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Abstract— Information fusion strategies for vehicles navigating
while aiding their inertial navigation systems (INSs) with terres-
trial signals of opportunity (SOPs) are developed and studied.
The following problem is considered. Multiple navigating vehi-
cles with access to global navigation satellite system (GNSS)
signals are aiding their on-board INSs with GNSS pseudoranges.
While navigating, vehicle-mounted receivers draw pseudorange
measurements from terrestrial SOPs (e.g., AM/FM radio, digital
television, cellular) with unknown emitter positions and unknown
and unsynchronized clocks. The vehicles share INS data and
SOP pseudoranges to collaboratively estimate the SOPs’ states
through an extended Kalman filter using tight coupling. After
some time, GNSS signals become unavailable, at which point
the navigating vehicles use shared INS and SOP information to
continue navigating in a collaborative inertial radio simultaneous
localization and mapping (CIRSLAM) framework. This paper
develops such CIRSLAM framework and synthesizes what SOP
and INS information should be shared between collaborators.
Two information fusion strategies are compared: 1) sharing time-
of-arrival (TOA) measurements from SOPs; 2) sharing time-
difference-of-arrival (TDOA) measurements taken with reference
to an SOP. Next, a strategy to efficiently share INS information
along with SOP information is discussed. Monte Carlo simulation
results are presented that support the analytical findings that
vehicles navigating in a CIRSLAM framework, while sharing
and fusing SOP TOA measurements, produce a smaller or equal
estimation error covariance compared to fusing SOP TDOA
measurements. Experimental results are presented demonstrating
two unmanned aerial vehicles (UAVs) navigating in a CIRSLAM
framework with SOP TOA measurements from terrestrial cellu-
lar towers. The final UAVs’ localization error after 30 seconds
of GPS unavailability were reduced compared to using an INS
alone from around 55 m to around 6 m.

Index Terms— Autonomous vehicles, navigation, localization,
INS, signals of opportunity, collaborative navigation, information
fusion, GNSS, GPS, TOA, TDOA, SLAM.
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I. INTRODUCTION

HE last decade has seen a dramatic increase in the

research and development of semi- and fully-autonomous
vehicles. In 2019 alone, the private sector saw record-breaking
investments to develop self-driving cars, autonomous package
delivery robots, unmanned aerial vehicles (UAVs), and other
autonomous vehicles of-the-like [1]. Besides the private sec-
tor, the U.S. Department of Defense requested $9.39 billion
in 2019 for unmanned systems and associated technologies [2].
As these autonomous vehicles begin to operate alongside
human-operated vehicles, requirements on their navigation
system’s robustness and accuracy of their position, velocity,
and time solution become extremely stringent [3], [4]. To meet
such stringent requirements, vehicular navigation systems must
draw and fuse information from various sensing modalities
and, if available, other vehicles in their vicinity. Fortunately,
advances of autonomous features on automobiles have driven
the development of vehicle-to-vehicle (V2V) communication
technologies. These technologies enable current and future
vehicles to share information with other vehicles, which
improve situational awareness and navigation performance.

Today’s navigation systems fuse absolute positioning infor-
mation from a global navigation satellite system (GNSS)
receiver with dead reckoning information from an inertial
navigation system (INS) [5], and potentially a multitude of
other information sources [6] (e.g., lidar [7]-[9], cameras
[10]-[12], and maps [13]-[15]). Relying on GNSS alone to
provide absolute positioning poses an alarming vulnerability:
GNSS signals could become unavailable or unreliable in
environments such as deep urban canyons or environments
experiencing a malicious attack (e.g., jamming or spoofing).
During prolonged periods without absolute position informa-
tion from GNSS, the errors in the INS (and other dead-
reckoning-type sensors) will inevitably diverge, compromising
the vehicle’s accurate and safe operation. These vulnerabilities
have prompted the U.S. Department of Transportation to
emphasize that there is a need for positioning technologies
that can work in the absence of GPS [16].

Signals of opportunity (SOPs) have been demonstrated as
an attractive source of absolute positioning information in
the absence of GNSS signals [17]. SOPs are ambient radio
frequency signals that are not intended for navigation, such
as AM/FM radio [18], [19], cellular [20]-[23], digital tele-
vision [24], [25], and low Earth orbit (LEO) satellite signals
[26], [27]. With appropriately designed receivers and algo-
rithms, SOPs may be exploited for standalone navigation
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[23], [28] or as an aiding source for an INS [29], [30]. This
paper considers using SOPs to provide aiding corrections in a
tightly-coupled aided INS.

SOPs posses several desirable characteristics for vehicular
navigation: (i) ubiquity in most environments of interest,
(i1) signal diversity in frequency and direction, (iii) signal
reception with carrier-to-noise ratio that is often tens of
decibels (dBs) higher than that of GNSS signals, (iv) free
to use with SOP navigation receivers that do not require
network subscriptions, and (v) no deployment cost, since their
infrastructure is already operational and maintained by service
providers. Even if GNSS pseudoranges are reliable, adding
terrestrial SOP pseudorange measurements to the navigation
filter will significantly reduce positioning errors for land, sea,
and air vehicles. This is primarily due to a reduction in the
vertical dilution of precision (VDOP), which is achieved when
terrestrial SOP pseudoranges, which have small elevation
angles, are used with GNSS pseudoranges, which inherently
have larger elevation angles [31]. Even if very accurate GNSS
real-time kinematic (RTK) positioning is being used, intro-
ducing an additional radio signal with positioning information
increases reliability in case the GNSS radio link becomes
jammed, which would render RTK unusable. However, unlike
GNSS, whose satellites’ states are known via their transmitted
navigation message, the states of SOPs, namely their position
and clock states, are typically unknown a priori and must be
estimated [32].

To address this estimation problem, this paper develops
a collaborative inertial radio simultaneous localization and
mapping (CIRSLAM) framework, in which multiple vehicles
estimate the unknown states of terrestrial SOPs along with the
states of navigating vehicles using shared SOP and INS infor-
mation. Single vehicle inertial radio SLAM with terrestrial
SOPs was studied in [30], [33]. Radio SLAM is similar to
the SLAM problem in robotics [34]. However, in contrast to
the static states associated with traditional SLAM landmarks
(e.g., buildings, light poles, trees, etc.) the radio SLAM
map is more complex, as it is composed of both (i) static
and (ii) stochastic and dynamic states, which correspond
to the SOP emitter positions and clock error states (bias
and drift), respectively. Radio SLAM provides an absolute
position source for INS aiding in the absence of GNSS sig-
nals, preventing INS drift during prolonged periods of GNSS
unavailability.

In extended Kalman filter (EKF)-based CIRSLAM, collab-
orating vehicles can improve their state estimates over single-
vehicle inertial radio SLAM by sharing and fusing mutual
measurements made on SOPs along with the vehicles’ INS
information [35]. This paper addresses two practical and theo-
retical issues to determine how to extract the most information
from shared SOP measurements. First, the estimation uncer-
tainties of two information fusion strategies in a CIRSLAM
framework are compared: (i) time-of-arrival (TOA) and
(i1) time-difference-of-arrival (TDOA) taken with reference to
a selected SOP. Second, an efficient method to package and
communicate INS and SOP information is developed.

Terrestrial SOP-based navigation with TDOA measurements
is similar to navigation with Loran- both are hyperbolic
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positioning approaches, except SOPs enjoy the aforementioned
desirable characteristics, i.e., geometric diversity (many tow-
ers), free infrastructure, and diversity in frequency. However,
SOPs come with the additional challenge of having unknown
positions. This challenge is addressed in this paper, complete
with sufficient information for the interested reader to imple-
ment an EKF-based CIRSLAM filter.

The remainder of this paper is organized as follows.
Section II surveys related research on TOA versus TDOA posi-
tioning and maintaining inter-vehicle correlations. Section III
provides a high-level description of the information fusion
strategies that this article studies. Section IV describes the
dynamics model of the SOPs and navigating vehicles as well
as the receivers’ measurement model. Section V describes
the EKF-based CIRSLAM framework, an efficient method
to communicate INS and SOP information between collab-
orators, and the TOA and TDOA information fusion strate-
gies. Section VI compares the estimation performance of
each fusion strategy. Section VII discusses the simulation
environment and presents simulation results comparing the
estimation performance of the TOA and TDOA information
fusion strategies. Section VIII presents experimental results
of collaborating UAVs using cellular SOPs to aid their INSs.
Section IX concludes this paper by summarizing the developed
theory, algorithms, and experimental results.

