O

Check for
updates

Brakedown: Linear-Time
and Field-Agnostic SNARKSs for R1CS

Alexander Golovnev!(®™) | Jonathan Lee?, Srinath Setty?®, Justin Thaler!,
and Riad S. Wahby*

1 Georgetown University, Washington, D.C., USA
alexgolovnev@gmail.com
2 Nanotronics, New York, USA
3 Microsoft Research, Cambridge, USA
4 Stanford University, Stanford, USA

Abstract. This paper introduces a SNARK called Brakedown. Brake-
down targets R1CS, a popular NP-complete problem that generalizes
circuit-satisfiability. It is the first built system that provides a linear-
time prover, meaning the prover incurs O(N) finite field operations to
prove the satisfiability of an N-sized R1CS instance. Brakedown’s prover
is faster, both concretely and asymptotically, than prior SNARK imple-
mentations. It does not require a trusted setup and may be post-quantum
secure. Furthermore, it is compatible with arbitrary finite fields of suffi-
cient size; this property is new among built proof systems with sublinear
proof sizes. To design Brakedown, we observe that recent work of Bootle,
Chiesa, and Groth (BCG, TCC 2020) provides a polynomial commitment
scheme that, when combined with the linear-time interactive proof sys-
tem of Spartan (CRYPTO 2020), yields linear-time IOPs and SNARKSs
for R1CS (a similar theoretical result was previously established by BCG,
but our approach is conceptually simpler, and crucial for achieving high-
speed SNARKS). A core ingredient in the polynomial commitment scheme
that we distill from BCG is a linear-time encodable code. Existing con-
structions of such codes are believed to be impractical. Nonetheless, we
design and engineer a new one that is practical in our context.

We also implement a variant of Brakedown that uses Reed-Solomon
codes instead of our linear-time encodable codes; we refer to this variant
as Shockwave. Shockwave is not a linear-time SNARK, but it provides
shorter proofs and lower verification times than Brakedown, and also pro-
vides a faster prover than prior plausibly post-quantum SNARKs.

1 Introduction

A SNARK [18,37,47,55] is a cryptographic primitive that enables a prover to
prove to a verifier the knowledge of a satisfying witness to an NP statement by
producing a proof 7 such that the size of m and the cost to verify it are both
sub-linear in the size of the witness. Given their many applications, constructing
SNARKSs with excellent asymptotics and concrete efficiency is a highly active
area of research. Still, one of the key bottlenecks preventing application of exist-
ing SNARKSs to large NP statements is the prover’s asymptotic and concrete

© International Association for Cryptologic Research 2023
H. Handschuh and A. Lysyanskaya (Eds.): CRYPTO 2023, LNCS 14082, pp. 193-226, 2023.
https://doi.org/10.1007/978-3-031-38545-2_7

194 A. Golovnev et al.

cost. This has limited the use of SNARKS to practical applications in which NP
statements of interest are relatively small (for example, cryptocurrencies).

As with much of the literature on SNARKS, we focus on rank-1 constraint
satisfiability (R1CS) over a finite field F, an NP-complete problem that gen-
eralizes arithmetic circuit satisfiability. An R1CS instance comprises a set of
M constraints, with a vector w over F said to satisfy the instance if it satis-
fies all M constraints. The term “rank-1” means that the constraints should
have a specific form. Specifically, each constraint asserts that the product of two
specified linear combinations of the entries of w equals a third linear combina-
tion of those entries. See Definition 1 for details. R1CS is amenable to prob-
abilistic checking and is highly expressive. For example, in theory, any non-
deterministic random access machine running in time 7' can be transformed
into an R1CS instance of size “close” to T. In practice, there exist efficient
transformations and compiler toolchains to transform applications of interest to
R1CS [13,25,50,58,59,64,66,73].

Our focus in this work is designing SNARKSs for R1CS with the fastest pos-
sible prover. We also wish for the SNARK to be transparent (or be without a
trusted setup): there should be no need to run a complex multi-party computa-
tion to generate a so-called structured reference string that is needed for proof
generation.

Furthermore, we desire a verifier that runs in time sub-linear in the size of the
R1CS instance. Since the verifier must at least read the statement that is being
proven, we allow a one-time public preprocessing phase for general (unstruc-
tured) R1CS instances. In this phase, the verifier computes a computation com-
mitment, a cryptographic commitment to the structure of a circuit or R1CS
instance [63]. (For “structured” computations, our SNARKSs, like several prior
works, can avoid this pre-processing phase.) After the pre-processing phase, the
verifier must run in time sub-linear in the size of the R1CS instance. Further-
more, the pre-processing phase should be at least as efficient as the SNARK
prover. Subsequent works to Spartan [63] refer to such public preprocessing to
achieve fast verification as leveraging holography [21,31,32].

A second focus of our work is designing SNARKSs that can operate over arbi-
trary (sufficiently large) finite fields. Prior SNARKSs apply over fields that are
“discrete-log friendly”! or “FFT-friendly”, or otherwise require one or many
multiplicative or additive subgroups of specified sizes. Yet many cryptographic
applications naturally work over fields that do not satisfy these properties. Exam-
ples include proofs regarding encryption or signature schemes that themselves
work over fields that do not satisfy the properties needed by the SNARK. Indeed,
most practically relevant elliptic curve groups are defined over fields that are not
FFT-friendly. Even in applications where SNARK designers do have flexibility
in field choice, field size restrictions can still create engineering challenges or

! Tt is possible to construct elliptic curves with specified group order [26], which suffices
for many discrete log—based SNARKSs. Unfortunately, the most efficient elliptic curve
implementations are tailored to specific curves—so using a newly constructed curve
may entail a performance or engineering cost.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 195

inconveniences, as well as performance overheads. For example, they may limit
the size of R1CS statements that can be handled over the chosen field, or force
instance sizes to be padded to a length corresponding to the size of a subgroup.

In this work we design transparent SNARKSs that asymptotically have the
fastest possible prover, may be post-quantum secure, and work over arbitrary
(sufficiently large) finite fields.? We refer to this latter property as being field-
agnostic, and to the best of our knowledge, it is new amongst implemented argu-
ments with sublinear proof size and even quasilinear runtime. We optimize and
implement our new SNARKSs, and demonstrate the fastest prover performance
in the SNARK literature (even compared to SNARKSs that require FFT-friendly
or discrete-log—{riendly fields).

Formalizing “fastest possible” Provers. How fast can we hope for the prover
in a SNARK to be? Letting N denote the size of the R1CS or arithmetic-
circuit-satisfiability instance over an arbitrary finite field F, a lower bound on
the prover’s runtime is N operations in [F. Here, the size of an arithmetic-circuit-
satisfiability instance is the number of gates in the circuit. The size of an R1CS
instance of the form Az o Bz = C'z is the number of non-zero entries in A, B, C,
where o denotes the Hadamard (entry-wise) product. This is because any prover
that knows a witness w for the instance has to at least convince itself (much
less the verifier) that w is valid. We refer to this procedure as native evaluation
of the instance. So the natural goal, roughly speaking, is to achieve a SNARK
prover that is only a constant factor slower than native evaluation. Such a prover
is said to run in linear-time.

Achieving a linear-time prover may sound like a simple and well-defined goal,
but it is in fact subtle to formalize, because one must be precise about what
operations can be performed in one “time-step”, as well as the soundness error
achieved and the choice of the finite field.

In known SNARKS, the bottleneck for the prover (both asymptotically and
concretely) is typically one or more of the following operations: (1) Performing
an FFT over a vector of length O(N). (2) Building a Merkle-hash tree over a
vector consisting of O(N) elements of F. (3) Performing a multiexponentiation of
size O(N) in a (multiplicative) cryptographic group G. In this case, the field I is
of prime order p and G is typically an elliptic curve group (or subgroup) of order
p. A multiexponentiation of size NV in G refers to a product of N exponentiations,
ie., HZ]\LI g;", where each g; € G and each ¢; € {0,...,p—1}.

Should any of these operations count as “linear-time”?

FFTs. An FFT of length ©(N) over IF should not count as linear-time, because
the fastest known algorithms require @(N log N) operations over F, which is a
log N factor, rather than a constant factor, larger than native evaluation.

However, the remaining operations are trickier to render judgment upon,
because they do not refer to field operations.

2 For our SNARKS, a field of size exp(]) is sufficient to achieve A bits of security with
a linear-time prover. More generally, our SNARK can work over any field F of size
[F| > 2(N) with a prover runtime that is superlinear by a factor of O(XA/log|F|),
where N denotes instance size.

196 A. Golovnev et al.

Merkle- Hashing. Build a Merkle tree over a vector of O(N) elements of F,
computing O(N) cryptographic hashes is necessary and sufficient, assuming the
hash function takes as input O(1) elements of F. However, this is only “linear-
time” if hashing O(NN) elements of F can be done in time comparable to O(N)
operations over F. It is not clear whether or not applying a standard hash func-
tion such as SHA-256 to hash a field element should be considered comparable
to performing a single field operation.

Theoretical work of Bootle et al. [20] sidesteps this issue by observing that
(assuming the intractability of certain lattice problems over Fy, specifically find-
ing a low-Hamming vector in the kernel of a sparse matrix), a collision-resistant
hash family of Applebaum et al. [5] is capable of hashing strings consisting of
k > X bits in O(k) bit operations, with security parameter A. This means that
a vector of O(N) elements of F can be Merkle-hashed in O(N log |F|) bit opera-
tions, which Bootle et al. [20] consider comparable to the cost of O(N) operations
in F. The aforementioned hash functions appear to be of primarily theoretical
interest because they can be orders of magnitude slower than standard hash
functions (e.g., SHA-256). Hence, in this paper our implementations make use
of standard hash functions, and with this choice, Merkle-hashing is not the con-
crete bottleneck in our implementations. Accordingly, and to simplify discussion,
we consider our implemented Merkle-hashing procedure to be linear-time, even
if this may not be strictly justified from a theoretical perspective.

Multiexponentiation. Pippenger’s algorithm [60] (see also [16,44]) can per-
form an O(N)-sized multiexponentiation in a group G of size ~ 2* by performing
O(N-\/log (N - X)) group operations (i.e., group multiplications). Typically, one
thinks of the security parameter A as w(log N) (so that 2* is superpolynomial in
N, ensuring the intractability of problems such as discrete logarithm in G), and
so O(N - A/log (N - X)) group operations is considered w(IN) group operations.
Each group operation is at least as expensive (in fact, several times slower) than
a field operation—typically, an operation in the elliptic-curve group G requires
performing a constant number of field operations within a field that is of similar
size to, but different than, then prime-order field F over which the circuit or
R1CS instance is defined. Hence, we do not consider this to be linear time.

