
Molinaro et al., Sci. Robot. 9, eadi8852 (2024)     20 March 2024

S C I E N C E  R O B O T I C S |  R E S E A R C H  A R T I C L E

1 of 12

E X O S K E L E T O N

Estimating human joint moments unifies exoskeleton 
control, reducing user effort
Dean D. Molinaro1,2*, Inseung Kang3, Aaron J. Young1,2

Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-
speci�c considerations, limiting their real-world viability. Here, we present a uni�ed exoskeleton control frame-
work that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a 
temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root 
mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-
speci�c calibration. Further, the uni�ed controller signi�cantly reduced user metabolic cost and lower-limb posi-
tive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This 
advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making 
exoskeleton control technology viable for a broad community.

INTRODUCTION
Realizing lower-limb exoskeleton technology in the real world would 
enable human mobility to reach new feats, making heavy boxes feel 
lighter in the warehouse (1), increasing the success rate of search and 
rescue operations (2), or even enabling new innovations in athletic 
training and exercise. To date, lower-limb exoskeletons have had sub-
stantial success in improving human mobility, including augmenting 
human energetics by o�oading or adding to the mechanical work 
done by the underlying human musculature (3–9). Although the tan-
gible bene�ts and potential societal e�ects of these devices continue 
to be found, we fail to see this technology deployed in the real world. 
So, the question remains, what is preventing exoskeleton technology 
from being realized “in the wild”?

One critical challenge lies within the exoskeleton controller (3, 4, 
10, 11). Generally, exoskeleton controllers are divided into three lay-
ers: high-level, mid-level, and low-level (12). �e high-level layer 
estimates user and environmental states, such as ambulation mode 
(9, 13–17) or ground slope (18, 19), used to modulate assistance 
with changes in user joint demands. �e state estimates are passed 
to the mid-level layer, which computes desired assistance on the ba-
sis of prede�ned control laws, such as spline-based assistance trajec-
tories (8, 20, 21). �e low-level layer then converts the desired 
exoskeleton assistance into actuator commands, o�en using motor-
level state feedback control. Although human-in-the-loop optimiza-
tion (8, 20–22) and on-the-�y metabolic cost estimation (23, 24) can 
optimize and personalize assistance, these methods require reopti-
mizing controller gains for each high-level state, an inherently time-
intensive process. Further, these advances in mid-level control are 
dependent on accurate high-level state estimates. Although physics-
driven (9, 17, 25) and data-driven (13–16, 18, 19, 26–28) models can 
estimate one or more high-level states, de�ning, estimating, and 
subsequently optimizing high-level and mid-level controllers for all 
of the possible states needed to parameterize human movement in-
the-wild is intractable.

Instead, instantaneous estimates of the user’s underlying joint 
moments could replace conventional high-level states (29–39). Be-
cause lower-limb joint moments naturally vary across ambulation 
modes and conditions (40), lower-limb joint moments could serve 
as a single, continuous high-level state for modulating exoskeleton 
assistance. However, human joint moments cannot be directly 
measured but are instead computed post hoc using high-�delity 
motion capture and six-axis force plate measurements from sta-
tionary in-lab equipment (41). Replacing these in-lab systems with 
current wearable sensor technology results in incomplete informa-
tion, such as missing ground shear forces (42), and requires poten-
tially cumbersome kinematic sensing of the distal joints along the 
limb. �ese limitations hinder the viability of analytical inverse 
dynamics solutions from wearable sensors alone, especially for 
more proximal joints.

Recent advances in data-driven approaches have improved the 
mapping between wearable sensor data and user joint moments, 
even with little to no user-speci�c data (29–31, 34–39). Using these 
methods, researchers have conducted initial experiments using in-
stantaneous joint moment estimates in the exoskeleton control loop 
(29–31, 37–39). For instance, Gasparri et al. (31) introduced an an-
kle exoskeleton controller based on a quadratic �t between foot 
force sensor data and user ankle moments during level walking. �is 
work was extended to incline/decline walking, stair ascent/descent, 
and even mixed terrain with notable outcomes across able-body and 
clinical populations (37–39). Although promising, it remains un-
clear how this approach would extend to joints beyond the ankle or 
generalize to additional tasks where the mapping between foot force 
sensor measurements and joint moments is more complex. Alterna-
tively, energy-shaping methods have been developed for assisting 
the hip, knee, and ankle during multiple ambulation modes and 
during sit-stand cycles (29, 30). �ese approaches have demonstrat-
ed impressive o�ine estimation results and potential bene�ts in 
lower-limb muscle activation; however, substantial user bene�ts and 
online estimation accuracy relative to ground-truth inverse dynam-
ics have not yet been demonstrated. As such, the development of a 
uni�ed exoskeleton controller capable of autonomously assisting the 
user across a wide variety of ambulation modes and intensities has 
remained an open topic of research—maintaining the divide be-
tween in-lab exoskeleton technology and real-world bene�ts.
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In this study, we present an end-to-end framework for control-
ling a lower-limb robotic exoskeleton based on instantaneous esti-
mates of the user’s joint moments using deep learning, deemed 
uni�ed joint moment control (Movie 1 and Fig. 1). We validated the 
uni�ed controller using our autonomous hip exoskeleton (�gs. S1 
and S2) because hip-centric assistance has substantially improved 
human energetics during several ambulation modes in previous 
studies (3, 7, 9, 43, 44), likely by o�oading the large positive power 
requirements of the hip joint (45) while minimizing any metabolic 
penalties caused by distal-borne mass (46). Computing hip mo-
ments from inverse dynamics requires distal joint kinematics (41), 
suggesting the need for complex, cumbersome sensor suites. In-
stead, we used a temporal convolutional network (TCN) (47) to es-
timate the total hip �exion/extension moments of the user, including 
both the biological hip moment and the exoskeleton torque, on the 
basis of kinematic data from embedded exoskeleton sensors (�g. S3). 
In addition, the structure of the TCN leveraged temporal informa-
tion in the input data as a substitute for multijoint sensing, resulting 
in accurate hip moment estimates without any user-speci�c calibra-
tion or other user state information, such as ambulation mode. 
�us, when integrated into the exoskeleton controller via a scale, 
delay, and �lter at the mid-level layer (�g. S4), the hip moment esti-
mates enabled the exoskeleton controller to autonomously modu-
late assistance across a wide range of ambulatory conditions without 
any manual experimenter or user intervention.

