
Testudo: Linear Time Prover SNARKs

with Constant Size Proofs and Square

Root Size Universal Setup

Matteo Campanelli1(B), Nicolas Gailly2, Rosario Gennaro3,
Philipp Jovanovic4, Mara Mihali5, and Justin Thaler6

1 Protocol Labs, Aarhus, Denmark
matteo@protocol.ai
2 Aarhus, Denmark

3 Protocol Labs & CCNY, Aarhus, Denmark
rosario.gennaro@protocol.ai

4 UCL, London, UK
p.jovanovic@ucl.ac.uk

5 Aztec Labs, Johannesburg, South Africa
mara@aztecprotocol.com

6 Georgetown & a16z Crypto Research, Washington, D.C., USA

justin.thaler@georgetown.edu

Abstract. We present Testudo, a new FFT-less SNARK with a near
linear-time prover, constant-time verifier, constant-size proofs and a
square-root-size universal setup. Testudo is based on a variant of Spar-
tan [28]–and hence does not require FFTs–as well as a new, fast multi-
variate polynomial commitment scheme (PCS) with a square-root-sized
trusted setup that is derived from PST [25] and IPPs [9]. To achieve
constant-size SNARK proofs in Testudo we then combine our PCS open-
ings proofs recursively with a Groth16 SNARK. We also evaluate Testudo

and its building blocks: to compute a PCS opening proof for a polynomial
of size 225, our new scheme opening procedure achieves a 110x speed-up
compared to PST and 3x compared to Gemini [6], since opening computa-
tions are heavily parallelizable and operate on smaller polynomials. Fur-
thermore, a Testudo proof for a witness of size 230(≈1GB) requires a setup
of size only 215 (≈tens of kilobytes). Finally, we show that a Testudo vari-
ant for proving data-parallel computations is almost 10x faster at verifying
210 Poseidon-based Merkle tree opening proofs than the regular version.

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) have been a pro-
lific area of research in the last decade: a SNARK allows a prover to prove to
a verifier that a certain (non-deterministic) computation F has been performed
correctly, or more specifically that there exists a witness w such that y = F (x, w)

N. Gailly—Work done mainly while the author was affiliated with Protocol Labs.
M. Mihali—Work done mainly while the author was affiliated with UCL and Protocol
Labs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 331–351, 2023.
https://doi.org/10.1007/978-3-031-44469-2_17

332 M. Campanelli et al.

where x is a public input. The crucial property of SNARKs is that the size of
the proof and the verification time should be short, i.e., sublinear in the size of
the computation F and of the witness w. Otherwise a simple proof would be to
send w and have the verifier recompute F (x, w). Additionally, SNARKs can be
zero-knowledge, i.e., they do not reveal any information about w.

SNARKs are evaluated according to various performance metrics where the
three most important ones are (1) the time it takes the prover to generate a
proof, (2) the size of the proof, and (3) the time it takes the verifier to validate a
proof. There are various design trade-offs that can be explored to optimize those
metrics and an essential distinguishing factor that impacts performance are the
preprocessing phases of SNARK systems.

On the one end of the spectrum, there is, for example, the Groth16
SNARK [18] which produces proofs consisting of only 3 group elements and
which has a verification that is independent of the complexity of F , only requir-
ing the evaluation of a few pairings. This makes Groth16 essentially optimal in
terms of proof size and verifier time but it comes at the expense of a super-
linear overhead in prover time and a function-specific trusted setup, the latter
of which is a serious drawback in practice. On the other end are (transparent)
SNARKs that do not require a trusted setup [5,8,32] at all but they tend to
have larger proofs and verifier times, e.g., at least logarithmic in the size of the
witness. Finally, there are (universal) SNARKS which offer a compromise, as
they permit smaller proofs in comparison to transparent systems at the cost of a
single setup that is universal enabling them to prove any circuit up to a certain
size [19]. However, these schemes are still suboptimal as they have slower provers
than Groth16 [12], which becomes particularly evident for large circuits [34],
and they do not have constant size proofs or verification times. Finally, all of
the schemes with a trusted setup produce a linear-size common reference string
(CRS) which is particularly problematic for large circuits (again), as the CRS
has to be downloaded, stored, and moved into RAM at proving time. For exam-
ple, Filecoin [21] uses Groth16 for circuits of size ≈230 but producing a trusted
setup for this size was practically infeasible. As a workaround, provers work with
(sub-)circuits of size ≈227 and generate ≈10 proofs per (large) circuit.

In summary, all of these observations led us to the following research question:

Can we design a SNARK with a small universal trusted setup, constant
size proofs and verification time, and a fast prover?1

1.1 Contributions

In this section we present our main contributions together with an informal
overview of the techniques used to achieve them.

Testudo: Near-Linear Time Prover with Succinct Verification. To achieve
this goal, we start our design from Spartan [28] a sumcheck-based argument
requiring only field arithmetic (e.g. much faster that its point counterpart) and

1 To maximize backward compatibility to already deployed systems, we require that
our SNARK system works with R1CS-based circuits.