However, note that for a fixed value of the security parameter X\, the cost of
a multiexponentiation of size N performed using Pippenger’s algorithm scales
only linearly (in fact, sublinearly) with N. That is, Pippenger’s algorithm incurs
O(N - (A 1log(NX))) = ©A(N/log N) group operations and in turn this cost is
comparable up to a constant factor to the same number of operations over a field
of size exp(A). In practice, protocol designers fix a cryptographic group (and hence
fix \), and then apply the resulting protocol to R1CS instances of varying sizes N.
For this reason, systems (e.g., Spartan [63]) whose dominant prover cost is a mul-
tiexponentiation of size N will scale (sub-)linearly as a function of N. Specifically,
in the experimental results [63], Spartan’s prover exhibits the behavior of a linear-
time prover (as the cost of native evaluation of the instance also scales linearly as
a function of N). Nonetheless, since A should be thought of as w(log N'), we do not
consider a multiexponentiation of size /N to be a linear-time operation.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 197

In summary, we do not consider FFTs and multiexponentiations of size O(N)
to be linear-time operations, but do consider Merkle-hashing of vectors of size
O(N) to be linear-time.

Closely Related Work. We cover additional related work in the full version of
this paper [40]. Building on Bootle et al. [20], Bootle, Chiesa, and Groth [21] give
an interactive oracle proof (IOP) [15] with constant soundness error, in which
the prover’s work is O(N) finite field operations for an N-sized R1CS instance
over any finite field of size {2(N). Here, an interactive oracle proof (IOP) [15,61]
is a generalization of an interactive proof, where in each round, the prover sends
a string as an oracle, and the verifier may read one or more entries in the oracle.
To achieve soundness error that is exponentially small in the security parameter
A in the IOP of [21], one must restrict to R1CS instances over a “sufficiently
large” finite field i.e., where |F| = 29N or else sacrifice the linear-time prover.

Applying standard transformations to their IOP, one can obtain a SNARG
in the random oracle model with similar prover costs, or an interactive argument
assuming linear-time computable cryptographic hash functions [5]. Unlike prior
SNARGs (even those with a quasi-linear time prover), the resulting protocol
does not require the field to be FFT-friendly nor discrete-log friendly.

Their IOP construction does not achieve zero-knowledge nor polylogarith-
mic proofs and verification times (the proof sizes and verification times are
Ox(N'/?), where t is a constant, and not Oy(log N) or Ox(1)). Bootle, Chiesa,
and Liu [23] address these issues by achieving zero-knowledge as well as poly-
logarithmic proof sizes and verification times (a more detailed discussion of the
relationship between our results and those of [23] is in the full version of this
paper [40]). Both [21,23] are theoretical in nature; they do not implement their
schemes nor report performance results.

There is also very recent work related to our goal of working over arbitrary
finite fields. Ben-Sasson et al. [11,12] improve the efficiency of FFT-like algo-
rithms that apply over fields with no smooth order root of unity, by a factor of
exp(log™ N). An explicit motivation for their work is to improve the efficiency
of known SNARKs that perform FFTs (e.g., Fractal [32]) when operating over
“non-FFT-friendly” fields. These results do not eliminate the superlinearity of
the prover’s runtime in their target SNARKSs. The algorithms given in [11,12]
also perform significant pre-computation that is field-specific and have not to
date yielded implemented SNARKSs. We seek (and achieve) high-speed SNARKSs
that require only black-box access to the addition and multiplication operations
of the field, with the only additional information required being a lower bound
on the field size to ensure soundness.

In summary, prior works leave open the problem of achieving concretely
efficient SNARKs that support arbitrary (sufficiently large) finite fields, much
less one with a linear-time prover.

1.1 Results and Contributions

We address the above problems with Brakedown, a new linear-time field-agnostic
SNARK that we design, implement, optimize, and experimentally evaluate.

198 A. Golovnev et al.

Concretely, Brakedown achieves the fastest SNARK prover in the literature,
even over fields to which prior SNARKSs apply. We also implement and evaluate
Shockwave, a variant of Brakedown that reduces proof sizes and verification times
at the cost of sacrificing a linear-time prover, but nonetheless provides a faster
prover than prior plausibly post-quantum SNARKSs. Brakedown and Shockwave
are unconditionally secure in the random oracle model.

SNARK Design Background. Modern SNARKSs work by combining a type of
interactive protocol called a polynomial IOP [28] with a cryptographic primitive
called a polynomial commitment scheme [45]. The combination yields succinct
interactive argument, which can then be rendered non-interactive via the Fiat-
Shamir transformation [35], yielding a SNARK.

Roughly, a polynomial IOP is an interactive protocol where, in one or more
rounds, the prover “sends” to the verifier a very large polynomial ¢q. Because ¢
is so large, one does not wish for the verifier to read a complete description of
q. Instead, the verifier only “queries” ¢ at one point (or a handful of points).
This means that the only information the verifier needs about ¢ to check that
the prover is behaving honestly is one (or a few) evaluations of g.

In turn, a polynomial commitment scheme enables an untrusted prover to
succinctly commit to a polynomial ¢, and later provide to the verifier any eval-
uation ¢(r) for a point r chosen by the verifier, along with a proof that the
returned value is indeed consistent with the committed polynomial.

Essentially, a polynomial commitment scheme is exactly the cryptographic
primitive that one needs to obtain a succinct argument from a polynomial IOP.
Rather than having the prover send a large polynomial g to the verifier as in the
polynomial IOP, the argument system prover cryptographically commits to ¢ and
later reveals any evaluations of ¢ required by the verifier to perform its checks.

Design of Our Linear-Time SNARK. We first distill from [21] a polynomial
commitment scheme with a linear-time commitment procedure, and show that
it satisfies extractability, a key property required in the context of SNARKSs (the
commitment scheme itself is little more than a rephrasing of the results in [21],
though [21] did not analyze extractability). This improves over the prior state-
of-the-art polynomial commitment schemes [28,45,49,65,74,78,79] by offering
the first in which the time to commit to a polynomial is linear in the size of the
polynomial. We focus on multilinear polynomials over the Lagrange basis, but
the scheme generalizes to many other types of polynomials such as univariate
polynomials over the standard monomial basis (see e.g., [49]).

To obtain linear-time SNARKSs for R1CS, we first make explicit a polynomial
IOP for RICS from Spartan [63] and then use our new linear-time polynomial
commitment scheme in conjunction with prior compilers [28,63] to transform it
into a SNARK for R1CS.

A New and Concretely Fast Linear-Time Encodable Code. A major com-
ponent in the linear-time polynomial commitment scheme that we distill from [21]
is a linear-time encodable linear code. Unfortunately, to the best of our knowl-
edge, existing linear-time encodable codes are highly impractical. We therefore

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 199

design a new linear-time encodable code that is concretely fast in our context.
Our code builds on classic results [34,36,67], but designing this code is involved
and represents a significant technical contribution. We achieve a fast linear code
that works over any (sufficiently large) field by leveraging the following four obser-
vations: (1) In our setting, to achieve sublinear sized proofs, it is sufficient for the
code to achieve relative Hamming distance only a small constant, rather than very
close to 1 (higher minimum distance would improve Brakedown’s proof length by
a constant factor, but would not meaningfully reduce the prover time); (2) Effi-
cient decoding is not necessary for reasons elaborated upon below; (3) We can
(and indeed want to) work over large fields, say, of size at least 2127; and (4) We
can use randomized constructions instead of deterministic constructions of pseu-
dorandom objects, so long as the probability that the construction fails to satisfy
the necessary distance properties is cryptographically small (e.g., < 27100,

Observation (2) holds for the following two reasons: (1) the prover and veri-
fier only execute the code’s encoding procedure (this observation also appears in
prior work [21]); (2) we describe an efficient extractor for our polynomial commit-
ment scheme that does not invoke the code’s decoding procedure. Hence, efficient
decoding is not even needed to establish that our SNARK is knowledge-sound.

Observations (1)—(4) together allow us to strip out much of the complexity
of prior constructions. For example, Spielman’s celebrated work [67] is focused
on achieving both linear-time encoding and decoding, while Druk and Ishai [34]
focus on improving the minimum distance of Spielman’s code. On top of this,
we further optimize and simplify the code construction, and provide a detailed,
quantitative analysis to show that the probability our code fails to achieve the
necessary minimum distance is cryptographically small.

Implementation, Optimization, and Experimental Results. We imple-
ment the aforementioned linear-time SNARK, yielding a system we call Brake-
down. Because our linear-time code works over any (sufficiently large) field, and
the polynomial IOP from Spartan does as well, Brakedown is field-agnostic. This
is the first built SNARK to achieve this property. It is also the first built system
with a linear-time prover and sub-linear proof sizes and verification times.

We also implement Shockwave, a variant of Brakedown that uses Reed-
Solomon codes instead of our fast linear-time code. Since Shockwave uses Reed-
Solomon codes, it is not a linear-time SNARK and requires an FFT-friendly finite
field, but it provides concretely shorter proofs and lower verification times than
Brakedown and is faster than prior plausibly post-quantum secure SNARKs.

Both Shockwave and Brakedown contain simple but crucial concrete optimiza-
tions to the polynomial commitment scheme to reduce proof sizes. Neither Shock-
wave’s nor Brakedown’s implementations are currently zero-knowledge. How-
ever, Shockwave can be rendered zero-knowledge using standard techniques with
minimal overhead [4,30,76]. Brakedown could be rendered zero-knowledge while
maintaining linear prover time by using one layer of recursive composition with
zkShockwave (or another zkSNARK). Indeed, subsequent work, called Orion [77],
uses Virgo [78] to prove in zero-knowledge the knowledge of valid proofs produced
by (a variant of) Brakedown. It is also plausible that Brakedown could be rendered
zero-knowledge more directly using techniques from [23].

200 A. Golovnev et al.

In terms of experimental results, Brakedown achieves a faster prover than
all prior SNARKs for R1CS. Its primary downside is that its proofs are on
the larger side, but they are still far smaller than the size of the NP-witness
for R1CS instance sizes beyond several million constraints. Shockwave reduces
Brakedown’s proof sizes and verification times by about a factor of 6 x, at the cost
of a slower prover (both asymptotically and concretely). Nonetheless, Shockwave
already features a concretely faster prover than prior plausibly post-quantum
SNARKSs. Furthermore, although Shockwave’s proof sizes are somewhat larger
than most prior schemes with sublinear proof size, they are surprisingly com-
petitive with prior post-quantum schemes such as Fractal [32] and Aurora [14]
that have lower asymptotic proof size (polylog(N) rather than ©y(v/N)). Its
verification times are competitive with discrete-logarithm based schemes, and in
fact superior to prior plausibly post-quantum SNARKs.

Public Parameter Generation. The public parameters of Brakedown include
a description of the encoding procedure of our error-correcting code. This
involves randomly generating certain sparse matrices (we provide details of this
in the full version of the paper [40]). Our implementation generates the matrices
deterministically using a cryptographic PRG with a public, fixed seed, which
could be chosen in a “nothing-up-my-sleeve” way (e.g., as in Bulletproofs [27]).
Generating the matrices is concretely fast: our implementation takes under 700
milliseconds to sample parameters suitable for encoding inputs of length 22°, and
22 seconds for encoding inputs of length 22°. The latter setting is suitable for
committing to polynomials of degree over 24°, and for giving SNARKSs for R1CS
instances with roughly 2° constraints. Note that any party acting as the prover
or verifier in Brakedown need only generate these matrices once, no matter how
many times the SNARK is used.

