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A reduced-order multiple-model (MM) estimator for noise iden-
tification in dynamic stochastic systems is developed. The unknown
noise statistics are assumed to be static. While a standard static
MM estimator does not grow exponentially over time, its computa-
tional complexity grows exponentially with the number of modes.
The proposed algorithm reduces the computational complexity of
MM estimation from exponential to polynomial by constructing a
significantly smaller set of mode models, which are updated every
time step. It is assumed that the constructed mode models do not
change significantly between time steps, which in turn holds if the
smoothness of the mode probabilities is guaranteed. It is shown that
in the case where there is ‘“enough” statistical distinction between the
noise modes, the proposed reduced-order MM estimator converges
to the standard MM estimator. The proposed reduced-order MM
estimator is evaluated using Monte Carlo simulations, showing that it
performs nearly similar to the standard MM estimator with a fraction
of its complexity. The numerical example shows less than a 2% increase
in the root mean-squared errors of the reduced-order MM estimator
from the standard one, while the reduction in the number of filters
in the reduced-order MM estimator is 300%. To further validate the
proposed filter, experimental results are presented of an unmanned
aerial vehicle (UAV) navigating with terrestrial signals of opportunity.
Opportunistic navigation serves a relevant application for MM-based

Manuscript received 1 December 2021; revised 25 March 2022, 29 June
2022, and 13 October 2022; accepted 22 October 2022. Date of publication
6 January 2023; date of current version 9 June 2023.

DOI. No. 10.1109/TAES.2023.3234523
Refereeing of this contribution was handled by Y. Wu.

This work was supported in part by the Air Force Office of Scientific
Research (AFOSR) under Grant FA9550-22-1-0476 and in part by the Na-
tional Science Foundation (NSF) under Grant 2240512.

Authors’ addresses: Joe Khalife was with the Department of Mechanical
and Aerospace Engineering, University of California, Irvine, CA 92697
USA, E-mail: (jjkhalife @ gmail.com); Zaher M. Kassas is with the Depart-
ment of Electrical and Computer Engineering, The Ohio State University,
Columbus, OH 43210 USA, E-mail: (zkassas@ieee.org). (Corresponding
author: Zaher M. Kassas.)

0018-9251 © 2023 IEEE

2672

estimation, as system parameters, namely the statistics of the clock
error dynamics of opportunistic sources, are unknown and must be
adaptively estimated. The experimental results show a UAV navigating
for more than 5 min over a trajectory of more than 3 km, achieving
a final position error of 6.21 m obtained using the standard MM
estimator versus a final position error of 6.25 m obtained using the
proposed reduced-order MM estimator. A standard extended Kalman
filter was implemented for comparative analysis, showing a final error
of 40.03 m. In the experiments, the reduced-order MM estimator was
implemented with 16 filters, while the standard MM was implemented
with 256 filters.

[. INTRODUCTION

The ability to adaptively estimate unknown or poorly
modeled system parameters is of particular interest in the
ever advancing level of autonomy of ground, aerial, and
space vehicles. Consider a self-driving car or an unmanned
aerial vehicle (UAV) entering a poorly modeled, dynamic
stochastic environment, such as an urban intersection [1],
[2] or a signal landscape [3], [4]. As the vehicle navigates its
environment, it must estimate its own states simultaneously
with the environment’s states, while refining its models of
the surrounding environment.

Adaptive estimation approaches [5] can be categorized
into Bayesian [6], [7], [8], covariance matching [9], [10],
[11], correlation [12], [13], [14], maximum likelihood
(ML) [15], [16], [17], and hybrid methods. A popular
Bayesian technique is the multiple-model (MM) estima-
tor. However, such estimators suffer from the curse of
dimensionality in the presence of mode-switching [18],
[19]. Covariance matching techniques rely on the principle
of making the time average of squared innovations con-
sistent with the ensemble average; hence, they implicitly
assume ergodicity of the noise. Tuning the process noise
covariance is typically done in an ad hoc manner, mak-
ing the convergence of these techniques questionable [20],
[21]. Correlation methods assume ergodicity of the noise
and rely on establishing relationships between the noise
statistics and the autocorrelation of the measurement or
residual sequences. They have been shown to be a fruitful
approach [22], [23], [24]. In ML techniques, the likelihood
function is maximized to obtain estimates of the noise
statistics, and the chain rule of probability distributions
is typically invoked. A unique solution is only guaranteed
whenever the dimension of the observation vector is greater
than or equal to the dimension of the state vector [25], [26].
The most popular hybrid techniques are the MM adaptive
estimator with mode switching [27], [28] and the interacting
multiple-model (IMM) estimator [29], [30]. MM estimation
has been used in a variety of applications, ranging from
positioning and navigation [31], [32], target tracking [33],
[34], air traffic control [35], [36], fault detection [37], [38],
cognitive radio [39], [40], and many more. MM estimators
have been “adapted” to estimating process and measure-
ment noise statistics [41].

Both MM and IMM estimators maintain a bank of
Kalman filters (KFs) matched to the various modes at which
the system may be operating. The innovation likelihoods
from each filter are used to weight the filter estimates
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to form a combined state estimate. The standard static
MM adaptive estimator directly uses these likelihoods as
adaptive weights, which could cause the filter to converge
onto a particular mode. To rectify this behavior, minimum
threshold probabilities are typically assigned to each filter.
The IMM circumvents this problem with the introduction
of an interaction/mixing step in which state estimates given
to the bank of filters are calculated at each time step
using the weighted estimates of the previous time step.
While the IMM and its derivatives reduce the computational
complexity as a function of time, the literature falls short
on addressing the computational complexity of MM-based
estimator as a function of the number of possible modes.

