P=2x10"% and by 0.15 + 0.08 J/kg (22.8 + 12.2%) during ramp
ascent (P = 8 x 10™°) compared with No Exo (Fig. 3, A and B).

Validating TCN accuracy in the loop

The TCN, when trained from a 24-participant dataset (from phases 1
through 3 of the experimental protocol), was evaluated when imple-
mented in the exoskeleton control loop during 35 conditions, includ-
ing level-ground walking at speeds ranging from 0.6 to 1.9 m/s,
inclines and declines ranging from —15° to 15°, and stairs spanning
the range of ADA (Americans with Disabilities Act)-compliant step
heights of 10.2 to 17.8 cm (4 to 7 inches) (fig. S5). In addition, the
Baseline method served as a comparison with the TCN for hip
moment estimation, which predicted hip moments on the basis of
the ambulation mode-specific, participant-averaged hip moment
profiles from the TCN training set. The Baseline method was
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Fig. 2. Exoskeleton effect on user metabolic cost of walking. (A) User metabolic cost was measured during level-ground walking at 1.25 m/s while the user
wore the exoskeleton with the unified joint moment controller (Unified Control), while the user wore the exoskeleton with a spline-based controller (Spline
Control), while the user did not wear the exoskeleton (No Exo), and while the user wore the exoskeleton as it commanded zero torque (Zero Torque). (B) The
resulting metabolic cost of each condition during level-ground walking is shown, and the percent reduction of each condition relative to Zero Torque is de-
picted with the arrows. (C) The commanded exoskeleton torque averaged across participants is shown for Unified Control and Spline Control during level-
ground walking. (D) User metabolic cost was also measured during 5° ramp ascent at 1.25 m/s. (E) The average metabolic cost resulting from the incline tests is
shown. (F) The average commanded exoskeleton torques during ramp ascent are shown. Gait cycles were segmented by heel strike, and hip extension is posi-
tive. Bars and curves represent means, error bars and shaded regions represent +1 SD about the mean, and asterisks indicate statistical significance (multiple
comparisons, P < 0.05,n =10).

Fig. 3. Exoskeleton effect on user lower-limb joint Level Ground Walking -11.7%* Ramp Ascent
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(A) level-ground walking and (B) 5° ramp ascent is

shown. Joint work was measured while participants
wore the exoskeleton, which provided assistance using
the unified controller (Unified Control), and while par-
ticipants did not wear the exoskeleton (No Exo). Average
power of the exoskeleton and biological hip, knee, and
ankle joints is shown during level-ground walking and
ramp ascent (C to H). Gait cycles were segmented by heel
strike. All results were computed with respect to the sag-
ittal plane. Bars and curves represent means; error bars
and shaded regions represent +1 SD about the mean.
Statistical comparisons of total positive joint work were
computed using paired t tests, and joint-level compari- E
sons were conducted using multiple comparisons post
hoc. Asterisks indicate statistical significance (P < 0.05,
n=10).
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implemented post hoc on the same trials used to evaluate the TCN. The
resulting RMSE and R* of the TCN and Baseline estimates were
computed with respect to the ground-truth hip moments from in-
verse dynamics.

The overall RMSE of the TCN averaged across the five ambula-
tion modes was 0.142 + 0.021 N-m/kg, which was significantly
lower than the Baseline method [change of 0.035 + 0.016 N-m/kg
(19.8 + 9.3%); P=9 X 107°] (Fig. 4), with representative strides of
the TCN estimates shown in Fig. 5. Significant reductions in RMSE
within modes were also found for the level-ground [change of
0.060 + 0.022 N-m/kg (29.1 + 10.5%); P = 0.0012] and ramp descent
conditions [change of 0.051 + 0.035 N-m/kg (27.0 + 18.8%);
P=0.0092]. In addition, the overall R of the TCN was 0.840 + 0.045,
which was significantly higher than that of the Baseline method
[change of 0.035 + 0.034 (4.4 + 4.2%); P = 0.0088] (fig. S6). Further,
when comparing the TCN and Baseline methods within ambulation
modes, the TCN significantly outperformed the Baseline method in
several conditions (Fig. 4C and fig. S6C), often near the extrema
within each mode (P values provided in data file S2).