Subsequent Work on Linear-Time Provers. Xie et al. [77] improve the
concrete parameters of the error-correcting code underlying Brakedown. They
also compose Brakedown with a different SNARK called Virgo [78] that requires
an FFT-friendly field but has smaller proofs. This asymptotically reduces the
proof size from Ox(v/N) to Oy (log® N). The resulting implementation, called
Orion, requires an FFT-friendly field, but has substantially smaller proofs than
Brakedown, and a slightly faster prover due to the improved code parameters.
Orion+ [29] improves Brakedown (this work) and the work of Xie et al. [77] by
providing proofs of ~10KB at the cost of requiring a (universal) trusted setup
and giving up plausible post-quantum security. Vortex [7] builds on Brakedown
and uses lattice-based hash functions for improved recursion capabilities.
Recent theoretical works have obtained interactive arguments with constant
soundness error and a linear-time prover even over small fields [22,62].

2 Preliminaries

We use F to denote a finite field, A to denote the security parameter, and negl(()\)
to denote a negligible function in A. Unless we specify otherwise, |F| = 20,

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 201

Polynomials. We recall a few basic facts about polynomials. Detailed treatment
of these facts can be found elsewhere [69].

— A polynomial over F is an expression consisting of a sum of monomials where
each monomial is the product of a constant and powers of one or more vari-
ables (which take values from F); all arithmetic is performed over F.

— The degree of a monomial is the sum of the exponents of variables in the
monomial; the (total) degree of a polynomial g is the maximum degree of any
monomial in g. Also, the degree of a polynomial g in a particular variable x;
is the maximum exponent that x; takes in any of the monomials in g.

— A multivariate polynomial is a polynomial with more than one variable; oth-
erwise it is called a univariate polynomial. A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is
at most one.

Rank-1 Constraint Satisfiability (R1CS)

Definition 1. An RI1CS instance is a tuple (F,A,B,C,M,N,io), where
A B,C € FMXM M > |io| + 1, io denotes the public input and output, and
there are at most N = 2(M) non-zero entries in each matriz.

We denote the set of R1CS (instance, witness) pairs as Rrics, defined as:
{{((F, A, B,C,io, M, N),w): A-(w, 1,i0)oB-(w, 1,i0) = C-(w, 1,i0)}.

In the rest of the paper, WLOG, we assume that M and N are powers of 2,
and that M = |io| 4+ 1. Throughout this paper, all logarithms are to base 2.

SNARKSs. We adapt the definition provided in [48].

Definition 2. Consider a relation R over public parameters, structure,
instance, and witness tuples. A non-interactive argument of knowledge for R
consists of PPT algorithms (G,P,V) and deterministic IC, denoting the gen-
erator, the prover, the verifier and the encoder respectively with the following
interface.

- Q(1>‘) — pp: On input security parameter \, samples public parameters pp.

- K(pp,s) — (pk,vk): On input structure s, representing common structure
among instances, outputs the prover key pk and verifier key vk.

— P(pk,u,w) — 7: On input instance u and witness w, outputs a proof ™ proving
that (pp,s,u,w) € R.

- V(vk,u,m) — {0,1}: On input the verifier key vk, instance u, and a proof =,
outputs 1 if the instance is accepting and 0 otherwise.

A non-interactive argument of knowledge satisfies completeness if for any PPT
adversary A

pp « G(11),
(s, (u,w)) < A(pp),
Pr | V(vk,u,m) =1 || (pp,s,u,w) € R, =1.
(pk, vk) < K(pp,s),
7« P(pk, u, w)

202 A. Golovnev et al.

pagebreak A non-interactive argument of knowledge satisfies knowledge sound-
ness if for all PPT adversaries A there exists a PPT extractor £ such that for
all randomness p

(vk,u,) pp&gfm’()
V(vk,u,m) =1, | (s,u,m) — A(pp; p),
= negl(\).
(0P, u,w) € R || (pk,vk) — K(pp,s), | ~ "BV
w < E(pp, p)

A non-interactive argument of knowledge is succinct if the size of the proof ©
and the time to verify it are at most polylogarithmic in the size of the statement
proven, where a statement includes both the structure and the instance.

Remark 1. In this paper, we consider an argument system to be succinct as long
as the proof sizes and verification times are sublinear in the size of the statement
proven. We accept this weakening as proofs produced by such proof systems can
be shortened (both asymptotically and concretely) without substantial overheads
using depth-1 recursion (e.g., see a subsequent work called Orion [77]).

Polynomial Commitment Scheme. We adapt the definition from [28]. A
polynomial commitment scheme for multilinear polynomials is a tuple of four
protocols PC = (Gen, Commit, Open, Eval):

— pp « Gen(1*, u): takes as input g (the number of variables in a multilinear
polynomial); produces public parameters pp.

— C « Commit(pp, G): takes as input a u-variate multilinear polynomial over a
finite field G € F[ul; produces a commitment C.

— b «— Open(pp,C,G): verifies the opening of commitment C to the u-variate
multilinear polynomial G € F[u|; outputs b € {0,1}.

— b« Eval(pp,C,r,v,u,G) is a protocol between a PPT prover P and verifier
V. Both V and P hold a commitment C, the number of variables u, a scalar
v € F, and r € F*. P additionally knows a p-variate multilinear polynomial
G € F[u]. P attempts to convince V that G(r) = v. At the end of the protocol,
V outputs b € {0,1}.

Definition 3. A tuple of four protocols (Gen, Commit, Open, Eval) is an
extractable polynomial commitment scheme for multilinear polynomials over a
finite field F if the following conditions hold.

— Completeness. For any p-variate multilinear polynomial G € Flu],

pp «— Gen(1*, p); C « Commit(pp, G): -
{ Eval(pp,C,r,v,1u,G) = 1 Av = G(r) > 1 —negl()\)

— Binding. For any PPT adversary A, size parameter > 1,

pp — Gen<1>\7 m); (C7 gO; gl) = A(pp);
Pr< by < Open(pp,C,Go); b1 — Open(pp,C,G1): 3 < negl(\)
bo =b1 #0AN Gy #G1

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 203

- Knowledge Soundness. Eval is a succinct argument of knowledge for the
following NP relation given pp « Gen(1*,).

Reval(pp) = {{(C,7,v),(G)) : G € Flu] AG(r) = v A Open(pp,C,G) = 1}

3 Linear-Time Polynomial Commitments

We distill from Bootle et al. [21] a result establishing the existence of a linear-
time commitment scheme for multilinear polynomials over the Lagrange basis
with proofs of size O(N'/*) for any desired integer constant ¢ > 0. Note that
this result is implicit in their work.

We then explicitly describe the linear-time polynomial commitment scheme
for the case when the parameter ¢ = 2. We additionally describe optimizations
and prove that the scheme satisfies knowledge soundness.

A General Result Distilled from Bootle et al. [21].

Theorem 1. For security parameter A and a positive integer t, given a hash
function that can compute a Merkle-hash of N elements of F with the same time
complezity as O(N) F-ops, there exists a linear-time polynomial commitment
scheme for multilinear polynomials. Specifically, there exists an algorithm that,
given as input the coefficient vector of an (-variate multilinear polynomial over
F over the Lagrange basis, with N = 2¢, commits to the polynomial, where:

— the size of the commitment is Ox(1); and
— the running time of the commit algorithm is O(N) operations over F.

Furthermore, there exists a non-interactive argument of knowledge in the random
oracle model to prove the correct evaluation of a committed polynomial with the
following parameters:

— the prover’s running time is O(N) operations over FF;
— the verifier’s running time s O,\(Nl/t) operations over F; and
~ the proof size is Ox(N/?).

A proof of this theorem is in the full version of this paper [40].

3.1 Polynomial Commitments for t = 2

Notation. ¢ is a multilinear polynomial with n coefficients. We assume for
simplicity that n = m? for some integer m. Let u denote the coefficient vector of
g in the Lagrange basis (equivalently, u is the vector of all evaluations of g over
inputs in {0,1}!°8™). Recalling that [m] = {1,...,m}, we can naturally index
entries of u by elements of the set [m]2. It is well known that for any input r to
g there exist vectors ¢1, g2 € F™ such that g(r) = ((q1 ® ¢2), u).

For each i € [m], let us view u as an m x m matrix, and let u; denote the
ith row of this matrix, i.e., u; = {u; ;}cim]-

204 A. Golovnev et al.

Let N = p~! -m, and let Enc: F™ — FV denote the encoding function of a
linear code with constant rate p > 0 and constant relative distance v > 0. We
assume that Enc runs in time proportional to that required to perform O(N)
operations over F. We assume for simplicity that Enc is systematic, since explicit
systematic codes with the properties we require are known [67].

Commitment Phase. Let 4 = {Enc(u;)}icim) € (JFN)m denote the vector
obtained by encoding each row of u. In the IOP setting, the commitment to u is
just the vector 4, i.e., the prover sends @ to the verifier, and the verifier is given
point query access to . In the derived polynomial commitment scheme in the
plain or random oracle model, the commitment to u will be the Merkle-hash of
the vector 4. As with u, we may view @ as a matrix, with 4; € FY denoting the
ith row of 4 for i € [m)].

Testing Phase. Upon receiving the commitment message, the IOP verifier will
interactively test it to confirm that each “row” of u is indeed (close to) a code-
word of Enc. We describe this process as occurring in a separate “testing phase”
so as to keep the commitment size constant in the plain or random oracle mod-
els. In practice, the testing phase can occur during the commit phase, during
the evaluation phase, or sometime in between the two.

The verifier sends the prover a random vector r € F", and the prover sends a
vector u/ € F™ claimed to equal the random linear combination of the m rows of
u, in which the coefficients of the linear combination are given by r. The verifier
reads ¢’ in its entirety.

Next, the verifier tests u’ for consistency with 4. That is, the verifier will
pick £ = ©()\) random entries of the codeword Enc(u’) € FV and confirm that
Enc(u') is consistent with v € FIV at those entries, where v is:

m

> riti; € BV, (1)

=1

Observe that, by definition of v (Eq. (1)), any individual entry v; of v can be
learned by querying m entries of 4 (we refer to these m entries as the “j’th col-
umn” of 4). Meanwhile, since the verifier reads u' in its entirety; V can compute
Enc(u); for all desired j € [N] in O(m) time.

Evaluation Phase. Let ¢1,¢q2 € F™ be such that g(r) = ((¢1 ® ¢2),u). The
evaluation phase is identical to the testing phase, except that r is replaced with
¢1 (and the verifier uses fresh randomness to choose the sets of coordinates used
for consistency testing). Let u”” € F™ denote the vector that the prover sends in
this phase, which is claimed to equal Egl q1,i - u;. If the prover is honest, then
u" satisfies (u”,q2) = ((q1 ® g2),u). Hence, if the verifier’s consistency tests all
pass in the testing and evaluation phases, the verifier outputs (u”, ¢z2) as g(r).