This article considers the following problem. A stochas-
tic linear time-varying (LTV) system with N process noise
elements, each of which can be in M modes. As such, a full
implementation of standard MM estimators requires M"
filters to exhaust all possible modes. This exploding com-
plexity renders MM estimators impractical for moderately
large-scale systems. This article aims to develop a reduced-
order MM estimator that only requires M - N filters. A
particular application that would benefit from such reduc-
tion in complexity is navigation with signals of opportunity
(SOPs), which are ambient signals not intended for naviga-
tion purposes [42]. SOPs have been demonstrated to be a
promising complement or alternative to global navigation
satellite system (GNSS) signals in GNSS-challenged envi-
ronments [43], [44]. Examples of SOPs include AM/FM
radio [45], [46], digital television [47], [48], cellular [49],
[50], [51], [52], and low Earth orbit (LEO) satellites [53],
[54], [55], [56]. Cellular signals proved to be particularly
attractive due to their spatial and spectral diversity, high
received power, and cost-free usage of their downlink syn-
chronization signals. Cellular SOP receivers were designed
to extract navigation observables from such signals [57],
[58], [99], [60], [61], e.g., pseudorange and carrier phase
measurements. Both the pseudorange and carrier phase
measurements give a measure of the range between the
transmitter and receiver up to some bias due to the difference
between the transmitter’s and receiver’s clocks. The cellu-
lar SOP transmitters, known as base transceiver stations
(BTSs), may be asynchronous and have unknown clock bi-
ases, which are dynamic and stochastic processes. When the
statistics of these processes are unknown to the estimator,
the filter will be mismatched to the true model, which in
turn would degrade the estimation performance and more
dangerously, could cause filter divergence altogether. One
way to circumvent this mismatch is to use an adaptive MM
estimator, where each estimator is matched to the statistics
of some possible clock oscillator quality. A preliminary
study demonstrated the efficacy of this approach, where two
modes per transmitter were employed, one pertaining to a
low quality oscillator and one to a high quality oscillator,
and the mode probability was used as a weight [62].

The number of estimators needed for a standard MM
estimator grows exponentially with the number of trans-
mitters, especially in the case of aerial vehicle navigation,
where the number of visible transmitters increases due to
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favorable radio propagation channels [63]. Assuming two
possible models per transmitter clock, employing a standard
MM estimator, 28 = 1024 filters would be needed for eight
transmitters. As the number of transmitters increases even
further; which could easily happen with LEO SOPs [64],
[65], where hundreds of LEO satellites could be simulta-
neously visible [4]; the computational complexity of MM
estimators becomes practically infeasible to implement on
small UAVs with limited computational power.

Motivated by the need of a computationally efficient
MM estimator, the contributions of this article are as fol-
lows.

1) A reduced-order MM estimator is proposed to adap-
tively estimate the process and measurement noise
covariance in stochastic LTV systems. The proposed
algorithm performs nearly similar to a standard MM
estimator with a fraction of the computational com-
plexity.

2) A sufficient condition for the reduced-order MM es-
timator to converge to a standard estimator is derived.

3) Monte Carlo simulations are presented to evaluate
the proposed algorithm, showing a less than 2%
difference in the root mean-squared error (RMSE)
of the proposed algorithm compared to the standard
MM estimator.

4) Experimental results are presented, showing a UAV
navigating for more than 5 min over a trajectory
of more than 3 km with the proposed algorithm.
The reduced-order MM estimator is compared with
a standard MM estimator and a standard extended
Kalman filter (EKF). A final position error of 6.21 m
is obtained using the standard MM estimator imple-
mented with 256 filters while a final position error of
6.25 m is obtained using the proposed reduced-order
MM estimator implemented with 16 filters only.

The rest of this article is organized as follows. Sec-
tion II provides the system model and gives an overview of
standard MM estimation. Section III describes the reduced-
order MM algorithm. Section IV presents simulation re-
sults. Section V presents experimental results. Finally,
Section VI concludes this article.

. SYSTEM  MODEL
OVERVIEW

This section presents the models adopted in this article
and gives an overview of MM estimators.

AND MM ESTIMATION

A.  System Model
Consider the following discrete-time LTV system
x(k+ 1) = F(k)x(k) + w(k) (1)
z(k)y = H(k)x(k) +v(k), k=0,1,... 2)

where x(k) € R™ is the state vector; F(k) is the state transi-
tion matrix; z(k) € R is the measurement vector; H(k) is
the output matrix; and w(k) and v(k) are zero-mean white
Gaussian random sequences with covariances Q(k) and
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R(k), respectively. Let Z* denote the set of all measurements
up to time &, i.e., Z = {z(k)}*_,. The time index k will
be subsequently dropped for compactness of notation, un-
less explicitly specified. Consider the process noise vector
w=[w, wy, ..., wnA]T. Each w; can be in one of r; modes,
where each particular mode has a corresponding variance
012 and cross-covariance oy for I’ € {1,...,nJ\l. Let L
denote the total number of process noise elements for which
r; > 1. The resulting process noise covariance can always
be expressed as a linear combination of these L elements as
given by

L
Q=) 1QT/ 3)
=1

where T; are known constant matrices and Q' € {Q!}!" |,

and 7; is number of possible “modes” of process noise
element /. In this article, it is assumed that all elements
of the process noise covariance matrix are in a fixed but
unknown mode V k > 0, i.e.,

Q' =0,
where n; is the active mode of the /th element. To illustrate
(3) and (4), consider a double integrator system driven by
process noise. This system is typically used to model the
behavior of crystal oscillator clocks, a crucial element in

radionavigation. The discrete-time process noise covariance
of these models is expressed as

Vk>0 @)

SiT —i—SzTT3 SZTT2

Q=
ST ST

4)
where T is the sampling time and S; and S, are the
continuous-time power spectra of the clock bias and drift.
The quantities S; and S, vary with the quality of the oscil-
lator. When these quantities are unknown, one can use an
MM estimator to estimate them along with the clock states.
It is assumed that S| and S, are given from the sets S; and
S, respectively. A standard MM estimator would require a
number of filters that is equal to the product of the cardi-
nalities of S; and S,. The goal of the reduced-order MM is
to adaptively estimate S; and S, with lower complexity. As
such, one can rewrite the process noise covariance in (5) as

2
Q=) rQT/ (6)
=1
where
ST 5T
Q'=8i7, Q=75 2| =100 Ti=h

S5 ST

(N
and I, is the n x n identity matrix. Note that I'; and I',
are constant and known matrices. The quantity Q! is solely
dependent on S}, which is unknown but is given from the
set S; and Q? is solely dependent on S,, which is also
unknown but is given from the set S,. As will be shown in
the following section, expressing Q as in (3) will be crucial
in the formulation of the reduced-order MM estimator, as it
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Fig. 1. Standard MM estimator for r = 2 fixed models.

allows us to estimate the process noise covariance of each
element separately from the rest, reducing the number of
filters needed to the sum of cardinalities of S; and S, instead
of their product.

Similarly to the process noise covariance, the measure-
ment noise covariance can generally be expressed as a linear
combination of J elements as given by

J
R = Z W,R/ W] (8)
j=1

where W; are known constant matrices and R/ € {le Yo
and s; is number of possible modes of measurement noise
element j. Moreover, it is assumed that all elements of the
measurement noise covariance matrix are in a fixed but
unknown mode V k > 0, i.e.,

Rf':jo Vk>0 9)
where 0; is the active mode of the jth element. Note that it
is assumed that Q > O and R > 0.

