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A B S T R A C T   

Thermal radiation directionality (TRD) characterizes the anisotropic signature of most surface targets in the 
thermal infrared domain. It causes signi昀椀cant uncertainties in estimating surface upward longwave radiation 
(SULR) from space observations. In this regard, kernel-driven models (KDMs) are suitable to remove TRD effects 
from remote sensing dataset as they are computationally ef昀椀cient. However, KDMs requires simultaneous multi- 
angle observations as inputs to be well calibrated, which yields a dif昀椀culty with geostationary satellites as they 
can only provide a single-angle observation. To overcome this issue, we proposed a six-parameter time-evolving 
KDM that combines a four-parameter SULR diurnal variation model and a two-parameter TRD amplitude model 
to correct the TRD effect for single-angle estimated SULR dataset of geostationary satellites. The signi昀椀cant 
daytime TRD effect when solar zenith angle is within 60ç can be effectively eliminated. The modeling accuracy of 
the time-evolving KDM is evaluated using a simulated SULR dataset generated by the 3D Discrete Anisotropic 
Radiative Transfer (DART) model; the TRD correction method based on the new time-evolving KDM is validated 
using a two-year single-angle estimated SULR dataset derived from data of the Advanced Baseline Imager (ABI) 
onboard Geostationary Operational Environmental Satellite-16 (GOES-16) against in situ measurements at 20 
AmeriFlux sites. Results show that the proposed time-evolving KDM has a high accuracy with an R2 > 0.999 and 
a small RMSE = 1.5 W/m2; the TRD correction method based on the time-evolving KDM can greatly reduce the 
GOES-16 SULR uncertainty caused by the TRD effect with an RMSE decrease of 4.5 W/m2 (22.1%) and mean bias 
error decrease of 7.9 W/m2 (62.7%). Hence, the proposed TRD correction method is practically ef昀椀cient for the 
operational TRD correction of SULR products generated from the geostationary satellites (e.g., GOES-16, FY-4A, 
Himawari-8, MSG).   

1. Introduction 

Thermal radiation directionality (TRD) is an anisotropic phenome-
non to be taken into account when measuring the Earth's surface 
simultaneously at different view angles in the thermal infrared (TIR) 

spectral-domain (Monteith and Szeicz, 1962; Francois et al., 1997; 
Sobrino et al., 2005; Lagouarde et al., 2010; García-Santos et al., 2015; 
Cao et al., 2019b; Coll et al., 2019; Bian et al., 2022; Pérez-Planells et al., 
2022). The TRD phenomenon was initially reported in a study about the 
energy balance for a range of natural surfaces (Monteith and Szeicz, 
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1962) and was subsequently investigated using in situ, aircraft, and 
satellite observations (Cao et al., 2019b) on a variety of land covers, 
including vegetation (McGuire et al., 1989; Du et al., 2007; Rasmussen 
et al., 2011; Bian et al., 2017; Bian et al., 2020; Liu et al., 2020a), water 
surfaces (Masuda et al., 1988; Sobrino and Cuenca, 1999; Cuenca and 
Sobrino, 2004b), bare soil (Sobrino and Cuenca, 1999; Cuenca and 
Sobrino, 2004a; García-Santos et al., 2012; Ermida et al., 2020) and 
urban areas (Lagouarde et al., 2010; Lagouarde et al., 2012; Hu et al., 
2016a; Dyce and Voogt, 2018; Wang et al., 2021). Accordingly, TRD is a 
major and well-known factor contributing to the estimation un-
certainties in the Earth's surface thermal related parameters derived 
from remote sensing, such as surface upward longwave radiation (SULR, 
de昀椀ned as the sum of the surface-emitted thermal radiation and the 昀椀rst- 
order re昀氀ected component of atmospheric downward longwave radia-
tion in 4–100 μm) (Otterman et al., 1995; Jiao et al., 2015; Cheng and 
Liang, 2016; Hu et al., 2019) and the land surface temperature (LST) 
(Trigo et al., 2008; Vinnikov et al., 2012; Guillevic et al., 2013). How-
ever, the algorithms of existing TIR satellite products placed a disregard 
to the TRD effect, thereby leading to some incompatibilities between the 
different products. 

Several studies evaluated the TRD amplitude based on different 
satellite products and land covers. For two geostationary satellites or one 
geostationary satellite and one polar-orbit satellite, Minnis and Khaiyer 
(2000), Trigo et al. (2008) and Guillevic et al. (2013) found that the LST 
differences at different viewing angles could reach 6–12 K. For one 
polar-orbit satellite, Hu et al. (2016a) quanti昀椀ed the TRD effect over 
cities using the Moderate Resolution Imaging Spectroradiometer 
(MODIS) LST product and found that the TRD amplitude can reach 9 K 
for the most urbanized areas. Coll et al. (2019) analyzed the TRD effect 
over sparsely vegetated surfaces using the double-angle Advanced 
Along-Track Scanning Radiometer observations and found that the 
surface directional brightness temperature (DBT) difference between 
two angles can reach 8 K during summertime. Actually, non-negligible 
TRD effect existed in the current satellite LST/SULR products requires 
special effort of modeling and correction before being used. 