Concrete Optimizations to the Commitment Scheme. We discuss opti-
mizations to reduce proof sizes in the testing and evaluation phases by large
constant factors without affecting the correctness guarantees of the commitment
scheme.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 205

Description of polynomial commitment in the language of IOPs. Following stan-
dard transformations [15,47,55,70], in the actual polynomial commitment scheme,
vectors sent by the prover in the IOP may be replaced with a Merkle-commitment
to that vector, and each query the verifier makes to a vector is answered by the
prover along with Merkle-tree authentication path for the answer. Each phase of
the scheme can be rendered non-interactive using the Fiat-Shamir transforma-
tion [35].

Commit phase.

— P — V:avector & = (l1,...,Um) € (]FN)m If P is honest, each “row” 4; of
u contains a codeword in Enc.

Testing phase.

— VYV — P : arandom vector r € F™.
— P — V sends a vector ©’' € F™ claimed to equal v = o ri-u € FT
— //Now V probabilistically checks consistency between @ and v’ (V reads ' in
entirety).
— V : chooses @ to be a random set of size £ = O(X\) with @ C [N]. For each
JeQ:
e)V queries all m entries of the corresponding “column” of @, namely
/al’j, PP ,/&/m7j.
e V confirms that Enc(u’); = >°7" | r; - 4,5, halting and rejecting if not.

Evaluation phase.

— Let q1,g2 € F™ be such that g(r) = ((¢1 ® ¢2), 2).

— The evaluation phase is identical to the testing phase, except that r is replaced
with ¢1 (and fresh randomness is used to choose a set Q' of columns for use
in consistency checking).

— If all consistency tests pass, then V outputs (u’, g2) as g(r).

— In settings where the evaluation phase will only be run once, the testing phase
and evaluation phase can be run in parallel and the same query set) can be
used for both testing and evaluation. This saves &~ 2x in proof sizes.

— For simplicity, we describe the commitment scheme in the setting where wu is
indexed by [m]?, i.e., u was viewed as a square matrix, this is not a require-
ment, and the proof size in the testing and evaluation phases can be sub-
stantially reduced by exploiting this flexibility. Specifically, if » and ¢ denote
the number of rows and columns of u, so that the number of entries in u
is ¢-r = N, then the proof length of the commitment scheme is roughly
2c¢ + r - £ field elements where ¢ is the number of columns of the encoded
matrix opened by the verifier. Here, the 2¢ term comes from the prover send-
ing two different linear combination of the rows of u, one in the commitment
phase and one in the evaluation phase, while the r - £ term comes from the

206 A. Golovnev et al.

verifier querying ¢ different columns of u in the testing and evaluation phases.
(This optimization appeared in Ligero [4] in the context of the Reed-Solomon
code.) To minimize proof length, one should set ¢ ~ r¢/2, or equivalently,
one should set r =~ 1/2/¢- /N and ¢ =~ \/£/2 - v/N. This reduces the proof
length from roughly - /N if a square matrix is used, to roughly v/2¢ - v/N,
a savings of a factor of \/E/_2 Asymptotically, this means the proof length
falls from ©(AV/N) if a square matrix is used, down to ©(v/AN), a quadratic
improvement in the dependence on \. To achieve soundness error, say, 27100,
¢ will be on the order of hundreds or thousands depending on the relative
Hamming distance of the code used, and hence this optimization will lead to
a reduction in proof length relative to the use of square matrices by one or
more orders of magnitude.

— In settings where the commitment is trusted (e.g., applying the polynomial
commitment to achieve holography), the testing phase can be omitted. An
additional concrete optimization that applies when working over fields of size
smaller than exp(A) is in the full version of the paper [40].

— If P commits to the vector @ € (FV)™ with a Merkle tree, then revealing ¢
columns of u in the Testing and Evaluation phases would require providing
m - £ Merkle-authentication paths. Naively, this may require P to send up to
O(m - £ -logm) hash values. However, by arranging the vector @ in column-
major order before Merkle-hashing it, the communication cost of revealing /¢
columns of @ can be reduced to just the m - £ requested field elements plus
O(log m) hash values (a similar optimization appears in prior work [9]).

Soundness Analysis for the Testing Phase. The following claim roughly
states that if 4 = (41,...,0m) € (]FN)m, then if even a single 4; is far from all
codewords in Enc, then a random linear combination of the #;’s is also far from
all codewords with high probability.

Claim. (Ames, Hazay, Ishai, and Venkitasubramaniam [4], Roth and Zémor) Let
= (G1,...,0n) € (FN)m and for each i € [m] let ¢; be the closest codeword
in Enc to 4;. Let F with |E| < (7/3)N be a subset of the columns j € [N] of 4
on which there is even one row i € [m] such that 4, ; # ¢; ;. With probability at
least 1 — (|E| + 1)/|F| > 1 — N/|F| over the choice of r € F™, > r; - 4; has
distance at least |E| from any codeword in Enc.

Lemma 1. If the prover passes all of the checks in the testing phase with prob-
ability at least N/|F| + (1 — ~/3)%, then there is a sequence of m codewords
Cl,y...,Cm tn Enc such that

E = |{j € [N]: Ji € [m] such that ¢; ; # G, ; }| < (v/3)N. (2)

Proof. Let d(b,c) denote the relative Hamming distance between two vectors
b,c € FN. Assume by way of contradiction that Eq.(2) does not hold. We
explain that the prover passes the consistency tests during the testing phase
with probability less than N/|F| + (1 —~/3)*.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 207

Recall that v denotes Y .-, 7;4;. By Claim 3.1, the probability over the ver-
ifier’s choice of r that there exists a codeword a satisfying d(a,v) > 7/3 is less
than N/|F|. If no such a exists, then d(Enc(u’),v) > /3. In this event, all of the
verifier’s consistency tests pass with probability at most (1 —v/3)°".

Completeness and Binding. Completeness holds by design. To argue binding,
recall from the analysis of the testing phase that ¢; denotes the codeword in Enc
that is closest to row ¢ of u, and let w = Zzl q1,i - ¢;. We show that, if the
prover passes the verifier’s checks in the testing phase with probability more
than N/|F| + (1 —~/3)* and passes the verifier’s checks in the evaluation phase
with probability more than (1 — (2/3)7)%, then w = Enc(u”).

If w # Enc(u”), then w and Enc(u”) are two distinct codewords in Enc and
hence they can agree on at most (1 —) - N coordinates. Denote this agreement
set by A. The verifier rejects in the evaluation phase if there is any j € @’
such that j ¢ AU E, where E is as in Eq.(2). [AUE| < |[A|+|E| < (1—7) -
N + (v/3)N = (1 — (2/3)y)N, and hence a randomly chosen column j € [N]
is in AU E with probability at most 1 — (2/3)y. It follows that u” will pass
the verifier’s consistency checks in the evaluation phase with probability at most
(1—(2/3))"

In summary, if the prover passes the verifier’'s checks in the commitment
phase with probability at least

N/IF|+ (1 —~/3)", (3)

then, in the following sense, the prover is bound to the polynomial g* whose
coefficients in the Lagrange basis are given by ci1,...,Cm,m, Where ¢; € FN
denotes the closest codeword to row ¢ of the vector @ sent in the commitment
phase: on evaluation query r, the verifier either outputs ¢g*(r), or else rejects in
the evaluation phase with probability at least

1-(1-(2/3)7)". (4)

The polynomial commitment scheme provides standard extractability prop-
erties. We show this by giving two different extractors.

Extractability via Efficient Decoding. The first is a simple straight-line
extractor that is efficient if the error-correcting code Enc has a polynomial-
time decoding procedure that can correct up to a 7/4 fraction of errors. This is
because with the IOP-to-succinct-argument transformation of [15,47,55,70], it
is known that, given a prover P that convinces the argument-system verifier to
accept with non-negligible probability, there is an efficient straight-line extractor
capable of outputting IOP proof string 7 that “opens” the Merkle commitment
sent by the argument system prover in the commitment phase. Moreover, there
is an IOP prover strategy P’ for the testing and evaluation phases by which
P’ can convince the IOP verifier in those phases to accept with non-negligible
probability when the first IOP message is m (P’ merely simulates P in those
phases).

208 A. Golovnev et al.

Our analysis of the testing phase of the polynomial commitment scheme
(Lemma 1) then guarantees that each row of the extracted string = has rela-
tive Hamming distance at most /3 from some codeword. Hence, row-by-row
decoding provides the coefficients of the multilinear polynomial that the prover
is bound to. If the decoding procedure runs in polynomial time, the extractor is
efficient.

Extractability Without Decoding. If the error-correcting code does not sup-
port efficient decoding, then even though one can efficiently extract the IOP proof
string m underlying the Merkle-commitment sent in the commitment phase of the
commitment scheme, one can not necessarily decode (each row of) the string to
efficiently extract from 7 the polynomial that the commiter is bound to.

Instead, the extractor can proceed as follows. We assume throughout the
below that Expressions (3) and (4) are negligible (say, exponentially small in the
security parameter \), which holds so long as |F| > exp(A) and the number of
column openings is £ = O(\).

The testing phase of the commitment scheme can be viewed as a 3-move
public-coin argument in which the verifier moves first. First, the verifier sends
a challenge vector r € F™. Second, the prover responds with a vector claimed
to equal Z:il r;u;. Third, the verifier chooses a set) of random columns to
use in the consistency test, and performs the consistency test by querying the
committed proof string 7 at all entries of the columns in Q.

Given any efficient prover strategy that passes the verifier’s checks in the
testing phase with non-negligible probability, we show in the following lemma
that there is a polynomial-time extraction procedure capable of outputting m
linearly independent challenge vectors r1,...,r, € F™ from the testing phase
of the protocol, and m response vectors u},...,u.. € F™ of the prover, each
of which pass the verifier’s consistency checks in the testing phase with non-
negligible probability.

Lemma 2. Suppose there is a deterministic prover strategy P that, following
the commitment phase of the polynomial commitment scheme, passes the ver-
ifier’s checks in the testing phase of the polynomial commitment scheme with
probability €. Then there is a randomized extraction procedure £ that runs in
expected time poly(m, \,1/€) and such that the following holds. Given the ability
to repeatedly rewind P to the start of the testing phase, with probability at least
1—2792W € outputs m linearly independent challenge vectors r1,...,ry € F™
from the testing phase, and m corresponding response vectors u},...,u, € F™
of the prover, each of which pass the verifier’s checks in the testing phase with
probability at least €.

Before proving Lemma 2, we explain how to extract the desired polynomial
given the extracted challenge vectors ry,...,7, € F" and m response vectors
uy,...,ul, € F™. Observe that the testing phase and the evaluation phase of
the polynomial commitment scheme are identical up to how the challenge vector
is selected. In addition, for each challenge r; the prover’s response u) passes the
verifier’s consistency checks with non-negligible probability. Hence, the binding

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 209

analysis for the commitment scheme implies that wu),...,u], are all consistent

with the evaluations of a fixed multilinear polynomial g*, i.e., for i = 1,...,m,
u}, =1l - C where C is the coefficient matrix of g* in the Lagrange basis. Since
the r; vectors are linearly independent, these m linear equations uniquely specify
C, and in fact C' can be found in polynomial time using Gaussian elimination.