B. Overview of the Standard MM Estimator

In MM estimation, the system is assumed to obey one
of a finite number of modes, and a bank of estimators
(usually KFs) run in parallel, where each filter is matched to
aparticular mode. A state estimate is computed by summing
the individual filter estimates, weighted by their respective
innovation likelihoods [66].

1) Simple MM Estimator Formulation: A single cycle
of the standard MM estimator for r = 2 models is depicted
in Fig. 1, with the following notational definitions:

r Number of filters.

i {1,...,r} eN.

M; Hypothesis that mode i is active.

& (k|k) State estimate of filter i.

Pi(k|k) Estimation error covariance of filter i.
Aik+1) Innovation likelihood of filter i.

R+ 1k+1) Updated state estimate of filter i.
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Pi(k+1lk+1) Updated estimation error covariance of
filter i.
witk +1) Mode probability of filter i.

Combined state estimate in the MM
estimator.

Combined estimation error covariance
in the MM estimator.

vk + 1k +1)

Pym(k + 1k + 1)

The MM estimator consists of the following three
stages: filtering, mode probability update, and combination,
which are summarized as follows.

1) Mode-matched filtering: These stages perform a reg-
ular KF update (prediction and correction), for each
KF in the bank, where each filter is matched to a
particular mode to produce estimates &' (k + 1|k + 1)
and associated estimation error covariance P!(k +
11k + 1). It also calculates the innovation likelihood
functions according to

Ak +1)=N[v(k+1)0,S*k+1D] (10)

where N[x; u, X] denotes the multivariate Gaussian
probability density function with mean vector u
and covariance matrix X evaluated at some vector
x, vi(k + 1) is the innovation vector in filter i, and
Si(k 4 1) is the innovation covariance in filter i.

2) Mode probability update: This stage updates the
mode probabilities based on the innovation likeli-
hoods using Bayes’ formula, which can be shown to
be

Ai(k 4+ Dpi(k)
Yh Ak + D)

3) State estimate and covariance combination: This
stage combines the state estimates and estimation er-
ror covariances from the individual filters by weight-
ing #(k + 1|k + 1) and P'(k + 1|k + 1) by their re-
spective mode probabilities w;(k + 1) according to

pitk +1) = (1D

.
R+ 1+ D= " ik + DRk + 1k + 1)
j=1
(12)

Pani(k+11k+D=> " itk + 1) {P/(k + 1k + 1)
j=1

+ [#k+ 1k + 1) —svam (k+ 1k +1)]

.[fcf'(k+1|k+1)—:2MM(k+1Ik+1>]T}- (13)

After some time, the mode probability of the active
mode in the MM estimator will converge to unity and the
others to zero. After convergence, the estimate and estima-
tion error covariance will converge to those of a KF matched
to the true active mode. Let X(k|k) and P(k|k) denote the
matched estimate and estimation error covariance. As such,
after convergence, the following holds: Xy (k|k) = X(k|k)
and Pym(k|k) = P(k|k).
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2) MM Estimator Formulation for the System in (1)
and (2): Let Mfl denote the event that the i;th mode of

the /th process noise element is active and N,{ the fact
that the #;th mode of the jth measurement noise element
is active. Next, let w;, i ... (k) denote the probability

that {M},...,ME NI ..., N’} are active given Z*, hence
1 L 1 J
I"l’il ..... i, l‘](k):Pr[Ml'llﬁ"'aMl'leaN[iﬁ"'aN[i|Zk]'
(14)

In the standard MM approach, it is assumed that there
is a filter matched for each combination {Ml-ll, AU
ME.N),....N/}. Let & ..., (k|k) denote the current
estimate in the filter matched to {M;, ..., M}, N,', ..., N/}
and P;, i ... (klk) its corresponding estimation error
covariance. Similarly to (12), the combined estimate in this
case will be given by

Bk =D Y ity ()

iL h ty
“Xi it (k1K)

with the estimation error covariance

Pani k) =D Y > Y i ()
i1 ty

ip h

(15)

AP K1
+ [ﬁl‘],...,l‘L,tl,...,fj(k|k) - ﬁMM(klk)]

~ ~ T
[ K10 = 2 kI0] ' 16)

Consequently, in order to run an MM estimator for the
system defined in (1) and (2), the number of filters needed
is given by

L J
Nowers = [ [ [ 54 (17)

=1 j=1
Assuming ri=r=---=r,=r and s =85 =--+=

s; = s, then Njyers = rs’, which grows exponentially with
the number of elements L and J. The following section
proposes a near-optimal MM-based estimator where the
number of required filters does not scale exponentially.

[ll. REDUCED-ORDER MM ESTIMATOR

The reduced-order MM estimator is developed in the
following equation.

A. Motivation of the Reduced-Order MM Estimator

MM estimators were also used to estimate the unknown
process noise statistics in [41], where a bank of two KFs are
identically initialized with the exception of Q'. One of the
filters was initialized with an upper-bound Qp,x, while the
other is initialized with a lower-bound Qi,, corresponding
to the worst and best case process noise scenarios. In this
scheme, the noise covariance estimate Q is computed as

2
Q) =Y " uik) Q' (k).

i=1

(18)
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This can be similarly done for the measurement covariance
as

2
> wik) RUGK).

i=1

R(k) = (19)

This can be generalized for the case of an MM estimator for
system (1) and (2), where

Q(k)-Z DD Zu” f,<k>Zer1rT

ip

_ZZ Zr[szrTZ Zu’ll gLt lj(k)

(20)

and

R(k)-Z ZZ Zull f,<k>Z\Ir A
—ZZ Z\IIIR{I\IITZ Z,u ..... P (o}

j=1 n
2D

The following lemma motivates the main idea behind the
reduced-order MM estimator.

LEMMA III.1 Consider an MM estimator for the system in
(1) and (2). Then, the process noise and measurement noise
covariance estimates may be expressed as

1 L
Q) =7 37> uf (0@ k) (22)
[ 1 l[
R(k) = Z > ui (ORy (k) (23)

]1’1

where /,Ll (k) and W, rJ (k) are some appropriately defined
probabilities, i.e. Z,u,q (k) = 1 and Zp,trjj(k) =1, and

Q' (k) £ T, Q'T, + Q" (k) (24)
R/ (k) £ W,RY ¥, + R”(k) (25)
where
Q" (k) = Z > udtorQir] (26)
l;ém !
J . .
RP(k) 23 " uid (k)W R) W) (27)
=1
j#p

PROOF See the Appendix.

