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Abstract—Predicting the safety of urbanroads for navigation via global navigation satellite systems (GNSS)
signals is considered. To ensure the safe driving of automated vehicles, a vehicle must plan its trajectory
to avoid navigating on unsafe roads (e.g., icy conditions, construction zones, narrow streets, and so on).
Such information can be derived from roads’ physical properties, the vehicle’s capabilities, and weather
conditions. From a GNSS-based navigation perspective, the reliability of GNSS signals in different lo-
cales, which is heavily dependent on the road layout within the surrounding environment, is crucial to
ensure safe automated driving. An urban road environment surrounded by tall objects can significantly
degrade the accuracy and availability of GNSS signals. This article proposes an approach to predict the
reliability of GNSS-based navigation to ensure safe urban navigation. Satellite navigation reliability at a
given location and time on a road is determined based on the probabilistic position error bound of the
vehicle-mounted GNSS receiver. A metric for GNSS reliability for ground vehicles is suggested, and a
method to predict the conservative probabilistic error bound of the GNSS navigation solution is proposed.
A satellite navigation reliability map is generated for various navigation applications. As a case study, the
reliability map is used in a proposed optimization problem formulation for automated ground vehicle

safety-constrained path planning.

or the safe and reliable control of automated ground

vehicles, various road information needs to be esti-

mated. Road information typically include road sur-

face conditions, such as dryness, wetness, and iciness,
as well as shapes, including curvature, bank angles, and
slope angles. Satellite-based navigation reliability should
also be considered important road information because
automated vehicles use various navigation sensors that
are dependent on positioning, navigation, and timing from
global navigation satellite systems (GNSS). In particular,
reliable and accurate GNSS-derived positions are crucial
for short-range driving control and long-range navigation
and path planning, while timing is crucial for onboard sen-
sor fusion, cooperative planning and control, and informa-
tion exchanges with other vehicles and the infrastructure.
The reliability and accuracy of received GNSS signals is
heavily dependent on the road layout within the surround-
ing environment.

An automated vehicle usually relies on GNSS, such as
GPS in the United States, GLONASS in Russia, Galileo in
Europe, and Beidou in China, to obtain its absolute po-
sition on Earth. Although other sensors, including vi-
sion [1], [2], radar [3], [4], lidar [5], [6], and ultrasonic [7]
sensors and sensor networks [8], [9], can measure rela-
tive distances to nearby objects, GNSS receivers are the
primary sensing modality for determining a vehicle’s
absolute position. This absolute position information is
crucial, especially for initializing urban navigation pro-
cesses using other sensors. For example, given a GNSS po-
sition solution, one can narrow the search space in digital
maps, which are used with 3D point clouds from a scan-
ning lidar, to estimate in real time a vehicle’s position and
heading to lane-level accuracy to avoid collisions [10]. In
addition, when integrated with vision simultaneous local-
ization and mapping [2], GNSS can mitigate the accumula-
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tive positioning error. Furthermore, GNSS measurements
can be used to fix the drift of inertial measurement units
(IMUs) for determining a vehicle’s linear and angular
motion [11], [12].

GNSS and differential correction stations alone can pro-
vide centimeter-level positioning accuracy if the signal re-
ception environment and solar activity are favorable [17].
Urban canyons impose harsh signal reception conditions
[18]. Tall buildings, trees, and nearby vehicles frequently
block GNSS signals. Non-line-of-sight (NLOS) reception of
GNSS signals without the reception of LOS signals, i.e., the
NLOS-only condition, which occasionally occurs on urban
roads, can cause arbitrarily large position errors. In addi-
tion, the accuracy of pseudoranges (i.e., measured distanc-
es between a user’s receiver and GNSS satellites, without
compensating for the receiver’s clock bias and atmospheric
delays) is degraded in an urban environment where LOS
and NLOS signals are simultaneously received, i.e., the
LOS + NLOS condition. Therefore, it is important to predict
the reliability of GNSS signals on urhan roads to ensure the
safe operation of automated ground vehicles.

Various studies have utilized 3D building models with
and without ray tracing to overcome the unfavorable GNSS
signal reception conditions in urban environments [13], [14],
[19]-[21]. Power matching [22], shadow matching [20], spec-
ular matching [21], and urban trench modeling [19] were
developed to decrease positioning error by predicting the
NLOS conditions of GNSS satellites by using a 3D building
map. In [13] and [14], 3D building models along with ray-
tracing techniques were utilized to predict pseudoranges at
a given location in an urban multipath environment. The
future state uncertainty [13] and predicted positioning error
[14] were then calculated based on the predicted pseudor-
anges. However, while GNSS signal blockage due to build-
ings was considered, blockage due to other objects
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(e.g., trees and nearby vehicles) was not considered, nor did
the predicted positioning error consider the detection and
exclusion of possible faulty satellite signals and the probabi-
listic error hound of the predicted position solution.