Movie 1. A summary of the results of this study is provided, including rep-
resentative trials demonstrating the online performance of the unified 
controller.
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Fig. 1. Unified joint moment control. A photograph of an individual walking with the autonomous, robotic hip exoskeleton is shown. A TCN, trained using time-
synced exoskeleton data and ground-truth labels (depicted left of the photograph), used data from the encoders and IMUs mounted on the exoskeleton to esti-
mate the user's hip moments. When implemented on the device, instantaneous hip moment estimates from the TCN were converted to desired exoskeleton 
assistance using a mid-level control layer, which scaled, delayed, and filtered the estimates. Mid-level scaling provided a percentage of the total estimated mo-
ment as assistance, delay increased the positive mechanical work done by the exoskeleton, and filtering smoothed the assistance. By training the hip moment 
estimator with data from a variety of conditions, the controller seamlessly adapted assistance across different users, ambulation modes, and ambulation intensi-
ties without the need for user-specific calibration data.
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To validate our approach, we measured user metabolic cost, the 
rate of whole-body human energy expenditure needed to move, 
during level-ground walking and 5° ramp ascent, because both de-
mand large amounts of work from the hip joint (40, 45). Given the 
lightweight design of our exoskeleton and the natural changes in 
assistance of the uni�ed controller across participants and across 
modes, we hypothesized that walking with the exoskeleton using the 
uni�ed controller (Uni�ed Control) would reduce user metabolic 
cost during both level-ground and incline walking compared with 
wearing the exoskeleton without assistance (Zero Torque) and com-
pared with walking without the exoskeleton (No Exo) (H1). As an 
additional benchmark, we also measured user metabolic cost 
when walking with exoskeleton assistance from previously opti-
mized splines (20, 21) (Spline Control), representing the state of the 
art in mode-speci�c, “o�-the-shelf ” exoskeleton control. To further 
decompose the energetic e�ects of our system on the user, we quan-
ti�ed the e�ect of the uni�ed controller on user lower-limb positive 
joint work compared with No Exo. We hypothesized that Uni�ed 
Control would enable users to substitute their hip joint work with 
that of the exoskeleton (48), reducing their lower-limb positive me-
chanical work compared with No Exo (H2).

In addition, we quanti�ed the accuracy of our deep learning–
based hip moment estimator when integrated into the exoskeleton 
controller (deployed online) during level-ground walking, ramp 
ascent/descent, and stair ascent/descent under 35 total conditions of 
varying walking speeds, ground slopes, and stair heights. Further 
simulating real-world conditions, the TCN was also tested during 
neutral standing, during transitions between walking and standing, 
and during conditions that were not included in the training set. We 
tested the TCN online, because closing the loop between estimator 
outputs and human-exoskeleton dynamics can lead to error propa-
gation undetected in o�ine analyses (49). We compared our ap-
proach with a Baseline method designed to emulate bioinspired 
exoskeleton controllers from previous studies (7, 26). �e Baseline 
method predicted the average hip moment pro�le as a function of 
gait phase, computed a priori from the training set, for each ambula-
tion mode and assumed a perfectly accurate ambulation mode and 
gait phase oracle (the best-case scenario). Because the TCN should 
model changes in hip moments across users, across intensities, and 
across strides, we hypothesized that the TCN estimates would have 
a lower root mean square error (RMSE) and a higher R2 with respect 
to the ground-truth hip moments compared with the Baseline 
method (H3 and H4, respectively).

�us, this work presents and validates a uni�ed exoskeleton con-
troller, which leveraged deep learning to accurately map exoskeleton 
sensor data to user hip moments. �e controller autonomously adapted 
assistance with changes in user joint demand across a wide range of 
walking speeds, ground slopes, and stair heights without any tuning 
or experimenter intervention. Using the uni�ed controller, we mea-
sured signi�cant improvements in user metabolic cost, relative to No 
Exo and Zero Torque, and in lower-limb positive joint work, relative 
to No Exo (Zero Torque was not collected), during level-ground and 
incline walking. We also found that the TCN signi�cantly outper-
formed the Baseline method for estimating user hip moments across 
a variety of conditions. Further, we have released the time-synced 
time series data of human biomechanics and exoskeleton sensor data 
used in this study (34 total participants across the four phases of ex-
perimental data collections) in conjunction with this publication, in-
creasing the accessibility of machine learning–enabled exoskeleton 

technology. With these advancements in exoskeleton control and 
with the corresponding dataset released with this study, exoskeleton 
technology moves ever closer to being realized in daily life.

RESULTS
Augmenting human metabolic cost during level-ground 
walking and ramp ascent
User metabolic cost was measured from 10 participants during 
level-ground walking and 5° ramp ascent under four conditions: 
Uni�ed Control using a TCN trained from 14 participants of data 
(from phases 1 and 2 of the experimental protocol), Spline Control, 
No Exo, and Zero Torque (Fig. 2). �e TCN training set included 
level-ground walking, ramp ascent/descent, stair ascent/descent, 
standing, and stand-to-walk and walk-to-stand transitions. During 
level-ground walking, Uni�ed Control signi�cantly reduced meta-
bolic cost by 0.12 ± 0.13 W/kg (5.4 ± 5.6%) compared with No Exo 
(P = 0.0219) and by 0.32 ± 0.07 W/kg (12.7 ± 2.8%) compared with 
Zero Torque (P = 6 × 10−8), shown in Fig. 2B. Further, during ramp 
ascent, Uni�ed Control resulted in signi�cant metabolic cost reduc-
tions of 0.57 ±  0.24 W/kg (10.3 ±  4.4%) compared with No Exo 
(P = 4 × 10−8) and of 1.06 ± 0.31 W/kg (17.8 ± 5.1%) compared 
with Zero Torque (P =  3 ×  10−14), shown in Fig. 2E. �e uni�ed 
controller had no signi�cant di�erence in metabolic cost during 
level-ground walking compared to Spline Control, with a di�erence 
in metabolic cost of less than 0.01 W/kg between the two conditions 
(P = 1.0); however, during ramp ascent, the uni�ed controller sig-
ni�cantly reduced metabolic cost by 0.27 ± 0.15 W/kg (5.3 ± 2.8%) 
compared with Spline Control (P = 0.0025).