Lemma III.1 implies that the estimated process and
measurement noise covariances can be expressed as a sum
of Zlel r; and Z§=1 s; terms, respectively. For simplicity,
assumeJ = 1 withs; = s = 1 and r; = r. Then, (22) can be
interpreted as the estimated process noise covariance from
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L banks of filters, each bank with r sub-banks of filters,
with each particular filter matched to the process noise
covariance given in (24). A similar interpretation can be
made for R(k) in the general case. Consequently, when all
L and J banks of filters converge, i.e., the mode probabilities
ug‘l(k) and p,,rjij(k) become

el aql )1, it =mn, _
i (k) = " = {O, otherwise vi=l...L
and
J(k) nj 1, ifl‘j=0j, Viel J
M Mj = 0, otherwise J=S
then it can be readily shown that Q;’r’"(k) = Q(k) and
Ri(k) = R(k), which in turn implies that Q(k) = Q(k) and
R(k) = R(k). [ |

B. Reduced-Order MM Algorithm

Motivated by the results of Lemma III.1, the reduced-
order MM estimator algorithm is developed. The proposed
algorithm requires a total of U = Zle nt Z§=1 s; filters
and operates similarly to the standard MM estimator with
some differences highlighted in the following steps. Let ﬂg‘[
denote the mode probability of the filter matched to the i;th
mode of the /th process noise element and u,r /- denote the
mode probability of the filter matched to the #;th mode of
the jth measurement noise element.

1) Model Construction: In this stage, a model for
each mode-matched filter is constructed as follows. Let

e {1, 2,..., U} denote the uth mode-matched filter. Note
that if u < Zlel r;, then u can be mapped to an element
m of the process noise. In this case, the uth process noise
covariance, which is the one matched to the i,,th mode of
the mth process noise element, is constructed as

Q') =

r,.Q T}, + Q" (k) (28)

where

L
Q=Y Z L (oT,QL T} (29)
I#m

The mode-matched measurement noise covariance will be
given by

J
PIOMAOL AN

j=1 1

R“(k) = (30)

Alternatively, if u > ZzL=1 r; then u can be mapped to
the 1,,th model of the mth measurement noise element. In
this case, the mode-matched process noise covariance is
constructed as

L
Q' (k) = ZZ/@Z '(rQ, T 31)
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The mode-matched measurement noise covariance will be
given by

R“(k) = W, R, + R™ (k) (32)

where
~ J . .
R™(k) =" 7! (k)R] W)

j=1 1
o

(33)

2) Mode-Matched Filtering: After model construction,
each filter is updated and the likelihood functions denoted
by Afl (k) and A,Jj (k) are computed similarly to the MM
estimator shown 1n (10). For details about mode-matched
filtering and likelihood function calculations, the reader is
referred to [66].

3) Mode Probability Update: Similar to the standard
MM equations, the mode probabilities ,a?’l and [t’*f

updated using A’ (k) and AJ (k) according to (11). This
step assumes that the constructed models do not vary sig-
nificantly between time steps. The assumption is discussed
further in Section III-D.

4) State Estimate and Covariance Combination: Let
Xym(klk) and Py, (k|k) denote the state estimate and co-
variance of the reduced-order MM estimator. Moreover, let
XZ‘[(klk) and Pg‘l(k|k) denote the estimate and estimation
error covariance maintained in the filter matched to the i;th
mode of the /th process noise element, and fc,” (k|k) and

” (k|k) denote the estimate and estimation error covari-
ance maintained in the filter matched to the #;th mode of
the jth measurement noise element. Subsequently, the state
estimate and covariance combination is performed similarly
to the standard MM estimator and is given by

B klk) = 7 [ZZﬂﬁl(k)“”(klk)

(34)

+ Z > (o7 (ki)
=11

The estimation error covariance is given by

ZZM,’(/«) [Pt ik

+ [fc?;’(k|k> ~ Ham (ki) |

PMM(klk)

a

- [fcfl’l(k|k) —fc{wM(ka)] }
J

SIS | IS
Jj=1 1

+[57010 - ki)

. T
-[ﬁ,’j’,’(klk)—)%MM(klk)] ” (35)
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Note that similar to the standard MM estimator, the process
noise and measurement noise covariances may be estimated
as

Q) = Z > (OTIQiT; (36)

R(k) = / (k)W;R/ W (37)

ZZ/@{

J=1 1
C. Optimality of the Reduced-Order MM Estimator

The reduced-order MM estimator comprises L +J
banks of filters, one for each process noise and measurement
noise element. The /th bank of process noise elements
contains a sub-bank of r; filters, each matched to one of
the r; modes that the /th process noise element can be
in. In other words, the /th bank is running r; filters, each
filter matched to a process noise covariance from the set
{Qfl (k)}l _;- Similarly, the jth bank of measurement noise
elements contains a sub-bank of s; filters, each matched to
one of the s; modes that the jth measurement noise element
can be in. In other words, the jth bank is running s; filters,
each filter matched to a measurement noise covariance from
the set {R’ (k)}t__1 Recall that X(k|k) and P(k|k) denote the
estimate of x and its associated estimation error covariance
in a KF matched to the true statistics Q and R. As such, if
the mode probabilities in the reduced-order MM converge
to the right values, i.e.,

1, ifij=n
ndy=pst =1 Ty =1,... L
it (0 = I, {0, otherwise U
(38)
1, ift;=o0;
riky=pd =1 T Y i=1,..,J
P (k) = I {O, otherwise J T
(39

then, it can be readily shown combining (36)—(39) that
the estimated process and measurement noise covariances
converge to the true ones, i.e.,

Q(k) — Q(k), (40)

As a result, the filters for which [ u =1 and i /,L, =1 will
be matched to Q and R, which in turn means that their state
estimate and estimation error covariances will converge to
X(k|k) and P(k|k). As such, if (38) and (39) hold, then it
follows that

ﬁ(k) — R().

k) — £(klk),  Plyyklk) — Pklk). (41

In other words, if (38) and (39) hold, then the reduced-order
MM estimator converges to that of a matched KF, which is
known to be the optimal estimator of x.

