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Abstract—This article presents the first demonstration of navigation with cellular signals of opportunity (SOPs) on
a high-altitude aircraft. An extensive flight campaign was conducted by the Autonomous Systems Perception, Intel-
ligence, and Navigation Laboratory in collaboration with the U.S. Air Force to sample ambient downlink cellular
SOPs in different regions in Southern California, USA. Carrier phase measurements were produced from these sig-
nals, which were subsequently fused in an extended Kalman filter along with altimeter measurements to estimate
the aircraft’s state (position, velocity, and time). Three flights are performed in three different regions: 1) rural, 2)
semiurban, and 3) urban. A multitude of flight trajectories and altitudes above ground level (AGL) was exercised in
the three flights: 1) a 51-km trajectory of grid maneuvers with banking and straight segments at about 5,000 ft AGL,
2) a 57-km trajectory of a teardrop descent from 7,000 ft AGL down to touchdown at the runway, and 3) a 55-km tra-
jectory of a holding pattern at about 15,000 ft AGL. The estimated aircraft trajectory is computed for each flight and
compared with the trajectory from the aircraft’s onboard navigation system, which utilized a GPS receiver coupled
with an inertial navigation system and an altimeter. The cellular SOPs produced remarkable sustained navigation
accuracy over the entire flight trajectories in all three flights, achieving a 3D position root mean-squared error of

10.53 m, 4.96 m, and 15.44 m, respectively.

Introduction
quick search of the phrase “Global Positioning System
(GPS)” on the Aviation Safety Reporting System (ASRS)
returns 579 navigation-related incidents since Janu-
ary 2000. The ASRS is a publicly available reporting
system established by NASA to identify and address issues
reported by frontline personnel in the aviation system [1].
A deeper look at the data reveals that, out of these 579 inci-
dents, a malfunction or failure was detected in navigation
sensors with the following occurrences: 508 in “GPS & Oth-
er Satellite Navigation,” 34 in “Navigational Equipment and
Processing,” 14 in “Flight Dynamics Navigation and Safety,”
12 in “Altimeter,” and 6 in “Positional/Directional Sensing.”
Among these incidents, 100 are suspected to be due to GPS
jamming and interference, leading to the loss of the main
and auxiliary GPS units in some cases. What is alarming
is the increasing trend of GPS interference—the majority of
the aforementioned incidents took place since 2019. What
is more, previously undisclosed U.S. Federal Aviation Ad-
ministration data for a few months in 2017 and 2018 detail
hundreds of aircraft losing GPS reception. On a single day in
March 2018, 21 aircraft reported GPS problems to air traffic
controllers near Los Angeles, CA, USA [2]. These and other
incidents uncover the vulnerabilities of existing aircraft
navigation systems, which are highly dependent on global

navigation satellite system (GNSS) signals and their aug-
mentation systems (e.g., ground-based augmentation sys-
tems and space-based augmentation systems) [3], [4]. There
is an urgent need for complementary robust and accurate
navigation systems to ensure aviation safety.

In 2019, the International Civil Aviation Organization
issued a working paper titled “An Urgent Need to Address
Harmful Interferences to GNSS,” where it concluded that
harmful radio-frequency (RF) interference to GNSS sig-
nals would prevent the full continuation of safety and ef-
ficiency benefits of GNSS-based services. Moreover, there
was a call for supporting multidisciplinary development
of alternative positioning, navigation, and timing strategy
and solutions to complement the use of GNSS in avia-
tion [5]. In 2021, the U.S. Department of Transportation
released the “Complementary Positioning, Navigation, and
Timing (PNT) and GPS Backup Technologies Demonstra-
tion Report” to Congress. The report concluded that, while
there are suitable, mature, and commercially available
technologies to back up or complement GPS, none of these
systems alone can universally back up the PNT capabili-
ties provided by GPS and its augmentations, necessitating
a diverse universe of PNT technologies [6]. Moreover, in
2021, the National Institute of Standards and Technology
issued a report on “Foundational PNT Profile: Applying the
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and 15.44 m, respectively.
.

The cellular SOPs produced remarkable navigation accuracy in
all three flights, achieving a position RMSE of 10.53 m, 4.96 m,

N\ tion purposes [28]. Moreover, they
considered UAVs flying at low alti-
tudes (up to 500 ft) and slow speeds
(up to 50 km/h). A recent study re-
vealed that cellular signals can be
acquired and tracked at altitudes as
high as 23,000 ft above ground level
J (AGL) and at horizontal distances

Cybersecurity Framework for the Responsible Use of PNT
Services,” where it identified signals of opportunity (SOPs)
and terrestrial RF sources (e.g., cellular) as a mitigation
category that applies to the PNT profile [7].