Proof. We begin the proof by assuming that the extractor knows e. We later
explain how to remove this assumption. We refer to the extraction procedure
that depends on € as the “base extraction procedure”.

Ife<1/ \/m , then the base extractor can simply abort, by assumption that
the field size is at least exp()\). Below, we assume that e > 1/4/|F].

Fix the extracted proof string 7 = (7y,...,my,) € (FV)™ that “opens” the
Merkle-commitment sent by the committer during the commitment phase.

Observe that for any verifier challenge ' € F™ and prover response u’, one
can efficiently compute the probability (over the random choice of column set Q)
that u’ will pass the verifier’s consistency checks. Specifically, if 1 is the number

of columns ¢ such that (Z;n:l r}wj)‘ = wu}, and ¢ is the number of columns
7

selected by the verifier, then this probability is (7/N)* (here, for simplicity let
us assume columns are selected with replacement, but an exact expression can
also be given when columns are selected without replacement).

Let T denote the set of all challenges r such that P’s response u to r passes
the consistency checks with probability at least €/2. By averaging, since P passes
all checks in the testing phase with probability at least €, |T'| > (¢/2) - |F|™. The
extractor’s goal is to efficiently identify a subset S = {ry,...,r,,} of T that
spans ™.

The extractor £ works by repeatedly picking challenge vectors r uniformly at
random from ™, and running P on challenge r to get a response u; this enables
€ to determine whether r € T, and if so, £ adds r to S. The extractor tries
¢ = 18(m + \)/e vectors r, aborting if it fails to identify at least m vectors in
T. We claim that the probability the extractor fails to identify m vectors to add
to S is at most 1 — 2= ™+ To see this, model each choice of challenge vector
r as a Poisson trial with success probability at least €/2. Let p be the expected
number of successes after ¢ Poisson trials each with success probability at least
€/2. Then p is at least £-¢/2 > 9(m~+). Let 6 = 1/2. Since m < /9 < (1—9)-u,
standard Chernoff bounds (e.g., [56, Theorem 4.5]) upper bound the probability
that the number of successes is less than m by e H0%/2 < e=9(MAN)/8 < 9—(mHN)

We now argue that with probability at least 1 — (m — 1) - (2/e€) - [F|71, the
first m vectors that £ adds to S are linearly independent (in the event that this
is not the case, the extractor aborts). Denote these m vectors by rq,...,7, €
F™. Observe that each vector r; is a random element of 7. We now explain
that for each i = 2,...,m, the probability that r; € span(ry,...,r;—1) is at
most (m — 1) - (2/€) - |F|~1. To see this, observe that since the dimension of
span(r1,...,7;_1) is at most i — 1, the span contains at most |F|*~! vectors. Since
r; is a uniform random vector from T and |T'| > (¢/2) - F™, the probability that
r; € span(ry,...,7;_1) is at most (2/¢)-|F|*=1 /|F|™ < (2/e€)-|F|~1. The claim then

210 A. Golovnev et al.

follows by a union bound over all m—1 vectors ro, ..., r,,. That is, the probability
that 71,...,7,, are not linearly independent is at most (m — 1) - (2/e) - |F| L.

Since € > 1/ \/@ , we conclude that the extractor aborts with probability at
most 2~ (™+X) 4 (m — 1)/4/[F|. This is a negligible function, by the assumption
that |F| is at least exp(\).

The above base extraction procedure depends on €, because the extractor
tries out ¢ = 18(m + A)/e vectors r (aborting if it fails to identify m vectors
in T within that many tries). The following modification eliminates this depen-
dence. Iteratively run the base extraction procedure with e set to the geomet-
rically decreasing sequence of values ¢ = 271,272 ... 27*/8 halting when the
extraction procedure succeeds, and aborting if the extractor reaches ¢ < 2—A/8
without a witness being identified. The above analysis guarantees that when
the extraction procedure is run with € less than or equal to e, it successfully
outputs a witness with probability at least 1 — 27(™+Y — (m — 1)//[F|] >
1 — 2773, The expected runtime of this modified extraction procedure is at
most 36(m + \)/e + 273 18(m + \) - 228 < poly(m, A, 1/e). 0

The extraction procedure given in Lemma?2 succeeds with overwhelming
probability and runs in expected time poly(m, A, 1/€) given access to a prover
that produces an accepting proof with probability at least e. However, if € is not
inverse-polynomial in m and A, this expected runtime is not polynomial in m
and A. The definition of knowledge soundness (Definition 2) and extractable poly-
nomial commitments (Definition 3) requires that the extractor run in expected
polynomial time regardless of €, and that whenever the prover succeeds in out-
putting a convincing proof 7, the extractor outputs a witness with all but neg-
ligible probability. The lemma below achieves this.

Lemma 3. There is a randomized extraction procedure £ that runs in expected
time poly(m,\) and such that the following holds. £ first runs P once during
the testing phase of the above polynomial commitment scheme. If P fails to
pass the verifier’s checks on the first run, the extractor aborts. Otherwise, with
probability at least 1—272XN | € outputs m linearly independent challenge vectors
1,...,"m € F™ from the testing phase, and m corresponding response vectors
uy,...,ul € F™ of the prover, each of which pass the verifier’s checks in the
testing phase with probability at least €.

Proof. We follow the presentation of Hazay and Lindell [43, Theorem 6.5.6] of
an extraction strategy originally due to Goldreich [38].

As described in the statement of the lemma, & first runs P once during
the testing phase, and if P does not pass the verifier’'s checks, then £ aborts.
If P does pass the verifier’s checks in the testing phase, then £ proceeds to
estimate the value € (i.e., the probability that P indeed passes the verifier’s
checks in the testing phase). It does this by rewinding P to the start of the
testing phase until 12 - (m +) successful verifications occur. If 7' runs of P
are required before 12 (m + \) successful verifications occur, then the extractor
uses € =12 (m + \)/T as an estimate of e. The extractor then runs the base
extraction procedure from the proof of Lemma 2 with € set to €' /2. Throughout

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 211

its entire execution, the extractor also keeps a counter of how many times it
has run the prover through the testing phase of the polynomial commitment
scheme, and if this number ever exceeds 2™, it aborts. In this event, we say that
the extractor has “timed out”.

Let us analyze the success probability of the extractor under the assumption
that e > 2—™/2 (if e < 2-™/2 then e is negligible, and hence it is acceptable for
the extractor to succeed with probability 0). [43, Proof of Theorem 6.5.6] shows
that with probability at least 1 — 27"+ ¢’ is between 2¢/3 and 2¢. We call this
the “good event”. Since € > 2~™/2 if the good event occurs, the extractor runs
in fewer than 2™ steps and hence does not time out. And the proof of Lemma 2
shows that, conditioned on the good event occurring, the extractor succeeds with
probability at least 1 — 2=+ — (1m — 1)/\/W Hence, by a union bound, the
extractor succeeds with probability at least 1—2~ "+ —(m—1)//|F[—2""+* >
1—2790,

We now explain that the above extractor runs in expected polynomial time,
regardless of the value of e. Let us first consider the case that ¢ < 27", The
probability that the prover passes the verifier’s checks in the first prover execu-
tion is €, and the extractor never runs for more than 2™ steps. So in this case the
expected runtime of the extractor is at most € - 2™ < 1, plus the time required
to run the verification procedure of the testing phase, which is polynomial in m
and .

Now consider the case that € > 27", The first run of the prover passes the
verifier’s tests with probability e. If this does not happen, the extractor aborts.
Otherwise, the extractor proceeds. If the extractor proceeds and the good event
occurs, the extractor runs in time at most O((m + \)/e). The good event fails
to occur with probability only at most 2™+ and in this case the extractor
still does not run for more than 2™ steps.

Hence, the expected runtime of the extractor is at most

Ole- (m 4 N)/e42™ - 27 M) = O(m 4 \).
O

The runtime of our knowledge extractor that does not perform decoding may
imply reduced concrete security, but the effect is small. Compared to the extrac-
tor that uses efficient decoding, the rewinding extractor requires m “successful”
executions of the prover rather than just one, where m = /n, for n equal to
the degree of the committed polynomial. So, roughly speaking, the runtime of
the rewinding extractor is worse by a factor of m, plus an additive term that
accounts for the cost of Gaussian elimination.

In the context of Brakedown (our SNARK for R1CS that utilizes this polyno-
mial commitment scheme, see Sect. 5), n is roughly equal to the number of R1CS
constraints. As an example, when Brakedown is used to prove a statement about
a cryptographic primitive, e.g., knowledge of pre-image of a hash function that
is implemented in (say) 1000- A R1CS constraints, then a factor-of-m increase in
extractor time corresponds to a loss of roughly (1/2)-log(1000A) bits of security,
which in practice is less than 10 bits.

212 A. Golovnev et al.

4 Fast Linear Codes with Linear-Time Encoding

This section describes our construction of practical linear codes with linear-
time encoding that we use in Brakedown’s implementation of the polynomial
commitment scheme from Sect.3.1. We begin with a sketch of our encoding
procedure and of the analysis of its minimum distance.

Overview of Encoding. In this overview we restrict our attention to a con-
struction of a code with distance § = 1/20 and rate p = 3/5. The encoding
procedure is recursive. For a message € F” of length n, the codeword consists
of three parts Enc(xz) = (x,z,v). The first is the “systematic part” that just
copies the message x of length n. The other parts (z,v) are obtained via the fol-
lowing three-step process. First, multiply = by a random sparse n x n/5 matrix
to “compress” = to a vector y of length n/5. Then obtain z of length n/3 by
recursively encoding y, and finally obtain v of length n/3 by multiplying z by a
random sparse n/3 x n/3 matrix B.

Overview of Distance Analysis. The distance analysis proceeds in three
cases. Since the code is linear, we merely need to show that the encoding of any
non-zero message x has Hamming weight at least dn/p = n/12. We sketch the
analysis for a fixed z, but the formal analysis in our full version of the paper [40]
holds with overwhelming probability for all simultaneously.

— If the Hamming weight of = is > n/12, then the systematic part x of Enc(x)
already ensures that Enc(z) has a sufficiently large Hamming weight.

— Otherwise, we show that with overwhelming probability over the random
choice of A, y will be non-zero. This, in turn, ensures by induction that
z = Enc(y) has “reasonably large” Hamming weight, at least n/60. If the
Hamming weight of z is in fact larger than n/12 then we are done because z
is part of Enc(z).

— Otherwise, the Hamming weight of z is between n/60 and n/12. In this case,
we show that, with overwhelming probability, B “mixes” the non-zero coor-
dinates of z, and results in a v = zB of Hamming weight at least n/12,
completing the analysis.

A full version of our paper [40] provides details of our linear-time codes.

5 Linear-Time SNARKSs for R1CS

The following theorem captures our main result.