Five of the participants also completed additional trials of neu-
tral standing, stand-to-walk transitions, and walk-to-stand transi-
tions while the unified controller provided assistance on the basis of
the TCN estimates. We found that the TCN reduced estimation
RMSE during stand-to-walk transitions by 0.081 + 0.031 N-m/kg

(34.9 + 13.5%) and during walk-to-stand transitions by 0.085 +
0.014 N-m/kg (35.3 + 5.7%) compared with the Baseline method
(Fig. 4B), with similar improvements in R? (fig. S6B). Representative
strides during each transition are shown in Fig. 5D. In addition, the
estimator naturally turned off assistance during neutral standing,
with very little difference in RMSE between the estimates from the
TCN and those from the Baseline method, which estimated zero hip
moment (Fig. 4B).

To further investigate the real-world viability of our hip moment
estimator, we also quantified the effects on TCN performance when
each of the 35 ambulatory conditions was included versus excluded
from the training set (details provided in Supplementary Methods).
In general, the TCN generalized well when tested on previously un-
seen conditions (fig. S7), with significant differences between hold-
in and hold-out RMSE in only 3 of the 35 total conditions. In
addition, there were no significant differences in R between hold-in
and hold-out conditions.

DISCUSSION

Deep learning-based hip moment estimates yielded
autonomous exoskeleton assistance

The unified controller presented in this work autonomously adapted
exoskeleton assistance across users, ambulation modes, and ambulation
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Fig. 4. Hip moment estimation RMSE. (A) The average RMSE of the TCN is compared with the RMSE of the Baseline method during level-ground walking (LG), ramp as-
cent (RA), ramp descent (RD), stair ascent (SA), and stair descent (SD) (multiple comparisons, n = 10). The average RMSE across the five ambulation modes (ALL) is also
shown (paired t test, n = 10). (B) The average RMSE of the TCN is shown during neutral standing (STAND), stand-to-walk transitions (S2W), and walk-to-stand transitions
(W2S) relative to the Baseline method (n = 5, no statistical tests performed). (C) The average RMSE of the TCN and Baseline method is shown for each intensity per ambu-
lation mode (multiple comparisons, n = 10 for all comparisons except for LG at 1.9 m/s and RD at —15°, which were n = 9). All TCN results are based on online estimates
used in the control loop. All Baseline results were computed post hoc using the same data. Bars and markers represent means, error bars represent +1 SD about the mean,

and asterisks indicate statistical significance (P < 0.05).
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Fig. 5. Representative time series. Examples of hip moments estimated by the TCN and the corresponding ground truth values are shown. (A) Representative strides
from 7 of the 13 total level-ground walking conditions are shown (average RMSE of the depicted strides is 0.141 N-m/kg). (B) Representative strides from 10 of the 14 total
inclines and declines are shown (average RSME of the depicted strides is 0.138 N-m/kg). (C) Representative strides of stair ascent and descent at each of the tested stair
heights are shown (average RMSE of the depicted strides is 0.137 N-m/kg). (D) A representative time series of a stand-to-walk and walk-to-stand transition is shown (aver-
age RMSE of the depicted strides is 0.128 N-m/kg). The stand-to-walk and walk-to-stand trials were extended from their original segmentation for visual purposes. Within
each ambulation mode, the depicted strides are from the same participant. Gait cycles were segmented by heel strike, and hip extension is positive.

intensities without any user-specific calibration data or sensing ex-
ternal to the device. Not only did the deep learning model accurately
adapt assistance across all 35 evaluated conditions, but the resulting
assistance also provided significant metabolic and joint-level ener-
getic benefits to the user in both ambulation modes evaluated. Spe-
cifically, our approach significantly reduced user metabolic cost
during both level-ground walking and 5° ramp ascent relative to No
Exo and Zero Torque (Fig. 2), confirming hypothesis H1. Although
the magnitude of metabolic cost reductions of our controller was
similar to those of previous autonomous exoskeleton studies (3),
modulating assistance across ambulation modes without any experi-
menter or user intervention overcomes an important barrier when
considering exoskeleton technology for real-world deployment. In
addition, further iterations of the exoskeleton hardware or optimiza-
tions to the mid-level controller could further improve these results
compared with No Exo.