Among terrestrial RF SOPs, cellular signals have shown
tremendous potential as an alternative PNT source [8] be-
cause of their inherently desirable attributes:

Abundance: Cellular base stations are abundant in most

locales, with the number of base stations slated to in-

crease dramatically with future cellular generations.

Geometric diversity: Cellular base stations are placed in

favorable geometric configurations by construction of

the cellular infrastructure.

Frequency diversity: In contrast to GNSS signals, cellular

signals are transmitted at a wide range of frequencies,

which makes them more difficult to be simultaneously
jammed or spoofed.

High received power: The received cellular carrier-to-

noise ratio (CNR) is commonly tens of decibels higher

than that of GNSS signals, even in deep urban canyons

and indoor environments [9].

High bandwidth: Downlink cellular signals can be up

to 20 MHz [in 4G long-term evolution (LTE)] and even

higher in future generations, which yields precise time-
of-arrival estimates.

Free to use: The cellular infrastructure is already opera-

tional; thus, with specialized receivers, navigation ob-

servables (pseudorange, carrier phase, and Doppler) can
be extracted from the “always-on” transmitted signals.

Recent results have shown the ability of cellular SOPs
to yield meter-level-accurate navigation on ground vehi-
cles [10], [11] in urban environments and submeter-level-
accurate navigation on unmanned aerial vehicles (UAVs)
[12], [13]. Moreover, the robustness and availability of
cellular SOPs have been demonstrated in a GPS-jammed
environment [14].

Assessing cellular signals for aerial vehicles has been
the subject of several studies recently [15]. These studies
span radio channel modeling [16], [17]; evaluation of signal
quality in terms of received signal power [18], [19], interfer-
ence from cellular transmitters [20], [21], [22], and coverage
and connectivity [23], [24], [25]; and standards recommen-
dations [26], [27]. However, the majority of these studies
focused on evaluating cellular signals for communication
purposes with little attention to evaluating them for naviga-

of more than 100 km from cellular
transmitters [29]. However, the potential of cellular SOPs
for high-altitude aircraft navigation has not been thorough-
ly assessed. This article aims to perform the first assess-
ment of cellular SOPs for aircraft navigation by addressing
the following question: Can cellular SOPs be received and
exploited at aircraft altitudes to produce a robust naviga-
tion solution?

To answer this question, an unprecedented aerial flight
campaign was conducted in March 2020 by the Autonomous
Systems Perception, Intelligence, and Navigation (ASPIN)
Laboratory in collaboration with the U.S. Air Force (USAF)
at the Edwards Air Force Base (AFB), CA, USA. The cellu-
lar software-defined radios (SDRs) of the ASPIN Laboratory
were flown over on a USAF Beechcraft C-12 Huron, a fixed-
wing aircraft, to collect ambient cellular signals. This unique
dataset consists of combinations of flight runs over three
different environments (rural, semiurban, and urban) with
altitudes ranging up to 23,000 feet and a multitude of trajec-
tories and maneuvers, including straight segments, banking
turns, holding patterns, and ascending and descending tear-
drops performed by members of the USAF Test Pilot School.
During these large-scale experiments, terabytes of samples
of 3G code-division multiple access (CDMA) and 4G LTE sig-
nals were recorded under various conditions.

This article provides the first extensive demonstra-
tions of their kind of utilizing cellular SOPs for navigation
purposes on high-altitude aircraft. The aim of these dem-
onstrations is to show that, should GNSS signals become
unavailable or unreliable mid-flight, cellular SOPs could
be used to produce a sustained and accurate navigation so-
lution over trajectories spanning tens of kilometers.

To demonstrate the feasibility of aircraft navigation with
cellular SOPs, three flights are performed in three different
regions: 1) rural, 2) semiurban, and 3) urban. A multitude
of flight trajectories and altitudes AGL was exercised in the
three flights: 1) a 51-km trajectory of grid maneuvers with
banking and straight segments at about 5,000 ft AGL, 2) a
57-km trajectory of a teardrop descent from 7,000 ft AGL
down to touchdown at the runway, and 3) a 55-km trajec-
tory of a holding pattern at about 15,000 ft AGL.

