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ABSTRACT

An observability analysis of terrestrial receiver localization via pseudorange measurements extracted from a single low Earth
orbit (LEO) satellite is presented. It is concluded that a stationary receiver with an unknown state (position and time) can
localize itself with measurements from a LEO satellite with a known state (position, velocity, and time). In addition, bounds
on the determinant of the observability matrix are derived. The relationship between the satellite’s relative orbital inclination
angle and geometric diversity of the line-of-sight vectors from the receiver to the satellite is analyzed, leading to geometric
interpretations indicating directions of poor observability. Experimental results are presented showcasing the conclusions of
the observability analysis for a receiver localizing itself with a single Starlink LEO satellite or a single Orbcomm LEO satellite.
Finally, an observability-aided LEO satellite selection strategy is discussed.

I. INTRODUCTION

We are witnessing the era of Low Earth orbit (LEO) satellite megaconstellations (Reid et al., 2020; Kulu, 2021). These
megaconstellations promise to revolutionize several domains, bringing unprecedented high-resolution images; remote sensing;
and global, high-availability, high-bandwidth, and low-latency Internet (Liu et al., 2021; Judice et al., 2022; Okasha et al.,
2022). Due to LEO satellites’ inherently desirable attributes (Kassas et al., 2019), namely: (i) geometric and spectral diversity,
(ii) abundance, (iii) high received signal power, and (iv) high orbital velocity, LEO satellites offer an attractive alternative to
global navigation satellite systems (GNSS), which reside in medium Earth orbit (MEO) (Reid et al., 2021; Kassas, 2021; Prol
et al., 2022; Jardak and Jault, 2022). The promise of utilizing LEO satellites for navigation has been the subject of numerous
recent theoretical (Wei et al., 2020; Thompson et al., 2020; Psiaki, 2021; Nardin et al., 2021; Hartnett, 2022; Cassel et al., 2022;
Jiang et al., 2022; Iannucci and Humphreys, 2022; Elgamoudi et al., 2020) and experimental (Tan et al., 2019; Farhangian and
Landry, 2020; Farhangian et al., 2021; Wang and El-Mowafy, 2022; Huang et al., 2022; Li et al., 2022; Khalife et al., 2022;
Neinavaie et al., 2022; Zhao et al., 2022) studies.

LEO satellites orbit the Earth at much higher rates than GNSS satellites. Contrast, for example, the orbital period of a GPS
MEQO satellite (11 hr, 58 min) with that of Orbcomm LEO satellites (about 99 min) and Starlink LEO satellites (about 96 min).
This yields significant change in their geometry, which can be exploited to localize a terrestrial receiver with fewer satellites. In



particular, while four GNSS satellites are needed to estimate the states of the receiver via a static estimator (e.g., nonlinear least
squares), a single LEO satellite can be used to localize the receiver via a dynamic estimator (e.g., an extended Kalman filter
(EKF)) by fusing consecutive LEO measurements taken over a relatively short period of time. A few studies demonstrating
the impact of receiver localization using a small number of satellites have been conducted in the literature. In (Pike et al.,
2022), pseudorange and Doppler measurements were combined for stationary receiver positioning using two and three satellites
without the use of a base station or differential positioning techniques.

Observability analysis with LEO satellites has been studied in the context of space situational awareness with relative position
measurements (Ou and Zhang, 2018; Yong and Zhang, 2019; Friedman, 2020) and orbit determination with angles-only
measurements (Kaufman et al., 2016; Sullivan et al., 2018; Friedman and Frueh, 2021). Moreover, observability of planar
environments comprising terrestrial transmitters with unknown positions and time have been studied in (Kassas and Humphreys,
2012), where estimability was numerically assessed from the EKF’s estimation error covariance, and in (Morales and Kassas,
2019), where the Riccati equation was analyzed to conclude that simultaneously estimating the receiver’s and transmitter’s
time is stochastically unobservable. However, observability analysis with a small number of LEO satellites in the context of
localization has not been thoroughly studied. In (Sabbagh and Kassas, 2023), an observability analysis of three-dimensional
receiver localization via pseudorange measurements extracted from the signals of a single LEO satellite was conducted. It was
shown that a stationary receiver with an unknown state (position and time) can theoretically localize itself with a LEO satellite
with a known state (position, velocity, and time). In addition, analytical bounds on the determinant of the -step observability
matrix were derived indicating directions of poor observability. It was concluded that the system becomes unobservable if the
receiver is in the satellite’s orbital plane or along the normal to the satellite’s orbital plane.