Physically-based radiative transfer models (Verhoef et al., 2007; Cao 
et al., 2018; Yang et al., 2021), geometric optical models (Pinheiro et al., 
2004; Bian et al., 2022), hybrid models (Du et al., 2007; Li et al., 2022), 
3D models (Gastellu-Etchegorry et al., 2015; Qi et al., 2019), semi- 
physical kernel-driven models (KDMs) (Vinnikov et al., 2012; Duffour 
et al., 2016) and empirical directional emissivity models (Garcia-Santos 
et al., 2014; Hu et al., 2019) have been considered to simulate and 
remove the TRD effect. Physically-based models (i.e., radiative transfer, 
geometric optical, hybrid, and 3D model) need to receive inputs about 
the scene structural properties (e.g., leaf area index) and the thermal 
status (e.g., the components of temperature), which is dif昀椀cult to obtain 
in practice, at least at the landscape scale. At the opposite, semi-physical 
KDM models are directly driven by multi-angle observations, and 
therefore they offer the best potential to be used in satellite remote 
sensing applications (Cao et al., 2019b; Jiang et al., 2021). In the visible 
and near-infrared (VNIR) domain, the KDMs have been widely used for 
generating directionally adjusted re昀氀ectance/albedo product using 
accumulative multi-temporal observations for polar-orbiting (Schaaf 
et al., 2002; Roy et al., 2016) and geostationary (Geiger et al., 2008; He 
et al., 2019) satellites. However, the existing TIR KDMs could only be 
driven by the simultaneously acquired (i.e., single-temporal) multiangle 
observations because the LST changes with time (i.e., changing with the 
solar energy absorption amount). It is relatively easy to achieve a single- 
temporal multiangle observations from ground and airborne measure-
ments, but more dif昀椀culty at satellite scale. The only satellite mission 
that provides more than one observation angle in TIR domain is the 
dual-angle (0ç and 55ç) ATSR series (including ATSR, ATSR-2, AATSR, 
SLSTR) (Ghent et al., 2017; Coll et al., 2019), however, the two angles 
are not enough to solve the existing KDMs with three or four unknow 
parameters. 

Some TRD correction working on satellite products were reported. 

They are based on existing TIR KDMs (Vinnikov et al., 2012; Ermida 
et al., 2017; Ermida et al., 2018) that can only be applied on multi- 
satellite overlap areas. Until now, the TRD correction for a single sat-
ellite (either geostationary or polar-orbiting satellite) is not reported. 
Therefore, all widely used SULR estimation methods (e.g., the hybrid 
method (Wang et al., 2009) and temperature-emissivity method (Tang 
and Li, 2008)) could not deal with the problem of TRD effect. Although 
geostationary satellites can't provide instantaneously multiangle obser-
vations as required to invert existing TIR KDM, they can deliver sub- 
hourly observations under a constant viewing angle with varying solar 
angles. If the existing 昀椀xed-time KDM could be extended to a time- 
evolving KDM, the daily multi-temporal observations of a geosta-
tionary satellite could be used to achieve the TRD correction of SULR 
product. This is a main objective of this study to propose a six-parameter 
time-evolving KDM that contain a four-parameter SULR diurnal varia-
tion model (DVM) and a two-parameter diurnal dynamic TRD amplitude 
model. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the methodology of the time-evolving KDM and the TRD correction 
method. The modeling accuracy of the time-evolving KDM is validated 
in section 3 using simulated data; and the TRD correction method based 
on the time-evolving KDM is validated in section 4 using Advanced 
Baseline Imager (ABI) data from GOES-16 and in situ pyrgeometer 
measurements. Finally, the conclusions are presented in section 5. 

2. Methodology 

Theoretically, the SULR is the directional and spectral integration 
result of the ground leaving radiances in the upper hemisphere at a 
broad spectral range (usually de昀椀ned in 4–100 μm (Wang et al., 2009; 
Qin et al., 2020) with the unit of W/m2), which is termed as hemi-
spherically integrated SULR (SULRhem) and can be expressed as Eq. (1): 

SULRhem =

+ 2π

0

+ π
2

0

+ 100

4

Iground−leaving(λ, θv,φv)sinθvcosθvdλdθvdφv (1)  

where θν and φν are the viewing zenith angle (VZA) and viewing azi-
muth angle (VAA), λ is the wavelength in the unit of μm, and 
Iground−leaving(λ, θv,φv) is the spectral and viewing angle-related ground- 
leaving radiance with the unit of W/(m2⋅sr⋅μm). 