The aircraft’s trajectory is estimated for each flight ex-
clusively from cellular SOPs using an extended Kalman
filter (EKF). The estimated aircraft trajectory is com-
pared with the aircraft’s onboard navigation system, which
used a GPS-aided inertial navigation system (INS) and an
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altimeter. The cellular SOPs pro- e
duced remarkable navigation accu-
racy in all three flights, achieving
a position root mean-squared er-
ror (RMSE) of 10.53 m, 4.96 m, and
15.44 m, respectively.
Therestofthis article is organized
as follows. The “Model Description”

~
ASPIN Laboratory’s SDR, called the Multichannel Adaptive
Transceiver Information Extractor, produces several types of
navigation observables.

J

section describes the aircraft dynam-

ics and cellular SOP measurement model. The “Navigation
Framework” section formulates the EKF navigation frame-
work. The “Experimental Setup and Flight Regions” section
describes the experimental setup with which the aircraft
was equipped and overviews the environments in which
the flight campaigns took place. The “Aerial Navigation
Results” section presents experimental aircraft navigation
results exclusively with cellular signals. The “Conclusion”
section gives concluding remarks.

Model Description
This section describes the aircraft dynamics and cellular
SOP measurement models used in the rest of the article.

Aircraft Dynamics Model

Depending on the aircraft’s motion and sensor suite, differ-
ent dynamic models can be used to describe its dynamics.
The goal of this article is to assess the minimum perfor-
mance of aircraft navigation with cellular SOPs exclusively.
As such, a simple, yet effective continuous Wiener process
acceleration model is employed, which upon discretization
at a constant sampling interval 7] is given by

Tpvalk +1) = Fpvaer(k) + wpa(k), £=0,1,2, ...

2
Isxs Tlsx5 %Iaxa

Fova=|[05x5 Isxs Tlsx5 @
05><5 05><5 Iﬁxﬁ

where xpa 2 [rl, i, #t]7, rr 22, yr, 2|7 is the 3D posi-
tion of the aircraft expressed in a North-East-Down (NED)
frame, and wy. is a discrete-time zero-mean white noise
sequence with covariance Qv given by

T T
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where ® denotes the Kronecker product, and S~ip 2
diag[gn, Ge, Gp], where Gn, Ge, and ¢p are the NED jerk
continuous-time noise power spectra, respectively. It should
be noted that more complicated dynamic models can
be used to describe the aircraft’s dynamics, e.g., Singer

acceleration, mean-adaptive acceleration, circular motion,
curvilinear motion, and coordinated turn, among others
[30]. Of course, if an INS is available, its measurements can
be used to describe the aircraft’s motion, while the INS is
aided with cellular SOPs [31].

Clock Error Dynamics Model

Wireless standards require cellular base stations to be
synchronized to within a few microseconds, which is order
of magnitudes higher than the nanosecond requirements
in GNSS. As such, the base station clock errors, which are
dynamic and stochastic, must be accounted for in the navi-
gation filter when navigating with cellular SOPs. A typical
model for the dynamics of the clock error states is the so-
called two-state model, composed of the clock bias ¢ and
clock drift &t, given by

Zak(k +1) = Faox (k) + wa (k) )

where wx is a discrete-time zero-mean white noise se-
quence with covariance Quax, and

T3 T
1T Swa,T+SwstT Sws,T
watQ Wst

The power spectra Sz, and Sg; are determined by the
quality of the oscillator from which the clock signal is de-
rived [32].

SOP Measurement Model

ASPIN Laboratory’s SDR, called the Multichannel Adaptive
Transceiver Information Extractor (MATRIX), produces
several types of navigation observables. To get the highest
possible precision, carrier phase observables are exploited
for navigation, which after some manipulations can be
modeled as [14]

2a() = || Pe () = P, |, + €8ta(K) + va(k), n=1,2,..,N (4)

where r;, is the nth cellular base station’s 3D position vec-
tor; ¢ is the speed of light; 8¢, is the overall clock errorin the
nth carrier phase measurement, which combines the effect
of receiver and base station clock biases and the initial car-
rier phase ambiguity; V is the total number of available base
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stations; and v, (k) is the measurement noise, which is mod-
eled as a discrete-time zero-mean white Gaussian sequence
with variance o7 (k). The measurement noise variance can
be modeled as a function of the CNR [33], [34].

Altimeter Measurement Model

Since cellular base stations appear to have similar altitudes
for a high-flying aircraft, their vertical dilution of precision
(VDOP) will be very large. To circumvent this issue, the al-
timeter data za: derived from the aircraft’s onboard naviga-
tion system is used in addition to the cellular carrier phase
measurements in the measurement-update step in the EKF.

