An Interacting Multiple Model Estimator of LEO
Satellite Clocks for Improved Positioning

Nadim Khairallah and Zaher M. Kassas
Department of Mechanical and Aerospace Engineering, University of California, Irvine, USA
Emails: khairaln@uci.edu and zkassas@ieee.org

Abstract—An interacting multiple-model (IMM) estimator is
developed to adaptively estimate the process noise covariance of
low Earth orbit (LEO) satellite clocks for improved positioning.
Experimental results are presented showing a stationary ground
receiver localizing itself with carrier phase measurements from
a single Orbcomm LEO satellite. The developed IMM is shown
to reduce the localization error and improve filter consistency
over two fixed mismatched extended Kalman filters (EKFs).
Starting with an initial receiver position error of 1.45 km, the
IMM yielded a final error of 111.26 m, while the errors of a
conservative and optimistic EKFs converged to 254.71 m and
429.35 m, respectively.

Index Terms—IMM, navigation, signals of opportunity, low
Earth orbit satellites, adaptive estimation.

I. INTRODUCTION

Opportunistic navigation has gained significant attention in
recent years to overcome the limitations of global navigation
satellite systems (GNSS). This paradigm aims to exploit
ambient signals of opportunity (SOPs) in the environment [1],
[2]. Various generations of terrestrial cellular signals (3G code-
division multiple-access (CDMA), 4G long-term evolution
(LTE), and 5G [3]-[6]), have shown the potential of meter-
level level accuracy on ground and aerial vehicles [7]-[9]. As
for space-based SOPs, low Earth orbit (LEO) space vehicles
(SVs) have received significant attention recently, as they
could revolutionize satellite-based navigation [10]-[17].

LEO SVs’ inherent characteristics make them desirable for
navigation. First, LEO SVs are abundant, with around 3,800
active SVs in orbit. The number of LEO SVs is projected
to increase dramatically over this decade due to the launch
of so-called megaconstellations (e.g., Starlink, Kuiper, etc.)
[18]. Second, LEO SVs’ configuration relative to a receiver
anywhere on Earth yields a low geometric dilution of precision
(GDOP), which improves navigation accuracy [19]. Third,
LEO SVs transmit in a wide range of frequency bands (e.g.,
Orbcomm SVs transmit in the very-high frequency band,
while Starlink SVs transmit in the Ku-band), which reduces
vulnerability to interference. Fourth, LEO SVs are around
twenty times closer to Earth than GNSS SVs, which reside
in medium Earth orbit (MEO), making the power of received
LEO signals up to 2,400 times more powerful than GNSS [20].

However, there are two main challenges to opportunistic
navigation using LEO SVs. First, the proprietary signals
transmitted by LEO SVs are partially known. This issue can
be tackled with the design of specialized receivers that lever-
age the periodic signals with favorable correlation properties

transmitted by the LEO SVs [21], [22]. Even when LEO
signals are unknown, cognitive signal processing approaches
have been shown to yield useful navigation observables [23],
[24]. Second, unlike GNSS SVs, LEO SVs generally do
not openly transmit information about their ephemeris and
clock error states in their downlink signals. On one hand,
among the most accurate publicly available information on
ephemerides are two-line element (TLE) file, published and
updated periodically by the North American Aerospace De-
fense Command (NORAD) [25]. These TLE files consist of
a set of mean Keplerian elements at a specified epoch that
an analytical Simplified General Perturbation (SGP4) model
[26] can propagate to any inquiry time. TLEs, however, suffer
from errors of a few kilometers at epoch and this error grows
throughout propagation. On the other hand, the quality of
oscillators onboard LEO SVs is generally unknown and no
information is available on the degree of synchronicity of
clocks across the constellation network.

As such, LEO SVs’ states are uncertain at best (ephemeris)
or completely unknown (clock errors). One approach to deal
with this is via the simultaneous tracking and navigation
(STAN) framework, which estimates the SVs’ states simulta-
neously with the receiver’s states [11], [27]. Another approach
was proposed in [28], in which LEO SVs’ position and
velocity process noise was estimated by a receiver, which
tracked the LEO SVs by utilizing pseudorange and/or Doppler
measurements from LEO SVs’ signals.

This paper focuses on the challenge of estimating the
process noise covariance of unknown LEO SVs’ clocks. Prior
work in the context of mapping unknown cellular towers
with a mobile ground-based receiver has demonstrated that
adaptive estimation of terrestrial SOP clocks improves the
estimation performance [29]. This paper considers a “dual”
problem in which a stationary receiver localizes itself from
signals transmitted by a single LEO SV, while adaptively
estimating the unknown clock of the SV. To this end, an
interacting multiple-model (IMM) estimator, which uses a
bank of extended Kalman filters (EKFs), is developed. IMMs
have shown tremendous potential in a variety of applications
[30], [31] and have been “adapted” to estimating process and
measurement noise statistics [32].