In practice, the SULR is estimated from a single-angle observation of 
TIR spaceborne sensor with the assumption of isothermal land surface 
(Tang and Li, 2008; Wang et al., 2009; Qin et al., 2020). A constant value 
(π) is used to replace the directional integration in Eq. (1), which leads to 
a positive or negative bias to the SULRhem value. The single-angle esti-
mated SULR (SULRdir) can be explained as Eq. (2): 

SULRdir = π

+ 100

4

Iground−leaving(λ)dλ (2) 

Fig. 1 illustrates the signi昀椀cant difference between the SULRdir and 
SULRhem, showing as an angle-dependent 3D mesh surface and an angle- 
independent 昀氀at plane, respectively. The intersection line indicates the 
directions with SULRdir = SULRhem. The red and blue lines on the mesh 
surface denote the SULRdir in the solar principal plane (SPP) and cross 
solar principal plane (CSPP), respectively. The hot spot direction (i.e., 
the peak) and the nadir direction (i.e., the cross point of SPP and CSPP) 
can be observed in SPP. Both SPP and CSPP lines have two cross points 
with the intersection line. The cross point within SPP with azimuth angle 
equal to solar azimuth angle (SAA) + 180ç is shown as a magenta tri-
angle, whose viewing angle can be termed as (θv=v1,φv=v1). In this study, 
the aim of developing a novel TRD correction method is to convert the 
SULRdir to SULRhem (i.e., physically reduce the bias between the SULRdir 
and SULRhem), since the SULR is both theoretically de昀椀ned (see Eq. (1)) 
and practically measured (with pyrgeometer) as a hemispherically in-
tegrated value. 

The following methodology contains three subsections: section 2.1 
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describes the derivation of the six-parameter time-evolving KDM; sec-
tion 2.2 presents the constraints on the six parameters in the estimation 
based on the prior knowledge of TRD phenomenon; section 2.3 in-
troduces the TRD correction process using the estimated parameters of 
the time-evolving KDM. 

2.1. Time-evolving KDM for single-angle estimated SULR 

TIR KDMs were successfully used to simulate the angular depen-
dence of several surface quantities, such as the bottom-of-atmosphere 
(BOA) DBT (Ren et al., 2014; Cao et al., 2019b), BOA directional 
narrowband radiance (Hu et al., 2016b) and BOA directional broadband 
radiance in 4–100 μm (Hu et al., 2017). SULRdir can also be an input into 
the KDM to simulate the angular dependence since it is the product of 
the BOA directional broadband radiance and π under the assumption of 
thermal isotropy (Qin et al., 2020). In the satellite scale, the hybrid 
method (Wang et al., 2009) was widely used to generate SULRdir prod-
ucts with top-of-atmosphere (TOA) radiances as inputs. More details on 
the hybrid method for generating GOES ABI SULRdir are given in Ap-
pendix I. 

In recent, Cao et al. (2021) proposed a general framework of TIR 
KDM by reconsidering the physical difference between the TIR (i.e., 
emission) and VNIR (i.e., re昀氀ection) domains. It contains four parame-
ters with three kernel coef昀椀cients (i.e., isotropic kernel coef昀椀cient, base 
shape kernel coef昀椀cient, and hotspot kernel coef昀椀cient) and an adjust-
able hotspot width. Four KDMs with R2 > 0.940 were designed ac-
cording to this general framework. Here, the Vinnikov-Chen model 
among them was chosen as the basis to derive the time-evolving KDM for 
correcting the TRD effect of SULRdir, since it has the simplest expression 
as given in Eqs. (3-6). 
SULRdir(θs,φs,θv,φv)= fiso+fEmissivity⋅KEmissivity(θv)+fChen⋅KChen(θs,φs,θv,φv,B)

(3)  

KEmissivity(θv) = 1− cosθv (4)  

KChen(θs,φs, θv,φv,B) = e
−ξ(θs ,φs ,θv ,φv )

π⋅B (5)  

ξ(θs,φs, θv,φv) = arccos(cosθv⋅cosθs + sinθv⋅sinθs⋅cos(φv −φs) ) (6)  

where θs and φs are the SZA, SAA, respectively; fiso, fEmissivity and fChen are 
the coef昀椀cients of the isotropic, emissivity (KEmissivity, i.e., base shape 
kernel) and Chen (KChen, i.e., hotspot kernel) kernels, which are related 
to the component temperature distribution; The hotspot width B is a 
structure-dependent variable which needs to be calibrated (a larger B 
leads to a wider hotspot, details can be found in Fig. 2(d) and Fig. 17(d) 
in Cao et al. (2021)); ξ is the angular distance between the illumination 
and viewing directions. 

To introduce the SULRhem (i.e., the target of TRD correction, it can be 
directly measured by the in situ pyrgeometer) into the time-evolving 
KDM, we assume there exists a speci昀椀c viewing direction (θv=v1, 
φv=v1) in the SPP (see the magenta triangle in Fig. 1), where SULRdir(θs, 
φs, θv=v1, φv=v1) is exactly equal to SULRhem. Then, the SULRhem can be 
calculated using the Vinnikov-Chen model and the speci昀椀c viewing ge-
ometry as shown Eq. (7): 
SULRhem = fiso + fEmissivity⋅KEmissivity(θv=v1)+ fChen⋅KChen(θs,φs, θv=v1,φv=v1,B)

(7) 
Next, the difference between SULRdir(θs, φs, θv, φv) and SULRhem can 

be obtained: 
SULRdir(θs,φs, θv,φv)− SULRhem =fEmissivity⋅(cosθv=v1 − cosθv)

+ fChen⋅

(

e
−ξ(θs ,φs ,θv ,φv )

π⋅B − e
−ξ(θs ,φs ,θv=v1 ,φv=v1)