Navigation Framework
This section formulates the EKF navigation framework based
on the models presented in the “Model Description” section.

EKF Model

Let x =2}, xly,, ..., L, |7 denote the state to be estimat-
ed, where e, = [c8tn, cStx]". Using (1) and (2), one can
write the dynamics of x as

x(k+1)=Fx(k)+w k) )
where F = diag[Fyv, Fex, ..., Fax] and w(k) is the overall

process noise vector, which is a zero-mean white sequence
with covariance Q = diag[ Qpva, Qax], and

Q. + Qu,, Q. .. Qo
~ N QClky' Qﬁlky' + Q(‘].kxz ‘e Q(‘lk,
Qu= . : - :
Q. Q. oo Qe + Qo

where Qax, and {Qax,, }o, have the same form as in (3), ex-
cept that Sz, and Sz, are replaced with the receiver and nth
base station’s clock process noise spectra, respectively. Note
that the cross correlations in Q. come from combining the
effect of the receiver and cellular base station clocks in the
same state. Since the receiver clock bias is common to all
clock states, the cross correlations in Qe will be the receiv-
er clock’s process noise covariance [35].

The measurement vector defined by z(k)=[zau(k),
z1(k),...,zn(k)]" is used to estimate & in the EKF. In vec-
tor form, the measurement equation is given by

(k) = hl2(k) |+ v(k) (6)

where h[x (k)] is a vector-valued function defined as
hlx (k)] = [ha[2x(k)], kil (K)], ..., hx[x(FR)]]T with
ha[z (k)] = 20 (k) + vau(k), hulx(k)] 2 ||r-(k) — ro |, +
cdtu(k), and v(k) = [van(k), v1(K), ..., vn (k)] is the mea-
surement noise vector, which is modeled as a zero-mean
white Gaussian random vector with covariance R(k)=
diag[a?,u(k), G%(k)a oo G%(k)]

An EKF is implemented given the dynamics and mea-
surement models in (5) and (6) to produce an estimate of
(k) using all measurements up to time step &, denoted by
& (k|k), and an associated estimation error covariance de-
noted by P(k|k). The EKF is initialized from two succes-
sive position priors according to the framework discussed
in [35]. The EKF process and measurement noise covari-
ances are described in the next section.

EKF Settings

The measurement rate was 7" = 0.08/3 s; the jerk process noise
spectra were chosen to be gy =18m?/s% §r=18m?/s’,
and gp =0.5 m?/s’ and the receiver and base station clock
process noise covariance matrices were chosen to be

9.57x107° 2.52x10°®
Qa,r = [2'52 x107% 1.89 x 10_6] @
3.11x107 2.52x107"
chk»“"_lg.52><10_“ 1.89><10_9]‘ ®)

These clock process noise covariance matrices assumed
the receiver to be equipped with a typical temperature-
compensated crystal oscillator (TCXO), while the cellular
base stations are equipped with a typical oven-controlled
crystal oscillator (OCXO) [8].

The altimeter measurement error variance oz (k) was
assumed to be 5 m>. The cellular measurement noise vari-
ances were calculated as a function of the CNR and receiver
parameters, as discussed in [33] and [34]. The range of values
taken by the measurement noise variances is explicitly stat-
ed for each region in the “Aerial Navigation Results” section.

Experimental Setup and Flight Regions
This section overviews the experimental setup used for data
collection and processing. It also describes the flight regions.

Hardware and Software Setup

The C-12 aircraft was equipped with a universal software
radio peripheral (USRP) with consumer-grade cellular
antennas to sample three cellular bands and store the
samples on a desktop computer for offline processing. The
stored samples were postprocessed with the 3G and 4G cel-
lular modules of MATRIX. The SDR produces navigation
observables: Doppler frequency, carrier phase, and pseu-
dorange, along with corresponding CNRs. The hardware
setup is shown in Figure 1.

The aircraft’s ground-truth trajectory was taken from the
C-12’s onboard Honeywell H764-ACE EGI INS/GPS, which
provided time-space—position information at a 1-Hz data
rate. The accuracy specifications are tabulated in Table 1.