Molinaro et al., Sci. Robot. 9, eadi8852 (2024) 20 March 2024

Unified control outperformed mode-dependent,
off-the-shelf spline control

Previous human-in-the-loop optimization studies have found that
the optimized shape of spline-based hip exoskeleton assistance is rel-
atively consistent across users (20, 21). As such, averaging previously
optimized torque assistance splines from multiple participants (Spline
Control in this study) is an effective exoskeleton control strategy for
reducing human effort without additional time-intensive optimiza-
tion (50). Matching metabolic cost reductions compared with Spline
Control during level-ground walking demonstrates that the unified
controller was as effective as the state of the art for user-independent,
mode-specific control but did not require any previous optimization,
mode switching, or additional state estimation. During ramp ascent,
the unified controller significantly reduced user metabolic cost rela-
tive to Spline Control, which was likely a result of the additional 19%
of positive mechanical work done by the unified controller compared
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with Spline Control, despite scaling the two to have near-equivalent
peak torque magnitudes (Fig. 2, C and F). This result was unexpected
because we expected Spline Control to be a near-optimal controller
(20, 21); however, several considerations may explain this result.
First, the splines used in this study were optimized on a different de-
vice, with differing torque capabilities and actuator dynamics (51); it
is possible that human-in-the-loop optimization must be repeated
with each new device to maintain energetic benefits. Further, the op-
timized controller gains from human-in-the-loop optimization may
not represent the global optimum, despite often requiring tens of
minutes or even hours of walking to converge (8, 20-22). Last, the
unified controller introduced in this study instantaneously adjusted
assistance across participants and across strides, potentially yielding
additional benefits compared with the static profiles of Spline Con-
trol. Nevertheless, the result of our metabolic tests confirmed that
our unified controller both autonomously modulated exoskeleton
assistance across modes and generated exoskeleton assistance as
beneficial as or better than the previous state of the art in user-
independent, off-the-shelf control, a major step toward real-world
human augmentation.

Users reduced their joint work to accept
exoskeleton assistance
In agreement with our metabolic cost findings and hypothesis H2, the
unified controller also significantly reduced the total lower-limb posi-
tive mechanical joint work of the user during both level-ground walk-
ing and ramp ascent (Fig. 3). We found larger relative reductions in
metabolic cost between Unified Control and No Exo during ramp as-
cent but larger relative reductions in positive lower-limb joint work in
level-ground walking. This suggests that the additional benefits in met-
abolic cost during ramp ascent may come from improved muscle-level
efficiencies or reduced cocontraction when wearing the device, hinting
that future generations of exoskeleton controllers may benefit even
more by accounting for the user’s underlying muscle dynamics (52).
As expected, the benefits of the unified controller on user lower-
limb positive joint work were localized at the hip joint (Fig. 3),
with relative reductions of 29.2 and 22.8% relative to No Exo during
level-ground walking and ramp ascent, respectively. By delaying the
exoskeleton assistance relative to the instantaneous hip moment esti-
mate in the mid-level control layer (Fig. 1 and fig. S4), the unified joint
moment controller provided peak assistance torque during the peri-
ods of the stride with high hip velocities, increasing the total amount
of positive mechanical work provided by the exoskeleton. Thus, the
unified controller was able to reduce the positive work at the hip joint
by more than 20% despite only scaling the assistance torque to 20% of
the total estimated hip moment. This result demonstrates the ener-
getic benefits gained by simply delaying hip exoskeleton assistance
relative to the biological joint moment during walking.

Deep learning enabled accurate hip moment estimation

in the loop

Overall, the TCN accurately estimated user hip moments across the
35 ambulatory conditions when deployed online (Fig. 4 and fig. S6).
Confirming hypotheses H3 and H4, the TCN significantly outper-
formed the Baseline method in RMSE and R% even though the
Baseline method in this study assumed a perfectly accurate ambula-
tion mode classifier and gait phase estimator. In practice, mode clas-
sifiers and gait phase estimators also incur error (13-17, 26-28),
further increasing the differences between the TCN and Baseline
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method. Nevertheless, this indicates that the TCN not only captured
changes in hip moments as ambulation mode and gait phase varied
but also modeled changes in hip moments across participants,
across intensities, and/or across strides.