The probabilistic error bound of the GNSS position
solution, which is referred to as the protection level (PL),
as well as the concept of navigation integrity have been
actively studied for safety-critical applications, such as
aviation [23], [24]. In [15], a receiver autonomous integrity
monitoring (RAIM) algorithm was developed to predict
the horizontal position error bound [i.e., the horizontal PL
(HPL)] as a measure of satellite navigation reliability for
ground vehicles. However, this algorithm did not perform
fault detection and exclusion (FDE), and it did not con-
sider multiple signal faults, which are expected in urban
environments. Furthermore, urban NLOS-only and LOS +
NLOS conditions were not considered, and it was assumed
that all GPS signals were received by direct LOS.

To overcome these limitations, a multiple hypothesis
solution separation (MHSS) RAIM method was applied
in [16], which considered multiple signal faults to predict
the HPL. However, FDE was still not performed, and the
performance of the proposed method was not validated
experimentally. Upon attempting to validate this method
experimentally, it was discovered that the method did not
accurately predict the HPL. This was due to the complexity
of predicting the multipath environment sufficiently ac-
curately and due to signal blockage owing to tall objects
other than buildings. As presented in Table 1, the method
proposed in the current study addresses the aforemen-
tioned issues.

The contributions of this study are summarized as follows:
m A conservatively predicted multiconstellation GNSS HPL,

after detecting and excluding multiple signal faults, is

suggested as a metric for GNSS reliability for ground ve-
hicles. This metric considers more realistic urban GNSS

signal environments than those in Table 1.

® A method to conservatively predict GNSS HPLs for ground
vehicles is proposed. While performing ray-tracing sim-
ulations with 3D urban digital maps, possible driving
lanes and surrounding vehicles are considered, and the
most conservative value is selected at each longitudinal
location along the test roads.

m It is experimentally shown that the proposed metric
(i.e., the conservatively predicted HPL) successfully
overbounds the HPL calculated using real pseudorange
measurements during field tests in two cities.

® An optimization problem formulation for safety-con-
strained path planning is proposed. Unlike previous
studies, the unavailability of GNSS signals and continu-
ous GNSS signal outages are considered in the problem
formulation. A specific implementation to solve this
problem is also presented and experimentally dem-
onstrated. The proposed method enables automated
ground vehicles to select the path that ensures naviga-
tion safety.

Prediction of Satellite Navigation Reliability

on Urban Roads

A GNSS receiver estimates its 3D position and clock bias
by using pseudorange measurements from at least four
GNSS satellites. Because a pseudorange is directly re-
lated to the signal travel time from a satellite to a user’s
receiver, which is measured by a receiver clock, vari-
ous errors, such as satellite clock bias and ionospheric
and tropospheric delay errors, contaminate the pseudo-
range measurement. These errors should be corrected
for to bring the pseudorange closer to the true range.
The receiver clock bias is treated as an additional un-
known variable, which is obtained alongside the receiv-
er position through a solution estimation process. This
section presents various error sources for satellite navi-
gation systems and introduces the proposed method to
predict pseudoranges and conservative position error

Table 1. The comparison of GNSS reliability prediction methods.

Method Metric for GNSS Reliability Considered Obstacles Verification Method
Shetty and State uncertainty bound (30) that encloses the Buildings in virtual urban Simulations only
Gao [13] uncertain future state distributions environments
Zhang and GPS positioning error Real-world buildings, without Experiments (mean of the measured and predicted
Hsu [14] consideration of driving lanes positioning errors differed by a maximum of 17.7 m)
Maaref and GPS HPL without consideration of Not considered (all GPS signals Experiments (no performance comparison between
Kassas [15] measurement faults assumed to be direct LOS) the predicted and measured HPLs reported)
Lee etal. [16] GPS HPL with consideration of multiple Real-world buildings, without Simulations only

measurement faults (FDE not performed) consideration of driving lanes
Proposed Conservative multiconstellation GNSS HPL Real-world buildings and Experiments (conservatively predicted HPL bounded

with consideration of multiple measurement
faults (FDE performed)
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surrounding vehicles, with
consideration of driving lanes

the measured HPL 100% of the time)
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bounds as measures of satellite navigation reliability on
urban roads.

Error Sources for Satellite Navigation

The performance of GNSS-based navigation can be de-
graded by anomalous ionospheric behavior [25]-[27], ra-
dio frequency interference [28], [29], signal reflection and
blockage [30], [31], and poor geometric diversity of satel-
lites in view [32], [33]. In particular, signal reflection and
blockage due to buildings and other tall objects is a signifi-
cant error source for ground vehicle navigation in urban
canyons. When N GNSS satellites are in view, the nth pseu-
dorange measurement in an urban environment at time
step t, after satellite clock bias corrections, can be modeled
as follows:

p" (8) = Rios (1) + phias (1) +£" (1)
=lr.@) —r*@)l,+c-tu()

+I"() + T"(8) + phias () + £" (), Q)

where the descriptions of the symbols are given in Table 2.
Considerable common-mode errors can exist between

a user and a nearby reference station, such as atmospheric
delays and satellite ephemeris errors. These errors can
be largely mitigated using differential GNSS (DGNSS). A
DGNSS reference station broadcasts correction messages
to nearby users, enabling the users to eliminate common-

Table 2. The mathematical notations related to pseudorange

measurement modeling in urban environments.