Theorem 2. Assuming that |F| = 20N there exists a preprocessing SNARK for
Rrics in the random oracle model, with the following efficiency characteristics,
where M denotes the dimensions of the R1CS matrices, N denotes the number
of non-zero entries, and a fixed positive integer t:

— the preprocessing cost to the verifier is O(N) F-ops;
— the running time of the prover is O(N) F-ops;

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 213

— the running time of the verifier is Ox(N/*) F-ops; and
~ the proof size is O\(N'/1).

A proof of Theorem?2 is in the full version of the paper [40]. In a nutshell,
we obtain a SNARK with the claimed performance profile as follows. We first
make explicit Spartan’s polynomial IOP for R1CS. We then combine our polyno-
mial commitment schemes with Spartan’s polynomial IOP to obtain a succinct
argument per prior compilers [28]. Finally, to achieve linear-time computation
commitments (also called holography) we invoke prior techniques [63] to trans-
form our polynomial commitment scheme from Theorem 1 into one that handles
so-called sparse multilinear polynomials. This step is necessary because the poly-
nomials used in Spartan’s IOP to “capture” the R1CS matrices are sparse.

5.1 A Self-contained Description of Brakedown and Shockwave

For an R1CS instance, X = (F, A, B,C, M, N,io) and a purported witness W, let
Z = (W, 1,i0). For ease of notation, we assume that the vector W and the vector
(1,i0) have the same length. We interpret the matrices A, B,C as functions
mapping domain {0,1}°¢™ x {0,1}!°¢M to F in the natural way. That is, an
input in {0,1}°¢M x {0,1}!°¢M ig interpreted as the binary representation of
an index (i,7) € [M] x [M], where [M] := {1,..., M} and the function outputs
the (7, j)’th entry of the matrix. Similarly we interpret Z and (1, io0) as functions
with the following respective signatures in the same manner: {0,1}°* — F and
{0,1}*7t - F.
Note that the multilinear extension (MLE) polynomial Z of Z satisfies

Z(X1,. . Xiog) = (1= X1) - W(Xa, ..., Xiog a1)+

Xl '(1,i0)(X2,...,X10gM). (5)

Here, the MLE refers to the unique multilinear polynomial Z satisfying
Z(x1y. . Tlog M) = Z(X1, -+, Tiog pr) for all (z1, ... Tiog 1) € {0,118 M Indeed,
the RHS of Eq. (5) is a multilinear polynomial, and it is easily checked that
Z(ml, ey Tlog M) = Z(T1, ..., Tiog M) for all z1, ..., Z1og pr (since the first half of
the evaluations of Z are given by W and the second half are given by the vector
(1,i0)).

From [63, Theorem 4.1], checking if (X, W) € Rgrics is equivalent, except
for a soundness error of log M/|F| over the choice of 7 € F*, to checking if the

214 A. Golovnev et al.

following identity holds:

0; Z &](T7$)'

z€{0,1}s

> Awy Zw || X B Zw)

y€{0,1}¢ y€{0,1}¢

- > Cl,y-Zy) (6)

y€{0,1}#

where eq is the MLE of eq : {0,1}° x {0,1}* — F:

1 ifzx=
o= {1

0 otherwise.

That is, if (X,W) € Rrics, then Eq.(6) holds with probability 1 over the
choice of 7, and if (X, W) € RRrics, then Eq. (6) holds with probability at most
O(log M/|F|) over the random choice of 7.

Consider computing the right hand side of Eq. (6) by applying the well-known
sum-check protocol [54] to the polynomial

g(x) = eq(r, z)-

S Aww) Zw || Y Bl Zy)

ye{0,1}¢ y€{0,1}¢

- Y Clz,y) - Zy)

ye{0,1}#

From the verifier’s perspective, this reduces the task of computing the right
hand side of Eq. (6) to the task of evaluating g at a random input r, € F*.
Note that the verifier can evaluate eq(7,r,) unassisted in O(log M) field opera-
tions, as it is easily checked that éq(r,7y) = [[i_; (7ira; + (1 — 7)) (1 — 74)).
With eq(r,r,) in hand, g(r,) can be computed in O(1) time given

the three quantitiei >yeforys Alra,y) - Z(y), > yeionye B(re,y) - Z(y), and

Zye{o,l}s C(Taca y) ’ Z(y)'

These three quantities can be computed by applying the sum-check protocol
three more times in parallel, once to each of the following three polynomials
(using the same random vector of field elements, r, € F*, in each of the three

invocations): A(re,y) - Z(y), B(re,y) - Z(y), Clra,y) - Z(y).

To perform the verifier’s final check in each of these three invocations of the
sum-check protocol, it suffices for the verifier to evaluate each of the above 3
polynomials at the random vector r,, which means it suffices for the verifier to

evaluate Z(rx,ry), E(rm,ry), CN’(rx,ry), and Z(ry). We present the protocol in

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 215

this section assuming that the verifier can evaluate A, B , and C at the point
(rz,my) in time O(v/N)—if this is not the case, then as discussed in Sect. 5.1 and
detailed in the full version of the paper, these polynomials can each be committed
in pre-processing and the necessary evaluations revealed by the prover, thereby
achieving holography. Z(r,) can be obtained from one query to W and one query

to (1,io0) via Eq. (5).
In summary, we have the following succinct interactive argument. It is public
coin, and can be rendered non-interactive via the Fiat-Shamir transformation.

1. P — V: a commitment to the (log M — 1)-variate multilinear polynomial W
using the polynomial commitment scheme of §3.1.

2. V—-P:TerlF*

3. V < P: run the sum-check reduction to reduce the check in Equation (6) to
checking if the following hold, where 75, 7, are vectors in F® chosen at random
by the verifier over the course of the sum-check protocol:

— A(ra,ry) < va, B(rs,ry) < vp, and C(ra,ry) < ve; and
— Z(ry) = vz.

4. V: B) B) _)

— check if A(rg,ry) = va, B(re,ry) = vg, and C(rz,ry) = vo, (recall that
we have assumed that each of A, B, C can be evaluated in O(v/ N) time).

— check if Z(ry) < vy by checking if: vz = (1 — ry[1]) - vw + ry[1] -
(i0,1)(ry[2..]), where ry[2..] refers to a slice of r, without the first ele-
ment of v, (Eq. (5)), and vw «— W (ry[2..]) is obtained via the evaluation
procedure of the polynomial commitment scheme (§3.1).

By composing the SNARK of Theorem 2 with known zkSNARKs [41,63,65],
we obtain zkSNARKs with shorter proofs (the full version of this paper [40]
provides detailed cost profiles of the resulting zkSNARKS). Specifically, the
prover in the composed SNARKSs proves that it knows a proof m that would
convince the SNARK verifier in Theorem 2 to accept. Perfect zero-knowledge of
the resulting composed SNARK is immediate from the zero-knowledge property
of the SNARKSs from these prior works [41,63,65]. Perfect completeness follows
from the perfect completeness properties of these prior works and of Theorem 2.
Knowledge soundness follows from a standard argument [19,70]: one composes
the knowledge extractors of the two constituent SNARKSs to get a knowledge
extractor for the composed SNARK.

6 Implementation and Evaluation

We evaluate the performance of two polynomial commitment schemes and two
SNARKSs based on these schemes. Specifically, we evaluate two instantiations
of the polynomial commitment scheme of Sect.3.1: Ligero-PC, which uses the
Reed-Solomon code (this scheme is implicit in Ligero [4]), and Brakedown-PC,
which uses the new linear-time error-correcting code described in Sect. 4.

216 A. Golovnev et al.

-
o
™

10!

—
o
=

10t

107
o

Open (seconds)
Verify (seconds)

-1
10 o

=
)
W

Communication (kiB)

Commit (seconds)

13 17 21 25 29 13 17 21 25 29 13 17 21 25 29 13 17 21 25 29
log2(# of constraints) log2(# of constraints) log2(# of constraints) log2(# of constraints)

-@-Brakedown-PC —-Ligero-PC-38 —<-Ligero-PC-2 -Ligero-PC-; -B-FRI-PC

Fig. 1. Microbenchmark results (Sect.6.1); lower is better. Brakedown-PC uses the
parameters in the third line of [40, Figure 7]; Ligero-PC-38/39, Ligero-PC-1/2, Ligero-
PC-1/4, and FRI-PC are instantiated with Reed-Solomon rates of 38/39, 1/2, 1/4, and /4,
respectively. FRI-PC results are incomplete as the prover ran out of memory for larger
instances.

Implementation. We implement Ligero-PC and Brakedown-PC in ~3500 lines
of Rust. This includes an implementation of the polynomial commitment of
Sect. 3.1 that is generic over fields, error-correcting codes, and hash functions;
implementations of the Reed-Solomon code and our new linear-time code; and
a fast parallelized FFT. We also integrate our implementation with Spartan [3],
yielding a SNARK library; this took less than 100 lines of glue Rust code.

All reported measurements of our implementation use the BLAKE3 hash
function [57]. Because Ligero-PC needs to perform FFTs, our measurements use
fields of characteristic p such that p — 1 is divisible by 240, which ensures that
reasonably large FFTs are possible in the field; we choose p at random.

6.1 Evaluation of Polynomial Commitment Schemes

This section evaluates the concrete costs of our polynomial commitment schemes
and a prior baseline, for univariate polynomials, over the standard monomial
basis, of degree 213 to 229 (for our schemes, the costs for such univariate polynomi-
als is identical to the costs for multilinear polynomials having 13 to 29 variables).

Baseline. The FRI protocol [8] underlies all prior IOP-based polynomial com-
mitment schemes and all built post-quantum schemes. (Lattice-based Bullet-
proofs [24] could also be used to construct post-quantum schemes, but to our
knowledge these have not been implemented.) Like Ligero-PC, FRI requires an
FFT-friendly field for efficiency. Vlasov and Panarin [71] use FRI to construct a
univariate polynomial commitment, which we call FRI-PC; Virgo [78] effectively
extends FRI-PC to multilinear polynomials by invoking an interactive proof,
increasing costs.®> We evaluate the C++ FRI implementation in libiop [52]. Fol-
lowing the best known soundness analysis [10,71], we set the Reed-Solomon rate
to /4 and number of queries to 189.

3 RedShift and ethStark [1,46] use FRI to construct a related primitive called a list
polynomial commitment with a relaxed notion of soundness, and smaller opening
proofs (by up to ~30% using Reed-Solomon rate 1/4 and existing analyses). That
primitive, however, is not a drop-in replacement for polynomial commitments, so we
restrict our focus to the latter.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 217

Parameters of the Error-Correcting Codes. We instantiate Brakedown-
PC with the parameters given on the third line of [40, Figure7]. For Ligero-
PC, the rate of the Reed-Solomon code trades between proving and verification
costs: roughly, a lower rate gives a slower prover but smaller proofs and faster
verification. To explore this tradeoff, we test Ligero-PC with three different code
rates: 38/39 gives proof sizes roughly matching Brakedown-PC, 1/2 gives smaller
proofs than Brakedown-PC at roughly comparable prover cost, and 1/4 gives
even smaller proofs at the cost of greater prover computation.*

Other Parameters. We evaluate all schemes over 255-bit prime fields. We
set parameters of the commitment schemes to obtain 128 bits of security (the
exception is that the randomized code generation procedure in Brakedown-PC
is designed to have at most a 27190 probability of failing to satisfy the requisite
distance properties according to the analysis of Sect. 4; this is acceptable because
code generation is done in public). To achieve this, we set the number of columns
opened in Brakedown-PC to 6593, in Ligero-PC-38/39 to 7054, in Ligero-PC-1/2
to 309, and in Ligero-PC-1/4 to 189.