π⋅B

)

(8) 
For the simulation of daily multi-temporal observations of a geo-

stationary satellite, some parameters were rewritten as the function of 
time t, including the solar directions (i.e., θs(t) and φs(t)), surface ther-
mal state-related parameters (i.e., SULRhem(t), fEmissivity(t), and fChen(t)) 
and the speci昀椀c viewing directions (i.e., θv=v1(t), φv=v1(t), see the 
magenta triangle in Fig. 1); some parameters remain unchanged, 
including the 昀椀xed viewing direction of geostationary satellite (i.e., 
θv=v0, φv=v0) and the hotspot width parameter that was determined by 
the canopy architecture (i.e., B) (Cao et al., 2021). Eq. (8) can be 
rewritten as:   

The Eq. 9 could be further simpli昀椀ed based on the current un-
derstandings of kernels and kernel coef昀椀cients. Firstly, the SULRhem(t) is 
parameterized as a four-parameter DVM (i.e., diurnal variation model) 
with the equation of SULRhem(t) = SULR0 + SULRa⋅cos(π/ωDVM⋅(t-tm)), 
which is referenced to the daytime diurnal temperature cycle (DTC) 
models of LST (Duan et al., 2012). The SULR0, SULRa, ωDVM and tm are 
unknown parameters to be estimated. The detailed rationale of 
modeling SULR DVM with the same formatted equation of LST DTC 
could be found in Appendix II. Secondly, the fEmissivity(t) (i.e., the in昀氀u-
ence of vegetation and soil component mean temperature difference 
(Cao et al., 2021)) is ignored according to the approach adopted by 
Lagouarde and Irvine (2008) and Liu et al. (2020c). Then, the fChen(t) (i. 
e., the in昀氀uence of sunlit and shaded mean temperature difference (Cao 

Fig. 1. Illustration of the SULRdir, SULRhem, SPP, CSPP, and a speci昀椀c viewing 
direction (θv=v1, φv=v1) in the SPP (opposite side of the solar direction) with a 
SULRdir equal to SULRhem. 

SULRdir(θs(t) ,φs(t) ,θv=v0,φv=v0) = SULRhem(t) + fEmissivity(t)⋅(cosθv=v1(t) − cosθv=v0 )+

fChen(t)⋅

(

e
−ξ(θs (t) ,φs (t) ,θv=v0 ,φv=v0)

π⋅B − e
−ξ(θs (t) ,φs (t) ,θv=v1 (t) ,φv=v1 (t) )

π⋅B

) (9)   
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et al., 2021)) is parameterized as fChen(t) = A"SULRhem(t)"cosθs(t) (A is an 
unknown parameter to be calibrated) referenced to the approach 
adopted by Vinnikov et al. (2012) and Wang et al. (2020), which is 
expected to be changed with the incoming solar radiation and surface 
thermal condition. Finally, the term e−ξ(θs(t) ,φs (t) ,θv=v1 (t) ,φv=v1 (t) )

π"B (i.e., KChen in 
the direction of θv=v1,φv=v1) was ignored based on the shape of KChen (it 
declines quickly when viewing direction is away from the solar direction 
(Lagouarde and Irvine, 2008; Cao et al., 2021)) and the speci昀椀c location 
of (θv=v1, φv=v1) (it locates in the opposite side of solar direction in the 
SPP plane, see Fig. 1). A six-parameter time-evolving KDM can be ob-
tained after the four steps previously introduced (see Eq. 10 below). 

SULRdir(θs(t),φs(t),θv=v0,φv=v0)=

(

SULR0+SULRa⋅cos

(

π

ωDVM

(t− tm)

))

+

A⋅

(

SULR0+SULRa⋅cos

(

π

ωDVM

(t− tm)

))

⋅cosθs(t)⋅e
−ξ(θs (t),φs (t),θv=v0 ,φv=v0)

π⋅B

,tsr f tf tss

(10)  

where SULRdir and SULRhem are the directional SULR and the hemi-
spherically integrated SULR, respectively; t denotes the local time; θs(t) 
and φs (t) are the temporally varied SZA and SAA, respectively; θv=v0 and 
φv=v0 are the 昀椀xed VZA and VAA for a speci昀椀c geolocation of geosta-
tionary satellite; ξ(θs(t), φs(t), θv=v0, φv=v0) is the angular distance be-
tween temporally varied solar geometry and the 昀椀xed viewing direction 
of geostationary satellite. The A and B are unknown parameters that 
indicating the hotspot amplitude and hotspot width, respectively; the 
SULR0, SULRa, ωDVM and tm are the unknown parameters that indicating 
the residual SULR near sunrise (tsr), the SULR amplitude, the half-period 
parameter and the time at the SULR maximum, respectively. The tss is 
the time near sunset. The tsr and tss are easy to determine given the 
geolocation and date (Sinnott, 1994). The six parameters of the time- 
evolving KDM (i.e., SULR0, SULRa, ωDVM, tm, A, B) could be calibrated 
with not less than six clear sky directional observations. 