Flight Regions
Three flights are reported in this article, each of which took
place in one of three regions: 1) Region A: a rural region in
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Edwards AFB, CA; 2) Region B: a semiurban region in Palm-
dale, CA; and 3) Region C: an urban region in Riverside, CA.
Different maneuvers were planned over the three regions to
test several aspects of aircraft navigation with cellular SOPs.
Figure 2 shows the regions in which the experiments
were performed as well as the aircraft trajectory for each
flight. The 3G base transceiver stations (BTSs) and 4G eNo-
deBs were mapped via the method described in [36]. The
mapped towers were cross-checked via Google Earth and
online databases and are shown in Figure 2. This article
investigates the potential of cellular SOPs for navigation;
therefore, mapping the SOPs will not be discussed.

Aerial Navigation Results

This section presents experimental results demonstrat-
ing high-altitude aircraft navigation using the framework
discussed in the “Model Description” section in the three
regions shown in Figure 2.

Aerial Navigation in Region A

The test trajectory in Region A consisted of 1) a 24-km straight
segment, followed by 2) a 270° banking turn of length 18 km,
and 3) a final 9-km straight segment. The total distance
traveled by the aircraft was more than 51 km, completed in

GPS Antennas

9 min. The aircraft maintained an altitude of approximately
5,000 ft AGL throughout the trajectory. During this flight,
three RF channels were sampled at 1) 881.52 MHz, which
is a 3G channel allocated for the U.S. cellular provider
Verizon Wireless; 2) 731.5 MHz, a 4G LTE channel allocated
for T-Mobile; and 3) 751 MHz, also a 4G LTE channel allo-
cated for Verizon. A total of 11 cellular SOPs were heard dur-
ing the experiment: six 3G BTSs and five 4G eNodeBs.
The 11 cellular SOPs were acquired at different times and
tracked for different durations based on signal quality.
Figure 3(a)—(c) shows the time history of the 1) measured
CNRs, 2) pseudorange measurements, and 3) pseudorange
error (pseudorange minus the true range) for all 11 cellu-
lar SOPs, respectively. One can see from Figure 3(c) that

Table 1. Honeywell H764-ACE EGI accuracy.

Metric Blended INS/GPS Accuracy
Position 5m, spherical error probable
Velocity 0.01 m/s

Heading 0.015°

Pitch/Roll 0.01°

Layer A

Layer B
Layer C
Power Strip A

Power
. Strip

Quad-Channel
USRP-2955 (o—,

3 Laird Antennas

=
L3

4G at 731.5 MHz, T-Mobile
or 4G at 1,955 MHz, AT&T
Aircraft GPS Antenna |
s 4G at 751 MHz, Verizon
or 4G at 739 MHz, AT&T
or 4G at 2,145 MHz, T-Mobile Aircraft
Navigation
3G at 881.52 MHz, Verizon System

Hardware setup with which the C-12 aircraft was equipped.
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causing loss of tracking.

It is suspected that the aircraft’s wings and body block or
severely attenuate some of the signals during banking,

~\ be 10.5 m over the 51-km trajec-
tory, traversed in 9 min. Figure 4
shows the aircraft’s true and esti-
mated trajectories. Figure 5 shows
the EKF estimation error plots and
corresponding sigma bounds for
the aircraft’s position and velocity
J states. It is important to note that

pseudorange tracking is lost for some of the cellular SOPs at
or around 300 s, which is when the aircraft starts banking
to perform the 270° turn. In addition to the high dynamics
of the banking turn, it is suspected that the aircraft’s wings
and body block or severely attenuate some of the signals
during banking, causing loss of tracking. Using the expres-
sions of the measurement noise variances as a function of
the CNR and receiver parameters in [33] and [34], o (k) was
found to vary between 1.44 and 9.47 m.

Next, the state vector x of the aircraft was estimated
using the carrier phase measurements obtained from the
cellular SOP receivers via the EKF discussed in the “EKF
Model” section. The total position RMSE was calculated to

the position error in the EKF is
the largest during the turn. This is due to 1) the measure-
ment errors due to the high dynamics of the banking turn,
which severely stressed the tracking loops, and 2) the mis-
match in the dynamics model assumed in the EKF since
a 270° banking turn has significantly different dynamics
than the assumed continuous Wiener process acceleration
model. However, as mentioned earlier, the purpose of this
study is to highlight the minimum performance that can
be achieved with cellular SOPs. It is important to note that
the average distance between the aircraft and the BTSs or
eNodeBs was around 30 km over the entire trajectory, with
eNodeB 4 being tracked at a 100-km distance in the first part
of the trajectory.