II. RELATED WORK

The use of TOA and TDOA for positioning has been studied
in different contexts. In [36], it was determined that using GPS
pseudoranges as TOA and TDOA produced identical position-
ing results. In [37], the Cramér-Rao lower bound (CRLB)
was shown to be identical for receivers with known states
that are using either TOA or TDOA to localize multiple
transmitters. In [38], the same conclusion was found for single
emitter localization and was shown to be independent of the
TDOA reference selection when the receivers were stationary
and time-synchronized, with the measurement noise being
independent and identically-distributed. These conclusions do
not extend to the CIRSLAM framework studied in this paper
due to three reasons. The first pertains to the nature of radio
SLAM, which is the unknown SOPs’ states that are simulta-
neously estimated along with the navigating vehicles’ states.
The second arises because the vehicle-mounted receivers’ and
SOPs’ clocks are not necessarily synchronized. The third is
because the measurement noise cannot be assumed to be inde-
pendent and identically-distributed. A preliminary study was
conducted in [39], which determined that TOA produces less
than or equal estimation error covariance compared to TDOA.
However, the analytical findings of the proof were demon-
strated using only single run results and details on reducing the
communication burden associated with transmitting IMU data
as well as the EKF implementation were omitted. In contrast,
this paper illustrates the findings of the proof with Monte Carlo
runs for different: (i) vehicle-SOP geometries, (ii), SOP clock
types, and (iii) SOP measurement qualities. Additionally, this
paper provides a complete treatment of the problem, providing
necessary details for the interested reader to implement the
TOA and TDOA EKF-based CIRSLAM filters.
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Fig. 1. (a) A High-level diagram of an EKF-based CIRSLAM aided by
GNSS (when available) and SOP pseudoranges. The SOP pseudoranges are
fused as either: (i) TOA or (ii) TDOA. This fusion takes place by packaging
information into {An}flv=l and broadcasting them.

To reduce the communication burden associated with trans-
mitting IMU data, vehicles can transmit state estimates and
associated covariances. To deal with unknown inter-vehicle
correlations, covariance intersection fusion has been a popular
method of choice [40]-[46]. In contrast to prior approaches,
this paper maintains inter-vehicle correlations and deals with
the communication burden by determining the minimal suffi-
cient INS information that must be communicated to maintain
consistent estimates. The derived sufficient information is
discussed and the reduction in communicated data is char-
acterized.

III. PROBLEM DESCRIPTION

A high-level block diagram of the developed CIRSLAM
framework that enables a team of N navigating vehicles to
share INS data, GNSS pseudoranges, and SOP observables is
illustrated in Fig. 1(a). During the time between measurement
epochs, each of the n vehicles, where n = 1,..., N, uses
its IMU data and clock model to perform an EKF time
update and then packages INS information into A, to share
it with the other navigating vehicles. At each measurement
epoch, receivers equipped on each vehicle produce pseudor-
anges to GNSS satellites (when GNSS signals are available)
and observables to SOP emitters. This information is then
combined with all {A,,}rly=1 and is sent to a local EKF
measurement update step to perform a tightly-coupled fusion.
This paper answers two questions regarding how the INS,
GNSS, and SOP information should be shared between the
navigating vehicles and fused in their navigation filters: 1) how
should SOP observables be fused: (i) TOA or (ii) TDOA?
2) What INS information should be packaged into A, and
communicated, so that consistent vehicle position estimates
are produced while maintaining minimal communicated data?
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IV. MODEL DESCRIPTION

In this section, the dynamics model of the SOP transmitters
and the vehicles’ states as well as the measurement models
are provided. These models are used in the subsequent sections
for the development of the EKF-based CIRSLAM framework.

A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state vector will con-
sist of its three-dimensional (3-D) position states rsop L

T

[xsop,m, Ysop,m Zsop,m] € R3
Xclk,sop,m = [cOtsop,m» cétsop,m]T IS Rz, where ¢ is the speed
of light, dtsop,m is the clock bias, dfsop,n is the clock drift,
m=1,...,M, and M is the total number of SOPs.

The SOP’s discretized dynamics are given by

Xsop,m k+1) = Fsop Xsop,m (k) + Wsop,m k), k=1,2,...,

I 0 1 T
Fsop=[3*3 Fﬁf]’ Fc1k=[0 1], M

and clock error states

02,3

where I,,x, denotes the n x n identity matrix, 0,,x, denotes
the m x n matrix of zeros, T is the constant sampling interval,

T

T T 5 5
[rsop,m> xclk,sop,m] € R s and Wsop,m e R
is the process noise, which is modeled as a discrete-time

zero-mean white noise sequence with covariance Qsop,n =
i 2
diag [03X3s ¢ chk,sop,m], where

Xsop,m

T3 T2
Q Watsop,m wé?sop,m 3 wé?sop,m 2
clk,sop,m =
T2
m5tsop,m B m5tsop,m

The terms Swa‘rmp,m and S"’Srsop,m are the clock bias and drift
process noise power spectra, respectively, which can be related
to the power-law coefficients, {ha,sop,m }a:_z, which have
been shown through laboratory experiments to characterize the
power spectral density of the fractional frequency deviation of

an oscillator from nominal frequency according to Sy, ,, =~
hO,sop,m . ~ 2
—52% and Sétsop,m ~2m° h-2sopm [47].

B. Vehicle Dynamics Model

Let {b,} denote a body frame fixed at the n'" navigating
vehicle where n = 1,..., N and N is the total number of
navigating vehicles, and let {g} denote a global frame, e.g.,
the Earth-centered inertial (ECI) frame [48]. Moreover, let
0y, € R3 represent the 3-D orientation vector of the body
frame with respect to the global frame and r,, € R* the
3-D position vector of the n™ navigating vehicle expressed in
{g} [49]. Given the n™ INS’s true 3-D rotational rate vector
b € R3 in the body frame and its 3-D acceleration ¢aj,, € R?
in the global frame, the standard strapdown kinematics equa-
tions can be expressed in continuous time as

05, (1) = "(1), )
P, (t) = Eap, (). 3)

In the rest of this paper, the 3-D orientation vector of the
body frame with respect to the global frame will be represented

by the 4-D quaternion vector Z”tj e R
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1) IMU Measurement Model: The IMU on the n™ nav-
igating vehicle contains a triad-gyroscope and a trlad-
accelerometer, which produce measurements

[”w?;nu, ”a?;nu] of the angular rate and specific force, which

are modeled as
"@imu (k) = "1 @(k) + by (k) + ngyr, (k) (4)

"aima(6) = R [2G06) | (@, (6) = £, () + buce.n (k)
+ nacc,n(k): (5)

" Zimu =

where R [g”tj] is the equivalent rotation matrix of Z"(j

(see Appendix); g, is the acceleration due to gravity acting
on the n™ navigating vehicle in the global frame; boyrn € R3
and byce,n € R3 are the gyroscope and accelerometer biases,
respectively; and ngyr , and Raec , are measurement noise vec-
tors, which are modeled as zero-mean white noise sequences
with covariances Qpy,,,n and Qu,n, respectively.

2) INS State Kinematics: The gyroscope and accelerometer
biases in (4)—(5) are dynamic and stochastic; hence, they must
be estimated in the EKF as well. As such, the INS 16-state
vector is given by

T
Xins,n = [zan, an, ’.'Zn’ bTyr no b;-cc n] )
where 7, € RR? is the 3-D velocity of the navigating vehicle.
The INS states evolve in time according to

Xins (k4 1) = fing | Xinsn (), "0k, “ap, (&) |

where f;,¢ is a vector-valued function of standard strapdown
kinematic equations, which discretizes (2)—(3) by integrating
brg and 8ay, to produce g”é(k—i- 1), rp, (k+1), and 7, (k+1),
and uses a velocity random walk model for the biases, which
is given by

bgyr,n(k +1) = bgyr,n(k) + wgyr,n(k)s (6)
bacc,n(k +1) = bacc,n(k) + wacc,n(k)a @)

where wgyr , and Wacc , are process noise vectors that drive
the in-run bias variation (or bias instability) and are mod-
eled as white noise sequences with covariance Qu,,,,» and
Qu,..,n, respectively. The INS state vector is augmented with
the navigating vehicle-mounted receiver’s clock state vector
Xclk,rn € R? to obtain the nt navigating vehicle’s state vector
Xrn = [x;;ls,n’ x-crlk,r,n]T € RIS'

Remark : While this paper develops an aided INS using an
inertial frame (e.g., the ECI frame), other forms of the function
Jfins may be used in the CIRSLAM framework, depending on
the navigation frame chosen, the mechanization type, and the
INS error model used.

3) Receiver Clock State Dynamics: The n™ vehicle-
mounted receiver’s clock states evolve according to

Xcik,r,n(k 4+ 1) = Feexen rn (k) + Welk r,n (k), (8)

where weik,rn € R2 is the process noise vector, which is
modeled as a discrete-time zero-mean white noise sequence
with covariance Q. r,, Which has an identical form to
Qcik,sop,m»> €xcept that Sy, Stsopam and Sy,. e are now replaced
with receiver-specific spectra Sy, , and’ Swa , respectively.
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C. Pseudorange Measurement Model

The pseudorange measurements made by the n™ receiver
on the m™ SOP, after discretization and mild approximations
discussed in [32], are modeled as

nZSOp,m(j) = rp,(j) — F'sop,m 2
C- [5tr,n(j) - 5tsop,m(j)] + nvsop,m(j)a ©)]

where "vsop,n is the measurement noise, which is modeled
as a discrete-time zero-mean white Gaussian sequence with
variance ”o'szopm and j € N represents the time index at
which {" zsop,m}fl\’:1 is available, which could be aperiodic.
The pseudorange measurement made by the n™ receiver on
the /'™ GNSS SV, after compensating for ionospheric and
tropospheric delays, is related to the navigating vehicle’s
states by

nst,l(j) = ”rb,, () — rsv,l(j)||2

C - [5tr,n(j) - 5tsv,l(j)] + nst,l (J)a (10)

where "zgy = ”zgv’ | — C0tiono — COliropo; Otiono and Stiropo are
the ionospheric and tropospheric delays, respectively; "z;V’ ;18
the uncorrected pseudorange; and "vgy; is the measurement
noise, which is modeled as a discrete time zero-mean white
Gaussian sequence with variance " z7g 5 and [ = 1, , L,

where L is the total number of GNSS SVs.