This paper aims to summarize the results presented in (Sabbagh and Kassas, 2023), with an emphasis on the implications
of the analysis on observability-aided LEO satellite selection. Namely, empirical surface plots of the observability matrix
can aid in selecting the satellite with desired (i) visibility duration, (ii) elevation profile, and (iii) altitude and relative orbital
inclination angle. Finally, experimental results are presented showcasing the conclusions of the observability analysis for a
receiver localizing itself with a single Starlink satellite or a single Orbcomm satellite.

The remainder of the paper is organized as follows. Section II describes the dynamics and measurement models. Section III
analyzes analytically the observability of receiver localization using pseudorange measurements from a single LEO satellite
and gives geometric interpretations of the derived results. Section IV presents experimental results with Orbcomm and Starlink
LEO satellites, demonstrating the implications of the observability analysis on the estimation performance. Section V presents
a discussion on observability-aided LEO satellite selection for improved receiver localization.

II. PRELIMINARIES AND MODEL DESCRIPTION
1. Observability of LTV Systems
Consider the discrete-time (DT) linear time-varying (LTV) dynamical system 3 given by
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where x € ,u € ,and y € are the system state, input, and measurement vectors at time-step k respectively, and

ke . The state transition matrix corresponding to 3 from time-step to time-step is given by
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where  denotesan x identity matrix. The following theorem characterizes the observability of DT LTV systems via
the -step observability matrix (Rugh, 1996).

Theorem I: The DT LTV system (1) is -step observable if and only if its corresponding -step observability matrix
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is full rank. Theorem I can be applied to nonlinear systems by linearizing at each time-step karound x(k). The achieved
observability results therein will only be valid locally (Huang et al., 2010).

2. Receiver Dynamics

The terrestrial receiver’s position 7 € 2 is assumed to be fixed in the Earth-centered inertial (ECI) frame and its distance

from the center of Earth is denoted by = || ||o. The dynamics of the receiver’s clock error states (i.e., bias 0t and drift 6 )
is modeled as a double integrator driven by process noise (Bar-Shalom et al., 2002). The receiver’s dynamics is given by

z (k+l)= z(k+w (k

where x = [rT, cét ,cé ] is the receiver’s state vector, denotes the speed of light, and w is a process noise modeled as
a zero-mean white random sequence with covariance = diag[ 3«3 ]. The receiver state matrix is
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where  is the sampling period. In this letter, the simplest receiver dynamics was considered to focus on the change in geometry
due to the moving satellite. More elaborate receiver dynamics could be considered in future work.

3. LEO Satellite Dynamics

The LEO satellite is assumed to follow a circular Keplerian orbit with fixed inclination and a prescribed orbital radius denoted by
= ||r ()|l2 where 0 . Under the action of Earth’s gravitational field, the satellite’s orbital dynamics in continuous-time
will be assumed to follow a simplified two-body model given by

r()=-Lr()+w() 3)

where 7 € 3 is the satellite’s position in the ECI frame and w is a process noise vector of acceleration perturbations resulting

from Earth’s non-uniform gravitational potential, atmospheric drag, solar radiation pressure, gravitational pull of other celestial
bodies, and general relativity (Montenbruck and Gill, 2000). The following constraints on the satellite dynamics hold V 0
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where o £ 11/a®. The dynamics of the satellite’s clock bias §¢ and drift 6t are modeled similarly to the receiver’s clock error
dynamics (Bar-Shalom et al., 2002). Next, the satellite dynamics in (3) can be discretized at a sampling period to yield

()= =z()+tw()

where x = [rT 7. cét | cd } is the satellite’s state vector and w 1is a process noise modeled as a zero-mean white random
sequence with covariance  ,and  is given by

cos(aT) 3xz  (1/a)sin(aT’) 3x3  sx2
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4. Measurement Model

The pseudorange measurement extracted by the receiver (Pinell, 2021) from the satellite signals at time-step k after compensating
for ionospheric and tropospheric delays (Kassas, 2021), is modeled as

p(R=[r —r (k)lla+ (6t (W —0dt (k))+v(kK ©)

where k represents discrete-time =k — dt with 4t being the transmission delay of the signal. The term v is the
measurement noise, which is modeled as a zero-mean white Gaussian sequence with variance o2.