Although multiple studies have investigated wearable sensor-based
hip moment estimation offline (30, 33-36, 42), this study provides a
rigorous validation with respect to ground-truth inverse dynamics
when deployed online. Online validation is critical because closing the
loop between model estimates and user biomechanics can greatly re-
duce model performance. For instance, incorrect ambulation mode
estimates can lead to controller instability and further propagate error
(49). We found that when deployed online, our deep learning-based
hip moment estimator obtained similar or even better performance
compared with previous offline analyses (34-36, 42). For instance,
Forner-Cordero et al. (42) analyzed the effects of replacing force plate
measurements with pressure insole estimates when computing inverse
dynamics, resulting in a hip moment estimation RMSE of 0.15 N-m/kg
and correlation coefficient of 0.92 (approximate R* of 0.85) during
level-ground walking. For comparison, the TCN in this study resulted
in an estimation RMSE of 0.147 + 0.040 N-m/kg and R* of 0.879 + 0.045
during level-ground walking across all speeds without the need for any
external sensors or data, demonstrating the benefits of our data-driven
approach. Further, in our previous work, we used data from a hip go-
niometer and simulated trunk and thigh inertial measurement units
(IMUs) to train a TCN for estimating hip moments across level-ground
walking, ramp ascent/descent, and stair ascent/descent (34). This pre-
vious study resulted in an average RMSE of 0.131 N-m/kg and R* of
0.88, which was state of the art for offline, participant-independent hu-
man hip moment estimation based on wearable sensors. As shown in
Fig. 4 and fig. S6, the hip moment estimator in this study maintained
similar performance (average online RMSE of 0.142 + 0.021 N-m/kg
and R* of 0.840 + 0.045) despite additional sensor noise from exoskel-
eton actuation and closed-loop dynamics between hip moment esti-
mates, exoskeleton assistance, and the resulting kinematics of the user.
Thus, using a single regression model for high-level state estimation
mitigated error propagation from estimator-controller dynamics, in-
creasing overall controller reliability.

The unified controller extended to transient and previously
unseen conditions

Transitions between standing and walking are extremely common
in community ambulation (53) but typically are not accommodated
by conventional exoskeleton controllers given the challenge of
parameterizing mode transitions. By naturally varying assistance
based on the estimated joint moments, the unified joint moment con-
troller seamlessly adjusted exoskeleton assistance through mode tran-
sitions, without the need for any additional modifications to the
controller (see Fig. 4B and fig. S6B with representative strides in
Fig. 5D).This result also aligns with our previous work, which quanti-
fied TCN hip moment estimation performance during ambulation
mode transitions (34), suggesting that the TCN estimates remain vi-
able even during transient ambulation.

Further, the model generalized well when tested on conditions
absent from the training set (fig. S7). Model RMSE comparing hold-
in versus hold-out conditions was only affected at the extrema of the
dataset, meaning that the model interpolated between conditions in
the training set well but began to lose performance during extrapo-
lation. We did not find any significant differences in R” between
holding in and holding out each condition. This suggests that the
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TCN maintained the correct “shape” of the hip moments but likely
began to improperly scale the magnitudes when extrapolating to
high intensities. Nevertheless, this result promotes the need for di-
verse datasets consisting of large variations in condition and inten-
sity to assist model generalization, which is a key consideration for
deploying these systems in the wild.

Human-exoskeleton dataset of multimodal ambulation

To reduce the barrier to entry of machine learning-enabled exoskel-
eton research, we have released the complete set of exoskeleton and
human biomechanical time series data associated with this study. The
dataset was collected with 34 total participants, which was large
enough to demonstrate diminishing returns in model accuracy im-
provements with respect to increasing training set size (fig. S8). Fur-
ther, this dataset could also be used to develop algorithms that
eliminate the need for device-specific data when developing data-
driven exoskeleton controllers, perhaps by building from our data
transformation approach outlined in Supplementary Methods, which
would greatly improve the accessibility of this technology.

Limitations

This study had multiple limitations. We added a second onboard
processor (the machine learning coprocessor) to run the TCN on-
line, which added mass (5% of total), additional power require-
ments, and software complexity to the system. In addition, the TCN
used a substantial amount of device-specific (although not user-
specific) training data. Training the TCN from data collected on a
different hip exoskeleton did yield a feasible model for initial con-
troller development (see Supplementary Methods); however, a de-
tailed analysis of transferring data across multiple devices was
outside the scope of this study. Another limitation of this study was
that the metabolic cost and joint work analyses were conducted us-
ing a different model (trained from 14 participants of data) com-
pared with the analysis of online model performance (trained from
24 participants of data). It is possible that further metabolic cost and
joint work experiments could yield even better results using the up-
dated hip moment estimator, meaning that our results likely repre-
sent a lower bound of what is achievable with the unified controller.
In addition, although our unified control framework may generalize
to other human degrees of freedom, this study only investigated
hip flexion/extension moment estimation and assistance. Last, the
accuracy and corresponding user outcomes of the unified controller
were only evaluated on able-body participants. Although exoskel-
eton technology could greatly benefit able-body individuals in many
real-world applications, translating this technology to individuals
with mobility impairments could also lead to substantial benefits.