Reducing joint-level positive mechanical work of the user
To analyze the e�ect of our controller at the joint level, lower-limb me-
chanical work was measured across the same 10 participants under 
the Uni�ed Control and No Exo conditions. �e uni�ed controller 
was deployed using the same hip moment estimator that was used 
when measuring user metabolic cost. As shown in Fig.  3, the total 
positive mechanical work of the user’s lower-limb joints (sum of hip, 
knee, and ankle positive work in the sagittal plane) was signi�cantly 
lower with Uni�ed Control compared with No Exo during both level-
ground walking [change of 0.16 ± 0.05 J/kg (17.5 ± 5.7%); P= 5 × 10−6] 
and ramp ascent [change of 0.16  ±  0.08 J/kg (11.7  ±  6.2%); 
P= 2 × 10−4]. At the individual joint level, we found that Uni�ed Con-
trol signi�cantly reduced the positive mechanical work of the hip joint 
by 0.12  ±  0.04 J/kg (29.2  ±  10.9%) during level-ground walking 
(P = 2 × 10−8) and by 0.15 ± 0.08 J/kg (22.8 ± 12.2%) during ramp 
ascent (P= 8 × 10−6) compared with No Exo (Fig. 3, A and B).

Validating TCN accuracy in the loop
�e TCN, when trained from a 24-participant dataset (from phases 1 
through 3 of the experimental protocol), was evaluated when imple-
mented in the exoskeleton control loop during 35 conditions, includ-
ing level-ground walking at speeds ranging from 0.6 to 1.9 m/s, 
inclines and declines ranging from −15° to 15°, and stairs spanning 
the range of ADA (Americans with Disabilities Act)–compliant step 
heights of 10.2 to 17.8 cm (4 to 7 inches) (�g. S5). In addition, the 
Baseline method served as a comparison with the TCN for hip 
moment estimation, which predicted hip moments on the basis of 
the ambulation mode–speci�c, participant-averaged hip moment 
profiles from the TCN training set. The Baseline method was 

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of Technology on M

ay 29, 2024



Molinaro et al., Sci. Robot. 9, eadi8852 (2024)     20 March 2024

S C I E N C E  R O B O T I C S |  R E S E A R C H  A R T I C L E

4 of 12

*
*

*

*
*

*
*

*

*
*

*

0 20 40 60 80 100
Gait Phase (%)

0 20 40 60 80 100
Gait Phase (%)

-20

-10

0

10

20

To
rq
ue
 (N

m
)

To
rq
ue
 (N

m
)

-20

-10

0

10

20

Unified Control Spline Control No Exo Zero Torque

-8.3%-13.2%-17.8%

-7.7%-12.8%-12.7%

0

1

2

3

M
et
ab
ol
ic
 C
os
t (
W
/k
g)

0

2

4

6

M
et
ab
ol
ic
 C
os
t (
W
/k
g)

Level Ground
Walking

Metabolic
Measurement

Robotic Hip
Exoskeleton

5 Ramp
Ascent

o

A B C

E FD

Fig. 2. Exoskeleton effect on user metabolic cost of walking. (A) User metabolic cost was measured during level-ground walking at 1.25 m/s while the user 
wore the exoskeleton with the unified joint moment controller (Unified Control), while the user wore the exoskeleton with a spline-based controller (Spline 
Control), while the user did not wear the exoskeleton (No Exo), and while the user wore the exoskeleton as it commanded zero torque (Zero Torque). (B) The 
resulting metabolic cost of each condition during level-ground walking is shown, and the percent reduction of each condition relative to Zero Torque is de-
picted with the arrows. (C) The commanded exoskeleton torque averaged across participants is shown for Unified Control and Spline Control during level-
ground walking. (D) User metabolic cost was also measured during 5° ramp ascent at 1.25 m/s. (E) The average metabolic cost resulting from the incline tests is 
shown. (F) The average commanded exoskeleton torques during ramp ascent are shown. Gait cycles were segmented by heel strike, and hip extension is posi-
tive. Bars and curves represent means, error bars and shaded regions represent ±1 SD about the mean, and asterisks indicate statistical significance (multiple 
comparisons, P < 0.05, n = 10).
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Fig. 3. Exoskeleton effect on user lower-limb joint
work. The per-stride, positive biological joint work of the 
hip, knee, ankle, and sum of all three joints (total) during 
(A) level-ground walking and (B) 5° ramp ascent is 
shown. Joint work was measured while participants 
wore the exoskeleton, which provided assistance using 
the uni�ed controller (Uni�ed Control), and while par-
ticipants did not wear the exoskeleton (No Exo). Average 
power of the exoskeleton and biological hip, knee, and 
ankle joints is shown during level-ground walking and 
ramp ascent (C to H). Gait cycles were segmented by heel 
strike. All results were computed with respect to the sag-
ittal plane. Bars and curves represent means; error bars 
and shaded regions represent ±1 SD about the mean. 
Statistical comparisons of total positive joint work were 
computed using paired t tests, and joint-level compari-
sons were conducted using multiple comparisons post 
hoc. Asterisks indicate statistical signi�cance (P <  0.05, 
n = 10).
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implemented post hoc on the same trials used to evaluate the TCN. �e 
resulting RMSE and R2 of the TCN and Baseline estimates were 
computed with respect to the ground-truth hip moments from in-
verse dynamics.

�e overall RMSE of the TCN averaged across the �ve ambula-
tion modes was 0.142  ±  0.021 N·m/kg, which was signi�cantly 
lower than the Baseline method [change of 0.035 ± 0.016 N·m/kg 
(19.8 ± 9.3%); P = 9 × 10−5] (Fig. 4), with representative strides of 
the TCN estimates shown in Fig. 5. Signi�cant reductions in RMSE 
within modes were also found for the level-ground [change of 
0.060 ± 0.022 N·m/kg (29.1 ± 10.5%); P= 0.0012] and ramp descent 
conditions [change of 0.051  ±  0.035 N·m/kg (27.0  ±  18.8%); 
P= 0.0092]. In addition, the overall R2 of the TCN was 0.840 ± 0.045, 
which was signi�cantly higher than that of the Baseline method 
[change of 0.035 ± 0.034 (4.4 ± 4.2%); P= 0.0088] (�g. S6). Further, 
when comparing the TCN and Baseline methods within ambulation 
modes, the TCN signi�cantly outperformed the Baseline method in 
several conditions (Fig.  4C and �g.  S6C), o�en near the extrema 
within each mode (P values provided in data �le S2).