V. COLLABORATIVE INERTIAL RADIO SIMULTANEOUS
LOCALIZATION AND MAPPING (CIRSLAM)

This section develops the EKF-based CIRSLAM frame-
work, illustrated in Fig. 1, to fuse either TOA or TDOA
measurements from unknown SOPs and GNSS pseudoranges
(if available) to aid each navigating vehicle’s INS using tight
coupling. A method to efficiently share INS data between
collaborators is also discussed.

A. EKF-Based CIRSLAM Framework

In a CIRSLAM framework, the states of the SOPs are simul-
taneously estimated along with the states of the navigating
vehicles. This can be achieved through an EKF with state
vector

-
-y T T
x = [xr,l,... xsop’M] .

The EKF produces an estimate, given by % (k|j) £ E[x (k)| Z/]
of x(k), where E[ - | - ] is the conditional expectation operator,
VAR {z(z)}l_l, z is a vector of INS-aiding measurements
(e.g., from GNSS or SOPs), k > j, and j is the last time-step
an INS-aiding measurement was available.

Collaborating navigating vehicles that estimate common
states using mutual observations traditionally fuse information
(state estimates and/or observations) from each collaborator
using one of two main architectures:

T T
s Xp N> Xgop 1o

o Centralized: Each vehicle sends raw sensor data to
a central fusion center, which estimates a common
state vector and periodically sends the estimate to each
vehicle. Centralized architectures produce consistent esti-
mates, i.e., the EKF-produced estimation error covariance
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matches the covariance of the actual estimation error,
since all inter-vehicle correlations are properly main-
tained. The drawback is in the large amount of raw sensor
data that must be communicated to the central fusion
center. Furthermore, the central fusion center is a single
point of failure for the system.

o Distributed: Each vehicle estimates a copy of the state
vector using its own sensor data and then each vehicle
shares and fuses these copies using covariance intersec-
tion (or one of its variants). Distributed architectures
typically require less data transmission between collab-
orators, since raw sensor data is filtered locally at each
vehicle. The drawback is in the difficulty of reaching
consensus, i.e., in reaching agreement between the esti-
mate copies, when inter-vehicle correlations are unknown.
While covariance intersection techniques are used to fuse
estimates with unknown inter-vehicle correlations, they
typically produce overly conservative estimates, i.e., the
EKF-produced estimation error covariance is larger than
the actual covariance of the estimation error.

In contrast to traditional centralized and distributed
approaches, the approach of the distributed CIRSLAM frame-
work illustrated in Fig. 1 is for each navigating vehicle to
monitor the entire state vector x, but to distribute the INSs
(the EKF time update step) amongst the navigating vehicles
and to optimize what information is shared in A, (TOA or
TDOA from SOPs and what INS data) and how often A,
is transmitted for aiding corrections (the EKF update step).
This approach eliminates a single point of failure, reduces
the amount of transmitted data, and with the appropriate
transmitted information in A,,, the entire state vector x that is
monitored at any particular vehicle will be brought into con-
sensus with the state vector monitored at all other vehicles. The
distributed CIRSLAM framework’s operation is summarized
in algorithm 1.

Algorithm 1 Distributed CIRSLAM Framework

Given: x(j|j) and Py(j|j), each of the N vehicles con-
ducts the following:
for n=1,...,N
o Local Prediction: Locally produce X ,(k|j) using
an INS and clock models and {Xop, (k| j)}fn/":1 using
SOP dynamics model.
o Communication: Package X, (k|j), TOA (or TDOA)
measurements, and INS data into A,, and transmit A,.
o Assimilation: Unpack {Ai},N: (\n, assemble x(k|j),
and produce Py (k|j).
o Correction: Perform EKF measurement update to
produce x (k|k), and Py (k|k).

end for

In the following sections, the TOA and TDOA information
fusion strategies are developed and compared. Both strategies
have a common prediction (time update) step, which uses the
on-board INS of each vehicle and clock models. Both strate-
gies use GNSS pseudoranges as TOA measurements if they
are available during the correction (measurement update) step.
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The distinction between these strategies is in how the
SOP pseudoranges are fused to aid the navigating vehicles’
on-board INSs: either TOA or TDOA with reference to
selected SOPs.

B. Local Prediction

Each vehicle only locally produces a prediction of its own
state vector X, (k| j) and of the SOPs’ {Xsop,m (klj)}%zl. The
full state prediction x(k|;j) and the corresponding prediction
error covariance Py (k|j) become available locally during the
assimilation step, which is described in Subsection V-D.

1) State Prediction: To produce &y, (k|j) = [&LM(M ),

-
ifIIk e (Kl j)] , the INS on-board the n'" navigating vehicle
integrates " zimy between aiding updates to produce a predic-
tion of Xips,,. The one-step prediction is given by

Finsan G+ 117) = Fins | Binsn G100, S, () |, (1)

where “7&(j) and 8ap,(j) are the estimates of “7@(j)
and 8%ap,(j), respectively, obtained from (4)—(5) and
Xins,n (j1j) [30], and the function f,, contains standard INS
equations, which are described in [50], [S1]. Assuming there
are x time-steps between aiding updates, the navigating vehicle
uses IMU data {"zimu(i)}f: j to recursively solve (11) to
produce Xips, (k|j), where k = j + x. The vehicle-mounted
receiver’s x-step clock state prediction follows from (8) and
is given by

-’%clk,r,n (k|]) = F}cclk-%clk,r,n (] |])a

where

Feoo I k=0
AT, Fax x> 0,

The SOPs’ k-step state prediction, which follows from (1),
is given by

fsop,m (k|J) = F}scop-’%sop,m(ﬂj), m=1,...,M.

2) Prediction Error Covariance: Although the prediction
error covariance is not produced at this point in the algo-
rithm, its computation is presented here to explain why it
cannot be produced until assimilation, which is discussed in
Subsection V-D. The x-step covariance prediction is given by

Py (klj) = F(k, )H)Px(GI)HF (k, j) + QT (k, j), (12)
F(k, j) = diag [Fe1(k, j), ..., Fen(k, j),
F< .. F ]

sop> sop

Fr,n (k, J) £ diag [(Dins,n (ka J)7 lek] 5

k
(Dins,n (ka J) £ H (Dins,n (i);
i=j

13)

where @iy , (1) is the Jacobian of f; ¢ evaluated at Xins,, (i]7).
The structure of @iy, (7) is provided in Appendix. The matrix
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Fig. 2. Local prediction for vehicle n. The inputs are IMU data {" zjy (i )}fle.

and the current state estimates ¥r , (j|j) and {¥sop,m (j|j)},[,\14:1- The outpufs

are the time updates X*;,(k|j) and {fcsop,,,,(ku)}%:1 and the Jacobian
(Dins,n (k, ])

Q" (k, j) is the propagated process noise covariance, which
has the form

QF (k. j) £ diag[Q], (k. j)..... Qv (k. /).
(o U ) RUSIY o )1 I

[[>

k
> Feali, HQral)FL, G, j),

i=j

k

Qlopm k. ) 2 D FE D Quopm[Flopl 7,
i=j

where Qr,n(i) £ diag [Qins,n (@), Cchlk,r,n] and Qjns, is the
n™ navigating vehicle’s discrete-time linearized INS process
noise covariance. The structure of Qips,, (i) is provided in
Appendix. The local prediction for vehicle n is illustrated
in Fig. 2.

Note that at this point in the algorithm, the prediction
error covariance (12) cannot be computed at vehicle n, Vn €
{1,..., N}, since all matrices {Diys(k, j)}flv:1 are not avail-
able at each vehicle. In the next subsection, it is shown what
INS information each vehicle transmits, so that (12) may be
computed at each vehicle during the assimilation step.

QL (k. /)

C. Vehicle-to-Vehicle Communication

To produce the prediction error covariance (12) at each
vehicle, the matrices {®ing » (k, j )},IZV=1 must be available. It can
been seen in Appendix that the components of these matrices
are a function of IMU data from each respective navigat-
ing vehicle. Therefore, two possible approaches to make
{Dins,n(k, j )}fl\’: , available to each vehicle are: 1) each vehicle
communicates its raw IMU data or 2) each vehicle commu-
nicates the full matrix (13). On one hand, IMU data rates are
typically between 100 Hz to 400 Hz, with 6 floating-point
values per data sample. On the other hand, the matrix (13)
is in R1>*13, requiring the transmission of 225 floating-point
values every EKF measurement update, which typically takes
place between 5 Hz to 10 Hz. These data rates make the
transmission of either raw accelerometer and gyroscope data
or the matrix (13) undesirable for several reasons: (i) large
communication bandwidth, (ii) packet drops due to lossy
communication channels, and (iii) privacy concerns. Consider
an application nearby an airport or takeoff/landing facility with
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dozens of UAVs. Communicating data unnecessarily when
the number of communicators scales up would consume the
spectrum, which is a very scarce resource.