The rest of the paper is organized as follows. Section II
presents the clock dynamics and measurement models. Section
IIT details the estimation framework to adaptively localize
a stationary receiver using LEO SVs. Section IV presents



experimental results. Section V gives concluding remarks.

II. MODEL DESCRIPTION
A. Clock Dynamics Model

The receiver and LEO SV clock error states are modeled
according to the standard double integrator model with bias
ot and drift §¢, which evolve according to

Tk (t) = Acik Teik(t) + e (t), (D
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where ws; and w;, are zero-mean, mutually independent white
noise processes with power spectral density Sg,;, and Sg;,,
respectively. These power spectra Sg,, and Sy, can be related
to the power-law coefficients {ha}i:_Q, which have been
shown through laboratory experiments to be adequate to char-
acterize the power spectral density of the fractional frequency
deviation y(t) of an oscillator from nominal frequency, which
takes the form S,(f) = 222_2 hof® [33]. It is common
to approximate the clock error dynamics by considering only
the frequency random walk coefficient h_o and the white
frequency coefficient hy, which lead to Sy, =~ hf and
Sﬁjrit =~ 212h_q [34].
Discretizing (1) at a constant sampling period 7" yields
Lclk (k + 1) =Fox ccclk(k) =+ wclk(k), k= 0, 1, 2, ... (2

where wg)k is a zero-mean white noise sequence with covari-
ance Qi
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B. Carrier Phase Measurement Model

The receiver opportunistically extracts carrier phase navi-
gation observables from the LEO SV signals. These carrier
phase measurements between the receiver and the m!" LEO
SV at time-step k corresponding to time t; = to + kT for
some initial time ¢y are modeled according to

Zm (k) = [|rr(k) — sy, (k/)”Q + c[0t (k) — Otsy,, (k)]
+ /\mNm + Céttropom (k) + Cétionom (k) + Um, (k)a (4)

where k' is the time-step corresponding to txr = tx — dTOF
with dpor being the true time-of-flight of the s%gnal from the
m' LEO SV to the receiver; 7, = [z,,y,, 2] and ry, =
[Tsv., s Ysvo s zsvm]T are the receiver’s and m*» LEO SV’s 3-D
position, respectively, expressed in the Earth-centered, Earth-
fixed (ECEF) reference frame; c is the speed of light; d¢,, and
Stsy,, are the receiver’s and the m!* LEO SV’s clock bias,
respectively; A, is the mt" LEO SV’s carrier wavelength; N,,
is the m*™ LEO SV’s carrier phase ambiguity; 5ttmpom and
0tiono,, are the tropospheric and ionospheric delays associated
with the m*" LEO SV’s signals, respectively; and v, (k) is the
measurement noise, which is modeled as a zero-mean white
Gaussian sequence with variance o2, (k).

Assuming no cycle slip occurs when the receiver tracks the
carrier phase (i.e., the carrier phase ambiguity remains con-
stant), the difference between the receiver and the m!* LEO
SV range-equivalent clock biases and the range-equivalent car-
rier phase ambiguity are lumped into a single term cAdt,, (k),
simplifying the carrier phase measurement model to

2m (k) = |7 (k) = rov,, (k') ||y + cAdt (k)
+ ccsttropom (k) + C(Stionom (k) + v (k); (5)
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III. ADAPTIVE ESTIMATION FRAMEWORK

In multiple-model (MM) estimation, a bank of filters, tra-
ditionally Kalman filters (KFs), run in parallel, with each
filter in the bank matched to a mode. The output of the MM
estimator is obtained by weighing each filter’s estimate by their
respective innovation likelihood [34]. For systems modeled
with Markovian switching probabilities between modes, the
computational cost of the exhaustive MM estimator, which
keeps track of all mode combinations, grows exponentially
with time. Several sub-optimal filters such as the generalized
pseudo-Bayesian (GPB) algorithms have been developed to
remedy this issue by considering the one-step time history
for GPB1 (r hypotheses) and two-step time history for GPB2
(r? hypotheses), where r is the number of modes [34]. The
interacting multiple-model IMM) was developed to allow for
a two-step history processing using only r filters running in
parallel via a mixing stage that computes the initial condition
fed to each filter. As a result, the IMM, which has the
computational cost of GPB1 but with comparable performance
to GPB2, offers a tradeoff between complexity and adaptation
capability [35], and is selected as the adaptive filter used in
this study.