D. Condition for Convergence

Recall that the reduced-order MM estimator employs
a total of U=Y1_ r +Z§=lsj filters, and that the
uth mode-matched filter, where u € {1,2,...,U} can be
mapped to an element m of the process or measurement
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noise. As such, let 1 A m(k) denote the estimated mode prob-

ability in the reduced order MM estimator, which maps to
" ey if u < Z, , 71, or to 17" (k) otherwise. Moreover,

let Mﬁ m(k) denote the process and measurement noise
model ‘assumed by the uth mode-matched filter, which can
be obtained from (28)—(32). Using Bayes’ formula, one can
write /l? (k) as

AL oy =Pr [ BIL" )| 200, 7]

e[ 1] (), 20| 24|
T Pr[zl Z ]

) Prlzol B1{." k), 24 |pel el 0| 2

(42)

Note that Pr [M g’:m(k)lZ"_l] is not known but if the model

estimate does not vary significantly between time steps, it
can be approximated with

Pr [Mfm’"’(k)| zk—l] ~ Pr [Mﬁm’”’(k — 1)| Z"_l]

=gk = 1) (43)
hence the following recursion is obtained:
gk ~ g™ ) "k = 1) (44)
where
e[ 20l 811" (), 2
al (k)2 . (45)

oS el . 24 - 1)

It is required for these probabilities to converge to the
right ones, i.e., all converge to zero except {/JLZ,‘[(/’C)}ZLZ1 and
{ns! (k)}JL.= | converge to one. A sufficient condition for this

convergence to happen is that there exists some kg such that
VY k > ko, the following holds:

ifu< Zle r

otherwise (46)

p.m — R,

argmax [oegm (k)] = {0
ZIPl nm»
where n,, and o,, are the indexes of the true modes of
the mth process noise and measurement noise elements,
respectively. The abovementioned condition is similar to

argmax {Pr[z(k)lMﬁ’m(k) Zk_l]} ={n’"’ ifu=< ZlL:lr[
6 bm 200 Om, Otherwise.

47)
Vk > ky,since Y, Pr [z(k)Wg-m(k), Z"‘l] e — 1
a constant with respect to ¢,,. The condition in (46) says that
at each time step k > kg, the closest constructed model to
the true model is the one matched to n,,, if u < Zlel r; or
o,, otherwise. Note that the reduced order MM estimator
can be viewed as a standard MM estimator whose mode
models are different than the true model. In such cases,
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when the assumed modes in the standard MM estimator do
not contain the true mode of the system, it has been proven
in [67] that the standard MM estimator will converge to the
mode whose model is the closest to the true model. As such,
if (46) holds, then (38) and (39) will be satisfied and the
reduced-order MM estimator will converge to the matched
KF. It is important to also note that the sufficient condition
in (47) holds only when the process and measurement noise
statistics are statics, i.e., no mode switching is happening.
A summary of the reduced-order MM algorithm is given in
Fig. 2.

REMARK Intuitively, the condition in (46) is more likely
to be satisfied when the models of different modes are
“different” enough. For example, assuming only 1 scalar
process noise element with two possible models, then (46)
is more likely to hold when |Q; — Q,| = 10 rather than

101 — 02| = 0.01.
IV.  SIMULATION RESULTS

It is important to note that the proposed reduced-order
MM estimator is a different algorithm than the standard
MM altogether. As such, one should not expect the same
performance as the standard MM estimator. A sufficient
condition for the reduced-order MM to achieve optimality
was presented in Section III-D; however, this condition
may not always be satisfied. In such cases, characterizing
the loss in performance quickly becomes intractable and
is left for future work. This article resorts to simulations to
characterize the performance of the reduced-MM estimator.
To this end, the following system is considered:

¥k 4 1) = [5 ﬂ (k) + wik) 48)

2(k) = [0.02 0.1]x(k) + v(k) (49)

where T = 0.1 s is the sampling time; x = [x;, x,]" is the
state vector, where x; is expressed in meters and x, in
meters per second; w is a zero-mean white sequence with
covariance Q given by

2
Q=) rQT]

(50)
=1
where
r2m o', Q28T
s,Z 5L
I £ Lo, Q£ 232 22
ST 8T
the power spectra S, and S, are from the sets S; = {0.1, 4, 8}

and S; = {0.001, 0.4, 5}, respectively; and v(k) is a zero-
mean white Gaussian random variable with variance R
from the set R = {1, 8, 10}. It can be clearly seen that the
system defined in (48) and (49) is in the form of the one
defined in (1) and (2) with two process noise elements
and one measurement noise element, each of which can
be in one of three modes. As such, 32 x 3! = 27 filters are
needed to implement a standard MM estimator, while only
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Mode and element index definition:

q: Symbol relating to the process noise covariance

L: Number of elements in the process noise covariance
le€{l,...,L}: Index of process noise element

r;: Number of possible modes of the I-th process noise element
iy € {1,...,7}: Mode index of I-th process noise element

Mode-matched filter index definition:
U= ZIL=1 ry+ Z;;l s;: Total number of mode-matched filters

{if u < ZIL:1 r;: Index of process noise element corresponding to u-th mode-matched filter
™ Uif w > SOE | 7 Index of measurement noise element corresponding to u-th mode-matched filter

Mapping between element and mode-matched filter indexes:
Given u < ZZL=1 77, m is process noise element index such that:

m—1 m
=1 m<u< 21:1 Tl

Mode index corresponding to m-th process noise element:

I = U — E;’;}l T

r: Symbol relating to the measurement noise covariance

J: Number of elements in the measurement noise covariance
j€A{l,...,J}: Index of measurement noise element

s;: Number of possible modes of the j-th measurement noise element
t; € {1,...,s;}: Mode index of j-th measurement noise element

u e {1,...,U}: Mode-matched filter index

Given u > Zz,L=1 77, m is measurement noise element index such that:
L m—1 L m
(21:1 T+ Zj:l 5j> <u< (21:1 T+ z]‘:1 5j)
Mode index corresponding to m-th measurement noise element:

tm = u — (EZLZI +E:n:711 Sj)

Reduced-order MM algorithm:
(Showing the u-th mode-matched filter)

~q,l AT, ]
I ON A0

Initializati
:&{\/IM(BiOI)a, Il%'?uIJEmO) Model construction Mode-matched Mode probability Sztfoszf'ii;nna;:
,},;?l’l = % 1:;? = i (25)—(30) filtering [64] update (7)&(8) combination (31)&(32)[Pym (010)

& (0[0)
L >

(from other mode-J

&2 (klk), PE (k) if u < [y 7y

matched filters)

@y (k|k). PL(kIK) if u > 35, 1

(from other mode-
matched filters)

Fig. 2. Summary of the reduced-order algorithm showing how the indexes are defined and calculated as well as a block diagram of the filtering steps.