III. OBSERVABILITY ANALYSIS

This section summarizes the analytical observability results derived in (Sabbagh and Kassas, 2023) for receiver localization
with a single LEO satellite under two scenarios. The first scenario considers a receiver with unknown position states but known
clock error states. Results from this simple scenario will serve as a stepping stone towards the second scenario, which considers
areceiver with unknown position states and unknown clock error states. In each scenario, the satellite’s states are assumed to be
known, which is the case whenever (i) a satellite transmits its ephemeris and clock errors (e.g., Orbcomm satellites transmit their
states, estimated from onboard GPS receivers (Kassas, 2021)) or (ii) an estimator is employed to estimate the LEO satellite’s
states (e.g., via a differential navigation framework utilizing a known base receiver (Khalife et al., 2020), via a simultaneous
tracking and navigation (STAN) framework (Kassas, 2021)), or via an analytical and/or machine-learning satellite tracking
framework (Shen et al., 2019; Khairallah and Kassas, 2021; Haidar-Ahmad et al., 2022)). It is worth noting that instead of
estimating the receiver’s clock error states, the following analysis readily extends to the case of estimating the difference between
the receiver’s and LEO satellite’s clock error states (Khairallah and Kassas, 2022), Adt £ 6t — 6t and At 2 5t — 6t s
which could be desirable for stochastic observability considerations (Morales and Kassas, 2019).

The nonlinear pseudorange measurement (4) is linearized at time-step kwith respect to the unknown receiver states and the
corresponding Jacobian matrix is used to build the -step observability matrix. The scenarios are summarized below

e Scenario 1: A stationary receiver with unknown position states but known clock error states makes pseudorange
measurements to a LEO satellite with known states. The measurement Jacobian is given by (k) =17,

* Scenario 2: A stationary receiver with unknown position states and clock error states makes pseudorange measurements
to a LEO satellite with known states. The measurement Jacobian is given by (k) = [lT 1 O].

Above,l € 3 denotes the unit line-of-sight (LOS) vector between the receiver and satellite at time-step k given by

o ror
lr —r (W2

In what follows, the -step observability of the aforementioned scenarios is investigated, and bounds on the determinants of
observability matrices therein are derived.

1. Scenario 1: Pseudorange Measurements with Unknown Receiver Position States but Known Clock Error States
In this scenario, the only unknown states are the receiver’s position, and the 3-step observability matrix is given by
]T

Okk+2) = 14 14 (5)

where the transition matrix ® = 3.3 and the measurement Jacobian (k) = T are used to build O(k k+ 2). Let

O(k k+ 2) £ O3. An expression for det(O3) is derived as a function of the relative geometry between the receiver and the
satellite.

Theorem IT: Let = cos(anT), = sin(anT), and

N 1

0 [AT(K)l2 [Ar(k+ D2 [Ar(k+ 2)]2

where Ar(K) £ r — 7 (K. The determinant of the 3-step observability matrix in (5) is given by
det(O3) = (2 1 — 2) % sin(d) (6)

where 6 is the angle between the receiver’s position vector 7 and the orbital plane of the LEO satellite.

Proof: The determinant of O3 is equal to the scalar triple product of its rows which are given by the unit LOS vectors I ,1 4,
and I ;. Expanding this product in terms of the state variables of the receiver-satellite dynamics will yield the desired result
(for details of the proof see (Sabbagh and Kassas, 2023, Theroem II)). |

Hereafter, 6 is referred to as the relative orbital inclination angle between the receiver and the LEO satellite. Ideally, 0 is
assumed constant for a stationary receiver during the time window through which it is seeing a LEO satellite. In what follows,
time-independent bounds on det(O3) are derived.



Corollary I: The determinant of the 3-step observability matrix in (5) can be bounded as follows

0< (0) <det(Os) < (0)
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Proof: Using the law of cosines, it can be deduced that the coefficient § satisfies ( 24 242 sin(@))_3 2 <pB <

( 24+ 2-2 sin(G)) =32 forall ke (for details of the proof see (Sabbagh and Kassas, 2023, Corollary I)). ]

The inequalities on 6 and o k T" are placed with the understanding that a LEO satellite should be visible for a long enough time
to provide useful measurements. From the observability analysis of Scenario I, the following can be deduced:

Proposition I: If the receiver is in the orbital plane of the LEO satellite, the system is not -step observable.