f

\

, )
Palmdale (Semiurban)
J

FIG 2 (a) Regions A, B, and C in which the flight campaigns took place. The yellow pins represent 3G and 4G cellular towers that were mapped and
analyzed in this study. (b) The aircraft trajectories in all regions (shown in red). Geographic points of interest in each region, shown by green crosses,

were chosen according to the designed trajectories.
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0 60 120 180 240 300 360 420 480 540
Time (s)

—3G at 881.52 MHz — 4G at 731.5 MHz
—4G at 751 MHz

(a)

3G at 881.52 MHz:
—— True Range ----Measured Pseudorange
4G at 731.5 MHz:
— True Range ----Measured Pseudorange
4G at 751 MHz:
True Range ----Measured Pseudorange

(b)

20l
0 60 120 180 240 300 360 420 480 540

Time (s)

~——3G at 881.52 MHz —4G at 731.5 MHz
~——4G at 751 MHz

()

\ J

FIG 3 (a) Time history of the CNRs for all of the base stations used to
compute the navigation solution in Region A. (b) Time history of the
pseudoranges estimated by the cellular SOP receivers and the
corresponding true range in Region A. The initial values of the
pseudoranges and ranges were subtracted out for ease of comparison.
(c) Time history of the pseudorange error (pseudorange minus the true
range) for all cellular SOPs in Region A. The error is driven by a common
term, which is the receiver’s clock bias. The errors increase significantly
at around 300 s, which is when the turn starts. The high dynamics of a
banking turn inject stress on the tracking loops. The initial values of the
pseudorange errors were subtracted out for ease of comparison.

Aerial Navigation in Region B

The test trajectory in Region B consisted of 1) an approach to
General William J. Fox Airfield, followed by 2) a touch and
go. The total distance traveled by the aircraft was more than
57 km completed in 11 min. The aircraft descended from an

\

':“,_A_-h = f) ‘g;NodeBJ
Region A at 5,000 ft AGL

==

Groud Truth
Estimated

FIG 4 Experimental layout and results in Region A showing BTS and
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated
exclusively using cellular SOPs. The aircraft traversed a total distance of
51 km in 9 min during the experiment. The position RMSE over the entire
trajectory was found to be 10.5 m.
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altitude of 7,000 ft AGL. During this flight, three RF chan-
nels were sampled at 1) 881.52 MHz, which is a 3G channel
allocated for the U.S. cellular provider Verizon Wireless;
2) 731.5 MHz, a 4G LTE channel allocated for T-Mobile; and
3) 739 MHz, also a 4G LTE channel allocated for AT&T. A
total of 14 cellular SOPs were heard during the experiment:
nine 3G BTSs and five 4G eNodeBs. The 14 cellular SOPs
were acquired at different times and tracked for different
durations based on signal quality. Figure 6(a)-(c) shows the
time history of 1) measured CNRs, 2) pseudorange mea-
surements, and 3) pseudorange error (pseudorange minus
the true range) for all 14 cellular SOPs, respectively. Using
the expressions of the measurement noise variances as a
function of the CNR and receiver parameters in [33] and
[34], o (k) was found to vary between 1.3 to 4.43 m.

Next, the state vector x of the aircraft was estimated using
the carrier phase measurements obtained from the cellular
SOP receivers via the EKF discussed in the “EKF Model” sec-
tion. The total position RMSE was calculated to be 4.95 m over
the 57-km trajectory, traversed in 11 min. Figure 7 shows the
aircraft’s true and estimated trajectories. Figure 8 shows the
EKF estimation error plots and corresponding sigma hounds
for the aircraft’s position and velocity states. It is important to
note that the aircraft’s position estimate on touchdown is less

North Position Error (m)

270
Time (s)

North Velocity Error (m/s)
o

=10

270 360 450
Time (s)

0 90 180 540

than 3 m away from the true position and is well within the
runway. In addition, the geometric diversity becomes poor af-
ter the sixth minute as the aircraft is flying on one side of the
SOPs. This explains the increasing sigma bounds in Figure 8.