(2 x 3)+ (1 x 3) =9 filters are needed for the reduced-
order MM estimator. The true system model is set to be
Sy =4,85, =04, and R = 8. The initial state statistics are
chosen as x ~ N (xo, Py), where xo £ [2, 1]" and Py £
diag[1000, 10]. Then, five estimators are implemented for
comparative analysis.

1) Matched KF: A single KF matched to the true model.

2) Standard MM estimator: A standard MM estimator
running all 27 filters each matched to a combination
from the set S} x S; x R.

3) Reduced-order MM estimator: The proposed
reduced-order MM estimator with nine filters, which
is the efficient implementation of the standard MM
estimator.

4) Mismatched KF—min Q: A single KF assuming
S =0.1,8, =0.001,and R = 1.

5) Mismatched KF—max Q: A single KF assuming
S1=8,5 =5,and R = 10.

The RMSE of each of the states x; and x, was computed
from 10* Monte Carlo realizations for each filter and are
shown in Fig. 3 along with the RMSE calculated by prop-
agating the Riccati equation. It can be clearly seen from
Fig. 3 that while the matched KF yields the lowest RMSE
matching the theoretical RMSE obtained by the Riccati
equation, the standard, and reduced-order MM estimators
achieve comparable performance. The mismatched KF with
maximum Q yields acceptable RMSE for x;; however, the
RMSE for x; is significantly large. The fraction of increase
in the final RMSEs of the reduced-order MM from the
standard MM estimator are 1.40% and 1.90% for x; and
X,, respectively. This small loss in performance between
the reduced-order and standard MM estimator comes at

KHALIFE AND KASSAS: STATIC REDUCED-ORDER MULTIPLE-MODEL ADAPTIVE ESTIMATOR

— — — - Ricatti equation Reduced-order MM Mismatched KF - min Q

—— Standard MM Matched KF Mismatched KF - max Q
Zy
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Time (s)
T2
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2
% 3.5 b
= 1.9
£ 5 NS ]
0 8 —
=25 =
o

n n >
0 10 20 30 40 50 60 70 80 90

Time (s)

100

Fig. 3. Monte Carlo simulations results showing the RMSE for each
error state x; and x, computed from 10* realizations for each of the
estimators for S| = {0.1, 4, 8}, S, = {0.001, 0.4, 5}, and R = {1, 8, 10}.
The RMSE was also calculated by propagating the Riccati equation and
plotted for comparison.

the benefit of a significant reduction in the number of
filters needed, which in this case is a 300% reduction. The
fraction of realizations in which the standard MM estimator
converged to the wrong modes was 12.8% and 24.01% for
the reduced-order MM estimator. Moreover, the fraction of
realizations the reduced-order MM estimator converged to
different modes than the standard estimator was computed
to be 14.82%.

In order to explore the case where the reduced-order
MM fails to approximate the standard MM, the sets S;, Ss,
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— — —-Ricatti equation Mismatched KF - min Q Matched KF
Reduced-order MM Mismatched KF - max Q Standard MM
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Fig. 4. Monte Carlo simulations results showing the RMSE for each
error state x| and x, computed from 10* realizations for each of the
estimators for S| = {3.5, 4, 8}, S, = {0.01, 0.4, 0.8}, and R = {6, 8, 10}.
The RMSE was also calculated by propagating the Riccati equation and
plotted for comparison.

and R are changed to S; = {3.5, 4, 8}, S, = {0.01, 0.4, 8},
and R = {6, 8, 10}. Then, the following five estimators are
implemented for comparative analysis.

1) Matched KF: A single KF matched to the true model.

2) Standard MM estimator: A standard MM estimator
running all 27 filters each matched to a combination
from the set S} x S, x R.

3) Reduced-order MM estimator: The proposed
reduced-order MM estimator with 9 filters, which
is the efficient implementation of the standard MM
estimator.

4) Mismatched KF—min Q: A single KF assuming
S1=34,85=0.01,and R = 6.

5) Mismatched KF—max Q: A single KF assuming
S =8,5,=0.8,and R = 10.

The new results are shown in Fig. 4 . As can be seen
from the figure, when there is less distinction between the
modes, reflected by the fact that the values in S, S,, and
‘R are now closer to one another, the reduced-order MM
struggles to properly approximate the standard MM. This
is an indication that the sufficient condition discussed in
Section III-D is not satisfied. Although the reduced-order
MM performed worse after changing S; and S, it still
yielded acceptable performance, especially compared to
the mismatched KF with the minimum Q. The mismatched
KF with the maximum Q yields acceptable RMSEs. This
second set of simulation results highlights the importance of
the condition in Section III-D for both MM estimators and
suggest that when the modes are “close enough,” there is
not much gain in using an MM estimation approach over the
maximum Q filter. However, in practical MM applications,
the modes will be significantly distinct. In such cases,
the reduced-order MM would be desirable as it performs
similarly to the standard MM estimator but with the fraction
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TABLE I
Summary of Simulation 1/Simulation 2 Results

Estimator Number Final RMSE Final RMSE

of filters for x1 (m) for xo (m/s)
Matched KF 1 13.32/13.32 1.835/1.835
Mismatched KF—max Q 1 13.91/13.38 2.532/1.858
Mismatched KF —min Q 1 28.63/21.39 2.861/2.744
Standard MM 27 13.79/13.51 1.893/1.874
Reduced-order MM 9 13.83/13.71 1.943/1.910

of its complexity. This is illustrated in the following section.
The simulation results are summarized in Table I .

V. CASE STUDY: UAV NAVIGATION WITH CELLULAR
SOPS

This section presents experimental results for the case of
UAV navigation with SOPs to validate the proposed method.

A.  System Model

In what follows, the UAV motion model, clock error
models, and measurement models are described and the
mode-matched EKFs are formulated.

1) UAV Dynamics Model: The UAV’s 2-D position and
velocity states, r, and 7, respectively, are assumed to evolve
according to velocity random walk dynamics. Note that it is
assumed that the UAV knows its altitude from other sensors,
such as a barometric altimeter. As such, the discrete-time
dynamics of x,, = [r], 711" will be given by

F
k=0,1,...

rotr

Xpu(k + 1) = FpyXpy (k) 4 wpy (K), 51

where wy, is a zero-mean, white sequence with covariance
va, and

T2
Tspv

TS

U
S
<

2

L2
Fp < |:02><2

T12x2] 0, 2
s pv =

Iy Spv

> =[R2

where T is the sampling interval, Spv diag[g., ¢y], and
d. and g, are the x and y acceleration noise power spectra,
respectively.