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 333

a single multilinear polynomial opening. The original Spartan is a transparent
scheme which relies only on discrete based log curves and transparent polyno-
mial commitment schemes, giving substantially larger proof sizes and verification
times (≈

√
N). To improve on those, the main idea is to have a Groth16 prover

verifying the Spartan proof. Below we describe the technical challenges of this
approach, but one important thing to note here is that in order to obtain a
ZK-SNARK it is sufficient to run the (much simpler and more efficient) non-
ZK version of Spartan since the outer Groth16 proof will hide any information
possibly leaked by the non-ZK inner Spartan proof.

Embedding the verification of a Spartan-based SNARK in a Groth16 circuit
presents various implementation challenges. The sumcheck component of the
proof operates only on field elements and requires the use of a hash function to
make it non-interactive via Fiat Shamir. Field operations can be natively encoded
in R1CS constraints and we adapted our codebase to use Poseidon, a SNARK
friendly hash function, having the advantage of a more efficient representation in
a circuit. However, things get more complicated for writing the R1CS constraints
for the verification of the polynomial commitment opening, since it requires point
arithmetic which, if naively encoded in the circuit, would massively increase the
number of constraints by multiple orders of magnitude. This issue would be
amplified by the relative large size of Spartan’s original commitment’s proof size
and verification – O(

√
N) – which can potentially be reduced if we leverage using

a different PCS with a trusted setup.
Why the name Testudo? Testudo was a type of battle formation that

ancient Rome adopted, where its soldiers operated “under the hood” of their
shields. Testudo, the proof scheme, is similar: a Spartan prover working under
the hood of Groth16.

Testudo-Comm: New Multivariate Polynomial Commitment Scheme. To
reduce the size of the PCS opening, we devise a new polynomial commitment
scheme based on PST [25] and inner pairing product [9] that avoids the use of
FFTs. Testudo, as Spartan, considers circuits of size N = 2n where the polyno-
mial representation of the circuit has n variables, n is logarithmic and so N will
be linear in the size of the circuit. The high level idea is to express the coefficients
of the witness multivariate polynomial from Spartan as a square matrix of size√

N ×
√

N . To commit to this polynomial, the prover commits to each row of the
matrix using PST, leading to a vector !A of size

√
N . Then the prover commits

to !A using the MIPP commitment in [9] (e.g., a pairing product between com-
mitments and random base) to create the final commitment T - a single group
element. To open, the prover carefully performs PST and MIPP opening on

√
N

sized polynomials with many operations in parallel. Both the MIPP and PST
part operate on

√
N sized polynomials.

Since the 2 opening operations can be done in parallel we obtain a consider-
able speedup in practice (about 2 orders of magnitude faster) than PST, even
though it requires heavier operations like log N pairings to create the combined
commitment. Moreover, when comparing with Gemini [6], we estimate our open-
ing procedure to be 3x faster for large N such as 225, where [6] is likely faster

334 M. Campanelli et al.

for small sizes, with the additional cost that it requires to perform FFTs for
practical deployment.

Usage of 2-Chain Curves for Efficient Verification. To enable verifying
group operations in a circuit, we use the standard approach of running Spartan

over a 2-chain curve (such as BLS12-377) where group elements can be encoded
as field elements in a companion curve over which the Groth16 prover is then
implemented. For backwards compatibility reason, we also explored the possi-
bility to run Testudo on curves without a companion curve (such as BLS12-381,
which is currently used by Filecoin proofs).

Aggregation. Additionally, we show how Testudo proofs can be aggregated.
Since the outer layer is a Groth16 proof, we can use standard aggregation tools
such as SnarkPack [16] to aggregate several Groth16 proofs together. Another
option is to aggregate proofs at the inner level and then run a single Groth16
proof on top of the aggregated inner proofs.

Note that an interesting point of this design is that the Groth16 prover can be
outsourced to more powerful machines or a “prover-as-a-service” infrastructure.
Indeed, if the “Spartan” prover ran the sumcheck and the commitment opening,
then resulting proof already hides the witness thanks to the zero knowledge
property of Spartan. As a consequence, more powerful machine can aggregate
many of these “semi” proofs inside one Groth16 proof, without ever seeing the
witness, similar to how Snarkpack works. This settings has practical implications
in terms of deployment that we believe are worth exploring.

Analysis and Experimental Results. As explained in the body of the paper,
our SNARK avoids the use of FFT altogether and obtains a nearly linear-time
prover2. In practice, we show that:

– Our polynomial commitment scheme has a commitment time comparable to
PST while producing opening proofs at two order of magnitude faster (at the
cost of larger proof sizes).

– Our experimental results show that for data parallel circuits, we can estimate
Testudo to run more than ≈5x to ≈10x faster than the fastest Groth16 imple-
mentation (i.e., Bellperson [4]), depending on the size of the small subcircuit.
For example, if the sub-circuit is of size 215, as an upper bound to a circuit
verifying a Poseidon based Merkle Tree opening proofs with 32 layers, then
Testudo can verify 210 such proofs ≈9.7x faster than the Groth16 equivalent.