Symbol Description

p" The nth pseudorange measurement in an urban environment
after satellite clock bias corrections

Rlos Length of the LOS path between a user’s receiver and the
nth satellite, including delays due to receiver’s clock bias,
ionosphere, and troposphere

Phis Either 1) the bias due to an NLOS-only condition (i.e., pfies)
which represents the extra travel distance of the NLOS signal
compared with Rfos [see Figure 1(a)], or 2) the bias due to an
LOS + NLOS condition (i.e., p{+n) where both LOS and NLOS
signals are received [see Figure 1(b)]

Phios Bias due to an NLOS-only condition

Pl Bias due to an LOS + NLOS condition

I Position vector of a user’s receiver

r Position vector of the nth satellite

% Speed of light

Sty User’s receiver clock bias

. lonospheric delay in the nth pseudorange measurement

m Tropospheric delay in the nth pseudorange measurement

g’ Remaining errors (e.g., noise, unmodeled effects, and so on) in

the nth pseudorange measurement
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mode errors. However, site-specific errors caused by NLOS-
only and LOS + NLOS signal reception cannot be mitigated
using DGNSS.

Four GNSS signal reception conditions can occur in
urban canyons: 1) the LOS-only condition, in which only
the LOS signal is received; 2) the NLOS-only condition, in
which only NLOS signals are received; 3) the LOS + NLOS
condition, in which both LOS and NLOS signals are
received; and 4) the no-signal condition, in which a signal
is completely blocked by an object. Figure 1 illustrates the
difference between the NLOS-only and L.OS + NLOS con-
ditions. In the field of satellite navigation, the NLOS-only
and L.OS + NLOS conditions are treated differently, as they
cause different types of pseudorange errors. Moreover,
simulation methods to predict these errors are different, as
discussed in the following.

Under the NLOS-only condition, the NLOS-only bias
term, which is pRros in Figure 1(a), reflects the extra travel
distance (i.e., pi — R\ios Where p{ is the travel distance
along the reflected path) due to signal reflection, which

e

pln = f(p3 = Rlbs, A~ Alos, 95— ¢los)

(b)
. _/

FIG 1 The GNSS (a) NLOS-only and (b) LOS + NLOS conditions in an
urban environment and corresponding pseudorange biases.
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can be arbitrarily large. If this bias remains in the pseu-
dorange measurement, it can cause a large unhounded po-
sitioning error. A typical way to predict pXios at a given
location is to calculate the difference between the lengths
of the direct and reflected paths (i.e., the LOS and NLOS
paths) from a satellite to a receiver, which represents the
extra travel distance. Ray-tracing simulation using 3D ur-
ban digital maps can be performed to estimate the length
of the reflected path. The positions of the satellites at a giv-
en time for ray-tracing simulation are calculated hased on
the satellite broadcast almanac information. The complete
blockage of a signal (i.e., the no-signal condition) can also
be predicted by ray-tracing simulation.

In an urban environment, the LOS + NLOS condition
is more frequently observed than the NLOS-only condi-
tion. Unlike the NLOS-only bias term, the L.LOS + NLOS bias
term, which is pf'-~ in Figure 1, is bounded. Reflected sig-
nals with a large delay when compared with the 1.5-chip
width of the GNSS signal (e.g., a 300-m width for a GPS L1
C/A-code chip) do not cause any bias in the pseudorange
measurements if the direct signal is also received and
tracked [34]. For short-delay reflected signals (i.e., the de-
lay is less than 1.5 chips), p{'~x depends on the receiver’s
correlator design, and it is a function of the difference of
the travel distances (i.e., p3 — Rios), received signal am-
plitudes (i.e., A5 —Afos), and phases (i.e., ¢35 — ¢ os) of the
reflected and direct signals, where (-); and (- )]s repre-
sent the reflected and direct signals from the nth satellite,
respectively [see Figure 1(b)].

The receiver used in the field experiments of this study,
which will be explained in the “Experimental Field Test
Results” section, utilizes the a posteriori multipath esti-
mation (APME) method [35]; therefore, the multipath er-

e )

GNSS Pseudorange >
a

Measurements + Orbit Dat

!