The half-period parameter of LST DTC model (i.e., ωDTC) can be 
calculated using geolocation and date (Göttsche and Olesen, 2001; Duan 
et al., 2012). The half-period parameter of DVM model (i.e., ωDVM) is 
related to the ωDTC because the SULR is the 4th power of LST. However, 
there exists an offset between ωDVM and ωDTC. We found ωDVM-ωDTC *
[−3.8, −0.2] with 36,300 groups of synthetic datasets. The ωDTC 
calculation using geolocation and date and the boundary determination 
of ωDVM-ωDTC using synthetic dataset could be found in Appendix III. 

Finally, we obtained a six-parameter time-evolving KDM (including 
SULR0, SULRa, ωDVM, tm, A, B) to correct the TRD effect of geostationary 
satellite SULR datasets by conducting temporal extension to the original 

TIR KDM. This proposed time-evolving KDM was composed of a four- 
parameter SULR DVM and a two-parameter TRD amplitude model. 
The six parameters of the time-evolving KDM can be regressed using not 
less than six clear-sky daytime observations and then the SULRdir can be 
easily corrected to SULRhem. 

2.2. Constraints on the KDM parameters 

Physically-based initial guesses and ranges of the six parameters of 
the time-evolving KDM determine the quality of the retrieved parame-
ters using the least square regression. Here, the widely-used “trust-re-
gion-re昀氀ective” algorithm (Li and Coleman, 1994; Coleman and Li, 
1996) integrated in the MATLAB platform was adopted. For the ωDVM, 
the initial value was set as ωDTC-2 and the boundary was set as [ωDTC – 

3.8, ωDTC – 0.2] (more details could be found in Appendix III). For the 
another three DVM parameters, the regressed corresponding DVM pa-
rameters based on multi-temporal SULRdir (i.e., SULR'

0, SULR'
a, and t'm) 

were used as the initial values of the unknown DVM parameters of 
SULRhem (i.e., SULR0, SULRa, and tm). Then, the boundaries of SULR0, 
SULRa, and tm were set as [SULR'

0–80, SULR'
0 + 80], [SULR'

a–80,SULR'
a +

80] and [t'm–2,t'm + 2], respectively, considering that the bias of absolute 
SULR values is usually <80 W/m2 and the bias of time is always <2 h. 
Parameter A in Eq. (10) indicates the maximum TRD amplitude. Its 
initial value (A') was set to 0.05 with boundaries of [0, 0.1]. This 
parameter relies on a reasonable assumption: the maximum TRD 
amplitude is usually <10% of SULR (Hu et al., 2016b). Parameter B in 
Eq. (10) is a structure-dependent hotspot width. Ermida et al. (2018) 
generated the global hotspot width k values of Vinnikov-RL KDM 
through clustering the surface characteristics. Cao et al. (2021) built the 
relationship between the hotspot width B of Vinnikov-Chen KDM and 
the hotspot width k of the Vinnikov-RL KDM. Fig. 2 below shows the B 
value distribution computed from the global k map (personal commu-
nication). The B value in Fig. 2 was set as the initial value (B2) with 
boundaries of [0.5⋅B2, 1.5⋅B2]. The initial values and boundaries of the all 

Fig. 2. Global map of the B parameter generated from the global k map.  

Table 1 
Initial values and boundaries of the six parameters of the time-evolving KDM.  

Parameter Initial value Boundaries 
SULR0 SULR'

0 [SULR'
0 − 80, SULR'

0 + 80] 
SULRa SULR'

a [SULR'
a − 80,SULR'

a + 80] 
ωDVM ωDTC–2 [ωDTC– 3.8, ωDTC– 0.2] 
tm t'm [t'm − 2, t'm + 2]
A A' [0, 0.1] 
B B2 [0.5⋅B2, 1.5⋅B2]  
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six parameters are listed in Table 1. 

2.3. TRD correction with the regressed six parameters of the time-evolving 
KDM 

Multi-temporal observations of geostationary satellite make the six- 
parameter of the time-evolving KDM (i.e., Eq. 10) solvable. The TRD- 
corrected SULR (SULR'

hem) at a speci昀椀c daytime hour t0 can be directly 
calculated with Eq. (11) once the four DVM parameters of SULRhem (i.e., 
SULR0, SULRa, ωDVM, and tm) are calibrated. 

SULR'
hem = SULR0 + SULRa⋅cos

(

π

ωDVM

(t0 − tm)

)

(11) 

The SULR accuracy before and after applying the TRD correction can 
be quanti昀椀ed by the RMSE and mean bias error (MBE) taking in situ 
measured SULRhem as a reference (Eqs. (12) and (13)). 

RMSE =

������������������������������������������������������

3N

i=1

(

SULRi − SULRhem,i

)2

N

:

(12)  

MBE =
1

N

3

N

i=1

(

SULRi − SULRhem,i

) (13)  

where N is the number of clear-sky observation samples, SULRi is the 
estimated SULR before (SULRdir,i) or after (SULR'

hem,i) TRD correction for 
the ith sample, and SULRhem,i is the hemispherically integrated true value 
of SULRhem for the ith observation (e.g., the in situ measured result). 