Proof: If the receiver is in the orbital plane of the LEO satellite, then # = 0. This implies that (6) = 0. As a result,
det(O3) = 0 and Oj is rank deficient. In fact, the rows of @, which represent consecutive unit LOS vectors tracing the
satellite’s orbit, are coplanar lying in the orbital plane of the satellite. As a result, rank[O | < 2, forall > 2. [N

Remark I: The unobservable subspace in the case above is spanned by the normal to the satellite’s orbital plane, otherwise
known as the satellite’s cross direction. This implies that initial receiver position states along this direction are indistinguishable.
The impact of this on localization using a single overhead LEO satellite is demonstrated in Section IV.

Proposition II: If the receiver is not in the orbital plane of the LEO satellite, the system is -step observable for > 3.

Proof: If the receiver is not in the orbital plane of the LEO satellite, then 6 # 0. Asaresult, (0) (0) 0,anddet(O3) #0
with rank[O | = 3, for all > 3. In fact, the rows of O , which represent consecutive unit LOS vectors tracing the satellite’s
orbit, are no longer coplanar. This implies that the corresponding scalar triple product of any three consecutive unit LOS vectors
is nonzero within a single orbital period. |

2. Relationship Between the relative orbital inclination 0 and the Geometric Diversity of the LOS Vectors

The above analysis and (6) show that the size of # normalized by the cube of the receiver-satellite range can measure how close
the -step observability matrix is to singularity. In other words,

det(O3) o B sin(h)

As aresult, a relationship between the singularity of O3 and the geometric diversity of the unit LOS vectors can be established.
Namely, the following observations can be made:

 For small 0, the receiver is near the orbital plane of the satellite so that the LOS vectors are almost coplanar.
« For large 6, the receiver is far enough from the satellite so that the LOS vectors are almost collinear.
* In both extremes, the LOS vectors have poor geometric diversity.

As a visual aid to illustrate the impact of § on the determinant of the observability matrix, an exaggerated comparison between
the geometric diversity of the LOS vectors created between the LEO satellite and three receivers , ,and is shown is shown
in Figure 1. These receivers result in three drastically different values of 8, which result in LOS vectors with varying geometric
diversity. For example, receiver makes LOS measurements that are relatively closer to each other compared to receiver
(large 6), and receiver makes LOS measurements that are coplanar in the orbital plane of the LEO satellite (small 6).

A study on the singularity of O3 is shown in Figure 2(a), where the values of det(O3) were computed from simulated LOS
vectors created between a stationary receiver and a satellite traveling along a circular orbit at an altitude of 521 km (computations
were repeated for varying values of 8 € [0, 7/12]). It is observed that det(QO3) drastically diminishes for 8 values which are too
small or too large, implying that a “favorable” relative orbital inclination region (shown in Figure 2 in yellow) lying in between



the two extremes exists where det(Os) is ideal over the navigation window of the receiver. In summary, for configurations
with 0 larger than zero, the geometric diversity of the LOS vectors improves up to a certain point, which is a favorable region
that optimizes the geometric diversity of the LOS vectors. Upon further increasing 6, the geometric diversity starts to slowly
degrade.
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Figure 1: Comparison between the geometric diversity of the LOS vectors based on the relative orbital inclinations 0 4, 0, and Oc
(04 > 0c > 0p) created between the LEO satellite and receivers A, B, and C, respectively. Receiver A makes LOS measurements that are
relatively closer to each other compared to receiver C' (large 0), and receiver B makes LOS measurements that are coplanar in the orbital
plane of the LEO satellite (small 0).

3. Scenario 2: Pseudorange Measurements with Unknown Receiver Position States and Unknown Clock Error States

In this scenario, the receiver state is unknown, and the 5-step observability matrix is given by

Ul 1o Las U]’

Okk+d)=|1 1 1 1 1 %)
0 2 3 4
where the transition matrix ® = € 5*5 and the measurement Jacobian (K = [T 1 0] € ¥ are used to build

O(k k+4). Let O(k k+4) £ Os. Next, an expression for det(O5) is derived as a function of the relative geometry between
the receiver and the satellite.