Position Solution and
Test Statistic Calculation

Test Statistic
>Threshold?
(Fault Detection)

Yes
Fault Exclusion

HPL Calculation

allles elatiel After Fault Exclusion

. _J

FIG 2 The FDE and HPL calculation of the RAIM algorithm.
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ror envelop of the APME method was used to predict pf i~
in this study. The amplitudes and phases of the received
reflected and direct signals were obtained through ray-
tracing simulations.

Probabilistic Error Bound and Advanced RAIM

Accuracy in the field of navigation usually refers to the
95th-percentile value of the positioning error distribution
[36]. However, when navigation safety is of concern, a con-
siderably higher probability (e.g., 99.99999% for the verti-
cal guidance of aircraft) should be considered to obtain an
error bound [23]. This error bound (i.e., the PL) includes
the true position of a user with a required high probabil-
ity. If the PL is larger than the alert limit (AL) of a certain
safety-critical operation (e.g., 35 m for the vertical guid-
ance of an aircraft down to 200 ft above the runway), the
position output from the navigation system is deemed un-
reliable because it is not guaranteed that the true position
is within the AL with the required probability. In this case,
the navigation system is declared unavailable and must not
be used to ensure navigation safety (i.e., navigation integ-
rity is guaranteed by a timely alert).

Among various methods and augmentation systems—
e.g., ground-based augmentation systems [37]-[39] and
satellite-based augmentation systems [40], [41]—to guar-
antee the integrity of satellite navigation systems, RAIM
is often preferred because it requires no or minimal sup-
port from infrastructure. The basic idea of RAIM is to
check the consistency among position solutions ohtained
by subsets of pseudorange measurements. If all the subset
solutions are almost identical, all the signals can be con-
firmed to be fault free, and the position output of a receiver
is deemed reliable.

Many RAIM algorithms have the functionality of FDE
and PL calculations. FDE rejects faulty signals that cause
erroneous position solutions through a consistency check
using redundant measurements. A minimum of six pseu-
dorange measurements is necessary to detect and exclude
a single fault. PL is a probabilistic error bound of a posi-
tion solution, and HPL is particularly relevant to ground
vehicles. For aerial vehicles, the vertical PL should also be
considered [42], [43]. After performing FDE, the HPL can
be calculated, as shown in Figure 2.

It should be noted that RAIM is suitable for the real-time
integrity monitoring of received GNSS signals; however, the
focus of this study is not on guaranteeing real-time naviga-
tion integrity. Instead, a method is proposed to predict satel-
lite navigation reliability at every location on urban roads
before an automated vehicle arrives at a location. The prob-
abilistic position error bound (i.e., the HPL) is used as a safe-
ty metric to represent satellite navigation reliability. After
the reliability is predicted and provided to a vehicle as part
of the road information, the vehicle can detour around the
low-reliability region (i.e., the high-HPL region) or prepare
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its other navigation sensors to not utilize GNSS measure-
ments when passing through the low-reliability region.

For this purpose, advanced RAIM (ARAIM) with an MHSS
algorithm [36], [44] that can handle multiple faults and con-
stellationsis adopted in this study. Itis expected thata ground
vehicle will experience multiple GNSS signal faults on urban
roads. Currently, most GNSS receivers used by automated ve-
hicles are capable of tracking multiple GNSS constellations
(e.g., GPS and GLONASS were used in this study). By intro-
ducing multiple hypotheses of signal failures, ARAIM can
detect and exclude multiple faults in multiple constellations
and consider the possibility of further fault modes when cal-
culating the HPL. Therefore, ARAIM, among various RAIM
algorithms [45], is appropriate for FDE based on predicted
pseudoranges and HPL prediction for automated ground ve-
hicles in urban environments.

The MHSS-based FDE algorithm detects faulty signals
by using a solution separation threshold test. Solution sep-
aration is the difference between fault-free and fault-
tolerant position solutions. The receiver’s state x, which
is &+ AZ, can be estimated by the weighted least-squares
estimator, whose update equation is given by [34], [44]

Table 3. The mathematical notations related to HPL calculation.

Az = (GTWG)™'G WAp, @)

where the descriptions of the symbols are given in Table 3.
The fault-free position solution is estimated from the all-
in-view satellites, whereas the fault-tolerant position solu-
tion assumes one or more possible faulty signals; thus, it
is estimated from a subset of satellites. Then, the solution
separation threshold test is expressed as [44]

|26 = 27| < T, Q)

where the descriptions of the symbols are given in Table 3.
If the solution separation for any axis exceeds a certain
threshold, signal faults are likely to exist, and exclusion of
these faults should be attempted.