A single cycle of the IMM for r» modes is depicted

in Fig. 1, with the following notational definitions:
r Number of filters
7 {1,...,71} €N
#'(k — 1|k — 1)  State estimate of filter i
Pi(k — 1|k — 1)  Estimation error covariance of filter i
M(k — 1|k —1)  Mixing probability matrix
2%(k — 1)k — 1)  Mixed initial condition matched to filter i

P%(k — 1|k — 1) Estimation error covariance associated

with 2% (k — 1]k — 1)

z(k) Measurement

Ai(k) Innovation likelihood of filter ¢

2 (k|k Updated state estimate of filter i

Pi(k|k Updated estimation error covariance of
filter ¢

™ Mode transition probability matrix

w(k) Mode probability vector

z(k|k) Combined state estimate

P(k|k) Combined estimation error covariance
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Fig. 1. A single cycle of the IMM filter with » modes.

The IMM algorithm consists of the four following stages,
shown in Fig. 1, repeated recursively:

Interaction/mixing: This stage calculates the initial condi-
tions 2% (k—1|k—1) and P%(k—1|k—1) fed to each filter
in the bank by combining °(k—1|k—1) and P?(k—1|k—1)
using the mixing probability matrix M (k—1|k—1).

Mode-matched filtering: This stages performs a regular KF
update (prediction and correction), for each KF in the
bank, where each filter is matched to a particular mode.
It also calculates the innovation likelihood of each filter.

Mixing probability and mode probability update:

This stage computes the mixing probability matrix
and updates the mode probability vector, based on the
innovation likelihood of each filter in the bank.

State estimate and covariance combination: This stage
combines the state estimates and estimation error
covariances from the individual filters by weighting
2'(k|k) and PY(k|k) by their respective mode
probabilities from (k).

In this study, an IMM adaptive filter is implemented to
estimate the clock error states’ process noise covariance online
to improve the positioning of an unknown receiver.

The process noise covariance of the clock error states
depends on the corresponding oscillator stability. The quality
of oscillators vary widely between temperature-compensated
crystal oscillator (TCXO), oven-controlled crystal oscillator
(OCXO), and chip-scale atomic clock (CSAC). The discrete-
time process noise covariance for clock error states is readily
calculated from (3), where the power spectral densities Sy,,
and Sy, depend on the power-law coefficients associated

with the oscillator stability. Table I summarizes the power-law
coefficients of various clock qualities.

The process noise covariance Q associated with the range-
equivalent lumped term (6) only depends on the receiver’s and
LEO SV’s stochastic clock error states as the range-equivalent
carrier phase ambiguity is deterministic, and is given by

Q = [Qaix, + Qeix..] s (7

where Q. and Qcix,, are computed from (3) by using the
receiver’s and LEO SV’s oscillator power spectra, respectively.

TABLE I
CLOCK QUALITY POWER-LAW COEFFICIENT VALUES.

Quality Coefficients {ho, h_o}
Worst TCXO  {2.0 x 10719, 2.0 x 10720}
Typical TCXO  {9.4 x 10729, 3.8 x 10721}
Typical OCXO  {8.0 x 10720, 4.0 x 10723}
Best OCXO {2.6 x 10722, 4.0 x 10726}
CSAC {7.2x 10721, 2.7 x 10727}

IV. EXPERIMENTAL RESULTS

To demonstrate the improvements in receiver positioning
accuracy and filter consistency, achieved via the adaptation
in the IMM over mismatched EKFs, Orbcomm SV signals
were collected by a stationary receiver. Orbcomm was chosen
for this experiment since its SVs openly transmit ephemeris
information in their downlink signals [36]. The ephemeris data
was decoded by the receiver and used in the estimators as the
SV’s ground truth trajectory.

A. Experimental Setup and Filter Parameters

A VHF quadrifilar helix antenna was connected to an Ettus
E312 Universal Software Radio Peripheral (USRP) disciplined
by a NI CDA-2990 OctoClock to sample Orbcomm LEO SV
signals at 137-138 MHz at a sampling rate of 2.4 MSps.

An IMM estimator and two fixed mismatched EKFs were
implemented to estimate the receiver’s position and the lumped
term (6) and its rate of change. It is assumed that the receiver
has knowledge of its height (e.g., through altimeter measure-
ments) so that the filters effectively estimate the receiver’s
planar two-dimensional position in a local North-East-Down
(NED) frame.