1.2 Related Work

The literature on SNARKs is very large and we refer the reader to Thaler’s
monograph [30] for a comprehensive survey. In this section we focus on a few
works that are relevant to Testudo.
2 Our prover runs N multi-exponentiations of size N , which is roughly O(N λ

log N
)

group operations with λ > log N for security reason.

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 335

We were inspired to use a 1-level recursion with Groth16 verifying a faster
inner SNARK by the work of Belling et al. [3] where the verification of a GKR
proof [17] for hash computations is outsourced to a Groth16 prover. Concurrently
to our efforts, a similar approach was also taken in the ZKBridge paper [31],
where the verification of a Virgo [32] proof is outsourced to a Groth16 prover.
Because Virgo is also GKR-based, the underlying SNARK in either case is known
to be efficient for large “parallel” computations. We believe we are the first to
apply this approach to a general purpose SNARK like Spartan.

When it comes to universal trusted setup proofs, many systems today do
not use R1CS but rather “custom gates” (sometimes also called Plonkish arith-
metization), and apply SNARKs such as Plonk [15] (or alternatives such as
Hyperplonk [11]) to the resulting constraint systems. The use of “custom gates”
makes a comparison to pure R1CS-based schemes not immediate. We are still
working on achieving meaningful comparisons but we estimate that Testudo is
competitive with approaches that do use custom gates. We point out that many
applications (including our main motivating one – Filecoin proofs) are already
encoded as R1CS systems, and therefore it is very useful to have an efficient
SNARK with universal trusted setup that can be used off-the-shelves.

Our new PCS Testudo-Comm leverages ideas from [16] and [9] to reduce the
size of the trusted setup for the KZG univariate polynomial commitment [20]
to square-root size from linear. We adapted them to achieve the same reduction
for the PST commitment. We note that, as far as we know, we are the first to
implement these techniques. We also point out that the reduction of the trusted
setup size comes at the expense of larger opening proofs: however in our case
that drawback is “absorbed” by the outer Groth16 proof, which compresses the
final proof down to constant.

The work in [6] presents a generic transformation to turn a univariate poly-
nomial commitment into a multilinear one. In Sect. 4 we discuss why we believe
using Testudo-Comm is a better choice for us.

2 Preliminaries

We assume the reader is familiar with the definitions of R1CS, Polynomial Com-
mitment Schemes and SNARKs.

2.1 Notation

We assume we have cyclic groups G1, G2, GT of order q generated by g and
equipped with a bilinear pairing e : G1 × G2 → GT . We denote by p(x1, . . . , xn)
a multilinear polynomial with n variables. For s1, . . . , sn ∈ Zq we write !s =
(s1, . . . , sn) ∈ Z

n
q . Let i ∈ {0, 1}n, we can denote i = (i1 . . . in) as ij ∈ {0, 1}. We

denote the value
∏

j s
ij

j by !s i

336 M. Campanelli et al.

2.2 Cryptographic Assumptions

The security of our constructions holds in the Generic Group Model (GGM) [29].
In Sect. 4 and Sect. 5 we rely on the security of the underlying building to claim
that of our protocols. The security of these building blocks can be argued from
assumptions implied by the GGM. In more detail: • for PST we require the
(µ + 1)δ-Strong Diffie-Hellman and the (δ, µ)-Extended Power Knowledge of
Exponent assumption (see [33] and discussion in [10, E.1]). • for MIPP we require
a variant of the (q,m)-Auxiliary Structured Single Group Pairing (see [9]).

2.3 PST Polynomial Commitments

We refer the reader to Sect. 2.1 for the notation we use in this section. In Fig. 1 we
describe the PST polynomial commitment modified to work over the Lagrange
basis [25].

Fig. 1. The PST commitment scheme in the Lagrange basis.

Note that if n = log N where N is the size of the R1CS, then the trusted
setup is linear in the size of the circuit, and that verification of the opening
requires O(n) (i.e., logarithmic in the size of the circuit) work.

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 337

Fig. 2. The Sumcheck Protocol

2.4 Sumcheck

Let p(x1 . . . , xn) be a multilinear3 polynomial in n variables defined over a field
F. Consider the value a =

∑

i∈{0,1}n p(i), i.e., the sum of the value of p on all
the vertices of the Boolean hypercube. This computation takes N = 2n time and
the sumcheck protocol [22] described in Fig. 2, is a way for a Prover to convince
a Verifier that a is correct in O(n) time, plus a single query to the polynomial p
on a random point in F

n.

2.5 Spartan Overview

In this section we review Spartan [28], a transparent SNARK for R1CS. For
space reasons, ours is a very high level review and the reader is referred to [28]
for details.

Recall that a R1CS instance (F, A,B,C, x,N,m) is satisfiable if there exists
a witness w ∈ F

N−|x|−1 such that

(A · z) ◦ (B · z) = (C · z)

where z = (x, 1, w), · is the matrix-vector product, and ◦ is the Hadamard
(entry-wise) product.