Ifthe solution separation threshold test passes without ex-
cluding any satellite signals, the HPL is computed as follows.
In the MHSS-based HPL calculation method, the HPL is ob-
tained as a bound that includes all the HPLs corresponding
to the fault-free and fault-tolerant position solutions. The
HPL for the g-axis (i.e., HPL,) is calculated as [44]

Symbol Description

A State vector of a user’s receiver, which is defined as [T, c8t,]"

P Pseudorange measurement vector, which is defined as [p", ..., p”’]T

AX Difference between a receiver’s state vector x and its estimate from the previous iteration X

Ap Difference between the pseudorange measurement vector o and the expected pseudorange vector o based on the satellite positions and X
G Geometry matrix

w Weighting matrix, which is the inverse of a diagonal matrix whose diagonal elements are the measurement noise variances
q Either g=1 or g=2 for the east or north axis of the horizontal plane, respectively

a2 Fault-free position solution for the g-axis estimated from the all-in-view satellites

e Fault-tolerant position solution for the g-axis and kth fault mode

T Solution separation threshold for the g-axis and th fault mode (k = 0 represents the fault-free condition)

HPLq HPL for the g-axis

a() Tail probability function of the standard Gaussian distribution

b Nominal bias of the position solution for the g-axis and kth fault mode

o Standard deviation of the position solution for the g-axis and th fault mode

Niauit modes Total number of fault modes

Drauit k Probability that the th fault mode occurs

PHMlhor Probability of hazardously misleading information for the horizontal component

PHMverr Probability of hazardously misleading information for the vertical component

Psal,ﬂol monitored

Pconst,not monitored

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

Probability that simultaneous constellation faults are not monitored

Probability that independent simultaneous satellite faults are not monitored
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HPL,— b<°>)
2 q q
Q ( p= ((70)
Nrault modes HPL, =T, ., — b(k)
+ Z pfault,kQ( 4 O_(kI;,q !
k=1 q

_ l _ P sat,not monitored + P const,not monitored
= G PHM o1~ e, (1

where the descriptions of the symbols are given in Table 3.
Detailed information and mathematical formulations of
the ARAIM user algorithm are provided in [44]. If the so-
lution separation threshold test does not pass (i.e., a fault
is detected), fault exclusion should be attempted. After the
exclusion of faulty signals, the HPL should be calculated
considering the probability of wrong exclusion. The HPL
equation in this case has an additional factor to (4). De-
tailed discussions are available in [44].

Prediction of Conservative HPL in Urban Environments
Predicting the exact HPL of a vehicle at a certain location
and time is virtually impossible due to imperfections in

~

Lane 1 Lane 2

\ ® y,
FIG 3 (a) The GNSS signal blockage due to a nearby vehicle.
(b) The different signal reception conditions in two lanes.

FIG 4 The ray tracing at a single node within a 3D urban digital map.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

3D urban digital maps as well as the presence of nearby
dynamic objects, which cannot be predicted. For example,
nearby vehicles can block satellite signals, as illustrated in
Figure 3(a). Therefore, the HPL will be predicted conser-
vatively by assuming that the vehicle of interest is always
surrounded by taller vehicles. Considering the height of
the vehicle used for the field test (1.7 m), the height and
width of a typical dump truck (3.3 and 2.5 m, respectively),
and the typical width of a lane (3.7 m), an elevation mask of
33° was set, including a slight margin. In other words, to be
conservative, satellite signals with less than a 33° elevation
are assumed to be blocked by nearby vehicles.

Signal reflection and blockage due to static objects,
such as buildings, can be predicted by ray-tracing simu-
lation if exact 3D urban digital maps are available [46],
[47]. However, it should be noted that the signal reception
conditions in each lane can vary significantly [48]. For ex-
ample, a vehicle can have an LOS reception of a certain
satellite signal in one lane but may not receive the signal
from the same satellite in another lane because of build-
ing blockage [see Figure 3(b)].

To perform ray-tracing simulations to predict signal block-
age due to buildings and NLOS-only or LOS + NLOS bias (i.e.,
pRios or pi+n in Figure 1), commercial 3D urban digital
maps from 3dbuildings and Wireless InSite commercial ray-
tracing software were used. Figure 4 shows an example of a
ray-tracing simulation. It was assumed that the exterior walls
of all buildings were made of concrete. The time of arrival
(TOA) of GNSS signals was calculated using the shooting and
bouncing ray (SBR) method described in [49], which is used to
find geometrical propagation paths between a transmitter and
areceiver using a 3D map. In the SBR method, among the rays
transmitted from the source, the rays that hit the building are
specularly reflected and traced until the maximum number of
reflections is reached. Then, piios or pf..~ is predicted using
the simulated TOAs, amplitudes, and phases of GNSS signals
from ray tracing according to the signal reception condition.
The GPS and GLONASS constellations were considered based
on their almanac information.

To reduce the computational complexity of the ray-tracing
simulation, it was assumed that the receiver received only
direct and single reflected signals. If a signal was reflected
by buildings more than once, it was assumed that the signal
was not received by the vehicle. This assumption does not sig-
nificantly affect the accuracy of conservative HPL prediction
because the received signal strength of multiple reflected sig-
nals is low, and a receiver may not track such signals.