To address this communication burden, instead of trans-
mitting raw IMU data or the full matrix (13), a packet
Ains,» containing minimal sufficient INS information to recon-
struct an approximation of (13) with minimal degradation
in performance is transmitted once per x-step propagation.
To derive the sufficient INS information to be communicated,
the structure of (13) after a x-step propagation is investigated.
After carrying out x successive multiplications, the form of
matrix (13) becomes approximately

(I’ins,n(kaj)
Ixs  03x3  03x3 «TRI[q;,] 033
[vinx] I3xs I3x3T D), %R[éln]
A vaax] 03x3 I3x3 >, kTR[qy,] |-
033 03x3 0343 L33 0353
033 03x3  03x3 033 I3x3

(14)

where k = k — j; [v1,%X] € R3*3 and [v2,n %] € R3*3 are
skew symmetric matrices whose elements are defined from the
vectors vy, € R3 and v, € R3, respectively; the matrices
R[q,,] € R3*3 and R[gq,,] € R3*3 are rotation matrices;
and ® , € R3*3 and D), € R3*3 are arbitrarily structured
matrices.

Note the following two properties of the structure (14).
First, since vy, x| and |v2,x] maintain a skew symmetric
form, they can be transmitted using only three elements
each. Second, the scaling pre-multiplying the matrices R[g ,]
and R[g, ,] is deterministic and only dependent on the IMU
sampling period 7" and the number of iterations «; therefore,
these matrices can be converted to quaternions g, , and ¢, ,
and then transmitted using only four elements each. From
these properties, the sufficient INS information to package for
transmission is found to be

A - —
AiHS,Vl - {vl,}’h v2,ns ql,ns q2,n> q)l,na <I)2,}’1} >

which only requires the transmission of 32 floating-point
values every EKF measurement update. When EKF updates
happen at the rate of SOP measurements Tsop, transmitting
Ains,n instead of IMU data or the matrix (13) reduces the
number of transmitted floating-point values by at least

32
11— x 100%,

min {6 X o ,225}

mi

where min {a, b} returns the smallest value among a and b.
The tradeoff for significantly reducing the amount of com-
municated data is in positioning performance. Specifically,
the vehicles’ position estimation errors increase due to the
approximation in (14), which arises due to the rotation matri-
ces R[q, ,] and R[g; ,] deviating from true rotation matrices
as Tsop increases. The increase in position error was shown to
be minimal for typical values of Tyop and moderate probability
of packet loss [52].
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The INS information Ajns,, 1S packaged inside of A, along
with other necessary information for each vehicle to produce
an EKF update, and then is broadcasted by the n" vehicle
at the fixed rate of measurement epochs. The packet A, is
given by

Ay (k) = {fins,n(klj)s Ains,n (K, ), "zsv(k), nzsop(k)} , (15)

where "zgy and "zgop are GNSS and SOP pseudoranges,
respectively, which are discussed further for each strategy in
the following subsections.

In practice, the sharing of these packets over a wireless
channel may cause their contents to be corrupted with errors.
If the errors can be detected, the corrupted packets may
be discarded. When the packets A, are transmitted at SHz,
which is the sharing rate used in this paper, around only
1 meter of error is introduced when 60% of the packets were
discarded [52].

D. Assimilation

Assuming a fully-connected graph, as in Fig. 1, the packets
{A, (k)}ﬁ’: | contain all components of the state prediction to
computer x (k| j) and (12). To compute (12), the matrix F(k, ;)
is first assembled by using the information in {Ains,n}ﬁl\’:l.
The vectors v, and v, , are used to reconstruct the skew-
symmetric matrices |vy ,x] and [v;,x] in (14) through

0 —a3  ap ay
lax| =] a3 0 —a1 |, a2 | a |. (16)
—ay ay 0 as

The quaternions g, , and g, , are converted to rotation
matrices through

R[g] =153 — qalgx] +2lgx)?,

where ¢ 2 [g. 0" = [q1. 92, g3, qo]" and gqo is the
real component of the quaternion. Each vehicle may now
compute the EKF measurement update and the corresponding
corrected estimation error covariance. In the following two
subsections, the correction equations are developed for two
information fusion strategies: (1) TOA and (2) TDOA with
SOP referencing.

E. TOA Information Fusion Strategy

In this subsection, the EKF-based CIRSLAM measurement
update for fusing TOA measurements from SOPs is described.
Specifically, the correction to the estimation error X (k|k) is
provided, since it will be compared with the estimation error
of the TDOA fusion strategy, denoted iﬁ(klk), in Section VL.

1) TOA Measurements: The EKF measurement update will
correct the navigating vehicles’ INS and clock errors given the
measurement vector

T
T T
I:st’ Zsop] ’

[I>

Z
T T
a[1,T N, T af1,T N, T
Zsv — [ [(STZRERE zsv] > Zsop — [ Zsop> - > Zsop | o
T T
"Zsv = [nst,l, cees nst,L] > nzsop = [nZsop,b cees nZsop,M]
a7
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The correction equations are described next for: GNSS
availability (L > 0) and GNSS unavailability (L = 0).

2) TOA Correction Equations: Given a prediction error
x (k| j), the error correction and corresponding corrected error
covariance are given by

¥ (klk) = (k| j) — LK)S™ (k) (k),

Py (k|k) = Px(k|j) — L(t)S™ (kLT (k), (18)
L(k) 2 P (k| j)H' (k), (19)
S(k) £ H(k)L(k) + R(k), (20)
v(k) £ z(k) — 2(k| ), 1)

where z(k|j) is a vector containing the predicted GNSS
pseudoranges and the predicted SOP TOA measurement set.
The matrix H is the measurement Jacobian and has the form

H [ Hsv,r 0NL xX5M
Hsop ’

Hsv,r £ diag I:lev,r, cee NHsv,r] 5

| Hyop.r

- : T
01x3 "lsTv,l O01x9  hey
ey =| © i1 i,
1 T
| 013 "ISTV,L 01x9  hgy
Hyop 2 diag | 'H NH
sop,r — dlag SOp,I's =+ + s sop,r | »

where "Hgop, r has the same structure as "Hiy ;, except ”IIV I

is replaced with nT

sop,m?
s [T NgT 17
Hsop = Hsop’ R Hsop R
anop = diag [anop,b cee, anop,M] R
ny a Tb, —Tsvl na A Tb, = Isop,m
lsv,l T O—— sopym = T ,
”rb,, — rsv,l” ”rby, — Fsop,m I
A 1T T A T
nHSOp,m - I:_nlsop,ms _hc]k] 5 hclk - [19 O] 5

and R is the measurement noise covariance. Note that R is
not necessarily diagonal, since there are no assumptions made
on the measurement noise statistics, except that R > 0.

Note that if GNSS pseudoranges become completely
unavailable, i.e., L = 0 and z = zsop, the state and covariance
corrections are identical, except that the Jacobian is adjusted to
account for GNSS SV pseudoranges no longer being available,
specifically

H= [HSOP,I”) Hsop] . (22)

F. TDOA With SOP Referencing Information
Fusion Strategy

In this information fusion strategy, TDOA measurements
are computed at each vehicle-mounted receiver by differencing
the drawn pseudoranges with a selected reference SOP. The
produced estimation error and corresponding covariance of x
when TDOA measurements are used will be denoted ch, and
P3z, respectively.
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1) TDOA Measurements: Each navigating vehicle is free to
select an arbitrary reference SOP, i.e., the SOP measurement
set computed by the n'M navigating vehicle becomes

nzT A& [nz nz T
Zsop — [ Zsop,1s -+« Zsop,M] s
ng A n n
Zsop,m — Zsop,m — Zsop,i,

= |Irp, () = rsop.mll2 — Irp, () — Fsop.s, 2
+c- [5tsop,m (]) - 5tsop,1,, (])]

+ nl)sop,m () - nUsop.zn 28 (23)

where 1,, is the reference SOP number used by the n'" vehicle
and m € {1, ..., M}\1,. Each vehicle replaces the SOP TOA
measurements zZsop With the SOP TDOA measurements Zgop
in the transmitted packet (15). Note that since the SOP trans-
mitters are not synchronized, the TDOA measurements (23)
are parameterized by the clock biases of both transmitters;
therefore, both of these biases must be estimated. This differs
from traditional TDOA-based localization approaches that
assume synchronized transmitters, which allow for these biases
to cancel and to be removed from the estimator.

The measurement set available to each vehicle-mounted
receiver in the TDOA fusion strategy may be written in terms
of the measurement set (17) of the TOA fusion strategy as

za| Zv || Iveve ONLxnm || Zsv | & =7

Zsop OnmxNL T Zsop ’
where T is the difference operator matrix that maps zsop to
Zsop» Which has the form

(24)

T = diag[T,,,... T,y |, (25)
1 ... 0 -1 0 ... 07
0 ... 1 -1 0 ... 0
To=1lo 0 -1 1 ... ol (26)
0 ... 0 -1 0 ... 1]

where the column of “—1” resides in column ;. The structure
of the prediction error covariance Pz(k|j) is not dependent
on the fusion strategy; therefore, it has the same form as (12).
The correction equations are summarized next.