The first step in Spartan is to encode the matrices A,B,C and the vector z
via their multilinear polynomial extensions. Let n = log N . For the matrix A con-
sider the unique multilinear polynomial in 2n variable Ã(t1, . . . , tn, u1, . . . , un)
such that Ã(i1, . . . , in, j1, . . . , jn) = A(i, j) where (i1, . . . , in) is the binary
expansion of i and (j1, . . . , jn) is the binary expansion of j. The polynomi-
als B̃, C̃ are defined similarly, as well as the polynomial Z̃(u1, . . . , un) where
Z(i1, . . . , in) = z(i).

3 We only care about multilinear polynomials for Testudo but the sumcheck protocol
can be run on any multivariate polynomial.

338 M. Campanelli et al.

The satisfiability condition is then equivalent to the following polynomial
F (t1, . . . , tn) being zero on all the points of the Boolean hypercube

F (!t) =





∑

!u∈{0,1}n

Ã(!t, !u)Z̃(!u)



 ·





∑

!u∈{0,1}n

B̃(!t, !u)Z̃(!u)



 −
∑

!u∈{0,1}n

C̃(!t, !u)Z̃(!u)

Consider now the multilinear extension4 of F (·), that is the polynomial
Q(!s) =

∑

!t∈{0,1}n F (!t)eq(!t,!s) where eq(!t,!s) =
∏n

i=1 siti + (1 − si)(1 − ti) is

the multilinear polynomial which is equal to 1 if and only if !t = !s and otherwise
is equal to 0.

Since F (!t) is zero on the Boolean hypercube, Q(!s) is then identical to the
zero polynomial by Schwartz-Zippel lemma. This condition can be verified by
testing Q(!s) on a random point. Spartan is a way to check this evaluation in
an efficient way. More precisely, to verify the satisfiability of the original R1CS
Spartan performs the following steps:

1. Proves that Q(!r) = 0 for a random point !r ∈ F
n. Note that due to the

definition of Q(·) this can be done via a sumcheck protocol.
2. The above sumcheck protocol reduces to proving that σ = F (!ρ) for a random

!ρ ∈ F
n. Due to the definition of F this reduces to proving the value of three

summations
∑

!u∈{0,1}n Ã(!ρ, !u)Z̃(!u),
∑

!u∈{0,1}n B̃(!t, !u)Z̃(!u), and
∑

!u∈{0,1}n C̃(!t, !u)Z̃(!u). Each one of them can also be proven via a sumcheck,
and in Spartan these 3 sumchecks are aggregated into a single one.

3. Finally the above sumchecks reduce to proving the values of the multilinear
extensions on random points, i.e., the values of Ã(!rx, !ry), B̃(!rx, !ry), C̃(!rx, !ry),

and Z̃(!ry).

The final point is achieved via the use of polynomial commitments. The prover
commits to the polynomials Ã, B̃, C̃ (these are called computation commit-
ments since they encode the computation), and Z̃ (witness commitment, since
it encodes the witness).

A major contribution of Spartan is to show how to efficiently commit to
Ã, B̃, C̃ to leverage their sparseness (recall that in R1CS matrices have N2 entries
but only m are non-zero). This requires a non-trivial use of memory checking
techniques, and introduces a substantial overhead which can be avoided in prac-
tice for uniform circuits where the Verifier can evaluate Ã, B̃, C̃ on their own.

Spartan’s focus was to obtain a transparent SNARK, and therefore it uses a
multidimensional Pedersen’s commitment together with an inner product proof
to implement the polynomial commitment. Because we are already using a
trusted setup for the Groth16 layer, we changed the polynomial commitment
to a different one which also has a trusted setup.

4 Such a polynomial of degree at most 1 in each variable always exists for any function
f mapping {0, 1} → F [30].

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 339

3 A Generalized MIPP Protocol

In order to obtain a multilinear PCS with O(
√

N) trusted setup, in this section
we show how to adapt ideas from Section 6 of [9] which were applied to the KZG
univariate PCS. We generalize it to work with multivariate polynomials and the
PST commitment.

Changes from Original MIPP. The protocol in this section has two changes
when compared to the one in [9](we are referring specifically to MIPPk). First,
we generalize MIPP to work on multivariate rather than univariate polynomials.
Second, we show that the techniques also work when the polynomial is repre-
sented in the Lagrangian basis.

The Generalized MIPP Protocol: Given a vector !A = [A1, . . . , AM] of group

elements in G1, the IPP commitment to !A with a CRS !h = [h1, . . . , hM] of group
elements in G2 is

T = CM(!A,!h) =
M
∏

i=1

e(Ai, hi).

Let m = log M . In our case, hi = hχi(!t) for i ∈ {0, 1}m, where !t = [t1, . . . , tm]
is a random secret vector of field elements and h is a generator of G2.