With the predicted pseudoranges from the ray-tracing
simulation, the HPL can be predicted following the pro-
cedure in Figure 2. An example map of the conservatively
predicted HPL is given in Figure 5. If the number of visible
satellites at a certain location is insufficient for FDE, the lo-
cation is marked as unavailable because the HPL prediction
is not performed in this case. It should be noted that the HPL
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at a given location varies with time because GNSS satellites
move. Fortunately, future satellite positions are reliably pre-
dictable based on ephemerides [34]. Thus, the conservative
HPLs over a certain time horizon at each location can be cal-
culated in advance in a cloud server. Automated vehicles can
use this information without concern about their onboard
computational power. Since the conservative HPL prediction
at each location and time can be performed independently,
a cloud server with enough parallel processors can quickly
generate HPL prediction maps of regions of interest.

Experimental Field Test Results

To verify the proposed methodology for conservatively pre-
dicting HPL in urban environments, field tests were per-
formed to calculate the HPL based on actual pseudorange
measurements. Then, the HPL based on measured pseu-
doranges (i.e., the measured HPL) was compared with the
conservative HPL based on predicted pseudoranges (i.e.,
the conservatively predicted HPL). The HPL varies over
time, as satellite geometry changes. Further, the HPL is
impacted by the surrounding environment. To check if the
proposed methodology is applicable to various times and
environments, field tests were performed in two different
cities: Irvine, California, and Riverside, California.

During the experiments, GPS and GLONASS measure-
ments were collected using a Septentrio AsteRx-i V re-
ceiver. The GNSS antenna was placed on top of the ground
vehicle (Figure 6). GNSS constellations during the experi-
ments in Irvine and Riverside are included in Figure 7.
Figure 8 presents a small portion of the urban test envi-
ronment in Irvine as an example, which included several
tall buildings that significantly changed the measured HPL
values. In Riverside, complex-shaped buildings were dis-
tributed along the test trajectory. The experiments were
conducted along approximately 4.5- and 1.6-km roads in
Irvine and Riverside, respectively.

As shown in Figure 3(b), the signal reception condition
can dramatically change according to the lateral location of a
vehicle on the road. It is theoretically possible to predict the
HPL at every location, as in Figure 5; however, the prediction
accuracy depends on the accuracy of the 3D building and
road maps. For example, a slight height error of a building
model or a lateral position error of a road model in a digital
map can cause a visible satellite to be predicted as invisible
during ray-tracing simulation. Unfortunately, commercially
available 3D digital maps have limited accuracy. As a con-
servative approach, multiple ray-tracing simulations were
performed by changing the vehicle’s lateral location across
the road. If a certain satellite was invisible at one location,
the satellite was treated as an invisible satellite when pre-
dicting the HPL at the given longitudinal location of the road.
Furthermore, prios and pi+n were also predicted at every
lateral location across the road, and the largest value was
chosen for the pseudorange prediction, to be conservative.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

Figure 9 describes the conservatively predicted HPL
along two 1.5-km roads with tall buildings. The ground
vehicle freely changed its driving lane during the field
tests. However, its measured HPL was always less than
the conservatively predicted HPL that assumed the most
challenging lateral location, having the largest number of
signal blockages and largest NLOS-only and LOS + NLOS
biases. When the vehicle drove along a lane with better
satellite visibility (i.e., a lane distant from a tall building),
the measured HPL was significantly lower than the con-
servatively predicted HPL that assumed the most challeng-
ing lane with poor satellite visibility, as in the case of a
1.3-km distance location in Figure 9(b). Nevertheless, the
most challenging lane needs to he assumed when the HPL
is predicted because it is not practical to restrict the driv-
ing lane of a vehicle.

\

10 20 30 40
Predicted HPL (m)

\_ J

FIG 5 The conservatively predicted HPL with a 33° elevation mask at a certain
time epoch. This map varies with time because of GNSS satellite motion.

>50 Unavailable

- - y

FIG 6 The experimental settings. A GNSS antenna is attached to the top
of a ground vehicle. The GNSS signals are processed using a Septentrio
AsteRx-i receiver module. GNSS measurements and navigation data are
stored on a laptop placed inside the vehicle.
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Application Case Study: Safety-Constrained Path Planning

The predicted satellite navigation reliability map (i.e., the
HPL prediction map) can be utilized by an automated vehi-
cle for various purposes to ensure safe driving. Because the
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FIG 7 The GPS (green) and GLONASS (yellow) constellations during the
field tests in (a) Irvine and (b) Riverside.