Proposition III: Let , ,and € with , then the following equality holds
I -1 xl)=~ p 2 sin()

where the scalars 0 and 3 0 are given by
£ 4+ -
g2 :

[Ar(k+ )2 [|Ar(k+ |2 [|Ar(k+ )l

where 0 < 0 < 7/12and 0 < kT < 7 /6 forall ke
Proof: The proof proceeds similarly to that of Theorem II. |
Theorem III: The determinant of the 5-step observability matrix in (7) is given by

det((95): (1— 2+ 33— 4) 2 sin(&) )



where 1, 2, 3,and 4 are scalars given by

1= 7012 (Bo12 + Basa) + Y014 (Bora + Bosa)
2 =2 (Y013 Bo1s + Y024 Boza + 1134 Brza)
3= 37023 (Bozs + Bioa)

4= 47123 B3

Proof: The determinant of O3 can be expressed in terms of a product of determinants involving block partitions of Os via the
Schur complement formula. This yields an alternative expression for det(Oj), given by

T4l 30T,
det(Os) = |17, =317 5 +217,
My =200 5 +17,

By expanding the above determinant, the resulting terms can be grouped using Proposition III, resulting in (8). |

Time-independent bounds on /3 can be derived as in the proof of Corollary I, so that -3 < I3 < 73 forallk ,
,and € . Bounds on det(Os) are presented next.

Corollary II: The determinant of the 5-step observability matrix in (8) can be bounded as follows

(0) < det(O5) < (6)

1 1 )
(9) =16 :1; (1 — 1) 2 < 3 - 73 ) SIH(Q)
3 2 1 1 .
) =16 7 (1— 1) T — 3 sin(f)
where 0 < 0 < 7/12and 0 < a kT < 7 /6 forall ke
Proof: The proof proceeds similarly to that of Corollary I. |

Based on Theorem III and Corollary II, the following observability results are deduced.

Proposition I'V: If the receiver is in the orbital plane of the satellite or along the normal to the orbital plane of the satellite, the
system is not -step observable.

Proof: By construction, unobservable directions in Scenario I are inherited into Scenario I where additional receiver states
are now unknown. Furthermore, if the receiver is along the normal to the orbital plane of the satellite, the minimum and
maximum Euclidean distances between the receiver and the LEO satellite become equal whichresultsin  (6) = (F) = O and

(0) = (%) = 0, implying that det(Os) = 0. In fact, since a constant distance is maintained between the receiver-satellite
pair, the stationary receiver can no longer disambiguate between its initial clock bias and the initial range from the satellite, no
matter how many pseudorange measurements it makes from that satellite. At best, a one-dimensional unobservable subspace of

® is maintained, so that rank[O | < 4, forall > 4. [ ]

Proposition V: If the receiver is not in the orbital plane of the satellite, nor along the normal to the satellite’s orbital plane, the
system is -step observable for > 5.

Proof: It is enough to show by contradiction that the matrix Op in this setting is non-singular (for details of the proof see
(Sabbagh and Kassas, 2023, Proposition V)). [ |

4. Comparison between Scenario I and Scenario I1

The same study on the singularity of O5 is done and the corresponding observability surface is generated and compared to the
previous Scenario. It can be observed that the observability surface in Figure 2(b) is smaller compared to Figure 2(a). This
reflects poorer observability conditions and loss of information due to the addition of unknown receiver states to the system.
Additionally, while in both scenarios, the determinant of the observability matrix vanishes when the receiver is in the orbital
plane, as ) grows past the favorable region, the determinant in Scenario II approaches singularity much faster.
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Figure 2: Values of det(O3) (left) and det(Os) (right) computed for different values of 6 in radians at each time-step k.

Finally, it is important to note that while the unobservable subspaces discussed are of zero measure and assume an ideal setting
(perfect knowledge of a circular satellite ephemeris, non-rotating spherical Earth, etc), in a real setting, the satellite’s orbit will
experience random perturbations such that a receiver localizing itself would not lie along the derived unobservable subspaces.
This suggests that theoretically, a receiver with an unknown state can indeed localize itself using pseudorange measurements
from a single LEO satellite. Section IV will show the effect of the unobservable direction to receiver localization.