3. Validation and sensitivity analysis of the time-evolving KDM 
based on a DART-simulated dataset 

3.1. Validation and sensitivity analysis strategy 

Before being used in the satellite observations, the KDMs are usually 
validated using a simulated dataset generated by 3D physically-based 
models (Wang et al., 2018; Cao et al., 2019a; Jiang et al., 2021), such 
as the widely-used Discrete Anisotropic Radiative Transfer (DART) 
model. The DART model is one of the most comprehensive and accurate 
3D models to simulate the radiative budget and satellite observations of 
land surfaces in the visible, near infrared, and TIR spectral regions 
(Gastellu-Etchegorry et al., 2012; Gastellu-Etchegorry et al., 2015; Wang 
et al., 2022). It is powerful to realistically describe vegetation and urban 
landscapes, which makes it suitable to cross-validate analytical and 

parametric models (Pinheiro et al., 2006; Cao et al., 2018; Wang et al., 
2018; Cao et al., 2019a). The time-evolving KDM proposed in section 2 
was validated with a dataset issued from DART mock-up. Fig. 3 shows 
the detailed 昀氀owchart of the validation and sensitivity analysis process 
of the time-evolving KDM using the DART-simulated dataset. The vali-
dation and sensitivity analysis strategy were presented in section 3.1. 
The DART-simulated dataset was introduced in section 3.2. Finally, the 
validation and sensitivity results were given in section 3.3 and section 
3.4, respectively. 

DART was run with the scene description parameters as inputs, for 
example, the numbers of trees adapted with the leaf cover fraction, the 
geolocations related to the satellite viewing angles, the dates and times 
that determine the solar illumination angles, the temperatures and 
emissivities of each component, and 昀椀nally the wavelengths that 
describe the spectral ranges of interest. Section 3.2 describes the DART 
input parameters, the SULR integration process, and the simulated 
dataset. The DART-simulated daily multi-temporal SULRdir values of a 
geostationary satellite, viewing and illumination geometry values, and 
corresponding imaging times formed inputs of the 6-parameter time- 
evolving KDM (i.e., Eq. 10) to calibrate the parameters. Then, the 
KDM-昀椀tted SULRdir using the calibrated 6 parameters will be evaluated 
against the DART-simulated SULRdir values. Section 3.3 presents the 
validation results of the proposed time-evolving KDM in modeling 
directional SULR values at different situations. Section 3.4 conducts the 
sensitivity analysis with different numbers of inputs and temporal 
combinations to further study the performance of time-evolving KDM at 
different observation conditions. 

3.2. DART-simulated dataset 

As shown in Fig. 4, we synthesized nine 90 m × 90 m forest scenes to 
study the impact of scene structure on the TRD effect, named Scene 1–9, 
respectively. The forest scenes consist of three crown shapes (spherical, 
ellipsoidal, and cylindrical shape with a conical top (i.e., cone-cylinder) 
(Chen and Leblanc, 1997)) and three leaf area index (LAI) values (LAI =
1 with 83 trees, LAI = 2 with 187 trees and LAI = 4 with 342 trees). For 
each scene, three typical leaf angle distributions (LADs, i.e., spherical, 
planophile and erectophile (Chen and Black, 1991)) were considered. 
The trunks and tree crowns are simulated with facets in DART and the 
directional radiance are generated using the DART-Lux mode (Wang and 
Gastellu-Etchegorry, 2021; Wang et al., 2022).The emissivity spectra of 
the scene elements are obtained from the DART optical database: “loam 
gravelly brown dark” for the soil, “leaf deciduous” for the leaves, and 
“bark deciduous” for the trunks. 

SULR
dir

Fig. 3. Flowchart of the validation and sensitivity analysis of the time-evolving KDM using the DART-simulated dataset.  
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Besides the scene structure description parameters, DART also needs 
the input of component temperatures to simulate the canopy DBT pat-
terns. DART calculates the 3D temperature Ti,j of scene element j of ith 

component (e.g., leaves) by assuming that the temperature of element j 

increases with increasing illumination (i.e., Ti,j depends on the solar 
illumination of element j). Accordingly, DART 昀椀rst simulates the solar 
illumination of the scene and then determines the Ti,j using a prede昀椀ned 
temperature property of the mean temperature Ti (i.e., 0.5⋅(Ti,max + Ti, 

Fig. 4. DART-simulated forest scenes. (a-i) Scenes 1–9. The 
trees in spherical forest scenes (Scenes 1–3) are identical 
which have the same tree height (6 m) with 2 m radius tree 
crown and 2 m trunk height below the crown; while the trees 
in ellipsoidal and cone-cylinder forest scenes (Scenes 4–6 and 
Scenes 7–9) are different which have tree heights ranging 4 m 
- 8 m (6 m on average in each scene) with 2 m trunk height 
below the crown. The semiminor axis of the spheroid and the 
radius of the cylinder are both equal to the radius of the 
spherical crown (2 m). The trunk diameters of all trees are 0.1 
m.   