Setup and Method. Our testbed for this section is an Azure Standard F64s_v2
virtual machine (64 Intel Xeon Platinum 8272CL vCPUs, 128 GiB memory) with
Ubuntu 18.04. We measure single-threaded speed for committing, opening, and
verifying; and we report communication cost. For each experiment, we run the
operation 10 times and report the average; in all cases, variation is negligible.

Results. Figurel reports the results. The FRI-PC prover ran out of memory
for polynomials of degree greater than 22°.

For Brakedown-PC and Ligero-PC, the dominant cost for the prover is com-
mitting to the polynomial. For large enough polynomials, Brakedown-PC’s com-
mitment computation is as fast or faster than Ligero-PC-1/2’s, and roughly 2-3x
faster than Ligero-PC-1/4’s. Computing commitments in Ligero-PC-38/39 is faster
than in Brakedown-PC, but Ligero-PC-38/39 does not support multilinear poly-
nomials (see Footnote 4).

For FRI-PC, committing and opening have similar (high) costs: on the sizes
where the FRI prover succeeded (< 22°), committing and opening with FRI-
PC is ~2-9x slower than Brakedown-PC and ~3-7x slower than the slowest
Ligero-PC; for Brakedown-PC, the gap widens with increasing size.

Ligero-PC-1/2 and Ligero-PC-1/4 have lower verification cost than Ligero-
PC-38/39 and Brakedown-PC, though this advantage shrinks as instances grow.
FRI-PC’s verification cost is up to 17x lower than the other schemes.

4 Rate parameter 38/39 cannot be used in the Ligero-PC scheme for multilinear poly-
nomials (as required by Shockwave; Sect.6.2). This is because Ligero-PC’s FFT
uses power-of-two—length codewords, and multilinear polynomial evaluation can only
be decomposed into tensor products with power-of-two-sized tensors (see Sect. 3.1).
Since p is the ratio of one tensor’s size to codeword length, p~! must be a power
of two. As a result, p = 1/2 is the highest rate Ligero-PC supports for multilinear
polynomials.

218 A. Golovnev et al.

m
m -8 104
° o
c o
g 8
g =
Y E1p2
g107 2
& =
2
10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20
log2(# of constraints) log2(# of constraints) log2(# of constraints)
(a) Prover time (b) Verifier time (c) Proof size
-@-Brakedown (3-SNARK) ~t-Ligero -B-Aurora ~&-Lakonia
—#Shockwave (3-SNARK) ~ >-Hyrax ~0-SpartanNizk

Fig.2. 1-SNARK results (Sect.6.2); lower is better. Brakedown, Shockwave, Ligero,
and Aurora are plausibly post-quantum secure.

Brakedown-PC and Ligero-PC-38/39 have nearly the same communication
cost, by design. Ligero-PC-1/2 has ~5-15x less communication than Brakedown-
PC, and Ligero-PC-1/4 has ~6-21x less than Brakedown-PC; like verification
time, their proof size advantage shrinks as instance size grows. FRI-PC’s commu-
nication is significantly lower: ~22-66x less than Brakedown-PC or Ligero-PC-
38/39, ~~2-13x less than Ligero-PC-1/2, and ~1.3-10x less than Ligero-PC-1/4.

In sum, Brakedown-PC has a concretely and asymptotically fast prover (espe-
cially for multilinear polynomials) but gives large proofs and slower verification
than the other schemes. Brakedown-PC’s proofs are larger because higher p
implies more column openings; for large polynomials, the overhead is ~ N
where ¢’ is the ratio of the number of column openings. For these instance sizes,
Ligero-PC’s prover is competitive with Brakedown-PC’s and its proof size and
verification cost are lower. FRI-PC gives much smaller proofs and lower veri-
fication cost but has a much slower prover. Of course, neither Ligero-PC nor
FRI-PC is field-agnostic; Brakedown-PC is.

In our full paper [40] we report on Brakedown-PC and Ligero-PC experiments
with 64 threads. For large polynomials, proving times improve by ~16-34x.

6.2 Evaluation of Brakedown and Shockwave SNARKSs

Metrics, Method, and Baselines. As is standard in the SNARKSs literature,
our metrics are: (1) the prover time to produce a proof; (2) the verifier time
to verify a proof; (3) proof sizes; and (4) the verifier’s preprocessing costs. As
baselines, we consider two types of SNARKSs: (1) schemes that achieve verifica-
tion costs sub-linear in the size of the statement (which implies sub-linear proof
sizes); and (2) schemes that only achieve proof sizes that are sub-linear in the
size of the statement. We refer to the latter type of schemes as %-SNARKS.
Additionally, we focus on schemes that do not require a trusted setup (we refer
the reader to Spartan [63] for a comparison between our baselines with state-of-
the-art SNARKSs with trusted setup).

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 219

10!

10°

Verify (seconds)
Proof size (kiB)

20 22 24 26 20 22 24 26 20 22 24 26
log2(# of constraints) log2(# of constraints) log2(# of constraints)

(a) Prover time (b) Verifier time (c) Proof size

-@ Brakedown (3-SNARK), 256-bit field ~{-Brakedown (3-SNARK), 128-bit field {llFSpartanNIZK, 256-bit field
-%-Shockwave (3-SNARK), 256-bit field f-Shockwave (3-SNARK), 128-bit field

Fig. 3. 1-SNARK results for varying field sizes (Sect. 6.2); lower is better. Brakedown
and Shockwave are plausibly post-quantum secure.

The reader may wonder why we include results for our %—SNARK given that
our implementation is not yet zero-knowledge; after all, the verifier runtime
in any non-zero-knowledge %—SNARK is commensurate with that of the trivial
proof system in which the prover explicitly sends the NP-witness to the verifier.
The answer is three-fold. First, the proof length in our %—SNARK is smaller
than the witness size for sufficiently large instances (N > 213 for Shockwave
and N > 2'® for Brakedown). Second, our $-SNARK actually can save the
verifier time relative to the trivial proof system for structured R1CS instances.
In particular, if the R1CS is data parallel, then the verifier can run in time
proportional to the size of a single sub-computation, independent of the number
of times the sub-computation is performed (this is entirely analogous to how
prior proof systems save the verifier work for structured computations [9,68]).
Third, we expect that the reported performance results are indicative of the
performance of future zero-knowledge implementations.

Unless we specify otherwise, we run our experiments in this section on an
Azure Standard F16s_v2 virtual machine (16 vCPUs, 32 GB memory) with
Ubuntu 20.10. We report results from a single-threaded configuration since not
all our baselines leverage multiple cores. As with prior work [14,32,63,65], we
vary the size of the R1CS instance by varying the number of constraints and
variables m and maintain the ratio n/m to approximately 1.

Performance of Shockwave’s and Brakedown’s %-SNARK Scheme.
Prior state-of-the-art $-SNARK schemes include: Ligero [4], Bulletproofs [27],
Aurora [14], SpartanNIZK [63], and Lakonia [65]. Note that for uniform com-
putations (e.g., data-parallel circuits), Hyrax [74] and STARK [9] are SNARKs,
but for computations without any structure, they are %—SNARKS. We do not
compare with Ligero++ [17] since its source code is not public. Broadly speak-
ing, Ligero++ has shorter proofs than Ligero at the cost of a slower prover, so its
prover will be significantly slower than both Brakedown and Shockwave. We do
not report results from Bulletproofs or STARK as they feature a more expensive
prover than other baselines considered here [14,27]. Hyrax [74] supports only lay-

220 A. Golovnev et al.

ered arithmetic circuits, so as used in prior work [63] for comparison purposes,
we translate R1CS to depth-1 arithmetic circuits (without any structure). None
of the %-SNARKS we consider require a preprocessing step for the verifier.

In the full version of the paper [40], we provide a rough comparison with
Wolverine [75] and Mac’n’Cheese [6], which unlike schemes considered here do
not support proof sizes sub-linear in the instance size. Another potential baseline
is Virgo [78], which like Hyrax [74] applies only to low-depth circuits as they both
share the same information-theoretic component [33,39,72,76].

For Aurora and Ligero, we use their open-source implementations from
libiop [52], configured to provide provable security. For Hyrax, we use its refer-
ence (i.e., unoptimized) implementation [51]. For SpartanNIZK, we use its open-
source implementation [3]. Unless we specify otherwise, we use 256-bit prime
fields. Hyrax uses curve25519 and SpartanNIZK uses ristretto255 [2,42] for
a group where the discrete-log problem is hard, so R1CS instances are defined
over the scalar field of these curves. For Aurora and Ligero, we use the 256-
bit prime field option in 1libiop. Finally, our schemes use the scalar field of
BLS12-381, which supports FFTs (Brakedown does not need FFTs but Shock-
wave does). However, we note that none of these implementations leverages the
specifics of the prime field to speed up scalar arithmetic.

We first experiment with Brakedown and Shockwave and their baselines with
varying R1CS instance sizes up to 220 constraints defined over a 256-bit prime
field. Figures 2a, 2b, and 2c depict respectively the prover time, the verifier time,
and the proof size from these experiments. We find the following.

— Brakedown’s and Shockwave’s provers are faster than prior work at all
instance sizes we measure. Compared to baseslines that are plausibly post-
quantum secure (Ligero and Aurora), Brakedown’s and Shockwave’s provers
are over an order of magnitude faster.

— Brakedown’s proof size is larger than other depicted systems except for Ligero.
Still, its proofs are substantially smaller than the size of the NP-witness for
instance sizes N > 28, Shockwave provides shorter proofs than Brakedown
as well as prior post-quantum secure baselines (Ligero and Aurora). Note that
Aurora has asymptotically shorter proofs than Shockwave, and hence the proof
size comparison would “cross over” at larger instance sizes). Shockwave’s proof
sizes are smaller than that of the NP-witness for instance sizes N > 213,

— Despite their larger proofs, Brakedown’s and Shockwave’s verifiers are com-
petitive with those of SpartanNIZK and Lakonia, and is well over an order
of magnitude faster than the plausibly post-quantum secure baselines.

Performance for Larger Instance Sizes. To demonstrate Brakedown’s and
Shockwave’s scalability to larger instance sizes, we experiment with them and
SpartanNIZK for instance sizes beyond 22° constraints.