2) Clock Error Dynamics Model: Let xq, =
clét,, SIH]T denote the clock error state of the nth BTS,
where §t,, is the difference between the BTS’s and receiver’s
clock biases, St,, is the difference of their drifts, and c is the
speed of light. A double integrator driven by process noise
is used to model each of the clock error states. As such,

Xk, will evolve according to
Xk, (k + 1) = Fexex, (k) + wey, (k) (52)

where wyk, is a zero-mean, white sequence with covariance
A
Quik, = Quik, + Qui,, » and

1 T
[0 1} ’ QClk,' é

where Sj;, and §;, are the clock bias and clock drift process
noise power spectra, and i denotes either the receiver-
mounted UAV r or the nth BTS s,. The power spectra

2 ~
TTSSt
TSS[,‘

3~ ~
585, + TS,

T? %,
TSM

>

Fox
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Ss, and S, can be related to the power-law coefficients
{ho}2__,, which have been shown through laboratory ex-
periments to characterize the power spectral density of the
fractional frequency deviation y(t) of an oscillator from
nominal frequency, namely, S’y( H= Zizfz he ¢ [68].1tis
common to approximate such relationships by considering
only the frequency random-walk coefficient #_, and the
white frequency coefficient /4y, which lead to 5‘5,,. ~ hy ; and
S5, & 2m*h_y; [66], [69]. It is important to note that the
process noise in the clock error states will be correlated due
to receiver’s process noise; hence

Quik, + Qe »
Qui, »

ifn=m
otherwise.
(33)

3) Measurement Model: Carrier phase measurements
are more precise than pseudorange measurements [70] and
will be, hence, used in what follows. Note that the precision
of carrier phase measurements come at the price of addi-
tional ambiguities, which have been shown lumped into the
clock biases §t,,. The carrier phase measurement expressed
in meters can be modeled as

k) = ||rr() =1, ||| + cdtu(k) + v, (k)

E [wa, (Hwly, (k)] = {

(54)

where r;, is the nth BTS’s known 2-D position vector and
v, (k) is the measurement noise, which is modeled as a zero
mean, white Gaussian random variable with variance anz(k).
The statistics of v, (k) are discussed in [70].

4) EKF Model: The EKF estimates the UAV-mounted
receiver’s position and velocity and the clock error states
for all BTSs, namely

:
x(k) & [xgv(k), e (), xh (k)] (55)

where N is the total number of available BTSs. As such, it
follows that the dynamics of x and the measurement model
will be given by
x(k+ 1) =Fx(k) + w(k)
z(k) = h[x(k)] + v(k)

(56)
(57

where F £ diag[Fpy, Fo, .. ., Faxl; hlx(k)] = [h[x(k)],
A O, Ml ()] £ e (k) — 1, [l2+c880(K), 2(k) =

[z1(k), ..., zy(k)]"; w(k) is a discrete-time zero-mean
white sequence with covariance Q £ diag[Qpv, Qcik]
Quik, Q. 1 Quik,r . Quik.r
N Qs Qe HQeik2 - -+ Quik.r
Qe = : : . :
Quik.r Quik.r oo Qe HQerk v
and v(k) £ [v1(k), ..., vy(k)]" is a discrete-time zero-

mean white Gaussian sequence with covariance R(k) £
diag[o2(k), ..., o (k)]. It can be readily seen that Q is of
the form defined in (3), particularly, it can be expressed as

N
Q = rpvavrgv + erclk, rI + Z rs,, chks,, r;

n=1

(58)
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where Tpy £ [Lisa, Osxon]’s Tr = [02xa, Lo, ..., hyol',
and Ty, £ [0254, 0252, - . ., 0252, Toy2, 022y« oo, 0250]".
Each EKF is producing an estimate Xx(k|j)=
Elxk)|z(1), ...,z2(j)], j <k, with an associated estimation
error covariance P(k|j) = E[¥(k|/)%"(k|j)], where
%(k|j) £ x(k) — (k| j) is the estimation error. The current
state estimate X(k|k) and its associated estimation error
covariance P(k|k) are obtained using the standard EKF
equations. It has been proven in [70] that the system in (56)
and (57) is observable for N > 2 and the estimation error
will be bounded in a mean-squared sense. The measurement
Jacobian H(k) used in the EKF estimation error covariance
update is given by

H(k) = [G(k) Inun Owizxvi2) (59)
A rr(k)frs rr(k)frs T
G® 2 | EE T 60

where G(k) is evaluated at X(k|j). As such, linearizing the
system defined in (56) and (57) around the estimate yields

%k + 11k) = Fe(k|k) + w(k) (61)
(k) = Hi) Z(k|k — 1) + v(k) (62)

where v(k) £ z(k) — h[&(k|k — 1)] is the innovation vector.
The system in (61) and (62) is an LTV system whose
process noise covariance given in (58) is of the form in (3).
Consequently, the proposed reduced-order MM estimator
can be used to estimate x.

B. Hardware Setup and Filter Description

For this experiment, a DJI Matrice 600 was equipped
with an Ettus E312 universal software radio peripheral
(USRP), a consumer-grade 800/1900 MHz cellular antenna,
and a small consumer-grade GPS antenna to discipline the
on-board oscillator. The UAV-mounted receiver was tuned
to listen to cellular signals in the 800 MHz band allocated for
cellular communication in the U.S. Specifically, the E312
USRP was tuned to an 882.75 MHz carrier frequency, which
is a cellular CDMA channel allocated for the U.S. cellular
provider Verizon Wireless. Samples of the received signals
were stored for offline postprocessing. The cellular carrier
phase measurements were given at a rate of 37.5 Hz, i.e.,
T =26.67 ms. The ground-truth reference for the UAV
trajectory was taken from its on-board navigation system,
which uses GPS, an inertial measurement unit, and other
sensors. The hovering horizontal precision of the UAV is
reported to be 1.5 m by DJI. The x and y continuous-time
acceleration noise spectra were setto g, = g, = 0.03 m?/s3.
Throughout the experiment, the receiver on-board the UAV
was listening to 7 cellular CDMA BTSs whose positions
were determined beforehand. The experimental setup and
BTS layout is shown in Fig. 5.

In this experiment, the statistics of the process noise
driving the receiver and BTS clocks are unknown. The
qualities of the BTS clock oscillators are assumed to range
between that of a typical oven-controlled crystal oscillator
(OCXO) and that of a high-quality OCXO. The quality of
the receiver clock oscillator is assumed to range between
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Fig. 5. Experimental setup and BTS layout. The environment consists
of 7 cellular CDMA BTSs.