2) TDOA Correction Equations: Given a prediction error
x (k| J), the error correction and corresponding corrected error
covariance are given by:

X(klk) = X (k| j) — LS~ "o (k), (27)
P:(klk) = Pe(k|j) — L()S™ (W)L (k), (28)
L(k) 2 Pz (k| j)H" (k) (29)
S(k) 2 H(k)L(k) + R(k) (30)
b(k) £ Z(k) — z(k ), 31)

where z(k| J) is the predicted GNSS pseudoranges and SOP
TDOA measurement set and H is the corresponding measure-
ment Jacobian, which is related to H through

fi & [ InLxnL ONLxNM] [ Hsy 0NL><5M:|

ONmxNL T Hsop,r Hsop
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The measurement noise covariance is given by R =
ERET.

Note that if GNSS pseudoranges become completely
unavailable (L = 0), ie., z = Zsop» the state and covariance
corrections are identical to when L > 0, except that the dimen-
sion of Inz«n1 reduces to zero, modifying the measurement
Jacobian to take the form

H = TH, (32)

where H is the measurement Jacobian (22) from the TOA
fusion strategy when L = 0.

VI. INFORMATION FUSION STRATEGY
PERFORMANCE COMPARISON

This section studies the estimation performance of the two
information fusion strategies presented in Section V. First,
it is shown that the TDOA estimation performance is invariant
to the SOP reference selection. Then, it is shown that the
TOA strategy yields less than or equal (in a positive semi-
definite sense) estimation error covariance corresponding to
the navigating vehicles’ positions than the TDOA strategy.

A. TDOA SOP Reference Selection

In this subsection, it is shown that the estimation error
and error covariance are invariant to the choice of the SOP
reference, as summarized in Theorem 1.

Theorem 1: Consider an environment comprising N
receivers and M unknown SOPs with arbitrary: (i) receiver
and SOP clock qualities (i.e., arbitrary {chk,r,n}ﬁlv=1
and {chk,sop,m}%=1 ), (ii) geometric configurations, and
(iii) measurement noise covariance (i.e., R > 0, but not
necessarily diagonal). The EKF-based CIRSLAM yields
an estimation error and corresponding estimation error
covariance that are invariant to each receiver’s SOP reference
selection.

Proof: The proof will only consider GNSS unavailability
periods (L = 0), i.e., Z = Zsop. The proof can be straight-
forwardly extended to GNSS availability (L > 0). Given
x (k| j), the correction x(k|k) can be computed from (27).
Substituting (32) into (29)-(31) gives

L(k) = Py (k| )H' (k)T"

= L(k)T', (33)
S(k) = TH(k)L(K)T" + TR(k)T"

= TS(K)T', (34)
(k) = Tz(k) — Tz(k|j)

= T (k). (35)

Substituting (33)-(35) into (27) yields
X(klk) = x(k|j) — L()T" - [TSC)T 1" " Tv(k). (36)

Recall that T is the difference operator, which computes
the TDOA measurements when the n'" receiver references the
drawn pseudoranges with respect to an arbitrary SOP number
1, and has the block diagonal structure (25).

Next, consider the block of T that corresponds to the
nth receiver, which can be written as

T, =J, —ve

In°

(37)
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where J,, € RIM=DxM] i formed by removing the zﬁlh row
from an identity matrix,

v2[1,..., 1T e RM-D,

and e,, denotes the zilh standard basis vector of appropriate

dimension consisting of a 1 in the 1" element and zeros else-
where. From (37), it is easy to verify that T,, e RI(M—1)xM]
. T. .

is full row-rank and that 1 £ [vT, 1] is a basis for the null
space of T,,; therefore,

M
0="T,1=>T,e
i=1

M

= — E tln,i = tl,,,qs Vq € [1,...,M],
i1
tl'#q

(38)

where t,,; = T,e; and t,,, = T, e, denote the i" and
g™ column of T,,, respectively. Partitioning T, into columns
yields
le, = [tln,la cees tln,M]
= [Tln,liMflstln,M]a (39)

where T,, 1.p—1 denotes the matrix consisting of the columns
t,,.1 through ¢, a—1. Substituting the left-hand side of (38)
for ¢ = M into the last column of (39) gives

M-1
T, = [T,,,,I:Ml, -> t,,,,l} : (40)
i=1
Next, consider the difference operator matrix
/ = 1 ’ ’
T = diag [Tll,...TlN], (41)

which forms the set of TDOA measurements when the n®
receiver uses SOP 1), as its reference, where 1, € [1, ..., M].
Proceeding in a similar manner that was used to write T,,
as (40), it is straightforward to show that T, can be written as

M-1
T, =|Ty 1:m-1,— E tyil-
i=1

Note that since T,, and T,; are full row-rank, the matrices
T, 1:m—1 and T,;J:M_l are square and invertible; therefore,
there exists a matrix E,, such that

(42)

Ty 1:m—1 =E, ' Ty, i1 (43)

From (43), the columns of T12= 1:M—1 are related to the
columns of T,, 1.p—1 through

tyi=E "t i=1,..,M-1 (44)

Substituting the righthand side of (43) and (44) into the
righthand side of (42) yields

M—1
T, = [Eanzn,hMla—Enl > t’"’l}

i=1

=E,'T,,. (45)
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The relationship between T” and T can be found by substi-
tuting (45) into (41) forn =1, ..., N, which gives
T' = diag [E]'T,,, ... Ey'T, |

=ET, (46)

where E-! 2 diag [E;l, N .,E;vl]. Solving (46) for T and
substituting into (36) gives

X(klk) = x(k|j) — L(TTE"
JET'SKTTE' 1 'ET v (k)
= x(k|j) — L)TTET
ET[TS*)T T 'E'ET v(k)

= x'(k|k), 47)

where ¥’ (k|k) is the estimation error correction when the
difference operator matrix T is used. The last step in (47)
follows from X(k|j) = x’(k|j), since they only depend on
IMU data, making (47) take the same form as (36), except
that T is replaced with T’.

Next, consider the EKF Riccati equation, which governs the
time-evolution of the estimation error covariance

Pi(j +xlj) = F{Pe(jlj — ) — Pz(jlj — ©)H' ()
_ _ _ —1
[BGPG1 = 0BT () +R()|
HGHP:(lj — ) FT +QF(j +x, j),

where the time arguments (j + x, j) have been dropped from
F to simplify the notation. Substituting (32) into H and using
the relationship found in (45) gives

Pi(j +xlj)
= F{Pz(jlj —x) — Pz (jlj — x)H (j)T'
-1

TGP = OHT(HTT + TR)TT
“TH(j)Pz(jlj — ©)JFT + Q" (j +x, j)

= F{Pz(jlj —x) — Pz(jlj —)H'(j)TTET
ET[THGPGL - on T+ TRGTT] B
"ET'H(j)Pz(jlj — )}FT +Q*(j +x, )

=Py (j +xl)),
where Py (j + x|j) is the prediction error covariance when
the difference operator matrix T’ is used. g

B. TOA Versus TDOA

In this subsection, it is shown that fusing TOA measure-
ments from unknown SOPs produces a less than or equal
(in a positive semi-definite sense) position estimation error
covariance matrix for each navigating vehicle than fusing
TDOA measurements.

Theorem 2: Consider an environment comprising N
receivers and M unknown SOPs with arbitrary: (i) receiver
and SOP clock qualities (i.e., arbitrary {chk,r,n},}lv=1
and {chk,sop,m}ﬁ‘;’:1 ), (ii) geometric configurations, and
(iii) measurement noise covariance (i.e., R > 0, but not
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necessarily diagonal). The EKF-based CIRSLAM that fuses
pseudoranges with a TOA fashion yields a less than or equal
(in a positive semi-definite sense) position estimation error
covariance for each of the navigating vehicles than a TDOA
fashion.

Proof: Define the correction (measurement update) esti-
mation error covariance associated with the n" receiver’s

position for fusing TOA measurements at time-step k as
Py, (k1K) = uPx(kIK)Y,) (48)

and the correction (measurement update) estimation error
covariance associated with the n™ receiver’s position for fusing
TDOA measurements at time-step k as

P;, (klk) 2 Y, Pz (kIk)Y,,
T,

[[>

[03><y,,‘1, I3><3, 03><y,,‘2] 5 (49)

where y,.1 £ 17n — 14 and y,2 £ 17(N —n) + 5M — 11.
Substituting (18) and (28) into Py (k|k) and Px(k|k) in (48)
and (49), respectively, and differencing yields
Py, (klk) — Py, (k|k)
=, [L(k)S_l(k)LT(k) - L(k)s—l(k)LT(k)] YT (50)
Note that the prediction error covariances Py (k|j) and
P; (k|j) are only a function of the IMU data, making them
independent of the information fusion type, i.e., Py (k|j) =

P; (k|j); therefore, they have canceled and did not appear
in (50). Substituting (33) and (34) into (50) gives

P;, (k[k) — Py, (kIK)
= Tu[L(K)S™ (W)L (k)
—L(TT (TS(k)TT)_1 TTLT (k)| x]

= T, LE)[S" (k) - T (TS(k)TT)_1 TIL (Y. (51)
Define the matrices

A(k) S Sc(k)TT c RNMXN(M*I)’
B, (k) = Y, L(k)S; (k) e R>NM =1, ...