Five of the participants also completed additional trials of neu-
tral standing, stand-to-walk transitions, and walk-to-stand transi-
tions while the uni�ed controller provided assistance on the basis of 
the TCN estimates. We found that the TCN reduced estimation 
RMSE during stand-to-walk transitions by 0.081 ±  0.031 N·m/kg 

(34.9 ±  13.5%) and during walk-to-stand transitions by 0.085 ±
0.014 N·m/kg (35.3 ±  5.7%) compared with the Baseline method 
(Fig. 4B), with similar improvements in R2 (�g. S6B). Representative 
strides during each transition are shown in Fig. 5D. In addition, the 
estimator naturally turned o� assistance during neutral standing, 
with very little di�erence in RMSE between the estimates from the 
TCN and those from the Baseline method, which estimated zero hip 
moment (Fig. 4B).

To further investigate the real-world viability of our hip moment 
estimator, we also quanti�ed the e�ects on TCN performance when 
each of the 35 ambulatory conditions was included versus excluded 
from the training set (details provided in Supplementary Methods). 
In general, the TCN generalized well when tested on previously un-
seen conditions (�g. S7), with signi�cant di�erences between hold-
in and hold-out RMSE in only 3 of the 35 total conditions. In 
addition, there were no signi�cant di�erences in R2 between hold-in 
and hold-out conditions.

DISCUSSION
Deep learning–based hip moment estimates yielded 
autonomous exoskeleton assistance
�e uni�ed controller presented in this work autonomously adapted 
exoskeleton assistance across users, ambulation modes, and ambulation 

*
* *

*

*

*

**

* * *
*

*
*

TCN (Online)
Baseline (Offline)

Level Ground Walking Ramp Ascent Stair Ascent

Stair Height (cm)

-1
7.
8

-1
5.
2

-1
2.
7

-1
0.
2

10
.2

12
.7

15
.2

17
.8

Slope (deg)

-1
5

-1
3.
8

-1
2.
5

-1
0

-7
.5

-6
.3 -5 5
6.
3

7.
5 10

12
.5

13
.8 150.
6

0.
75

0.
8

1.
0

1.
1

1.
2

1.
25

1.
3

1.
4

1.
5

1.
6

1.
75 1.
9

Speed (m/s)

R
M
S
E
 (N

m
/k
g)

0.05

0.15

0.25

0.35

0.45

STAND S2W W2S
0

0.05

0.10

0.15

0.20

0.25

0.30

R
M
S
E
 (N

m
/k
g)

ALL LG RA RD SA SD
0

0.05

0.10

0.15

0.20

0.25

0.30

R
M
S
E
 (N

m
/k
g) -19.8%*

-29.1%*

-16.3%

-27.0%*

-18.3% -4.2%

-13.9%

-34.9% -35.3%

Ramp Descent Stair Descent

A B

C

Fig. 4. Hip moment estimation RMSE. (A) The average RMSE of the TCN is compared with the RMSE of the Baseline method during level-ground walking (LG), ramp as-
cent (RA), ramp descent (RD), stair ascent (SA), and stair descent (SD) (multiple comparisons, n = 10). The average RMSE across the �ve ambulation modes (ALL) is also 
shown (paired t test, n = 10). (B) The average RMSE of the TCN is shown during neutral standing (STAND), stand-to-walk transitions (S2W), and walk-to-stand transitions 
(W2S) relative to the Baseline method (n = 5, no statistical tests performed). (C) The average RMSE of the TCN and Baseline method is shown for each intensity per ambu-
lation mode (multiple comparisons, n = 10 for all comparisons except for LG at 1.9 m/s and RD at −15°, which were n = 9). All TCN results are based on online estimates 
used in the control loop. All Baseline results were computed post hoc using the same data. Bars and markers represent means, error bars represent ±1 SD about the mean, 
and asterisks indicate statistical signi�cance (P < 0.05).
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intensities without any user-speci�c calibration data or sensing ex-
ternal to the device. Not only did the deep learning model accurately 
adapt assistance across all 35 evaluated conditions, but the resulting 
assistance also provided signi�cant metabolic and joint-level ener-
getic bene�ts to the user in both ambulation modes evaluated. Spe-
ci�cally, our approach signi�cantly reduced user metabolic cost 
during both level-ground walking and 5° ramp ascent relative to No 
Exo and Zero Torque (Fig. 2), con�rming hypothesis H1. Although 
the magnitude of metabolic cost reductions of our controller was 
similar to those of previous autonomous exoskeleton studies (3), 
modulating assistance across ambulation modes without any experi-
menter or user intervention overcomes an important barrier when 
considering exoskeleton technology for real-world deployment. In 
addition, further iterations of the exoskeleton hardware or optimiza-
tions to the mid-level controller could further improve these results 
compared with No Exo.

Uni�ed control outperformed mode-dependent, 
o�-the-shelf spline control
Previous human-in-the-loop optimization studies have found that 
the optimized shape of spline-based hip exoskeleton assistance is rel-
atively consistent across users (20, 21). As such, averaging previously 
optimized torque assistance splines from multiple participants (Spline 
Control in this study) is an e�ective exoskeleton control strategy for 
reducing human e�ort without additional time-intensive optimiza-
tion (50). Matching metabolic cost reductions compared with Spline 
Control during level-ground walking demonstrates that the uni�ed 
controller was as e�ective as the state of the art for user-independent, 
mode-speci�c control but did not require any previous optimization, 
mode switching, or additional state estimation. During ramp ascent, 
the uni�ed controller signi�cantly reduced user metabolic cost rela-
tive to Spline Control, which was likely a result of the additional 19% 
of positive mechanical work done by the uni�ed controller compared 
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Fig. 5. Representative time series. Examples of hip moments estimated by the TCN and the corresponding ground truth values are shown. (A) Representative strides 
from 7 of the 13 total level-ground walking conditions are shown (average RMSE of the depicted strides is 0.141 N·m/kg). (B) Representative strides from 10 of the 14 total 
inclines and declines are shown (average RSME of the depicted strides is 0.138 N·m/kg). (C) Representative strides of stair ascent and descent at each of the tested stair 
heights are shown (average RMSE of the depicted strides is 0.137 N·m/kg). (D) A representative time series of a stand-to-walk and walk-to-stand transition is shown (aver-
age RMSE of the depicted strides is 0.128 N·m/kg). The stand-to-walk and walk-to-stand trials were extended from their original segmentation for visual purposes. Within 
each ambulation mode, the depicted strides are from the same participant. Gait cycles were segmented by heel strike, and hip extension is positive.
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with Spline Control, despite scaling the two to have near-equivalent 
peak torque magnitudes (Fig. 2, C and F). �is result was unexpected 
because we expected Spline Control to be a near-optimal controller 
(20, 21); however, several considerations may explain this result. 
First, the splines used in this study were optimized on a di�erent de-
vice, with di�ering torque capabilities and actuator dynamics (51); it 
is possible that human-in-the-loop optimization must be repeated 
with each new device to maintain energetic bene�ts. Further, the op-
timized controller gains from human-in-the-loop optimization may 
not represent the global optimum, despite o�en requiring tens of 
minutes or even hours of walking to converge (8, 20–22). Last, the 
uni�ed controller introduced in this study instantaneously adjusted 
assistance across participants and across strides, potentially yielding 
additional bene�ts compared with the static pro�les of Spline Con-
trol. Nevertheless, the result of our metabolic tests con�rmed that 
our uni�ed controller both autonomously modulated exoskeleton 
assistance across modes and generated exoskeleton assistance as 
bene�cial as or better than the previous state of the art in user-
independent, o�-the-shelf control, a major step toward real-world 
human augmentation.