Our generalized MIPP protocol allows a prover to prove that given a public
vector of field elements !b = [b1, . . . , bm], we have that

U = 〈 !A, !y〉 = !A !y =
M
∏

i=1

Ayi

i ,

where the vector !y is defined as !y = [y1, . . . , yM] with yi = χi(!b) for i ∈ {0, 1}m,
where χi(X) is the ith Lagrange polynomial defined as

χi(X1, . . . , Xm) =
∏

j:ij=1

Xj ·
∏

j:ij=0

(1 − Xj).

This proof has size and verification time O(m), which means that the verifier

needs only to read the vector !b and not construct the entire vector !y, which is
only implicitly defined.

The protocol is described in Fig. 3.
Note that there will be m levels of recursion. Also note that the Verifier

cannot compute the vectors !A′, !y′, !h′ since they are too big. Only the prover will
compute those and provide the final value at the end of the recursion to the
Verifier. We show later how the Verifier can check that they are correct. The
Verifier can compute T ′, U ′.

Properties of the Construction. We make the following claims about the
construction above which are easily proven by induction.

Claim: T ′ = CM(!A′, !h′)

340 M. Campanelli et al.

Fig. 3. Generalized MIPP Protocol.

Claim: U ′ = 〈 !A′, !y′〉
Claim: The Verifier will work only in O(m) = O(log M) time

How can the verifier compute the vectors !y′, !h′ without reading them? The
trick is that they are “structured”. It is easy to see by induction that at the
end of the recursion the value ŷ (the collapsed version of !y′ at the end of the
recursion) is equal to (1 − b1 + x−1

1 b1), . . . , (1 − bm + x−1
m bm) which the verifier

can compute in O(m) time on their own.

Similarly the value ĥ (the collapsed version of !h′ at the end of the recursion)

can be seen to be equal to ĥ = h
∏

i
(1−ti+x

−1

i
ti).

Note that ĥ is a PST commitment of a multilinear polynomial in m variables.
The Verifier does not compute it itself (it would be too expensive) but receives
it at the end of the recursion from the Prover. To check that it is correct, the
verifier computes the polynomial in a random point and it asks the prover to
open this PST commitment. The verification time of this construction is O(m).

4 Testudo-Comm: Our PCS with Square Root Trusted

Setup

Now we show how to reduce the size of the PST trusted setup to O(
√

N) using
the generalized MIPP in Sect. 3. See Fig. 4.

Theorem 1. Testudo-Comm (Fig. 4) is secure in the GGM.

Efficiency. Our commitment scheme improves in proving time trading against
proof size and verification time. The key observation for proving efficiency is that,
even though prover has to do more expensive operations (pairings, Gt multiplica-
tions etc.), it does them on a

√
N sized polynomial, which makes a large difference

in practice for large N . For example, in Gemini [6], for 225, it takes at least 36 s to
create an opening proof [23] while we evaluate it takes only 11 s using Testudo’s
commitment (see Sect. 7.1). However, on smaller N , the Gemini transformation is

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 341

Fig. 4. Testudo-Comm

likely to outperform Testudo’s commitment because of the time required to per-
form the pairings and Gt commutations in our case.

We summarize the efficiency properties of the prover in Table 1 assuming a
circuit of size N = 2n and security parameter λ. We then compare the efficiency
for the verifier in Table 2.

– PST: To open, the prover computes for each of the n rounds, a polynomial divi-
sion of size 2n−1 leading to a O(2n−1)-sized polynomial division complexity.
While this operates on field elements, we found out that this division, because
it doesn’t use FFTs, is actually a bottleneck on large sizes (such as 225).

– Gemini: To open, the prover computes for each of the n rounds, 1 KZG
openings of size 2n−i and 2 of size 2n−i−1, leading to a complexity of

342 M. Campanelli et al.

Table 1. Comparison of Prover Efficiency

Scheme Setup Size Committing Opening

Testudo O(
√

N), G1, O(
√

N)G1, 6
√

NG1,

O(
√

N)G2 O(
√

N) pairings, O(
√

N)G2,

O(
√

N)Gt 4
√

N pairings,

4
√

NGt

PST O(N)G1 O(N)G1 2NG1

O(N) poly division

Gemini O(N)G1 O(N)G1 4NG1

Table 2. Comparison of Verifier Efficiency

Scheme Proof Size Verification Time

Testudo ≈ log(N)/2(Gt + G1 + G2) ≈ log(N)/2(Gt + G1 + G2)

PST O(log N)G2 O(log N)

Gemini 3nG2 8npairings, 3nG2, 3nG1

O(2N +N +N) = O(4N)G1 scalar multiplications. For verification, it there-
fore requires performing O(8n) pairings (or 4n pairing checks).

– Testudo: To open, the prover must compute:
• A PST commitment to the q(X) polynomial, so O(

√
N)G1

• A MIPP opening proof, consisting of n rounds where prover computes (a)
O(2

√
N/2i)G1 scalar multiplication to compute the reduced vectors, and

(b) O(2
√

N/2i)Gt and pairings operations to compute the commitment
to each reduced vectors. This leads to O(4

√
N)G1 and O(4

√
N)Gt +

pairings.
• Two PST opening proofs, each of size O(

√
N), one on G1 and one on G2

Remark 1 (Distributed trusted setup). Our construction requires a trusted setup
for the polynomial commitment of a specific form. It needs to encode in particular
a secret tuple of points and their (multivariate) monomial evaluation. We can
obtain an MPC for such a setup by straightforwardly adapting the techniques
from [7]. We will detail these techniques in the full version of the paper.