Driving Trajectory

FIG 8 The urban test environment in Irvine.
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reliability of satellite navigation signals is already known
through the HPL prediction map, an automated vehicle can
plan a safe trajectory ahead of time. If the navigation sen-
sors of the vehicle rely heavily on GNSS, it would be better to
detour around high-HPL regions. Most automated vehicles
utilize IMUs, which are calibrated using GNSS. Therefore,
IMU outputs in a high-HPL region should not be relied on.
As an application case study, the path planning of an auto-
mated vehicle based on the HPL prediction map is considered.
Unlike traditional strategies for path planning to minimize
travel distances and times, the primary focus here is the navi-
gation safety of an automated vehicle. Therefore, the optimi-
zation problem is formulated with safety considerations as
minimize > dist(pr-1,pr) - HPL (ps,t)

prET

<
N(HPL%;C,I) THPL) > T

D HPL unacceptable < D safey (5)

subject to

where the descriptions of the symbols are given in Table 4.
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FIG 9 The experimental results in (a) Irvine and (b) Riverside. Conservatively
predicted HPLs overbound measured HPLs along sample paths.
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The cost function in (5) aims to find an optimal path
that minimizes hoth the travel distance and HPL along the
path (recall that a smaller HPL indicates a higher satellite
navigation reliability). The first constraint in (5) considers
the ratio of the number of safe nodes to that of the total
nodes. For example, if iy, is set to 10 m and Tare is set to
95%, a candidate path with more than 5% of nodes having
an HPL of more than 10 m will not be selected as an optimal
path. The second constraint in (5) ensures the avoidance of
a candidate path with continuous signal outages. The out-
puts from automotive-grade IMUs quickly diverge if GNSS
signals are unavailable or unreliable for a certain period.
Therefore, continuous signal outages are more problemat-
ic than intermittent signal outages for similar total outage
durations. For example, if Dsat is set to 150 m, a candidate
path with continuous signal outages for more than a 150-m
distance will not be selected as an optimal path.

Table 5 compares the optimization problem formula-
tions of previous studies [14], [15] and the current study.
Unlike the previous studies, where only travel distance
and navigation reliability (i.e., the positioning error [14]
and the HPL without considering measurement faults
[15]) were considered, the proposed optimization problem
considers GNSS unavailability and continuous signal out-
ages, as well, to obtain a more realistic solution.

To solve the optimization problem in (5), the A* algo-
rithm [50] was applied, which is a widely used search
algorithm that can find an optimal path to a given tar-
get node. The A* algorithm was implemented as shown
in Algorithm 1 to find an optimal solution to the safety-
constrained path planning problem. The overall road
structure of a given map, which is expressed by a graph
composed of nodes and edges, is denoted by P. Given start
and target nodes, the A* algorithm finds the cheapest path
[i.e., a sequence of nodes that minimizes the cost function
in (5)] based on the sum of the backward cost (the cumu-
lative cost) and forward cost (the heuristic cost). The open
set, which is implemented as a priority queue that stores
nodes that have been visited but whose successors have
not been explored, is denoted by O. pcurem denotes the
currently visited node, and pneignnor denotes a neighbor
node of peurrent.

For each iteration, all neighbor nodes of pcwrem are
stored in O and the overall cost f of each
neighbor node is calculated. The overall cost
f1is defined as the sum of cumulative cost g
and heuristic cost . The Euclidean distance

target node is reached, the final optimal path = can be found

by reconstructing the nodes in C.

Considering the four candidate paths in Figure 10, which
are between Costa Mesa, California, and Irvine, the key
metrics related to the optimization problem in (5) along
each candidate path are summarized in Table 6. The GPS
and GLONASS pseudoranges were measured along the paths
during the field tests to obtain the measured HPL. The re-
sults of this experiment are summarized as follows:

m The costs, which are the output of the cost function in
(), of paths 1, 2, 3, and 4 were 56,428, 52,137, 110,398,
and 92,805, respectively. Therefore, path 2 has the min-
imum cost. Because path 2 satisfies all the constraints
in (5), it was selected as the optimal path.

m Although the average HPLs of the four paths were
similar, the ratios of safe nodes and the maximum con-
tinuous distances with unacceptable HPLs (i.e., the
predicted HPL is unavailable or above 7Twp) were sig-
nificantly different. In particular, in path 2, the ratio of
safe nodes was 100%, and there was no section where
the predicted HPL was unacceptable. This implies that
an autonomous vehicle can know path 2 has better

Table 4. The mathematical notations related to the proposed

safety-constrained path planning algorithm.

Symbol Description

/1 Sequence of nodes between start node psat and target
node Drargets i.8., 7 = {Dsart, P2, P3, - - -, Prarget}

Nooges Total number of nodes along a path

dist(pi_, px)  Euclidean distance between nodes pi-1 and pk (1 = Psian
and Phootes = plarget)

HPL(pi, 1) Conservatively predicted HPL at node px and time ¢, which
is given by the HPL prediction map

Tim Maximum allowable HPL value (i.e., the HPL threshold)

N() Number of nodes satisfying the given condition

Tate Threshold for the ratio of nodes satisfying HPL threshold T

DrpL unacceptable Continuous distance where the predicted HPL is
unavailable or above Tip

Dsate Threshold for DHPLunacceptame

Table 5. The comparison of optimization problem formulations

for safety-constrained path planning.