Users reduced their joint work to accept 
exoskeleton assistance
In agreement with our metabolic cost �ndings and hypothesis H2, the 
uni�ed controller also signi�cantly reduced the total lower-limb posi-
tive mechanical joint work of the user during both level-ground walk-
ing and ramp ascent (Fig. 3). We found larger relative reductions in 
metabolic cost between Uni�ed Control and No Exo during ramp as-
cent but larger relative reductions in positive lower-limb joint work in 
level-ground walking. �is suggests that the additional bene�ts in met-
abolic cost during ramp ascent may come from improved muscle-level 
e�ciencies or reduced cocontraction when wearing the device, hinting 
that future generations of exoskeleton controllers may bene�t even 
more by accounting for the user’s underlying muscle dynamics (52).

As expected, the bene�ts of the uni�ed controller on user lower-
limb positive joint work were localized at the hip joint (Fig.  3), 
with relative reductions of 29.2 and 22.8% relative to No Exo during 
level-ground walking and ramp ascent, respectively. By delaying the 
exoskeleton assistance relative to the instantaneous hip moment esti-
mate in the mid-level control layer (Fig. 1 and �g. S4), the uni�ed joint 
moment controller provided peak assistance torque during the peri-
ods of the stride with high hip velocities, increasing the total amount 
of positive mechanical work provided by the exoskeleton. �us, the 
uni�ed controller was able to reduce the positive work at the hip joint 
by more than 20% despite only scaling the assistance torque to 20% of 
the total estimated hip moment. �is result demonstrates the ener-
getic bene�ts gained by simply delaying hip exoskeleton assistance 
relative to the biological joint moment during walking.

Deep learning enabled accurate hip moment estimation 
in the loop
Overall, the TCN accurately estimated user hip moments across the 
35 ambulatory conditions when deployed online (Fig. 4 and �g. S6). 
Con�rming hypotheses H3 and H4, the TCN signi�cantly outper-
formed the Baseline method in RMSE and R2, even though the 
Baseline method in this study assumed a perfectly accurate ambula-
tion mode classi�er and gait phase estimator. In practice, mode clas-
si�ers and gait phase estimators also incur error (13–17, 26–28), 
further increasing the di�erences between the TCN and Baseline 

method. Nevertheless, this indicates that the TCN not only captured 
changes in hip moments as ambulation mode and gait phase varied 
but also modeled changes in hip moments across participants, 
across intensities, and/or across strides.

Although multiple studies have investigated wearable sensor–based 
hip moment estimation o�ine (30, 33–36, 42), this study provides a 
rigorous validation with respect to ground-truth inverse dynamics 
when deployed online. Online validation is critical because closing the 
loop between model estimates and user biomechanics can greatly re-
duce model performance. For instance, incorrect ambulation mode 
estimates can lead to controller instability and further propagate error 
(49). We found that when deployed online, our deep learning–based 
hip moment estimator obtained similar or even better performance 
compared with previous o�ine analyses (34–36, 42). For instance, 
Forner-Cordero et al. (42) analyzed the e�ects of replacing force plate 
measurements with pressure insole estimates when computing inverse 
dynamics, resulting in a hip moment estimation RMSE of 0.15 N·m/kg 
and correlation coe�cient of 0.92 (approximate R2 of 0.85) during 
level-ground walking. For comparison, the TCN in this study resulted 
in an estimation RMSE of 0.147 ± 0.040 N·m/kg and R2 of 0.879 ± 0.045 
during level-ground walking across all speeds without the need for any 
external sensors or data, demonstrating the bene�ts of our data-driven 
approach. Further, in our previous work, we used data from a hip go-
niometer and simulated trunk and thigh inertial measurement units 
(IMUs) to train a TCN for estimating hip moments across level-ground 
walking, ramp ascent/descent, and stair ascent/descent (34). �is pre-
vious study resulted in an average RMSE of 0.131 N·m/kg and R2 of 
0.88, which was state of the art for o�ine, participant-independent hu-
man hip moment estimation based on wearable sensors. As shown in 
Fig. 4 and �g. S6, the hip moment estimator in this study maintained 
similar performance (average online RMSE of 0.142 ± 0.021 N·m/kg 
and R2 of 0.840 ± 0.045) despite additional sensor noise from exoskel-
eton actuation and closed-loop dynamics between hip moment esti-
mates, exoskeleton assistance, and the resulting kinematics of the user. 
�us, using a single regression model for high-level state estimation 
mitigated error propagation from estimator-controller dynamics, in-
creasing overall controller reliability.

The uni�ed controller extended to transient and previously 
unseen conditions
Transitions between standing and walking are extremely common 
in community ambulation (53) but typically are not accommodated 
by conventional exoskeleton controllers given the challenge of 
parameterizing mode transitions. By naturally varying assistance 
based on the estimated joint moments, the uni�ed joint moment con-
troller seamlessly adjusted exoskeleton assistance through mode tran-
sitions, without the need for any additional modi�cations to the 
controller (see Fig.  4B and �g.  S6B with representative strides in 
Fig. 5D).�is result also aligns with our previous work, which quanti-
�ed TCN hip moment estimation performance during ambulation 
mode transitions (34), suggesting that the TCN estimates remain vi-
able even during transient ambulation.

Further, the model generalized well when tested on conditions 
absent from the training set (�g. S7). Model RMSE comparing hold-
in versus hold-out conditions was only a�ected at the extrema of the 
dataset, meaning that the model interpolated between conditions in 
the training set well but began to lose performance during extrapo-
lation. We did not �nd any signi�cant di�erences in R2 between 
holding in and holding out each condition. �is suggests that the 
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TCN maintained the correct “shape” of the hip moments but likely 
began to improperly scale the magnitudes when extrapolating to 
high intensities. Nevertheless, this result promotes the need for di-
verse datasets consisting of large variations in condition and inten-
sity to assist model generalization, which is a key consideration for 
deploying these systems in the wild.