Fig. 5. Four groups of component temperatures acquired at different dates and locations. (a-b) Measured four component temperatures at Huailai, northern China on 
2021/09/29 and at Guangzhou, southern China on 2022/02/26, respectively; (c-d) Measured/calculated component temperatures at Dahra, northern Senegal on 
2009/11/08 and 2009/07/18, respectively. 
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min)) and temperature range ΔTi (i.e., Ti,max-Ti,min) for type i (i.e., Ti,j *
[Ti,min, Ti,max]). Here, each scene has two types of elements: vegetation (i. 
e., leaves and trunks) and background (i.e., soil). To ensure the reli-
ability of DART simulations, we used four groups of in situ measured 
clear-sky diurnal cycles of temperature components at different loca-
tions and dates, including one group measured at Huailai (northern 
China, geolocation: 40.349695çN, 115.7944417çE) on 2021/09/29, one 
group measured at Guangzhou (southern China, geolocation: 
23.06310278çN, 113.3961633çE) on 2022/02/26, and two groups of 
data measured at Dahra (northern Senegal, geolocation: 15.402çN, 
15.443çW) on 2009/11/08 and 2009/07/18. The two groups of four 
component temperatures (i.e. sunlit/shaded soil and sunlit/shaded leaf) 
acquired in China were measured by handheld “Fluke 561” thermom-
eter, while the another two groups in Dahra were measured by tower- 
based “KT-15.85 IIP” TIR radiometers (self-calibrating chopped radi-
ometers, Heitronics GmbH) (Rasmussen et al., 2011). The temperature 
of shaded leaves was not measured in Dahra because of the technical 
dif昀椀culty in measurement with tower-based instruments (Rasmussen 
et al., 2011). Here, we assumed that the temperature difference between 
sunlit and shaded leaves is 3 K based on the analysis of another two 
groups of in situ datasets measured in China. Fig. 5 shows the measured/ 
calculated temperature values of the four components. 

The geolocations of the scenes and the imaging dates and times need 
to be prede昀椀ned to determine the illumination directions. Here, we 
de昀椀ned four sites in different geolocations: Location 1 (0çN, 0çE)， 
Location 2 (15çN, 0çE), Location 3 (30çN, 0çE), and Location 4 (45çN, 
0çE), and four typical dates in 2019: 2019/04/01 (spring), 2019/07/01 
(summer), 2019/10/01 (autumn), and 2019/01/01 (winter). The solar 
direction (Fig. 6) was simulated every 30 min for each day in the period 
of 10:00–17:00 to achieve the high-frequency observation of geosta-
tionary satellite. The situations with SZA>60ç (i.e., black circles in 

Fig. 6) were not considered due to the relatively weak TRD effect for the 
late afternoon. The temporal changes in the solar direction differ 
markedly on these four days as shown in Fig. 6, showing 8–14 available 
observations except the winter day of Location 4 (see Fig. 6(d)). 

We considered a geostationary satellite with a subpoint located at 
latitude = 0ç and longitude = 0ç that observes the prede昀椀ned four sites. 
The viewing angles (VZA, VAA) are (0ç, 180ç), (17.62ç, 180ç), (34.96ç, 
180ç), and (51.82ç, 180ç) for Location 1–4, respectively. Location 1 
(2–4) was selected to study the TRD in昀氀uence of nadir (oblique) viewing 
direction on the estimated SULR. The polar plots of viewing angles of 
this virtual geostationary satellite for the four sites were plotted in Fig. 7 
(see blue triangles). DART was run with 500 directions in the lower 
hemisphere and 530 directions in the upper hemisphere (including 30 
additional directions in the hot spot region). Fig. 7 shows an example of 
the 530 discrete DART-simulated directions in the upper hemisphere for 
2019/04/01 10:00 for Location 1. 

To obtain accurate SULR values when integrating spectral radiance, 
the interval 4–100 μm was sampled with 66 narrow bands in DART 
simulations. Bands 1–40 locate in 4–14 μm interval with Δλ = 0.25 μm, 
bands 41–51 were set in 14–25 μm with Δλ = 1 μm and bands 52–66 
were set in 25–100 μm with Δλ = 5 μm. The directional spectral radiance 
was simulated using DART, and then the SULRdir, SULRhem, and TRD 
were calculated using Eqs. (14-16). 

SULRdir

(

Ωj

)

= π⋅
366

i=1
Ldart

(

λi,Ωj

)

⋅Δλi (14)  

SULRhem =
3530

j=1

SULRdir

(

Ωj

)

π
⋅cosθj⋅ΔΩj (15)  

TRD = SULRdir − SULRhem (16)  

where Ldart(λi, Ωj) is the DART-simulated ground-leaving radiance of the 
scene (including the surface emitted radiance and the re昀氀ected atmo-
sphere downwelling longwave radiance) for the spectral band (λi,Δλi), i 
* [1, 66], for the upward discrete direction Ωj with j * [1, 530] and θj is 

Fig. 6. Polar plots of the illumination angles on 2019/04/01 (spring), 2019/ 
07/01 (summer), 2019/10/01 (autumn), and 2019/01/01 (winter) for the four 
sites: (a) Location 1 (0çN, 0çE) and (b) Location 2 (15çN, 0çE); (c) Location 3 
(30çN, 0çE); (d) Location 4 (45çN, 0çE). The concentric circles and radial lines 
indicate the solar zenith angles and solar azimuth angles, respectively. 