(52)
N, (53)

where S, is the Cholesky decomposition of S, ie., S =
SCSI. Since S is symmetric positive-definite, S; is unique and
invertible. Substituting (52) and (53) into (51) yields

Py, (kIK) — P, (k[K)

=mwﬂmMmM—AmﬂM0mmﬂlﬁnﬂBﬂm

54
Define the matrix
—1
Q) 2 Ak) [AT(k)A(k)] AT (k). (55)
Substituting (55) into (54) gives
Pr,, (klk) — Py, (k|k) = B,()M(K)B](k),  (56)

where M(k) 2 Inmsnm — Q(k). Note that,

(i) The matrix Q € RVY*NM 5 an orthogonal projection
matrix, since it satisfies Q2 = Q = QT. It has NM —-1)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

eigenvalues of ones and N eigenvalues of zeros, since
rank(Q) = rank(A) = N(M —1). Therefore, Q is positive
semi-definite.

The matrix M is also an orthogonal projection matrix,
and its eigenvalues consist of N ones and N(M — 1)
zeros [53]; therefore, it is positive semi-definite.

It follows from (ii) that

(ii)

B, (k)M (%)B, (k) > 0. (57)
From (56) and (57), it can be concluded that
P;, (klk) = Py, (kK. (58)
U
VII. SIMULATION RESULTS
This section presents simulation results evaluating

Theorem 1 and Theorem 2. The simulation settings and EKF
initialization settings are described.

A. Simulation Environment and Settings

The simulation environment consists of N = 4 UAV-
mounted receivers and M = 6 SOP transmitters. The receivers
were set to have GPS available for the first 50 seconds of their
trajectory and then unavailable for the remaining 150 seconds
portion of the trajectory. SOP pseudoranges were available for
their entire trajectories. The simulated UAV trajectories, SOP
transmitters’ positions, and the UAVs’ positions at the time
GPS was set to become unavailable are illustrated in Fig. 3.
All simulations were created in MATLAB. The vehicle trajec-
tories were produced via a high-fidelity simulator described
in [30], which has been validated against real vehicle telemetry
over a 10-year period in industry. Sensor data was simulated
by the authors according to the models in this paper. The
following describes the methods used to produce the simulated
data.

1) UAVs’ Trajectories: The UAVs’ simulated trajectories
were generated using a standard six degree of freedom (6DoF)
kinematic model for airplanes [51]. Each vehicle performed
the same maneuvers, which included the following segments
conducted in succession over a 200 second period: 10 second
straight and level linear acceleration along the direction of
travel; 5 degree pitching climb for 30 seconds; 22 second
straight and level linear velocity, while rolling to 60 degrees;
five 60 degree left-banking turns. These trajectory segments
were chosen because they collectively excite all 6DoF of
the UAVs, i.e., both horizontal and vertical directions and
all three angles (roll, pitch, and yaw), allowing the TOA
and TDOA information fusion strategies to be studied under
various maneuvers.

2) IMU Data: The gyroscope and accelerometer data were
generated at 100 Hz using the simulated vehicles’ accel-
erations and rotation rates through equations (4) and (5),
respectively. The evolution of each vehicle’s gyroscope and
accelerometer biases were generated according to equa-
tions (6) and (7), respectively, using driving process noise with
spectra Sy, = (107%) - Izy3 and S0 = 1078 - Izus,
respectively. The power of the corrupting white noise was
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set to correspond to a consumer-grade IMU. IMUs of this
quality typically state the noise values in terms of accumulated
noise. Each axis of the IMU was set to have an accumulated
noise of 0.3 deg/s and 2.5 milligravities for the gyroscope
and accelerometer, respectively. These spectra are mapped to
the discrete-time noise covariances Q,,gyn,,, Quyecns ngyx,m
and Qy,..» through the equations provided in Appendix A.

3) Receiver Clock: Each UAV-mounted receiver was set
to be equipped with a typical temperature-compensated crys-
tal oscillator (TCXO), with parameters {ho,.,, -2, }izl =
{9.4 x 10729,3.8 x 1072!}. These parameters are used to
compute the process noise covariance Qcik,r,, that drive the
receiver clock dynamics found according to equation (1).

4) GPS Pseudoranges: GPS L1 C/A pseudoranges were
generated at 1 Hz according to equation (10). The posi-
tion of each GPS satellite was generated by producing their
orbits using Receiver Independent Exchange (RINEX) files,
downloaded from a Continuously Operating Reference Sta-
tion (CORS) server [54]. Pseudorange from eleven GPS satel-
lites (L = 11) were set to be available for ¢ € [0, 50) seconds,
and unavailable (L = 0) for r € [50,200] seconds. The
GPS pseudorange measurement noise terms were set to be
independent from each other with measurement noise variance
computed according to [55]

np2 - lemiBouTio] [ + ! ] (59)
WhJ T 20(C/No) Tco"(C/No),j |
where femp = 0.5 chips is the early-minus-late correlator

spacing, Bprr. = 0.05 Hz is the delay lock loop (DLL)
bandwidth, 7, = 1/(1.023 x 10°) s is the chip duration,
"(C/No);,j (in Hz) is the time-varying received carrier-to-
noise ratio at UAV n from satellite /, which was derived from
the RINEX files, o, = 17 is a scaling parameter to account
for unmodeled errors, and Tcp = 10 ms is the coherent
integration time. Equation (59) is the model used in this work;
however, other models may be used. Another common model
often employed is the scaled C/Ny - elevation model [56].
The point at which GPS was cut off is illustrated as a red ‘X’
in Fig. 3.

5) SOP Pseudoranges: Pseudoranges were generated to the
SOPs at 5 Hz according to equation (9). The evolution of
each SOP’s clock bias was modeled according to the dynamics
discussed in Subsection IV-A, using parameters that corre-
spond to a typical oven-controlled crystal oscillator (OCXO),
with {A0,sop,ms h—2,50p,m}S_; = {8 x 10720, 4 x 10723}, The
SOP transmitters’ positions {rsop,m}fn:1 were surveyed from
cellular tower locations in downtown Los Angeles, California,
USA. The SOP pseudorange measurement noise terms were
set to be independent with a measurement noise variance
according to (59), except that fem = 1, ”JSZV’ L is replaced with
"a;p,m,j, T, = 1/(1.2288 x 10°), oy =22, Tco = 1/37.5 s,
and the carrier-to-noise ratio "(C/No),; is replaced with a
time-varying log-distance path loss model [57]

"(C/No),,.; = Po— 10y -logyo(d(j)/Do),
"(C/No)m,j = 101 (C/N0Yj/10]
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Fig. 3. True trajectories the UAVs traversed (yellow), SOP transmitters’
positions (blue pins), and the UAVs’ positions at the time GPS was cut
off (red).

where Py = 56 dB-Hz is a calibration carrier-to-noise ratio at a
distance Do = 1400 m, d () = €75 (j)—“Tsop,mll2, and y =2
is the path loss exponent. The calibration values Py and Dy are
values commonly observed by the authors during experimental
campaigns [21], [58]. The SOP pseudorange measurement
noise variance computation assumes that the correlation func-
tion within the DLL is equivalent to GPS. This is a reasonable
assumption for cellular code division multiple access (CDMA)
signals, when foy is between 0.8 and 1.25 chips. More
sophisticated models for cellular CDMA are discussed in [59]
and for long-term evolution (LTE) are discussed in [23]. If at
any point in time pseudoranges become faulty or there is a
sudden significant jump due to multipath from any of the
SOPs, then the pseudoranges associated with that SOP should
be temporarily excluded using a receiver autonomous integrity
monitoring (RAIM) framework for SOPs [58]. For moderate
multipath-induced biases, one can apply well-known multipath
mitigation techniques [28], [60]-[63].

B. EKF-Based CIRSLAM Filter Initialization

The initial estimates (at t = 0 seconds) of the UAVs’
states were initialized by drawing a random error vector
from a multivariate Gaussian distribution and then adding
the error to the “ground truth” state at + = 0. This ini-
tialization method is used instead of directly drawing the
state estimate to deal with the quaternion initialization, which
requires special handling. This method is described in the next
three steps. First, the random error for each UAV was drawn
according to

Xr,n(0]0) ~ N[017><1, Px,’n(0|0)]
Py, (0]0) £ diag [Py, (0/0), Py (0]0)]

Pryn (010) = diag [(107) - 3,9 s,

T, (107) Lo
chlk,r,n (Olo) = dlag [9’ 1] 5

were a ~ N ([L, C) indicates that a is Gaussian-distributed
with mean p and covariance C. Second, to produce the
initial quaternion estimate, two approaches are common and
may be used. The small angle errors may be used to create
a rotation matrix, which can then be converted to quater-
nion and multiplied by the true angle in order to produce
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a new quaternion, which will serve as the initial estimate.
Alternatively, the resulting angle error @ € R3, which are
the first three elements of X, ,, may be mapped to an error
quaternion g, € R*, which are then applied to the true state
according to the equations discussed in Appendix C of [30].
Third, to produce initial estimates of the remaining states,
the remaining error components of X, , are applied to the true
states as standard additive error.