It is hypothesized that the receiver’s clock quality lies
between a worst TCXO and a best OCXO and that the
LEO SV’s clock quality lies between a typical TCXO and
a CSAC. As a result, the IMM filter runs » = 4 different
modes, one for each possible combination of receiver-LEO
SV clock quality. The IMM filter is initialized with u;(0)

1/r, i = 1,...,r as no prior is available on the oscillators’
stability and the Markovian mode transition matrix is given
b 1—p, ifi=453=1,...,r
Yy ™i; = o .
p/(r—1), ifi#j

where p is the probability of transition to another mode, which
is set to 1074,



The IMM’s performance is also compared to that of two
mismatched EKFs: a conservative filter which overbounds Q
by assuming a receiver-LEO SV joint clock quality equivalent
to a worst TCXO-typical TCXO pair and an optimistic filter
which underestimates Q by assuming a receiver-LEO SV joint
clock quality equivalent to a typical OCXO-best OCXO pair.

B. Experimental Results

The USRP sampled downlink signals from Orbcomm
FM116 SV for around 4.5 minutes. Carrier phase navigation
observables were opportunistically extracted by the receiver
and were corrected for tropospheric and ionospheric delays
using standard models [37]. The measurement noise variance
was time-varying and was calculated based on the LEO SV’s
elevation angle. All filters were initialized with the same initial
receiver position estimate, drawn from a Gaussian distribution
with the mean being the true receiver’s location and a variance
of 10° m? in the North and East directions as seen in Fig. 2.
The initial receiver position error was 1.45 km.

Fig. 2 and Table II summarize the receiver localization
performance of the IMM and the two fixed EKFs. The
following observations can be drawn from these results. First,
the IMM yielded better localization performance than the two
mismatched EKFs by decreasing the initial positioning error
from 1.45 km to 111.26 m versus 254.71 m and 429.35
m for the conservative and optimistic EKFs, respectively.
Second, the IMM’s covariance captures well the uncertainty
in the positioning error whereas the uncertainty for the EKF
overbounding Q is too conservative and the uncertainty for
the EKF underestimating Q is too optimistic. The above
observations can be explained by the fact that mismatched
process noise covariances lead to less accurate estimates and
filter inconsistency or even divergence as in the case of the
optimistic EKF [29]. The adaptation capability of the IMM
filter addresses the unknown process noise covariance by
estimating it online along the receiver position states. Third,
the uncertainty ellipses of all three filters are elongated in the
same direction as can be seen in Fig. 2(a). This is explained
by the motion of the LEO SV relative to the receiver: more
information is available in the direction parallel to the LEO
SV’s motion, resulting in more uncertainty (i.e., elongated
covariance ellipses) in the direction orthogonal to the LEO
SV’s trajectory depicted in the skyplot of Fig. 2(b).

Fig. 3 shows the time evolution of the IMM mode probabil-
ities and suggests that the combined receiver-LEO SV clocks
have comparable stability to a typical TCXO-best OCXO
oscillator pair.

If a cycle slip occurs in the carrier phase observables, a
sharp step equal to the number of cycles slipped multiplied
by the carrier wavelength is suddenly introduced in the time
evolution of the lumped term (6). This step will act as a
disturbance to any filter estimating (6). It is expected that
after the transient period following the cycle slip disturbance,
the IMM mode probabilities converge back to the values that
correctly characterize the clock error states’ process noise
covariance.

(b)| North

—— Orbcomm FM116 |

AN

East

University of California Irvine

Fig. 2. (a) Experimental results showing true receiver position (green) along
with estimates and corresponding 95" -percentile uncertainty ellipses: (i) red:
initial estimate, (ii) yellow: conservative EKF, (iii) purple: optimistic EKF, and
(iv) blue: IMM. (b) Skyplot of Orbcomm FM116 SV’s trajectory relative to
the receiver. (c) Zoomed view on the localization performance of different
filters. Map data: Google Earth.
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Fig. 3. IMM mode probabilites.

TABLE II
COMPARISON OF IMM VERSUS MISMATCHED FIXED EKFS.

Adaptive IMM  Conservative EKF  Optimistic EKF

Final error (m) 111.26 254.71 429.35

V. CONCLUSION

This paper developed an IMM estimator to localize a
receiver using carrier phase measurements extracted from a
single LEO SV’s signals. The IMM adaptively estimated the
process noise covariance of the combined receiver-LEO SV
clock error states. The accuracy and consistency advantages of



the IMM adaptation were showcased experimentally against
two fixed mismatched EKFs. The IMM reduced the initial
receiver position error from 1.45 km to 111.26 m, while a
conservative EKF yielded a final error of 254.71 m and an
optimistic EKF diverged to an error of 429.35 m.
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