Human-exoskeleton dataset of multimodal ambulation
To reduce the barrier to entry of machine learning–enabled exoskel-
eton research, we have released the complete set of exoskeleton and 
human biomechanical time series data associated with this study. �e 
dataset was collected with 34 total participants, which was large 
enough to demonstrate diminishing returns in model accuracy im-
provements with respect to increasing training set size (�g. S8). Fur-
ther, this dataset could also be used to develop algorithms that 
eliminate the need for device-speci�c data when developing data-
driven exoskeleton controllers, perhaps by building from our data 
transformation approach outlined in Supplementary Methods, which 
would greatly improve the accessibility of this technology.

Limitations
�is study had multiple limitations. We added a second onboard 
processor (the machine learning coprocessor) to run the TCN on-
line, which added mass (5% of total), additional power require-
ments, and so�ware complexity to the system. In addition, the TCN 
used a substantial amount of device-speci�c (although not user-
speci�c) training data. Training the TCN from data collected on a 
di�erent hip exoskeleton did yield a feasible model for initial con-
troller development (see Supplementary Methods); however, a de-
tailed analysis of transferring data across multiple devices was 
outside the scope of this study. Another limitation of this study was 
that the metabolic cost and joint work analyses were conducted us-
ing a di�erent model (trained from 14 participants of data) com-
pared with the analysis of online model performance (trained from 
24 participants of data). It is possible that further metabolic cost and 
joint work experiments could yield even better results using the up-
dated hip moment estimator, meaning that our results likely repre-
sent a lower bound of what is achievable with the uni�ed controller. 
In addition, although our uni�ed control framework may generalize 
to other human degrees of freedom, this study only investigated 
hip �exion/extension moment estimation and assistance. Last, the 
accuracy and corresponding user outcomes of the uni�ed controller 
were only evaluated on able-body participants. Although exoskel-
eton technology could greatly bene�t able-body individuals in many 
real-world applications, translating this technology to individuals 
with mobility impairments could also lead to substantial bene�ts.

Conclusion
In general, this work presents a model-free framework that uni�es 
exoskeleton control across a variety of ambulatory conditions. Where 
previously proposed uni�ed controllers have used anatomical mod-
els calibrated with relatively small amounts of data (29–31, 37–39), 
we leveraged deep learning with a large amount of labeled training 
data. �e result was a uni�ed controller that e�ectively augmented 
user energetics and could adapt to a very broad range of ambulation 
modes and intensities. �is presents a major advancement in the ef-
fort of human augmentation with applicability to a broad range of 
researchers, technologists, and future end users of exoskeleton tech-
nology, many of whom may be one and the same. We expect that this 

technology will enable researchers to ask new questions about hu-
man mobility and augmentation that take place o� the treadmill and 
in more realistic settings. For technologists interested in large-scale 
health monitoring, for instance, our joint moment estimator could 
also be used as a wearable sensor–based solution to monitor joint 
kinetics during daily life. Last, for the end user, we hope that this 
technology will spur safer and more e�cient e�orts, including those 
in factories and warehouses, high-endurance missions like search 
and rescue, and in athletics and exercise at the professional or recre-
ational level.

MATERIALS AND METHODS
Participants and experimental protocol
�is study consisted of four phases, involving the enrollment of 25 
able-bodied participants and the use of a nine-participant preexist-
ing dataset from our previous work (35). All participant informa-
tion relevant to this study is provided in table S1, and each participant 
provided written informed consent according to the protocols ap-
proved by the Georgia Institute of Technology Institutional Review 
Board. To ensure that the hip moment estimator was consistently 
evaluated on a user-independent basis, meaning trained without 
user-speci�c data, each participant only participated in one of the 
four phases of the study protocol. During each phase, motion cap-
ture and ground reaction force (GRF) data were collected (�g. S5), 
time-synced with the exoskeleton sensor data, and used to compute 
ground-truth joint moments from OpenSim inverse dynamics (54, 
55). A summary of the experimental methods is provided below 
with a detailed description provided in Supplementary Methods.

�e �rst phase of this study consisted of transforming a nine-
participant, preexisting dataset collected using a di�erent hip exo-
skeleton to be used as TCN training data compatible with our device 
(35). Speci�cally, the dataset was collected with the same exoskele-
ton sensor modalities as those of our custom hip exoskeleton but 
had di�erent IMU placements. When collecting the dataset, each 
participant walked over level ground, along four inclines and de-
clines with ground slopes ranging from 7.8° to 12.4°, and up and 
down a staircase at four di�erent stair heights ranging from 10.2 to 
17.8 cm. �e dataset consisted of exoskeleton sensor data and cor-
responding ground-truth joint moments. To transform the dataset 
for use in this study, IMU transforms were computed empirically 
from a single-participant experiment, which adjusted the positions 
and orientations of the recorded IMU data to match those of our 
custom hip exoskeleton. All other protocols and analyses were con-
ducted using our custom hip exoskeleton (�g. S1).

�e second phase of this study consisted of collecting device-
speci�c labeled data using our custom hip exoskeleton from �ve 
participants. During phase 2, the hip exoskeleton provided assis-
tance using the uni�ed controller, in which the hip moment estima-
tor was trained from the phase 1 dataset. Each participant completed 
the same trials conducted in phase 1, along with additional stand-
ing, stand-to-walk, and walk-to-stand trials.

�e third phase of this study was conducted with 10 participants 
to evaluate the e�ects of the uni�ed controller on user metabolic 
cost and lower-limb positive mechanical joint work. �e hip mo-
ment estimator used throughout phase 3 was trained on the phase 1 
and 2 datasets. �e phase 3 protocol was subdivided into two ses-
sions. Session 1 served as a training session for walking with the 
exoskeleton, provided an additional dataset for model training and 
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evaluation, and served as the session for analyzing user lower-limb 
mechanical joint work during level-ground walking and 5° ramp as-
cent with the uni�ed controller (Uni�ed Control) and without wear-
ing the exoskeleton (No Exo). While motion capture and GRF data 
were recorded, participants walked on a level treadmill at nine 
speeds ranging from 0.75 to 1.75 m/s, on an inclined/declined tread-
mill at 10 slopes ranging from −15° to 15°, and up and down a stair-
case at four stair heights ranging from 10.2 to 17.8 cm using the 
uni�ed controller. Participants also completed No Exo trials of level 
walking and 5° ramp ascent at 1.25 m/s, which were used in the joint 
work analysis.