For these larger-scale experiments, we use an Azure Standard F32s_v2 VM
which has 32 vCPUs and 64 GB memory. Figures3a, 3b, and 3c depict results
from these larger-scale experiments. Our findings from these experiments are
similar to results from the smaller-scale results.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 221

10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20

-
o
W
-
o
=

Prove (seconds)
= =
o o
9 2

Verify (milliseconds)
3
Encode (seconds)
Proof size (kiB)
=
5

=
o
—
o
°

log2(# of constraints) log2(# of constraints) log2(# of constraints) log2(# of constraints)
(a) Prover time (b) Verifier time (¢) Encoder time (d) Proof size
-@-Brakedown —~tSpartan -l-Fractal -~ Xiphos
—%Shockwave +-SuperSonic ~)-Kopis -O-Groth16

Fig. 4. SNARK results (Sect. 6.2); lower is better. Brakedown, Shockwave, and Fractal
are plausibly post-quantum secure. Fractal results are incomplete because the prover
and encoder ran out of memory for larger instances.

m —°| 10° '/_/.’,/4;/'
— «
2 i - 2 —
c O ~
§ /. 2103 / o 10 1\-/4//‘
£102 z / &
o E k 5
3 > E 103
£ 5 / & e
¢ = 102 102
20 22 20 22 20 22
log2(# of constraints) log2(# of constraints) log2(# of constraints)
(a) Prover time (b) Verifier time (c) Proof size
-@ Brakedown -*-Shockwave ~<Spartan

Fig.5. SNARK results (Sect.6.2); lower is better. Brakedown and Shockwave are
plausibly post-quantum secure.

Performance over Small Fields. To demonstrate flexibility with different
field sizes, we also run Brakedown and Shockwave with a prime field where the
prime modulus is 128 bits. For the latter case, our choice of parameters achieve
at least 100 bits security. We depict these results together with results from our
larger-scale experiments (Figs. 3a, 3c, and 3b).

Recall that our asymptotic results require |F| > exp(§2(\)) to achieve a linear-
time prover, because if the field is smaller than this, certain parts of the protocol
need to be repeated w(1) times to drive the soundness error below exp(—A\).
However, Brakedown and Shockwave are quite efficient over small fields. The
reason is that only some parts of the protocol need to be repeated to drive the
soundness error below exp(—A\) and those repetitions produce only low-order
effects on the prover’s runtime and the proof length. This means that for a fixed
security level, our prover is faster over small fields than large fields, because the
effect of faster field arithmetic dominates the overhead due to the need to repeat
parts of the protocol to drive down soundness error. Similar observations appear
in prior work [9].

222 A. Golovnev et al.

Performance of Brakedown’s and Shockwave’s SNARK Scheme. Prior
state-of-the-art schemes SNARKSs include: Spartan [63], SuperSonic [28], Frac-
tal [32], Kopis [65], and Xiphos [65]. We also give results for Grothl6 [41], a
SNARK whose preprocessing phase involves secret randomness and is therefore
not transparent, but which gives very short proofs, fast verification, and fast
proving times compared to other systems with similar properties.

For Fractal, we use its open-source implementations from libiop [52], config-
ured to provide provable security. For SuperSonic, there is no prior implementa-
tion, so we use prior estimates of their costs based on microbenchmarks (See [65]
for a detailed discussion of how they estimate these costs). For Spartan, we use
its open-source implementation [3]. For Grothl6, we benchmark the libsnark
implementation using the BN254 elliptic curve [53]. For preprocessing costs,
we ignore the use of “untrusted assistant” technique [65], which applies to all
schemes considered here except Grothl6.

Figures 4a, 4b, 4c, 4d depict respectively the prover time, the verifier time,
the verifier’s preprocessing time, and the proof size for varying R1CS instance
sizes for our schemes and their baselines. We find the following from these results.

— Brakedown achieves the fastest prover at instance sizes we measure. Shock-
wave’s prover is slower than Brakedown’s, both asymptotically and concretely,
but Shockwave’s prover is still over an order of magnitude faster than prior
plausibly post-quantum secure SNARKs (namely Fractal [32]).

— Brakedown and Shockwave have the largest proof sizes amongst the displayed
proof systems, but for large enough R1CS instances their proof sizes are
sublinear in the size of the NP-witness (N > 216 for Shockwave and N > 222
for Brakedown).

— Brakedown’s verifier is slower than Shockwave and most other schemes, par-
ticularly Xiphos [65] which is specifically designed for achieving a fast veri-
fier. However, Shockwave’s verifier is competitive with prior plausibly post-
quantum secure SNARKS.

— Brakedown’s and Shockwave’s preprocessing costs for the verifier are com-
petitive with those of prior high-speed SNARKs such as Spartan [63] and
Xiphos [65], and an order of magnitude faster than the prior post-quantum
secure SNARK (Fractal).

Performance for Larger Instance Sizes. To demonstrate Brakedown’s and
Shockwave’s scalability to larger instance sizes, we experiment with them and
Spartan for instance sizes beyond 220 constraints.

For these larger-scale experiments, we use an Azure Standard F64s_v2 VM
which has 64 vCPUs and 128 GB memory. Figures ba, 5¢, and 5b depict results
from these larger-scale experiments. Our findings from these experiments are
similar to results from the smaller-scale results.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 223

References

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ethSTARK. https://github.com/starkware-libs/ethSTARK

The Ristretto group. https://ristretto.group/

Spartan: High-speed zkSNARKs without trusted setup. https://github.com/
Microsoft /Spartan

Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS (2017)

Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS (2017)

Baum, C., Malozemoff, A.J., Rosen, M., Scholl, P.: Mac’n’cheese: zero-knowledge
proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive,
Report 2020/1410 (2020)

Belling, A., Soleimanian, A.: Vortex: building a lattice-based snark scheme with
transparent setup. Cryptology ePrint Archive, Paper 2022/1633 (2022)
Ben-Sasson, E., Bentov, 1., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: ICALP (2018)

Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701-732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8_23

Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
Reed-Solomon codes. In: FOCS (2020)

Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Elliptic Curve Fast Fourier
Transform (ECFFT) part I: fast polynomial algorithms over all finite fields. Elec-
tronic Colloquium on Computational Complexity, Report 2021/103 (2021)
Ben-Sasson, E., Carmon, D., Kopparty, S., Levit, D.: Scalable and transparent
proofs over all large fields, via elliptic curves. Electronic Colloquium on Computa-
tional Complexity, Report 2022/110 (2022)

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems: extended abstract. In: ITCS
(2013)

Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103-128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_4

Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31-60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_2

Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.-J.: Faster batch forgery
identification. Cryptology ePrint Archive, Paper 2012/549 (2012)

Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.:
Ligero++: a new optimized sublinear IOP. In: CCS, pp. 2025-2038 (2020)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
(2012)

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKSs and proof-carrying data. In: STOC (2013)

Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,

224

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A. Golovnev et al.

T., Peyrin, T. (eds.) ASTACRYPT 2017. LNCS, vol. 10626, pp. 336-365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_12

Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 19-46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2
Bootle, J., Chiesa, A., Guan, Z., Liu, S.: Linear-time probabilistic proofs over every
field. Cryptology ePrint Archive, Paper 2022/1056 (2022)

Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge succinct arguments with a linear-
time prover. ePrint Report 2020/1527 (2020)

Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 441-469. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1_16

Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: SOSP (2013)

Broker, R., Stevenhagen, P.: Efficient CM-constructions of elliptic curves over finite
fields. Math. Comp. 76(260), 2161-2179 (2007)

Biinz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: S&P (2018)

Biinz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677—
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Chen, B., Biinz, B., Boneh, D., Zhang, Z.: Hyperplonk: plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023. LNCS, vol. 14005, pp. 499-530. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-30617-4_17

Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. CoRR, abs/1704.02086 (2017)

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKSs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738-768. Springer, Cham (2020).
https: //doi.org/10.1007 /978-3-030-45721-1_26

Chiesa, A., Ojha, D., Spooner, N.: FRACTAL: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12105, pp. 769-793. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1_27

Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov
bound and their cryptographic applications. In: ITCS, pp. 169-182 (2014)

Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
712

Gelfand, S.I., Dobrushin, R.L., Pinsker, M.S.: On the complexity of coding. pp.
177-184 (1973)

Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99-108 (2011)

Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167-189 (1996)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

Brakedown: Linear-Time and Field-Agnostic SNARKSs for R1CS 225

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: Interactive
proofs for muggles. In: STOC (2008)

Golovnev, A., Lee, J., Setty, S., Thaler, J., Wahby, R.S.: Brakedown: linear-time
and post-quantum snarks for rlcs. Cryptology ePrint Archive, Paper 2021/1043
(2021)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305-326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 705-723.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_34
Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Con-
structions. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14303-
8

Housni, Y.E., Botrel, G.: EAMSM: multi-scalar-multiplication for SNARKs and
faster montgomery multiplication. Cryptology ePrint Archive, Paper 2022/1400
(2022)

Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol.
6477, pp. 177-194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

Kattis, A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKSs from list poly-
nomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400 (2019)
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13510, pp. 359-388. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-15985-5_13

Lee, J.: Dory: efficient, transparent arguments for generalised inner products and
polynomial commitments. Cryptology ePrint Archive, Report 2020/1274 (2020)
Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated execu-
tion. In: S&P (2020)

libfennel. Hyrax reference implementation. https://github.com/hyraxZK /fennel
libiop. A C++ library for IOP-based zkSNARK. https://github.com/scipr-lab/
libiop

libsnark. A C++ library for zkSNARK proofs. https://github.com/scipr-lab/
libsnark

Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: FOCS, October 1990

Micali, S.: CS proofs. In: FOCS (1994)

Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University
Press, Cambridge (2017)

O’Connor, J., Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z.: BLAKE3: one
function, fast everywhere, February 2020. https://github.com/BLAKES3-team/
BLAKE3-specs/blob/master /blake3.pdf

Ozdemir, A., Brown, F., Wahby, R.S.: Unifying compilers for SNARKs, SMT, and
more. Cryptology ePrint Archive, Report 2020/1586 (2020)

Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: S&P, May 2013

226

60.
61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

e

78.

79.

A. Golovnev et al.

Pippenger, N.: On the evaluation of powers and related problems. In: SFCS (1976)
Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: STOC, pp. 49-62 (2016)

Ron-Zewi, N., Rothblum, R.D.: Proving as fast as computing: succinct arguments
with constant prover overhead. In: STOC (2022)

Setty, S.: Spartan: efficient and general-purpose zkSNARKSs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704-737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_25
Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge. In: OSDI, October 2018

Setty, S., Lee, J.: Quarks: quadruple-efficient transparent zkSNARKSs. Cryptology
ePrint Archive, Report 2020/1275 (2020)

Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security, August 2012

Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723-1731 (1996)

Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71-89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1_5

Thaler, J.: Proofs, arguments, and zero-knowledge (2020). http://people.cs.
georgetown.edu/jthaler /ProofsArgsAndZK.html

Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1-18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_1
Vlasov, A., Panarin, K.: Transparent polynomial commitment scheme with polylog-
arithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020
(2019)

Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: CCS (2017)
Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS (2015)

Wahby, R.S., Tzialla, 1., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: S&P (2018)

Weng, C., Yang, K., Katz, J., Wang, X..: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for Boolean and arithmetic circuits.
Cryptology ePrint Archive, Report 2020/925 (2020)

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733-764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8_24

Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time.
In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 299-328.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_11

Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: S&P (2020)

Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: S&P (2017)