TABLE II
Oscillator Parameters

Parameter Value

High-quality OCXO {ho, h—2}
Typical OCXO {ho, h—2}
Typical TCXO {hg, h—2}

{2.6 x 10722, 4.0 x 10726}
{8.0x 10729, 4.0 x 1023}
{9.4x10729, 3.8 x 1072'}

TABLE III
Position RMSEs and Final Errors
Estimator Number of filters RMSE  Final error
Standard EKF 1 38.76 m 40.03 m
Standard MM 256 573 m 6.21 m
Reduced-order MM 16 5.67 m 6.25 m

that of a typical temperature compensated crystal oscillator
(TCXO) and that of a typical OCXO. As such, each clock
error state is assumed to be in one of two modes. The Ay
and h_, parameters of the aforementioned oscillators are
given in Table II. Three estimators of x are implemented for
a comparative study.

1) Standard EKF: A single EKF matched to a typical
TCXO for the receiver clock and typical OCXOs for
the BTSs’ clocks.

2) Standard MM estimator: A standard MM estimator
running 2% = 256 filters each matched to a combina-
tion of typical TCXO or OCXO for the receiver clock
and typical or high-quality OCXO for the BTSs’
clocks.

3) Reduced-order MM estimator: The proposed
reduced-order MM estimator with2 x 8 = 16 filters,
which is the efficient implementation of the standard
MM estimator.

Each EKF was initialized according to the framework
in [70] with initial position estimates obtained from the
UAVs’ on-board navigation systems and with equal mode
probabilities.

C. Experimental Results and Discussion

The UAV’s total traversed trajectory was 3.02 km, which
was completed in 320 s. The true and estimated UAV
trajectories are shown in Fig. 6. The total position RMSE
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L 100 m _ 1 ;

Trajectories
UAV's navigation system — Standard MM estimator
—Standard EKF ~Reduced-order MM estimator
Total traversed trajectory: 3.03 km

Fig. 6. True UAV trajectory and estimated UAV trajectories via the
three estimators. Map data: Google Earth.
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Fig. 7. Time history of the probabilities of the standard and
reduced-order MM estimators.

was calculated for each estimator is tabulated in Table III
along with the final estimation errors.

It can be seen from Fig. 6 and Table III that both MM
estimators perform significantly better than the standard
EKF. The time history of the mode probabilities for the
standard MM and reduced-order MM estimators shown in
Fig. 7 shed light on why both MM estimators performed
significantly better than the standard EKF. It can be seen
from Fig. 7 that all mode probabilities in the standard MM
estimator converged to zero, except for that of mode 129,
which corresponds to the receiver clock being a typical
TCXO and all BTSs’ clocks being high-quality OCXOs.
Convergence happened within the first 5 s of the experiment.
That is, throughout the remaining 315 s, the standard MM
behaved as a single EKF matched to mode 129. In con-
trast, the standard EKF considered in this experiment was
matched to a receiver clock being a typical TCXO while the
BTS clocks were assumed to be typical OCXOs. The model
assumed by the standard EKF apparently mismatches the
true model, resulting in large EKF errors. Such large errors
were mitigated by the standard MM which converged to
mode 129, indicating that the true model is closer to the
one of mode 129 than the one assumed by the standard
EKF. What is more interesting is that the reduced-order
MM estimator mode probabilities converged to the same
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Fig. 8. UAV’s position estimation error trajectories (solid black lines)
and associated +=30 bounds (dashed blue lines) for each estimator.

values as the standard MM. That is, the probability of the
receiver clock being a typical TCXO converged to 1 and the
probability of all BTSs’ clocks being OCXOs converged to 1
as well. In other words, the reduced-order MM also behaved
as a single EKF matched to mode 129 after convergence.
Consequently, one should expect that after some transient,
the reduced-order MM estimator should converge to the
standard MM estimator. This can be seen in Fig. 6, where
the green curve (from the reduced-order MM estimator)
converges to blue one (from the standard MM estimator)
after some transient. This is also reflected in the RMSE
and final error values in Table III. To see this even more,
the EKF position errors and the associated +3¢ bounds
are shown in Fig. 8 for each estimator. A closer look at
the EKF errors and =30 bounds of both MM estimators
shows small differences in the first few seconds and almost
identical behavior afterwards.

VI.  CONCLUSION

A reduced-order MM estimator for static noise identi-
fication in dynamic stochastic systems was proposed. The
proposed algorithm reduces the computational complexity
of MM estimation from exponential to polynomial by con-
structing a significantly smaller set of mode models which
are updated every time step. It is assumed that the con-
structed mode models do not change significantly between
time steps, which can be guaranteed by the smoothness of
the mode probabilities. It is shown that the reduced-order
MM estimator converges to the standard MM estimator
when the mode models are sufficiently distinct. Two sets
of Monte Carlo simulations were conducted, as follows:
1) one where the mode models were significantly distinct
and 2) one where mode models were very close. In the
first set of simulations, the reduced-order MM estimator
performs nearly similar to the standard MM estimator while
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some degradation is observed in the second set. However,
the reduced-order MM yielded acceptable performance in
both simulation sets and was implemented with a fraction
of the standard MM estimator’s complexity. Experimental
results of opportunistic navigation on a UAV in the case of
unknown transmitter clock process noise covariances were
also presented to further validate the proposed approach.
The experimental results show a UAV navigating for more
than 5 min over a trajectory of more than 3 km, with a
final position error of 6.21 m obtained using the standard
MM estimator versus a final position error of 6.25 m ob-
tained using the proposed reduced-order MM estimator. A
standard EKF was implemented for comparative analysis,
showing a final error of 40.03 m. In the experiments, the
reduced-order MM estimator was implemented with 16
filters, while the standard MM was implemented with 256
filters. While the proposed approach is showing promising
results when the mode models are significantly distinct, a
necessary condition for optimality is needed and is left as
future work.

APPENDIX
PROOF OF LEMMAII1

This appendix provides the proof of Lemma III.1.

PROOF Note the marginalization
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Subsequently, the estimated process noise covariance may
be expressed as

Qk)=) "TQ;
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Next, defining Q™ (k) according to (26) and noting that
Zi, ,u,i[’l(k) =1, the estimated process noise covariance
becomes
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Defining Q:Z (k) according to (24) yields (22). A similar
approach is taken for R(k). ]
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