During session 2 of phase 3, metabolic data were measured dur-
ing level-ground walking and 5° ramp ascent, both at 1.25 m/s a�er 
completing 16 min of habituation. Participants completed the meta-
bolic trials under four conditions using a within-participant coun-
terbalanced design: Uni�ed Control; Spline Control, which provided 
assistance based on previously optimized level ground and 5° ramp 
ascent assistance trajectories (20, 21); No Exo; and Zero Torque, 
which consisted of wearing the exoskeleton while it commanded 
zero torque.

When evaluating the e�ects of the training set size on TCN per-
formance, the model continued to improve when adding the phase 
3 data (details in Supplementary Methods). �us, we conducted 
phase 4 of the experimental protocol, in which 10 additional par-
ticipants used the uni�ed controller while motion capture and GRF 
data were collected. During phase 4, the TCN was trained using the 
data from phases 1, 2, and 3. Participants walked on a level treadmill 
(13 walking speeds ranging from 0.6 to 1.9 m/s), on an inclined/
declined treadmill (14 ground slopes ranging from −15° to 15°), 
and up and down a staircase (four stair heights ranging from 10.2 to 
17.8 cm). To test the hip moment estimator on previously unseen 
conditions, four level-ground walking speeds and two inclines/
declines in this study phase were not collected in any of the previous 
phases used for training the model. In addition, two of the stair as-
cent/descent trials were repeated in which each corresponding stair 
height was withheld from the hip moment estimator training set. 
Five of the 10 participants also completed trials of neutral standing, 
stand-to-walk transitions, and walk-to-stand transitions.

Robotic hip exoskeleton
�is study used a custom-designed exoskeleton that provided sagit-
tal plane hip torque assistance of up to 18 N·m [~30% of peak bio-
logical hip moments during walking (40)], shown in �g.  S1. �e 
system was fully autonomous, meaning that all components were 
self-contained. �e exoskeleton measured angular position from 
actuator-mounted encoders in addition to linear acceleration and 
angular velocity from three IMUs mounted on the exoskeleton 
backplate and le� and right thigh struts. Encoder velocity was also 
computed online using backward �nite di�erencing and was low-
pass �ltered with a 10-Hz cuto� frequency. A graphics processing 
unit–enabled secondary processor mounted onboard the device was 
used for online TCN deployment. �e total exoskeleton mass was 
4.8 kg, including electronics and batteries. Additional information is 
provided in Supplementary Methods and in �gs. S1 and S2.

Hip moment estimation using a TCN
We used a TCN (47) to estimate the exoskeleton user’s hip �exion/
extension moments on the basis of measurements from the onboard 
exoskeleton sensors (�g. S3). TCNs use dilated causal one-dimensional 

convolution to e�ciently map patterns in the input sequence data to 
the target output (�g. S3C), replacing the need for hand-engineered 
feature extraction methods (33, 56). In addition, the �xed input se-
quence length of TCNs has been shown to retain information over 
longer periods of time than recurrent networks (47), suggesting that 
they can better leverage time history information on larger timescales 
compared with alternative neural network architectures. As such, 
TCNs have been successful in many sequence modeling tasks (34, 47, 
57), including achieving state-of-the-art o�ine performance in hu-
man hip moment estimation compared with alternative deep learning 
models, which we demonstrated in our previous work (34, 35).

�e TCN used for hip moment estimation in this study was im-
plemented as described by Bai et al. (47) using the hyperparameters 
optimized in our previous work (34). �e input sequence of the 
TCN consisted of the ipsilateral actuator encoder position and ve-
locity, six-axis ipsilateral thigh–mounted IMU data, and six-axis 
pelvis-mounted IMU data. Sensor data from the contralateral limb 
were not included as input to the model because the majority of the 
training and testing conditions included symmetric movements, 
which could cause the model to over�t to this type of behavior. On 
the basis of the selected hyperparameters of the model, the input 
sequence to the TCN was composed of a ℝ180×14 R187×14 sequence 
consisting of the latest 930 ms of exoskeleton sensor data. Given an 
input sequence, the model estimated the instantaneous �exion/
extension moment of the user’s le� or right hip, scaled by the par-
ticipant’s body mass. Ground-truth hip moments from our biome-
chanical model, which were used as the labels during model training, 
were the sum of both the biological hip moment and the exoskeleton 
torque (the total hip �exion/extension moment at the joint). �is 
means that the TCN was trained to estimate the total hip moment, 
which helped to preserve the mapping between the kinematic input 
data and resulting joint moments across variations in exoskeleton 
assistance. Additional information about the TCN hyperparame-
ters, implementation, and training is provided in Supplementary 
Methods.

Exoskeleton mid-level control
Because hip exoskeleton assistance that solely mimics the user’s bio-
logical hip moments is likely suboptimal for augmenting human 
energetics (20, 21, 58), we designed a three-step mid-level control 
layer to convert hip moment estimates into exoskeleton assistance 
(�g. S4). First, the incoming hip moment estimates were scaled by 
20% of their total magnitude. �is assistance magnitude has previ-
ously been shown to bene�t the user (59) and resulted in peak 
torque assistance close to the maximum assistance the exoskeleton 
could provide. �e estimated hip moments were then delayed using 
a �rst-in-�rst-out bu�er before being used to command the exoskel-
eton (see details below). Last, the delayed torque values were low-
pass �ltered using a second-order Butterworth �lter with a 10-Hz 
cuto� frequency to smooth the commanded torque, imparting an 
additional 25 ms of delay to the signal.

Delaying peak hip assistance timing relative to the biological hip 
moment can provide additional metabolic bene�ts to the user (20, 
58). As Ding et al. (58) explained, delayed hip assistance increases 
the amount of positive mechanical work done by the exoskeleton 
because the peak assistance of a delayed controller better aligns with 
peak hip velocities during the stride. Using the data available from 
Camargo et al. (40), we found that delaying exoskeleton assistance 
by 125 ms relative to the biological hip moment could theoretically 
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increase the positive mechanical work done by the exoskeleton dur-
ing level walking by 70% (�g. S4A). In support of this delayed as-
sistance strategy, we found that delaying exoskeleton assistance 
between 100 and 150 ms was preferred by several novice and expert 
users during pilot testing compared with smaller delay magnitudes; 
however, in an N = 3 pilot study (detailed in Supplementary Meth-
ods), user metabolic cost was not sensitive to delay magnitudes 
ranging from 75 to 175 ms (�g. S4B). Speci�cally, the mid-level con-
trol delays that we tested only a�ected user metabolic cost by a max-
imum of 2.9% across level-ground walking and 5° ramp ascent. 
Testing even smaller delays may result in larger metabolic penalties, 
especially given that the 75-ms condition was the worst metaboli-
cally; however, these small delays were omitted from the pilot study 
because they were uncomfortable to the user. In addition, delays 
below 35 ms could not be tested because of controller limitations 
from �lter delay and worst-case model inference latency. For the 
remainder of this study, a programmed delay of 100 ms (total delay 
of 125 ms including the low-pass �lter) was used to minimize over-
all delay and to align with user preference.