Remark 2 (Proof Size). The proof size for our commitment scheme are 8x bigger
at 225 than PST. To reduce the size, we can compress the Gt elements on the
torus as in [24]. This could potentially reduce by half the proof size, bringing
it to the same order of magnitude as a PST opening proof. Note however, that
proof sizes do not matter much in the Testudo SNARK as they are verified by
another Groth16 proof on top.

5 Testudo: Our Construction

At this point we recap the general structure of Testudo. Let A,B,C be the input
R1CS of size N .

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 343

Trusted Setup. We assume that a trusted party (or a distributed multiparty
computation protocol, aka ceremony) generates the trusted setup for Testudo-

Comm (which is of size
√

N) and the Groth16 trusted setup for an R1CS corre-
sponding to the verification algorithm of the Spartan sumchecks and the Testudo-

Comm opening proofs (this R1CS has size O(log N). This trusted setup is inde-
pendent of A,B,C and therefore universal.

Computation Commitments. As in Spartan, in a preprocessing stage, the
prover encodes A,B,C as sparse polynomials Ã, B̃, C̃ and commits to them
via polynomial commitments (computational commitments). We note that for
uniform circuits (e.g., data-parallel, with many sub-circuits repeating in regu-
lar patterns), this step is not necessary or much reduced in complexity, since
the verifier can efficiently compute Ã, B̃, C̃ on their own or is only required to
compute the computational commitment for the subcircuit.

Witness Commitments. In the online phase, the prover computes w̃, a mul-
tilinear extension of the witness w and commits to it using Testudo-Comm. Note
that the polynomials are of size O(N) here, corresponding to the number of
R1CS constraints.

Prover. The Testudo prover:

– Executes the Spartan prover to prove the satisfiability of A,B,C (see
Sect. 2.5), with the only difference that it uses Testudo-Comm as the under-
lying polynomial commitment.

– Produces the appropriate openings of the Testudo-Comm PCS.
– Produces and outputs a Groth16 proof that it knows the above modified

Spartan proof.

Verifier. The verifier checks the output Groth16 proof and accept/rejects
accordingly.

Theorem 2. Assuming that Testudo-Comm is an extractable PCS, and Groth16
is a SNARK, then Testudo is a SNARK.

Informally the proof follows from the fact that if Groth16 is a SNARK we
can extract a “modified Spartan” proof – modified to use Testudo-Comm ass
the underlying PCS. But if Testudo-Comm is extractable, then we know that we
can extract the witness (Spartan is a SNARK as long as the underlying PCS is
extractable).

As with all recursive SNARKs we have to heuristically assume that we can
instantiate the random oracle in Spartan to a very specific hash function (in
our case Poseidon) and not lose security. This is because the code of the hash
function has to be embedded in the outer Groth16 proof.

344 M. Campanelli et al.

6 Practical Considerations

Choice of Curves. The original version of Spartan (the starting point for the
Testudo) uses a custom version of curve25519-dalek, which provides an efficient
implementation of a prime-order Ristretto group [26], an abstraction that facil-
itates implementations of prime-order groups with strong security guarantees.
However, as this elliptic curve does not support pairings, composing the original
Spartan with Groth16 is not possible and, thus, we had to find a pairing-friendly
alternative. We opted for BLS12-377 combined with BW6-761 because they rep-
resent the most efficient pair that further supports 2-chaining of pairing-equipped
elliptic curves [1,13,14] which is required for our design. See appendix in the full
version for more details.

Testudo for Data-Parallel Computation. We can make Testudo particu-
larly efficient for data-parallel computation. Consider a relation R∗ composed
of several repetitions of the same relation R(!x(1), !w(1)) ∧ · · · ∧ R(!x(K), !w(K))
(

!x(1), . . . , !x(K)
)

We are able to amortize the proving costs related to the wiring
of the circuit whenever the circuit is of this form.

In the Spartan lingo the building block for proving the wiring of the circuit
refers to a computation commitment. A computation commitment is a polyno-
mial commitment opening to polynomials encoding the structure of the circuit.
If we apply Testudo naively to such a relation we would need to open a compu-
tation commitment of size roughly K|w|. Instead, we modify our building blocks
appropriately to leverage the structure of the circuit and we require computa-
tion commitments whose opening grows only linearly in the size of the small
subrelation R. We expand on this construction in the full version.

6.1 Parallelization and Aggregation of Testudo Proofs

We observe that this framework enables aggregation of proofs at different levels,
each with their pros and cons, but all being compatible with each other, result-
ing in a system that can scale to large instances in practice because it enables
parallelization of the proof generation.