Aerial Navigation in Region C

The test trajectory in Region C consisted of a holding pat-
tern over Riverside Municipal Airport. The total distance
traveled by the aircraft was more than 55 km, completed
in 8.5 min. The aircraft maintained an altitude of approxi-
mately 15,000 ft AGL throughout the trajectory. During this
flight, two RF channels were sampled at 1) 881.52 MHz,
which is a 3G channel allocated for the U.S. cellular pro-
vider Verizon Wireless; 2) 1,955 MHz, a 4G LTE channel
allocated for AT&T; and 3) 2,145 MHz, a 4G LTE channel al-
located for T-Mobile. A total of 11 cellular SOPs were heard
during the experiment: seven 3G BTSs and four 4G eNo-
deBs. The 11 cellular SOPs were acquired at different times
and tracked for different durations based on signal qual-
ity. Figure 9(a)-(c) shows the time history of 1) measured
CNRs, 2) pseudorange measurements, and 3) pseudorange
error (pseudorange minus the true range), for all 9 cellular
SOPs, respectively. Similar to the first flight, one can see
from Figure 9(c) that pseudorange tracking is lost for some
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EKF plots showing the time history of the position and velocity errors in Region A as well as the +30 bounds. As expected, the EKF performs
poorly in the second leg, where the mismatch between the true aircraft dynamics and the assumed EKF model is highest.
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FIG 6 (a) Time history of the CNRs for all of the base stations used to
compute the navigation solution in Region B. (b) Time history of the
pseudoranges estimated by the cellular SOP receivers and the
corresponding true range in Region B. The initial values of the
pseudoranges and ranges were subtracted out for ease of comparison.
(c) Time history of the pseudorange error (pseudorange minus the true
range) for all cellular SOPs in Region B.

of the cellular SOPs when the aircraft starts banking to
perform the turns in the holding pattern. Using the expres-
sions of the measurement noise variances as a function of
the CNR and receiver parameters in [33] and [34], o.(k)
was found to vary between 1.75 and 5.69 m.

Next, the state vector @ of the aircraft was estimated us-
ing the carrier phase measurements obtained from the cel-
lular SOP receivers via the EKF discussed in the “EKF Model”
section. The total position RMSE was calculated to be 1544 m
over the 55-km trajectory, traversed in 8.5 min. Figure 10
shows the aircraft’s true and estimated trajectories. Figure 11
shows the EKF estimation error plots and corresponding sigma

[Region B at 07,000 ft AGL | 000 ft AGL |
A at 881.52 MHz
314G at731.5 MHz
I 4G at 739 MHz

89

3 Ground Trt 5
Estimated |

_J

FIG 7 Experimental layout and results in Region B showing BTS and
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated
exclusively using cellular SOPs. The aircraft traversed a total distance of
57 kmin 11 min during the experiment. The position RMSE over the
entire trajectory was found to be 4.96 m. Note that the position estimate
on touchdown is less than 3 m away from the true aircraft position and is
well within the runway.

Authorized licensed use limited to: The Ohio Sﬁ';séﬁ |H?é‘ﬁ|@ENT?QMBSQ?ET%N?%?B&E m\gg%:ﬁ I:at 1?'5’@:1 &"iﬁ{gﬁﬁeﬂblﬁfogg(plore. Restrictions apply.



r

aircraft navigation.

The achieved results unveiled the remarkable potential of
utilizing cellular SOPs for sustained accurate high-altitude

~\ highly dynamic maneuvers. The
dynamics model employed in the
EKF in this study did not perfect-
ly capture the aircraft dynamics
throughout its trajectory, leading
to an increased estimation error
due to the mismatch between the
J actual aircraft’s dynamics and

bounds for the aircraft’s position and velocity states. As expect-
ed, the measurement errors and the mismatch in the dynamics
model assumed in the EKF are more severe during the turns.

Discussion
The navigation performance in all three regions is sum-
marized in Table 2.

The achieved results unveiled the remarkable potential of
utilizing cellular SOPs for sustained accurate high-altitude
aircraft navigation. The results presented herein, although
promising, can be further improved upon in several ways.
The following are key takeaways and design considerations
for reliable aircraft navigation with cellular SOPs:

m Accounting for the aircraft dynamical model mismatch:

Aircraft, such as the C-12, can perform a variety of

o
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the dynamical model assumed by
the EKF. This mismatch can be mitigated by using ap-
propriate dynamical models for fixed-wing aircraft or
more elaborate dynamical models (e.g., Wiener pro-
cess acceleration, Singer acceleration, mean-adaptive
acceleration, a semi-Markov jump process, circular
motion, curvilinear motion, and coordinated turns,
among others [30]) coupled with adaptive estimation
techniques [37], [38], [39], [40], [41], [42]. Alternatively,
if access to raw inertial measurement unit (IMU) data
is available, a kinematic model with IMU measurements
can be used as is the case with most INS-aiding tech-
niques [10], [31].
m Accounting for statistical model mismatch: The air-
craft’s process noise covariance assumed by the EKF’s
dynamical model was found via offline tuning and by
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EKF plots showing the time history of the position and velocity errors in Region B as well as the +30 bounds.
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FIG 9 (a) Time history of the CNRs for all of the base stations used to
compute the navigation solution in Region C. (b) Time history of the
pseudoranges estimated by the cellular SOP receivers and the
corresponding true range in Region C. The initial values of the
pseudoranges and ranges were subtracted out for ease of comparison.
(c) Time history of the pseudorange error (pseudorange minus the true
range) for all cellular SOPs in Region C. The error is driven by a common
term, which is the receiver’s clock bias.

analyzing the aircraft’s maneuvers from ground-truth
data. In addition, the process noise covariances of the
aircraft’s receiver clock were set at typical TCXO val-
ues, and the cellular SOP transmitter clocks were set
at typical OCXO values. While these values represent
good approximations for the aircraft’s receiver clock
quality as well as the quality of typical cellular SOP
transmitters, mismatches hetween the assumed values
and the actual values can be mitigated via adaptive esti-
mation techniques [43], [44], [45], which would improve
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FIG 10 Experimental layout and results in Region C showing BTS and
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated
exclusively using cellular SOPs. The aircraft traversed a total distance of
55 km in 8.5 min during the experiment. The position RMSE over the
entire trajectory was found to be 15.44 m.
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the estimation performance. Adaptive estimation tech-
niques would also mitigate the errors arising from
mismatches between the actual measurement noise
variances and calculated measurement noise variances.
Vertical dilution of precision: At high altitudes, there is
very little vertical diversity with respect to terrestrial

Table 2. Navigation performance with cellular signals

cellular towers. As such, the aircraft’s cellular-based
navigation solution VDOP will be large. Nevertheless,
the aircraft’s vertical position can still be estimated from
the pseudoranges extracted from cellular towers, albeit
with less accuracy compared to the results presented in
this article, which fused altimeter-based measurements.
Mapping cellular SOPs: This article assumed cellular
SOPs to be mapped a priori. This was achieved via a
mapping campaign according to the method described

Metric Region A Region B Region C in [36]. Nevertheless, such an assumption can be relaxed
Cellular towers {3G.46) 65) 195) 74 via the radio s_lmultaneous localization and. mapping
_ framework, which maps the unknown SOPs simultane-
Cellular frequencies (MHz) 881.52 881.52 881.52 ously with localizing the aircraft [14], [31].
7315 731.5 1,955
751 739 2,145 Conclusion
Flight duration (min) 9 1 85 This article demonstrated robust high-altitude aircraft
E— 5 - - navigation with 3G CDMA and 4G LTE cellular SOPs. An
'9 ength (k) EKF was used to fuse cellular carrier phase measurements
Altitude AGL (ft) 5,000 0-7,000 15,000 to estimate the aircraft’s position, velocity, and time. The
Position RMSE (m) 10.53 496 11.67 EKF utilized a simple, yet effective continuous Wiener pro-
Velocity RMSE (m/s) 058 05 0.71 cess ac?eleration model t(? desc.ribe the ail.'craft dynamics.
T oS ) 067 15.04 25.89 A mu}tltuQe of flight tr.a]ectorles and altltqdes AGL VVE.IS
. . exercised in the three flights: 1) a 51-km trajectory of grid
Maximum velocity error (m/s) 229 319 St maneuvers with banking and straight segments at about
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EKF plots showing the time history of the position and velocity errors in Region C as well as the £3c bounds. As expected, the EKF performs
poorly in the second leg, where the mismatch between the true aircraft dynamics and the assumed EKF model is highest.
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5,000 ft AGL, 2) a 57-km trajectory
of a teardrop descent from 7,000 ft
AGL down to touchdown at the run-
way, and 3) a 55-km trajectory of a
holding pattern at about 15,000 ft
AGL. Cellular SOPs produced re-

The EKF utilized a simple, yet effective continuous Wiener
process acceleration model to describe the aircraft dynamics.

markable navigation accuracy in all
three flights, achieving a 3D position
RMSE of 10.53 m, 4.96 m, and 15.44 m, respectively. These
unprecedented results demonstrate the potential of cellular
signals as a viable alternative to GNSS for high-altitude air-
craft navigation. While the presented outcomes are encour-
aging, more accurate navigation results can be achieved by
fusing cellular SOP observables with an INS.
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