Conclusion

In general, this work presents a model-free framework that unifies
exoskeleton control across a variety of ambulatory conditions. Where
previously proposed unified controllers have used anatomical mod-
els calibrated with relatively small amounts of data (29-31, 37-39),
we leveraged deep learning with a large amount of labeled training
data. The result was a unified controller that effectively augmented
user energetics and could adapt to a very broad range of ambulation
modes and intensities. This presents a major advancement in the ef-
fort of human augmentation with applicability to a broad range of
researchers, technologists, and future end users of exoskeleton tech-
nology, many of whom may be one and the same. We expect that this
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technology will enable researchers to ask new questions about hu-
man mobility and augmentation that take place off the treadmill and
in more realistic settings. For technologists interested in large-scale
health monitoring, for instance, our joint moment estimator could
also be used as a wearable sensor-based solution to monitor joint
kinetics during daily life. Last, for the end user, we hope that this
technology will spur safer and more efficient efforts, including those
in factories and warehouses, high-endurance missions like search
and rescue, and in athletics and exercise at the professional or recre-
ational level.

MATERIALS AND METHODS

Participants and experimental protocol

This study consisted of four phases, involving the enrollment of 25
able-bodied participants and the use of a nine-participant preexist-
ing dataset from our previous work (35). All participant informa-
tion relevant to this study is provided in table S1, and each participant
provided written informed consent according to the protocols ap-
proved by the Georgia Institute of Technology Institutional Review
Board. To ensure that the hip moment estimator was consistently
evaluated on a user-independent basis, meaning trained without
user-specific data, each participant only participated in one of the
four phases of the study protocol. During each phase, motion cap-
ture and ground reaction force (GRF) data were collected (fig. S5),
time-synced with the exoskeleton sensor data, and used to compute
ground-truth joint moments from OpenSim inverse dynamics (54,
55). A summary of the experimental methods is provided below
with a detailed description provided in Supplementary Methods.

The first phase of this study consisted of transforming a nine-
participant, preexisting dataset collected using a different hip exo-
skeleton to be used as TCN training data compatible with our device
(35). Specifically, the dataset was collected with the same exoskele-
ton sensor modalities as those of our custom hip exoskeleton but
had different IMU placements. When collecting the dataset, each
participant walked over level ground, along four inclines and de-
clines with ground slopes ranging from 7.8° to 12.4°, and up and
down a staircase at four different stair heights ranging from 10.2 to
17.8 cm. The dataset consisted of exoskeleton sensor data and cor-
responding ground-truth joint moments. To transform the dataset
for use in this study, IMU transforms were computed empirically
from a single-participant experiment, which adjusted the positions
and orientations of the recorded IMU data to match those of our
custom hip exoskeleton. All other protocols and analyses were con-
ducted using our custom hip exoskeleton (fig. S1).

The second phase of this study consisted of collecting device-
specific labeled data using our custom hip exoskeleton from five
participants. During phase 2, the hip exoskeleton provided assis-
tance using the unified controller, in which the hip moment estima-
tor was trained from the phase 1 dataset. Each participant completed
the same trials conducted in phase 1, along with additional stand-
ing, stand-to-walk, and walk-to-stand trials.

The third phase of this study was conducted with 10 participants
to evaluate the effects of the unified controller on user metabolic
cost and lower-limb positive mechanical joint work. The hip mo-
ment estimator used throughout phase 3 was trained on the phase 1
and 2 datasets. The phase 3 protocol was subdivided into two ses-
sions. Session 1 served as a training session for walking with the
exoskeleton, provided an additional dataset for model training and
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evaluation, and served as the session for analyzing user lower-limb
mechanical joint work during level-ground walking and 5° ramp as-
cent with the unified controller (Unified Control) and without wear-
ing the exoskeleton (No Exo). While motion capture and GRF data
were recorded, participants walked on a level treadmill at nine
speeds ranging from 0.75 to 1.75 m/s, on an inclined/declined tread-
mill at 10 slopes ranging from —15° to 15°, and up and down a stair-
case at four stair heights ranging from 10.2 to 17.8 cm using the
unified controller. Participants also completed No Exo trials of level
walking and 5° ramp ascent at 1.25 m/s, which were used in the joint
work analysis.