Aggregation at Spartan Level: Assume a prover is running different sum-
checks + PCS openings in parallel using different witnesses, on different
machines (otherwise, the prover should use the data parallel version that requires
the whole witness to be present). In this setting, aggregating the verification
of the sumcheck can be done either via (a) aggregating the different Groth16
sumcheck-verifier proofs together using Snarkpack-like constructions, or (b) hav-
ing one Groth16 proof that verifies multiple instances of the sumcheck. Aggre-
gation for the polynomial commitment scheme could be done by the prover (a)
at the beginning, by committing to a random linear combination of the different
multilinear extensions of the witnesses and (b) by opening at a random point this
combined polynomial. This would require communication between the machines

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 345

to aggregate the polynomials together; given it’s a single round of communica-
tion, we believe it can still be a useful for a practical deployement inside a cluster
of machines.

Aggregation at the Groth16 Level: Instead of verifying a single sumcheck
instance Groth16 proof and a single PCS opening proof, the outer proof can
verify multiple of those. We need further work to estimate the complexity of
the final outer circuit but our current estimation (4M constraints for the outer
circuit) seem to indicate that it is possible to verify in the order of 5–10 proofs
together in a reasonable timeframe, depending on the application.

Note that this aggregation does not require knowledge of the witness and
therefore can be done by more expensive prover machines.

Aggregation on Top: Because Testudo’s final proof is a Groth16 proof, one
can use Snarkpack to efficiently pack thousands of such proofs together. Similar
to previous category, this aggregation level does not require knowledge of the
witness and therefore can be done by more expensive prover machines.

7 Implementation and Evaluation

7.1 Implementation

We have a working Testudo implementation5 that features the sumcheck verifier
proof and our Testudo commitment scheme. We based our work on the Spar-
tan [28] codebase, which has been adapted to use the Arkworks [2] framework
to enable support for any pairing based curves. We also have started an effort
on parallelizing the Spartan codebase, although there are still many low hang-
ing fruits to optimize for. On top of this, we implemented a wrapper around a
BLS12-381 library that supports GPU operations and released it open source on
Github (we do not provide a link in order to keep anonymity of submission).

7.2 Testudo Commitment

We first evaluate our new multivariate commitment scheme compared to the
standard PST algorithm. This has been run over a c5a.12xlarge AWS instance,
i.e., 48 cores with 96 threads. We note that the structure of the commitment
allows for heavy use of parallelism, which we exploited in our implementation.

Figure 5 shows that the Testudo commitment maintains the performance of
the PST commitment and, for large circuit instances, it is 2 orders of magni-

tude faster for opening by significantly reducing the size of the MSM required.
Indeed, it operates on

√
N size MSM. However, verification is slower, due to

the logarithmic number of pairings required to verify the inner pairing prod-
uct argument proof. There are still many low-hanging fruits in the codebase to
speed up verification such as batching the pairing operations in MIPP and PST.

5 The current version of the repository is available at https://github.com/
cryptonetlab/testudo.

346 M. Campanelli et al.

Moreover, we continue to avoid the use of FFT due to the usage of multilinear
polynomials

Verification Speed: As mentioned above, there are many low hanging fruits for
optimizing the codebase. For example, to speed up verification, one can bundle
the MIPP and the PST part together (e.g. run the pairings check all at once).
Currently both MIPP and PST codebase are quite separate.

Proof Size: The Testudo Commitment brings an increase to the proof size in
comparison to the simple PST by a factor of 3 but we ensure this is not an issue
for the communication cost through recursion. Using the BLS12-377, we are able
to efficiently verify commitment openings inside a Groth16 circuit as outlined in
Sect. 6.1.

7.3 Testudo Groth16 Constraints

In this section, we estimate the number of R1CS constraints necessary to verify
the core of Testudo (the sumchecks, the PCS opening and the computation
commitment). Figure 6 shows the number of constraints for each parts according
to the user circuit size (e.g. the circuit that the user writes on Testudo). In this
estimation, we:

– Use Testudo Commitment as the multilinear PCS scheme for the computation
commitment part of Spartan. In the original design, it uses Hyrax.

– Thanks to the previous point, we can now do a random linear combination
of all the polynomials the prover must perform and having the prover only
compute a single Testudo Commitment opening proof

– We verify the core Spartan sumchecks (steps 2 and 3 in Sect. 2.5) and the
grand product sumchecks ([27, bottom of pg. 27]) from the computation
commitment inside the same Groth16 verifier that checks the sumcheck in
the satisfiability proof. This is possible since both are operating on the same
fields.

– Note that we need to verify a PST opening both on G1 and G2 during the
Testudo commitment (for the PST part and for the MIPP part respectively).

The biggest contributor of the R1CS constraints number is the MIPP part,
because it requires to compute log(N) Gt operations (exponentiation is almost
40k in the library we used). We expect this number to drastically go down by
roughly 30–50% with optimizations on Gt computations, such as using the torus
arithmetic version and endomorphisms optimizations [24].