(i.e., the straight line distance) to the target Travel Navigation GNSS Continuous
node was used as the heuristic cost. After cal- Method Distance Reliability Unavailability GNSS Qutage
culatH.lg the 09st of each nelghbm.“ node, the Zhang and Hsu [14] v v X X
node in O with the smallest f is selected N
as Peurremt and is moved to the close set C. The [ 1?3”8 e (S v v 2 s
iteration ends when the target node is reached

Proposed v v v v

or when the open set O becomes empty. [fthe

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

103 - NOVEMBER/DECEMBER 2022

Authorized licensed use limited to: The Ohio State University. Downloaded on April 13,2023 at 05:02:10 UTC from IEEE Xplore. Restrictions apply.



Algorithm 1. The A* algorithm implementation for safety-

constrained path planning.

Data: P, Pstart, Prarget, HPL, Dse, TapL

Result:

f(pstan) = dle( Dstart, ptargel)

DHPL unacceptable (,Dstan) 0

safenode( psar) < 1

O — Dsian

while O is not empty do

Daurent — NOde in @ having smallest f

00— Peurrent

|f DHPLunacceptable (pcurrent) > Dsaie lhen
continue

end

if Peurrent is Prarget then
7t — reconstructed path from C
Noodes < total number of nodes in 7z
Neetenoges < Sum of safenode of all nodes in 7z
if Nsate nodes/Nnudes > Tsate “lell

return 7

end
continue

end

C < C+ Pourent

for every neighbor of peuren do

g(pneighbor) = dISf( Phreighbor, pcurrent)'HPL(pneighbor) + g( pcurrent)

h(pneighbor) = disf(pneighbor, ,Ularget)

f(pneighbor) = g(pneighbor) + h( pneighhnr)

if HPL( Preightor) is Unacceptable then
safenode( Preignvor) < 0
DHPLunacceptabIe (pneighbor) -
DHPLunacceptable (pnurrem) + dISt( ,Dne‘\ghbor, pcurrem)

else
safenode( Preighvor) < 1
DHPLunacceptable (pneighbor) - 0

end

0 &= O + pneighbnr

end
end
return failure

Start Node:
7 Costa Miasal 7

Path 1 (22 January)

— Path 2 (23 January)
Path 3 (24 January)

( )

Path 4 (25 January

FIG 10 The four candidate paths between Costa Mesa and Irvine. GNSS signals along the paths were collected during four consecutive days.

GNSS signal quality than the other paths before driv-
ing by solving the optimization problem in (5) using the
HPL prediction map and Algorithm 1.

m Paths 1 and 4 are also feasible solutions hecause they
satisfied all the constraints of (5). However, neither
path 1 nor path 4 is an optimal solution according to the
proposed cost function that considers both travel dis-
tances and predicted HPLs.

m Path 3 is not a feasible solution because it violated the
second constraint that requires DupL unaccepable t0 be less
than Dsare, which was set to 150 m. The proposed op-
timization problem successfully screened a path with
continuous GNSS signal outages that could potentially
threaten the vehicle’s driving safety.

m In all cases, the conservatively predicted HPL bounded
the measured HPL 100% of the time.

Conclusion

The reliability of GNSS signals is crucial to ensure driv-
ing safety because various navigation sensors of automated
vehicles rely on GNSS signals. This article considered the
HPL obtained by the ARAIM algorithm as a metric to mea-
sure navigation reliability at a given location and time on
urban roads. Due to the uncertainty of nearby dynamic ob-
jects and the limited accuracy of 3D urban digital maps,
a method to conservatively predict the HPL was proposed
and validated experimentally. The pseudorange biases and
presence of signal reflections and blockages, which are
necessary to predict the HPL in urban environments, were
simulated by ray-tracing with 3D maps. The generated HPL
prediction map can serve as useful road information for
various navigation applications. As a case study, the HPL
prediction map was applied for the safety-constrained path
planning of an automated ground vehicle. Unlike previous
studies, the proposed optimization problem considered the
unavailability of GNSS signals and continuous GNSS signal

aget Noe:
Irvine

v .
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Table 6. The comparison of key optimization metrics along four candidate paths.

Travel Average Predicted Average Measured Ratio of Safe Maximum Continuous Distance
Path Distance (m) HPL (m) HPL (m) Nodes (%) With Unacceptable HPL (m)
Path 1 9,746 6.49 5.57 98.5 131.90
Path 2 9,631 791 5.60 100 0
Path 3 14,244 7.67 5.52 97.2 208.72
Path 4 10,629 8.50 5.64 97.1 103.95

outages that occur in urban environments. A specific im-
plementation of the A* algorithm to find an optimal path
was also suggested and demonstrated.
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