The SOPs’ state estimates were initialized according to
Z50p,m (010) ~ N [x50p,m(0), Psop(0[0)], for m = 1,..., M,
where Xgopm(0) = [rsTop,m, 10%, 10]T, and Pyp(0[0) =
(10%) - diag [I3X3 0.1, 0.01]. This initialization scheme is used
in simulation to ensure consistent initial priors in the EKF.
In practice, if the initial SOPs’ states are completely unknown,
then a random position for each SOP may be drawn in the
vicinity of the UAVs with a large enough uncertainty to
encompass all possible points that a signal could be received
from. The clock states may be initialized to zero with a
large uncertainty. As long as there are enough vehicle’s or
the vehicles are moving, the position and clock states of the
SOPs are observable. Observability conditions are thoroughly
analyzed in [32], [64], [65].

If a new vehicle needs to be added to the EKF after
initialization, the state vector could be augmented with the
new vehicle’s 18 states and the covariance matrix would gain
a 17 x 17 block representing the uncertainty in those states.
The off-diagonal components of the covariance matrix would
be populated with zeros, since no correlation exists at the
first instance. These off-diagonal elements would begin to
populate as EKF measurement updates are processed. Alter-
natively, to avoid augmenting the state vector with new states,
factor graphs could be explored in future research for this
problem [66], [67].

C. TDOA SOP Reference Selection

This subsection presents simulation results evaluating
Theorem 1. To do this, the produced UAVs’ position estima-
tion error covariances are shown to be independent of the cho-
sen SOP reference when the UAVs use the TDOA information
fusion strategy under various clock and measurement qualities
and UAV-to-SOP geometries. Four different scenarios were
studied, where each scenario has different simulation settings:

o Scenario A: Settings described in Subsection VII-A.

o Scenario B: Equivalent to Scenario A, except that SOP 2
was set to be equipped with a worst TCXO, with
{h0,s0p,2 h—2,50p2} = {2 x 10719,2 x 10720} and the
other five SOPs were set to be equipped with a best
OCXO, with {h0,sop,m» h—2,s0p,m}S_\2 = {2.6 x 10722,
4 x 10723},

o Scenario C: Equivalent to Scenario A, except that the
measurement noise standard deviation scaling parameter
for SOP 2 was set to o5 = 10.

e Scenario D: Equivalent to Scenario A, except that
the simulation environment was set to be in Portland,
Oregon, USA. The SOP locations and UAV trajectories
are illustrated in Fig. 4. To avoid cluttering the figure,
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Fig. 4. Scenario D environment showing: true trajectories the UAVs
traversed (yellow), SOP transmitters’ positions (blue pins), and the UAVs’
positions at the time GPS was cut off (red).
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Fig. 5. The logarithm of the determinant of the position estimation error
covariance of UAV 1 for using the TDOA information fusion strategy with
different SOP reference selection.

only the trajectories for UAV 1 and 2 are shown. The
trajectories for UAV 3 and 4 had the same profiles as
UAV 1 and 2, respectively.

For each of the four scenarios, two runs were conducted.
In the first run, the UAVs selected SOP 1 as the reference.
In the second run, the UAVs selected SOP 2. The EKF for
all eight runs were initialized according to the procedure
discussed in Subsection VII-B. Fig. 5 illustrates the logarithm
of the determinant of the estimation error covariance of the

same UAV’s position states, log {det [Prbl ] }, which is related

to the volume of the uncertainty ellipsoid [68].

Note from Fig. 5 that the two logdet trajectories in each
scenario (each trajectory corresponding to a particular SOP
reference selection) are on top of each other. These are
representative results. The estimation error trajectories and cor-
responding covariances for the other three UAVs exhibited the
same behavior, indicating that the estimation error covariances
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Fig. 6. Estimation error trajectories and 3¢ bounds for the (1) TOA and (2)
TDOA with SOP referencing information fusion strategies for the environment
depicted in Fig. 3. (a)-(c) Correspond to UAV 1 north, east, and down position
errors, respectively. (d)-(f) Correspond to SOP 1 north, east, and down position
errors, respectively. The red dotted line marks the time GPS pseudoranges
were set to become unavailable (L = 0).

are independent of the SOP reference selection, as established
in Theorem 1.

D. TOA Versus TDOA Performance Comparison

This subsection presents simulation results evaluating
Theorem 2. This theorem was evaluated by comparing the
UAVs’ resulting position estimation error covariances that are
produced when using (i) TOA and (ii) TDOA with SOP
referencing, described in Subsection V-E and Subsection V-F,
respectively. For each strategy, the simulation and EKF
initialization settings described in Subsection VII-A and
Subsection VII-B, respectively, were used. Errors for a tra-
ditional tightly-coupled GPS-aided INS are also provided for
a comparative analysis.

Fig. 6 shows the resulting estimation error trajectories
and corresponding +3 times the EKF-produced estimation
error standard deviations (£3c¢) for both strategies for the
north, east, and down position states for UAV 1 and SOP 1.
Fig. 7 illustrates log [det [P,bl]}, for the same UAV. Note
that TDOA measurements were produced using SOP 2 as the
reference selection. The results were identical for choosing
any other SOP as a reference, as expected from Theorem 1.
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Fig. 7. The logarithm of the determinant of the position estimation error
covariance of UAV 1 for the environment depicted in Fig. 3.

The following performance comparison may be concluded
from these plots. First, the errors associated with the collabora-
tive SOP-aided INS, regardless of the CIRSLAM information
fusion strategy, remained bounded after GPS was cut off,
whereas the errors associated with an unaided INS began to
diverge as expected. This indicates that if navigating vehicles
are sharing and fusing INS information and pseudoranges
drawn from SOPs with uncertain states, requirements on their
INSs may be relaxed. That is, the cost of the navigation
system can be reduced, since lower grade IMUs may still
meet positioning accuracy requirements. Second, the TOA
information fusion strategy consistently produced lower esti-
mation error variances compared to the TDOA information
fusion strategy in all coordinate directions. This indicates that
the UAV’s position uncertainty in any coordinate direction
at any given time is less when SOP TOA measurements
are shared and fused than TDOA. Equivalently, the size of
the uncertainty ellipsoid of the UAV’s position states will
be smaller if TOA is used and the difference in size is

captured by the distance between in the log [det [P,,,1 (klk)]}

curves illustrated in Fig. 7. Similar behavior of the estimation
error uncertainties in the position states was noticed for the
other UAVs and SOPs during simulation runs with different
realizations of measurement and process noise. These findings
support Theorem 2.

To expand on these single run results, an analysis was
conducted using four different scenarios to show that the n
vehicle’s produced estimation error covariance using TOA,
denoted Prbn, is less than or equal to the estimation error
covariance using TDOA, denoted Py, (k|k), regardless of
the clock and measurement qualities and the UAV-to-SOP
geometries. To this end, each of the four scenarios described
in Subsection VII-C was ran five times for 200 seconds
each. Each of the four runs within each scenario used a differ-
ent GPS cutoff time, which was drawn according to a uniform
distribution between 50 and 200 seconds. The initial time
of 50 seconds was selected as the uniform distribution bound
to allow time for INS error initialization. For each run, a point
was plotted at each instant k& of the minimum eigenvalue of
Pr,, (kIk) — Py, (kIK), denoted min [P, (kIK) — P, (kIK)],
for each of the UAVs n = 1,...4, where k =1, ...,200/ Top
and Tsop = 0.5. The resulting point cloud is illustrated
in Fig. 8.

Note from the point cloud in Fig. 8 that the minimum
eigenvalue is always greater than zero, regardless of the
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Fig. 8. Minimum eigenvalue of the difference of the position estimation

error covariances for using the TDOA and TOA information fusion strategies.

clock quality, measurement quality, or geometry. Therefore,
ben > Prbn, as expected from Theorem 2.

VIII. EXPERIMENTAL DEMONSTRATION

This section presents an experimental demonstration of the
TOA and TDOA information fusion strategies using two UAVs
equipped with consumer-grade IMUs and software-defined
radios (SDRs). The following experiment was conducted by
collecting the IMU, GPS, and SOP data in the field, after
which the communication and fusion of the data was emulated
via post-processing in the lab.

A. Hardware and Software Setup

A Consumer-grade L1 GPS active patch antenna [69] and
an omnidirectional cellular antenna [70] were mounted on
each UAV to acquire and track GPS signals and multiple
cellular transmitters, respectively, whose signals were mod-
ulated through code division multiple access (CDMA). The
GPS and cellular signals were simultaneously downmixed and
synchronously sampled via two-channel Ettus® E312 universal
software radio peripherals (USRPs). These front-ends fed their
data to the Multichannel Adaptive TRansceiver Information
eXtractor (MATRIX) SDR, which produced pseudorange mea-
surements from all GPS L1 C/A signals in view and three
cellular transmitters at 10 Hz. The IMU data was sampled
at 100 Hz from the UAVs’ on-board proprietary navigation
system, which was developed by Autel Robotics®. Fig. 9
depicts the hardware and software setup and Fig. 10(a) shows
the environment.