7.4 Testudo on Data-Parallel Circuits

We have the necessary building blocks to estimate accurately the proving time
of data-parallel circuits (even though the implementation does not yet offer that
feature). Specifically, to estimate the time of proving for uniform circuits, we
need to add the time for

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 347

Fig. 5. Comparison between the Testudo and PST commitment schemes. While the
time to compute a commitment is similar for Testudo and PST, see (a), we can see
in (b) that Testudo outperforms PST when opening a commitment for large circuit
sizes by almost two orders of magnitude. On the other hand, graph (c) shows that PST
is faster than Testudo by a factor of 2x which, however, can likely be addressed as
there are various straightforward ways to further optimize the Testudo code. Finally,
graph (d) shows that Testudo opening proofs are about one order of magnitude larger
than PST proofs, which, however, will not have any practical impact on the overall
sizes of Testudo SNARK proofs, as the opening proof will be ultimately verified by a
constant-size Groth16 proof.

– The first sumcheck on the full R1CS matrix (SC1)
– The second sumcheck on the small subcircuit (SC2)
– The Testudo commitment (TC) times on the full witness size - commitment

and opening combined
– The computation commitment time on the small subcircuit (CC)

We have benchmarked these data for two different subcircuit of size (a) 215

and (b) 220. The subcircuit corresponds roughly to the size of a Merkle Tree proof
verification circuit for 32 layers using either (a) Poseidon for 215 or (b) SHA256

348 M. Campanelli et al.

Fig. 6. Constraints for Groth16 verifier of Testudo Proof

Fig. 7. Individual cost of data parallel version of Testudo

Fig. 8. Cost of the data parallel version of Testudo vs Groth16

for 220 as the hash function. We’re estimating the proving time to repeat these
circuits to achieve overall a circuit of 225 constraints: subcircuit (a) is repeated
1024 times (i.e. verify 1024 Merkle Tree proofs), and subcircuit (b) is repeated 32
times. For these parameters, we show that our data parallel Testudo version can
be 9.7x faster for (a) and 4.3x faster for (b) than their Groth16 equivalent.
The improvement is expected to be even larger as the gap of constraints between
the subcircuit and the bigger circuit grows. As further work, we will compare
these improvement to SNARKs based on plonkish arithmetization, although we
are not aware of such speedups for other proof systems at this time (Figs. 7 and
8).

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 349

References

1. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Cryptology ePrint Archive, Report 2022/586 (2022). https://eprint.iacr.
org/2022/586

2. Arkworks contributors (2023). arkworks zksnark ecosystem
3. Belling, A., Soleimanian, A., Bégassat, O.: Recursion over public-coin interac-

tive proof systems; faster hash verification. Cryptology ePrint Archive, Report
2022/1072 (2022). https://eprint.iacr.org/2022/1072

4. Bellperson contributors (2023). The bellperson zk-SNARK library
5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

6. Bootle, J., Chiesa, A., Hu, Y., Orrù, M.: Gemini: elastic SNARKs for diverse
environments. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022.
LNCS, vol. 13276, pp. 427–457. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07085-3 15

7. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050 (2017). https://eprint.iacr.org/2017/1050

8. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press (2018)

9. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing
products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021.
LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-92078-4 3

10. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and compo-
sition of succinct zero-knowledge proofs. In: ACM CCS 2019. ACM Press (2019)

11. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report
2022/1355 (2022). https://eprint.iacr.org/2022/1355

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 26

13. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves
suitable for one layer proof composition. In: Krenn, S., Shulman, H., Vaudenay, S.
(eds.) CANS 2020. LNCS, vol. 12579, pp. 259–279. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-65411-5 13

14. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276,
pp. 367–396. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-
3 13

15. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

350 M. Campanelli et al.

16. Gailly, N., Maller, M., Nitulescu, A.: SnarkPack: practical SNARK aggregation.
In: Eyal, I., Garay, J. (eds.) FC 2022. LNCS, vol. 13411, pp. 203–229. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-18283-9 10

17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: 40th ACM STOC. ACM Press (2008)

18. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

19. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

20. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

21. P Labs (2023). Filecoin: A Decentralized Storage Network
22. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive

proof systems. In: 31st FOCS. IEEE Computer Society Press (1990)
23. Michele Orrù, G.K.: (2023). zka.lc
24. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their

computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp.
371–388. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-
9 25

25. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

26. Ristretto contributors (2023). The Ristretto Group
27. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.

Cryptology ePrint Archive, Report 2019/550 (2019). https://eprint.iacr.org/2019/
550

28. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp.
704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 25

29. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

30. Thaler, J.: (2015–2023). Proofs, Arguments, and Zero-Knowledge
31. Xie, T., et al.: zkBridge: trustless cross-chain bridges made practical. In: ACM

CCS 2022. ACM Press (2022)
32. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its

applications to zero knowledge proof. In: 2020 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press (2020)

Testudo: Linear Time Prover SNARKs with Constant Size Proofs 351

33. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017).
https://eprint.iacr.org/2017/1146

34. zk Harness contributors (2023). zk-Harness