IV. EXPERIMENTAL RESULTS

To demonstrate the conclusions of the observability analysis on receiver localization, an experiment was conducted whereby
pseudorange measurements, extracted from carrier phase observables (Khalife et al., 2020, 2022), from one Starlink satellite
and one Orbcomm satellite were used to localize a stationary receiver using an EKF for LEO satellite visibility durations of 74
and 317 seconds, respectively. The Starlink and Orbcomm satellites possess average relative orbital inclinations of 8 = 0 01457
rad and 6 = 0 00410 rad, respectively, indicating that the receiver is relatively close to being in their orbital planes during each
navigation window. For both satellites, the analysis in Section III shows that the determinant of the corresponding observability

Table 1: Receiver localization error

|| Satellite Direction  Initial Error  Final Error ||

Along (m) -603.94 -67.14

Starlink Cross (m) -682.25 -768.41
Radial (m) -555.90 81.40

Overall (m) 1,067.35 775.62

Along (m) 604.47 -51.35

Orbcomm  Cross (m) -722.25 -689.29
Radial (m) -856.47 7.79

Overall (m) 1,273.30 691.24

matrices is expected to be small enough so that the directions normal to the LEO satellites’ orbital planes become nearly
unobservable. The objective of the experiment is therefore to demonstrate that receiver localization using near-overhead passing
LEO satellites will suffer from poor information in the direction normal to the LEO satellite’s orbital plane. This implies that
any initial receiver position error in the direction along the normal to the LEO satellite’s orbital plane will not reduce in the EKF,
due to the observability matrix being nearly singular. For the Starlink satellite, the satellite’s states were estimated according to
the framework discussed in (Khalife et al., 2022), which estimated the satellite’s ephemeris via simplified general perturbation
4 (SGP4) orbit propagator initialized with two-line element (TLE) files. For the Orbcomm satellite, the satellite’s states were
obtained by decoding the downlink signal, which contains ephemeris and clock errors, estimated via the satellite’s onboard GPS
receivers (Khalife et al., 2020).



The localization results are shown in Figs. 3 and 4, where the receiver’s position estimation errors and the +30-bounds are
resolved along the LEO satellite’s body frame (along-track, cross-track, and radial directions). Table 1 shows the initial and
final receiver position estimation errors in each direction. It can be seen from Figs. 3 and 4 and Table 1 that while the receiver’s
position error in the along-track and radial directions decreases, there is no improvement in the cross-track direction. This
confirms the observability result discussed in Section III, stating that the direction normal to the orbital plane of the satellite is
unobservable for a receiver making measurements from incoming overhead satellites.

Estimation Error
+30 bounds

0 10 20 30 40 50 60 70
Time (s)

Figure 3: Receiver position estimation errors resolved along the Starlink satellite body frame (in black) with 30 bounds (in red).
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Figure 4: Receiver position estimation errors resolved along the Orbcomm satellite body frame (in black) with 30 bounds (in red).

V. OBSERVABILITY-AIDED LEO SATELLITE SELECTION

From a geometric point of view, it may be viable to utilize publicly available TLE files in order to predict LEO satellites that
will produce measurements which are most favorable when it comes to the observability of a stationary receiver. Namely,
Figure 2 can be utilized for observability-based satellite selection to improve receiver localization based on LEO satellite’s
SGP4-propagated TLE files. This can be done by mapping the LEO satellite’s trajectory with respect to the stationary receiver
(which can be guessed a priori via information about the satellite’s altitudes as well as angles 6 of their orbital planes with the
receiver) to curves along the observability surfaces (see Figure 5). Then, one may predict and select the satellite which will
generate a navigation scenario which is “most” observable by selecting the satellites whose curves are lying in the “favorable”
region of the observability surface. Namely, given a set of LEO satellites, one can identify a priori the one which will result in the
best receiver localization performance, by taking into account the following criteria, which are all features of the observability
surfaces shown in Figure 2:



* The visibility duration of the LEO satellite: This can be inferred from the projected length of the satellite’s curve on the
observability surface, along the time axis.

* The elevation profile of the LEO satellite during this time: This corresponds to the shape of the satellite’s curve on the
observability surface.

« Satellite altitudes and relative orbital inclinations #: This corresponds to the position of the satellite’s curve on the
observability surface, along the 6 axis.
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Figure 5: Starlink predicted skyplots

To illustrate the above idea, consider the collection of six Starlink satellites shown in Figure 5. Their propagated TLE files can
be used to predict how they will pass above a stationary receiver compared to each other. Knowing a priori the average values
of their altitudes, 6, and the skyplots shown, it may be possible to map this information directly onto an observability surface,
which may then be used to choose the satellite that will provide better measurements. In that case, it is expected that space
vehicle (SV) 4 will yield the best localization results, given that it provides measurements for a long enough time and in the
“favorable” region from an observability perspective. While the analysis in this paper considered a single LEO satellite, future
work could generalize to multiple satellites and develop an observability-aided LEO satellite selection approach that determines
the satellites that are expected to provide the best measurements for receiver localization.
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