Analyzing online hip moment estimation accuracy
�e estimated hip moments recorded onboard the exoskeleton dur-
ing phase 4 of the experimental protocol were aligned in time with 
the ground-truth hip moments post hoc to evaluate the accuracy of 
the TCN when integrated into the uni�ed controller. Two common 
performance metrics were used to analyze the estimator accuracy 
(30, 31, 34, 42): the interparticipant average RSME and the interpar-
ticipant average of the square of the Pearson correlation coe�cient 
(R2). Average RMSE provided an absolute metric of error and is eas-
ily compared to previous studies that have investigated wearable 
sensor–based joint moment estimators. Average R2 provided a non-
dimensional metric to analyze the goodness of �t of the TCN, mean-
ing the amount of variance in the ground-truth hip moments 
explained by the TCN estimates via a �tted line. When considering 
joint moment estimation for exoskeleton control, R2 also provided a 
metric for analyzing the ability of the model to correctly estimate 
the shape of the hip moment signal, ignoring error induced from 
incorrect scaling or bias. In general, this provided a useful metric to 
evaluate the utility of the hip moment estimator given that scale and 
bias of the signal could be modi�ed on the �y by the mid-level exo-
skeleton control layer as needed.

Results reported per intensity, as in per walking speed, ground 
slope, and stair height, were individually computed per condition 
and then averaged across participants. Results reported per ambula-
tion mode were computed by taking the average of the results com-
puted per intensity within the respective mode, for instance, the 
average of the RMSE values computed per level-ground walking 
speed then averaged across participants. Overall results were com-
puted similarly by averaging the results computed per ambulation 
mode, then averaging across participants.

�e accuracy of the TCN was benchmarked against a Baseline 
method designed to emulate conventional exoskeleton controllers 
that use prede�ned ambulation mode–speci�c curves to compute 
assistance on the basis of gait phase estimates (7, 26, 43). Speci�cally, 
the Baseline method was implemented post hoc and estimated the 
user’s hip moments on the basis of a precomputed hip moment curve 
for each ambulation mode. �e hip moment curve for each ambula-
tion mode (level-ground walking, ramp ascent, ramp descent, stair 
ascent, and stair descent) was computed as the interparticipant 

average hip moment over the stride from the ground-truth hip mo-
ments in the same dataset used to train the TCN in phase 4 (the hip 
moment data from phases 1, 2, and 3 of the study protocol). During 
stand-to-walk and walk-to-stand transitions, the Baseline method 
used the level-ground walking pro�le. In addition, the Baseline 
method simply predicted zero hip moment for the standing trials. In 
all cases, the Baseline method was given access to a perfectly accu-
rate ambulation mode classi�er and gait phase estimator that has 
error in practice (9, 13–16, 26, 27), meaning that our benchmark 
represented the best-case (yet unrealistic) scenario for estimating 
hip moments from mode-speci�c curves. In this case, outperform-
ing the Baseline method meant that the participant-independent 
TCN captured interparticipant, intercondition, and/or interstride 
variability that the Baseline method could not represent.

Statistical analyses
All statistical tests were conducted using Minitab v19 with an α level 
of signi�cance of 0.05. Further, all statistical tests were computed 
using repeated-measures (within-participant) methods. When com-
paring di�erences among multiple factors and/or multiple within-
factor conditions, a post hoc multiple comparisons test was used to 
identify signi�cant pairwise di�erences in the case that signi�cant 
e�ects were found from an analysis of variance (ANOVA). All 
post hoc multiple comparisons were conducted using a Bonfer-
roni correction to control the family-wise error rate. �e Bonferroni 
correction can greatly reduce the statistical power of each pairwise 
comparison when many pairwise matches exist. In addition, many 
of the possible pairwise comparisons within each analysis were ir-
relevant to our hypotheses. �us, we only evaluated a subset of the 
possible pairwise comparisons, which were selected a priori (be-
fore looking at the results) to limit the amount that each P value 
needed to be adjusted. Because Minitab did not support this 
planned comparison approach, we ran a full multiple comparisons 
test a�er each ANOVA that yielded statistical signi�cance and ad-
justed the P values to account for the reduced number of compari-
sons being evaluated. Metabolic cost comparisons across the four 
tested exoskeleton assistance conditions (Uni�ed Control, Spline 
Control, No Exo, and Zero Torque) were analyzed for a main e�ect 
using a one-way ANOVA followed by a multiple comparisons test. 
Di�erences in positive joint work between the exoskeleton condi-
tions (Uni�ed Control and No Exo) across the lower-limb joints 
(hip, knee, and ankle) were evaluated using a two-way ANOVA for 
level ground and ramp ascent. Pairwise comparisons were only 
conducted for testing signi�cant di�erences between Uni�ed Con-
trol and No Exo within each joint. In addition, the total positive 
lower-limb joint work resulting from Uni�ed Control and No Exo 
were compared separately from the other joints using a paired t test 
for each ambulation mode.

�e same statistical tests were run for analyzing both the RMSE 
and the R2 of the hip moment estimates from the TCN and Baseline 
method. �e overall average results of the TCN across the level-
ground, ramp ascent, ramp descent, stair ascent, and stair descent 
conditions were compared with those of the Baseline method using 
a paired t test. For comparisons at the ambulation mode level, a two-
way ANOVA was used to test for signi�cant main and interaction 
e�ects across ambulation modes and between estimators (the TCN 
and Baseline method). A post hoc multiple comparisons test was 
also used to test for pairwise di�erences between the two estimators 
during each ambulation mode. Within each ambulation mode, a 
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two-way ANOVA was used to test for signi�cant main and interac-
tion e�ects across ambulation mode intensity and between estima-
tors. In addition, a post hoc multiple comparisons test was used to 
test for signi�cant di�erences between the TCN and Baseline meth-
od within each intensity.
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