During session 2 of phase 3, metabolic data were measured dur-
ing level-ground walking and 5° ramp ascent, both at 1.25 m/s after
completing 16 min of habituation. Participants completed the meta-
bolic trials under four conditions using a within-participant coun-
terbalanced design: Unified Control; Spline Control, which provided
assistance based on previously optimized level ground and 5° ramp
ascent assistance trajectories (20, 21); No Exo; and Zero Torque,
which consisted of wearing the exoskeleton while it commanded
Zero torque.

When evaluating the effects of the training set size on TCN per-
formance, the model continued to improve when adding the phase
3 data (details in Supplementary Methods). Thus, we conducted
phase 4 of the experimental protocol, in which 10 additional par-
ticipants used the unified controller while motion capture and GRF
data were collected. During phase 4, the TCN was trained using the
data from phases 1, 2, and 3. Participants walked on a level treadmill
(13 walking speeds ranging from 0.6 to 1.9 m/s), on an inclined/
declined treadmill (14 ground slopes ranging from —15° to 15°),
and up and down a staircase (four stair heights ranging from 10.2 to
17.8 cm). To test the hip moment estimator on previously unseen
conditions, four level-ground walking speeds and two inclines/
declines in this study phase were not collected in any of the previous
phases used for training the model. In addition, two of the stair as-
cent/descent trials were repeated in which each corresponding stair
height was withheld from the hip moment estimator training set.
Five of the 10 participants also completed trials of neutral standing,
stand-to-walk transitions, and walk-to-stand transitions.

Robotic hip exoskeleton

This study used a custom-designed exoskeleton that provided sagit-
tal plane hip torque assistance of up to 18 N-m [~30% of peak bio-
logical hip moments during walking (40)], shown in fig. S1. The
system was fully autonomous, meaning that all components were
self-contained. The exoskeleton measured angular position from
actuator-mounted encoders in addition to linear acceleration and
angular velocity from three IMUs mounted on the exoskeleton
backplate and left and right thigh struts. Encoder velocity was also
computed online using backward finite differencing and was low-
pass filtered with a 10-Hz cutoff frequency. A graphics processing
unit-enabled secondary processor mounted onboard the device was
used for online TCN deployment. The total exoskeleton mass was
4.8 kg, including electronics and batteries. Additional information is
provided in Supplementary Methods and in figs. S1 and S2.

Hip moment estimation using a TCN

We used a TCN (47) to estimate the exoskeleton user’s hip flexion/
extension moments on the basis of measurements from the onboard
exoskeleton sensors (fig. S3). TCNs use dilated causal one-dimensional
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convolution to efficiently map patterns in the input sequence data to
the target output (fig. S3C), replacing the need for hand-engineered
feature extraction methods (33, 56). In addition, the fixed input se-
quence length of TCNs has been shown to retain information over
longer periods of time than recurrent networks (47), suggesting that
they can better leverage time history information on larger timescales
compared with alternative neural network architectures. As such,
TCNs have been successful in many sequence modeling tasks (34, 47,
57), including achieving state-of-the-art offline performance in hu-
man hip moment estimation compared with alternative deep learning
models, which we demonstrated in our previous work (34, 35).

The TCN used for hip moment estimation in this study was im-
plemented as described by Bai ef al. (47) using the hyperparameters
optimized in our previous work (34). The input sequence of the
TCN consisted of the ipsilateral actuator encoder position and ve-
locity, six-axis ipsilateral thigh-mounted IMU data, and six-axis
pelvis-mounted IMU data. Sensor data from the contralateral limb
were not included as input to the model because the majority of the
training and testing conditions included symmetric movements,
which could cause the model to overfit to this type of behavior. On
the basis of the selected hyperparameters of the model, the input
sequence to the TCN was composed of a R R'87*! sequence
consisting of the latest 930 ms of exoskeleton sensor data. Given an
input sequence, the model estimated the instantaneous flexion/
extension moment of the user’s left or right hip, scaled by the par-
ticipant’s body mass. Ground-truth hip moments from our biome-
chanical model, which were used as the labels during model training,
were the sum of both the biological hip moment and the exoskeleton
torque (the total hip flexion/extension moment at the joint). This
means that the TCN was trained to estimate the total hip moment,
which helped to preserve the mapping between the kinematic input
data and resulting joint moments across variations in exoskeleton
assistance. Additional information about the TCN hyperparame-
ters, implementation, and training is provided in Supplementary
Methods.