B. CIRSLAM Initialization and Settings

The CIRSLAM framework was initialized using the fol-
lowing procedure for each of the two results presented in
the subsequent subsections. The state vector estimate was
initialized according to

-
£(010) = [&],000), £],(010), &1 010, ..., &1, 5010)]
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Fig. 9. Experiment hardware setup.

where the estimates of each UAV’s orientation 2"3(0|0),
position 73, (0]0), and velocity ;'bn (0]0) were set to values
parsed from the beginning of the UAV’s navigation sys-
tem log files, which were recorded during the trajectory,
and the IMU biases bgyr, and buc,, were initialized by
averaging 5 seconds of gravity-compensated IMU measure-
ments while the vehicles were stationary and after their
IMUs had warmed up. The cellular SOP transmitters’ ini-
tial state estimates were drawn according to fcsop,m 0]0) ~

N ([rT T (0)]T,Psop,m (010)). The true transmit-

sop,m? xclk,sop,m
ters’ positions {rsop,m}fn:1 were surveyed beforehand and
verified using Google Earth. The initial clock bias and drift

: T
xclk,sop,m(o) =c [5tsop,m(0), 5tsop,m (O)] m=1,...,3,
were solved for by using the initial set of cellular transmitter
pseudoranges using equation (9) according to

Cétsop,m (0) = ||rb,, (O) — Isop,m I+ Céfr,n 0) - Zsop,m (0):
C(stsop,m(o) = [Catsop,m(l) - Cétsop,m O/,

where Cétsop,m (1) = llrp, (1) — Fsop,m | +cotr,, (1) _nZsop,m (1)
and the receiver’s clock bias cdt; ,(0) and cdt, (1) was
provided by the GPS receiver while GPS was available.

The corresponding estimation error covariance was initial-
ized according to

P, (00) = diag [Py, (0/0), Py, (0]0), ..., Px 5(0]0)],
P, (00) = diag [Py, , (0/0), Py ,(0]0)],
P,.,(00) £ diag[Py,,,,(0/0), Py, ., (0[0)]

Py, (010) = ding [ 0.1)- Tz, 9Tz, T, (107) o
Py, ., (010) = diag[0.1, 0.01] n=1,2,
Pyop,n (0[0) = 10° - diag[I5x3,0.3,0.03], m =1,2,3.

The process noise covariance of the receiver’s clock Qcik,r,x
was set to correspond to a typical TCXO. The process
noise covariances of the cellular transmitters’ clocks were
set to correspond to a typical OCXO, which is usually
the case for cellular transmitters [71], [72]. The power
spectral density matrices associated with the gyroscope and
accelerometer noise were set to S, = (7 x 10742 .
I3x3 and S, = (6 X 10_4)2 - I3x3, respectively. The
power spectral density matrices associated with the gyro-
scope and accelerometer bias variations were set to Sy, =
(1 x 10_4)2 -I3x3 Sw,.. = (1 X 10_4)2 - I5x3, whose values
were found empirically using raw IMU data. The measurement
noise variances {"o2 }fnzl for UAV n € {l1,2} were time-

sop,m
varying, and calculated according to (59), except that tem = 1,
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Fig. 11. Time history of received C /Ny for UAV 1 and UAV 2 from SOP 1,

2, and 3, produced by the MATRIX SDR.

"O'SZVJ’J. is replaced with ”asz()p’m’j, T, = 1/(1.2288 x 10°),
os = 10, Tco = 1/37.5 s, and the carrier-to-noise ratios

{”(C/No)m,j};zl, n € {1,2}, are replaced with the received
carrier-to-noise ratio estimated by the MATRIX SDR, which
are plotted in Fig. 11.

C. Experimental Results

Experimental results are presented for three frameworks:
(i) CIRSLAM with TOA information fusion, (ii) CIRSLAM
with TDOA information fusion, and (iii) for comparative
analysis, a traditional GPS-aided INS. The UAVs traversed
the white trajectories plotted in Figs. 10(c)-(d), in which
GPS was available for the first 50 seconds then unavailable
for the last 30 seconds. The north-east root mean squared
errors (RMSE) and final errors for all three frameworks for
the UAVs are summarized in Table I. Note that collaboratively
using SOPs provided around 50 meters of error reduction
compared to a GPS-aided INS after 30 seconds of GPS
unavailability, whether TOA or TDOA was used. As expected,
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TABLE I
ESTIMATION ERRORS: TOA VERSUS TDOA

Framework || GPS-aided INS || CIRSLAM-TOA || CIRSLAM-TDOA

Vehicle UAV 1| UAV 2 (| UAV 1 | UAV 2 || UAV 1 | UAV 2
Pos. RMSE (m)|| 21.5 18.9 3.1 4.2 3.3 4.4
Final Error (m) || 57.3 | 54.7 4.3 6.0 4.4 6.2

TOA performed slightly better. Collaboration provided around
5 meters of error reduction compared to a non-collaborating,
single UAV navigating with an SOP-aided INS that used the
same IMU and SOP data set [30].

The final estimated transmitter location and corresponding
99_percentile north-east uncertainty ellipse for two of the
transmitters are shown in Fig. 10(b) and Fig. 10(e). The
final localization errors for the three transmitters were 9.0,
7.9, and 52.8 m, respectively. Note that the relatively large
estimation error of SOP 3 is primarily attributed to relatively
large measurement noise compared to the measurement noise
associated with SOP 1 and SOP 2. From Fig. 11, it can
be seen that the received C/Ny from SOP 3 at UAV 1 and
UAV 2 was lower compared to the C/Ny from SOP 1 and 2,
most of the time. The lower C /Ny maps to larger estimation
error variance, according to (59). The larger measurement
variance resulted in a larger final estimation error ellipse,
which, nevertheless, contained the true position of SOP 3.

IX. CONCLUSION

This paper developed and studied two information fusion
strategies for navigating vehicle’s to collaboratively aid their
INS’s with SOPs: TOA measurements and TDOA mea-
surements with SOP referencing. It was shown that using
TOA measurements from SOPs with unknown positions
and unknown and unsynchronized clock biases results in
a smaller or equal navigating vehicle’s position estimation
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error covariance than using TDOA measurements, regardless
of the selected SOP reference. An approach to share INS
data between navigating vehicles in a distributed fashion was
discussed, which significantly reduces the amount of data
that is required to be transmitted to perform the EKF mea-
surement update. Simulation results supported the analytical
findings, which established that using TOA measurements
from transmitters with unknown positions and unknown and
unsynchronized clock biases results in a smaller or equal (in a
positive-definite sense) position estimation error covariance
than using TDOA measurements, regardless of the selected
SOP reference. Experimental results demonstrated two UAVs
navigating with CIRSLAM using TOA measurements from
three cellular transmitters in the absence of GPS, which
yielded trajectory RMSE reductions of 85.6% for UAV 1 and
77.8% for UAV 2 when compared to unaided INSs.

APPENDIX
INS STATE TRANSITION AND PROCESS
NOISE COVARIANCE MATRICES

The equivalent rotation matrix R[q] of the quaternion vector
7 = 14919293, qol" is

ad+ai—a3— 43

Rlgl =[rirar3], ri= 2(q192 — q093) |,
2(q193 + 9092)
2(q192 + 9093) |
ro=|a}—ai+a93—a3 |,
2(q293 — q0q1)
2(q193 — 9092)
r3 = | 2(q293 + qoq1)
| 43 —a} — a3+ 43

The calculation of the discrete-time linearized INS state
transition matrix ®i,s, and process noise covariance Qins,n
are performed using strapdown INS equations (2)—(3) resolved
in an ECI frame as described in [50], [51]. The matrix ®ips
is given by

Iz 0333 033 Pgp,n 03x3
‘I’rq,n I3><3 TI3><3 q’rbgyr,n q’rbam,n
Pins,n (i) = | Pign 03x3  D3x3  Pipyen  Pibyeen |-
03x3  03x3 033 I3x3 0353
0353  03x3 033 0353 I3.3
Trat,. AT
g = = [RIG+ D+ RG],
T (o s T
Pign = Y L[an(l) +a,(i + 1)] XJ s Prgn = E‘I)r'tj,ns
T,. .
Pipyyn = ~3 |@n ()% | ®ghyyns  Pibgern = Pibgyrns
T T
Prbyyen = E‘I’ibgy,,m Prbyen = Eq)r'bacc,m

where ﬁn(i) = R[g”a(ﬂ j)] is the equivalent rota-

tion matrix of g”é(ﬂ j), which is the estimate of g”:}(ig
using all measurements up to time-step j; a,(i) =

1A{I(l) [naimu(i)_i’acc,n(”j)]’ where 5acc,n(”j) is the

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

estimate of bycc,,(i) using all measurements up to time-
step j; and [(-)x] is the skew-symmetric matrix obtained
according to (16). The discrete-time linearized INS process
noise covariance Qjys , 1S given by

. T . .
Qins,n (i) = E‘I)ins,n (Z)Nc,n ‘I);I;ls,n @)+ Nc,ns
Nc,n = diag [Sngyr,ns 033, Snyee.ns SWgyl—,Vls Swacc,n] >

where Sp,,n = TQngy,n and Sp,. n TQu,,,n are the
PSD matrices of the gyroscope’s and accelerometer’s random
noise, respectively, and Sy, n = Qugyy,.n/T and Sy, ..n =
Qu,..n/T are the PSD matrices of the gyroscope’s and
accelerometer’s bias variation, respectively, which may be
derived from values obtained from IMU specification sheets.
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