Exoskeleton mid-level control

Because hip exoskeleton assistance that solely mimics the user’s bio-
logical hip moments is likely suboptimal for augmenting human
energetics (20, 21, 58), we designed a three-step mid-level control
layer to convert hip moment estimates into exoskeleton assistance
(fig. S4). First, the incoming hip moment estimates were scaled by
20% of their total magnitude. This assistance magnitude has previ-
ously been shown to benefit the user (59) and resulted in peak
torque assistance close to the maximum assistance the exoskeleton
could provide. The estimated hip moments were then delayed using
a first-in-first-out buffer before being used to command the exoskel-
eton (see details below). Last, the delayed torque values were low-
pass filtered using a second-order Butterworth filter with a 10-Hz
cutoff frequency to smooth the commanded torque, imparting an
additional 25 ms of delay to the signal.

Delaying peak hip assistance timing relative to the biological hip
moment can provide additional metabolic benefits to the user (20,
58). As Ding et al. (58) explained, delayed hip assistance increases
the amount of positive mechanical work done by the exoskeleton
because the peak assistance of a delayed controller better aligns with
peak hip velocities during the stride. Using the data available from
Camargo et al. (40), we found that delaying exoskeleton assistance
by 125 ms relative to the biological hip moment could theoretically

90f12

$202 ‘6T Ae]N U0 A30[0uyod [, JO musu] BISI090) e 510°00UsI0s MmMm//:sd)Y WoIj papeo[umo



SCIENCE ROBOTICS | RESEARCH ARTICLE

increase the positive mechanical work done by the exoskeleton dur-
ing level walking by 70% (fig. S4A). In support of this delayed as-
sistance strategy, we found that delaying exoskeleton assistance
between 100 and 150 ms was preferred by several novice and expert
users during pilot testing compared with smaller delay magnitudes;
however, in an N = 3 pilot study (detailed in Supplementary Meth-
ods), user metabolic cost was not sensitive to delay magnitudes
ranging from 75 to 175 ms (fig. S4B). Specifically, the mid-level con-
trol delays that we tested only affected user metabolic cost by a max-
imum of 2.9% across level-ground walking and 5° ramp ascent.
Testing even smaller delays may result in larger metabolic penalties,
especially given that the 75-ms condition was the worst metaboli-
cally; however, these small delays were omitted from the pilot study
because they were uncomfortable to the user. In addition, delays
below 35 ms could not be tested because of controller limitations
from filter delay and worst-case model inference latency. For the
remainder of this study, a programmed delay of 100 ms (total delay
of 125 ms including the low-pass filter) was used to minimize over-
all delay and to align with user preference.

Analyzing online hip moment estimation accuracy

The estimated hip moments recorded onboard the exoskeleton dur-
ing phase 4 of the experimental protocol were aligned in time with
the ground-truth hip moments post hoc to evaluate the accuracy of
the TCN when integrated into the unified controller. Two common
performance metrics were used to analyze the estimator accuracy
(30, 31, 34, 42): the interparticipant average RSME and the interpar-
ticipant average of the square of the Pearson correlation coefficient
(R%). Average RMSE provided an absolute metric of error and is eas-
ily compared to previous studies that have investigated wearable
sensor-based joint moment estimators. Average R> provided a non-
dimensional metric to analyze the goodness of fit of the TCN, mean-
ing the amount of variance in the ground-truth hip moments
explained by the TCN estimates via a fitted line. When considering
joint moment estimation for exoskeleton control, R* also provided a
metric for analyzing the ability of the model to correctly estimate
the shape of the hip moment signal, ignoring error induced from
incorrect scaling or bias. In general, this provided a useful metric to
evaluate the utility of the hip moment estimator given that scale and
bias of the signal could be modified on the fly by the mid-level exo-
skeleton control layer as needed.

Results reported per intensity, as in per walking speed, ground
slope, and stair height, were individually computed per condition
and then averaged across participants. Results reported per ambula-
tion mode were computed by taking the average of the results com-
puted per intensity within the respective mode, for instance, the
average of the RMSE values computed per level-ground walking
speed then averaged across participants. Overall results were com-
puted similarly by averaging the results computed per ambulation
mode, then averaging across participants.

The accuracy of the TCN was benchmarked against a Baseline
method designed to emulate conventional exoskeleton controllers
that use predefined ambulation mode-specific curves to compute
assistance on the basis of gait phase estimates (7, 26, 43). Specifically,
the Baseline method was implemented post hoc and estimated the
user’s hip moments on the basis of a precomputed hip moment curve
for each ambulation mode. The hip moment curve for each ambula-
tion mode (level-ground walking, ramp ascent, ramp descent, stair
ascent, and stair descent) was computed as the interparticipant
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average hip moment over the stride from the ground-truth hip mo-
ments in the same dataset used to train the TCN in phase 4 (the hip
moment data from phases 1, 2, and 3 of the study protocol). During
stand-to-walk and walk-to-stand transitions, the Baseline method
used the level-ground walking profile. In addition, the Baseline
method simply predicted zero hip moment for the standing trials. In
all cases, the Baseline method was given access to a perfectly accu-
rate ambulation mode classifier and gait phase estimator that has
error in practice (9, 13-16, 26, 27), meaning that our benchmark
represented the best-case (yet unrealistic) scenario for estimating
hip moments from mode-specific curves. In this case, outperform-
ing the Baseline method meant that the participant-independent
TCN captured interparticipant, intercondition, and/or interstride
variability that the Baseline method could not represent.

Statistical analyses

All statistical tests were conducted using Minitab v19 with an o level
of significance of 0.05. Further, all statistical tests were computed
using repeated-measures (within-participant) methods. When com-
paring differences among multiple factors and/or multiple within-
factor conditions, a post hoc multiple comparisons test was used to
identify significant pairwise differences in the case that significant
effects were found from an analysis of variance (ANOVA). All
post hoc multiple comparisons were conducted using a Bonfer-
roni correction to control the family-wise error rate. The Bonferroni
correction can greatly reduce the statistical power of each pairwise
comparison when many pairwise matches exist. In addition, many
of the possible pairwise comparisons within each analysis were ir-
relevant to our hypotheses. Thus, we only evaluated a subset of the
possible pairwise comparisons, which were selected a priori (be-
fore looking at the results) to limit the amount that each P value
needed to be adjusted. Because Minitab did not support this
planned comparison approach, we ran a full multiple comparisons
test after each ANOVA that yielded statistical significance and ad-
justed the P values to account for the reduced number of compari-
sons being evaluated. Metabolic cost comparisons across the four
tested exoskeleton assistance conditions (Unified Control, Spline
Control, No Exo, and Zero Torque) were analyzed for a main effect
using a one-way ANOVA followed by a multiple comparisons test.
Differences in positive joint work between the exoskeleton condi-
tions (Unified Control and No Exo) across the lower-limb joints
(hip, knee, and ankle) were evaluated using a two-way ANOVA for
level ground and ramp ascent. Pairwise comparisons were only
conducted for testing significant differences between Unified Con-
trol and No Exo within each joint. In addition, the total positive
lower-limb joint work resulting from Unified Control and No Exo
were compared separately from the other joints using a paired t test
for each ambulation mode.

The same statistical tests were run for analyzing both the RMSE
and the R? of the hip moment estimates from the TCN and Baseline
method. The overall average results of the TCN across the level-
ground, ramp ascent, ramp descent, stair ascent, and stair descent
conditions were compared with those of the Baseline method using
a paired f test. For comparisons at the ambulation mode level, a two-
way ANOVA was used to test for significant main and interaction
effects across ambulation modes and between estimators (the TCN
and Baseline method). A post hoc multiple comparisons test was
also used to test for pairwise differences between the two estimators
during each ambulation mode. Within each ambulation mode, a
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two-way ANOVA was used to test for significant main and interac-
tion effects across ambulation mode intensity and between estima-
tors. In addition, a post hoc multiple comparisons test was used to
test for significant differences between the TCN and Baseline meth-
od within each intensity.
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