Fig. 7. Polar plots of viewing angles for the four sites and 530 discrete DART- 
simulated directions in the upper hemisphere for 2019/04/01 10:00 for Loca-
tion 1. The concentric circles and radial lines indicate the viewing zenith angles 
and viewing azimuth angles, respectively. 
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the zenith angle of direction Ωj. The atmosphere brightness temperature 
is set as the default value of 260 K in the simulations. See Appendix IV 
for the sensitivity analysis of SULR to atmosphere downwelling long-
wave radiation (DLR) variation in one day. 

Table 2 summarizes the main input parameters used in the DART 
simulation. It can be found that a total of 19,224 simulations were 
carried out with 9 scenes, 3 LADs, 4 groups of component temperatures, 
4 locations, 4 dates, and 8–14 measurements per day. The numbers of 
DART-simulated data points at different local times are shown in Fig. 8. 
Because of the restriction of SZAf60ç, a relatively small numbers of data 
points are obtained in the morning (10:00) and late afternoon 
(14:30–16:30). 

3.3. Validation results with the DART-simulated dataset 

The value of B2 (initial guess for B) is required for each scene in the 
昀椀tting of SULRdir, as described in section 2.2. However, B value in Fig. 2 
was not suitable here since the scenes were manually constructed in 
DART (i.e., no speci昀椀c geographic location). The con昀椀gurations of the 
trees in this study (Scenes 1–3, 4–6, and 7–9) were the same as the scenes 
D, E, and F of Cao et al. (2021). Hence, B values were calculated using 
the simulated multiangle DBTs in their work. The B values (0.15, 0.13, 
and 0.10 for Scene 1/4/7, 2/5/8, and 3/6/9) were directly set as the 
initial values (B2). Using the DART-simulated daily multitemporal 
SULRdir values, the corresponding viewing/illumination directions and 
time t, the six unknowns of the time-evolving KDM can be calibrated and 
then the modeled SULRdir values can be calculated. Scatterplot between 
the DART-simulated SULRdir and time-evolving KDM modeled SULRdir 
with all simulation dataset and the related histogram of the modeling 

Table 2 
Summary of the main input parameters of DART.  

Parameter Value Parameter Value 

Scene area 90 m × 90 m Leaf angle 
distribution 

Spherical, planophile, and 
erectophile 

Cell size 0.5 × 0.5 × 0.5 
m3 Crown shape Spherical, ellipsoidal and 

cone-cylinder crown shapes 
Number of 

directions 1030 Soil 
emissivity loam_gravelly_brown_dark 

Wavelength 66 bands in 
4–100 μm 

Trunk 
emissivity bark_deciduous 

Number of 
trees [83, 187, 342] Leaf 

emissivity leaf_deciduous 

LAI [1.0, 2.0, 4.0] Geolocation (0çN, 0çE), (15çN, 0çE), 
(30çN, 0çE), and (45çN, 0çE) 

Tree height 

6 m for spherical 
crown shape, 
4–8 m for 
ellipsoidal and 
cone-cylinder 
crown shape 

T and ΔT See Fig. 5 

Trunk height 
below the 
crown 

2 m Date 
2019/04/01, 2019/07/01, 
2019/10/01, and 2019/01/ 
01 

Trunk 
diameter 10 cm Time Restricted to 10:00–17:00 

(30-min step) and SZAf60ç

Atmosphere 
brightness 
temperature 

260 K    

Fig. 8. The count distribution of 19,224 DART simulations at different local times.  

Fig. 9. Scatterplot between DART-simulated SULRdir and time-evolving KDM modeled SULRdir with all simulation dataset (a) and the related histogram of the 
modeling bias (b). 
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bias are plotted in Fig. 9a and Fig. 9b, respectively. 
Fig. 9a demonstrates that the simulated SULRdir dataset covers a wide 

range of values from 392.0 W/m2 to 604.0 W/m2. The time-evolving 
KDM can model the daily multi-temporal SULRdir values with an R2 =
0.9992, an RMSE of 1.5 W/m2 and an MBE of 0.0 W/m2, which shows a 
good 昀椀tting ability of the time-evolving KDM. The RMSE of time- 
evolving KDM is comparable to that of the single temporal Vinnikov- 
Chen KDM (i.e., 0.21 K) (Cao et al., 2021), noting that a LST bias of 1 
K is equivalent to a SULR bias of 6 W/m2 when LST around 300 K. Fig. 9b 
shows the histogram of the modeling bias, indicating 98% of the bias 
ranges in [−4.7, 4.2] W/m2 (taking the cumulative histogram of 1% and 
99% as two thresholds). The relatively symmetric distribution of 
modeling bias explains the situation of MBE = 0.0 W/m2 in Fig. 9a. 

The performance of the time-evolving KDM at different LAIs, crown 
shapes and LADs were given in Fig. 10a. All of the nine RMSEs were 
within 2 W/m2, which shows the acceptable modeling accuracy of the 
time-evolving KDM. The RMSEs of different LAI values have a relatively 
larger range from 1.0 W/m2 (LAI = 4) to 2.0 W/m2 (LAI = 1). The time- 
evolving KDM has a much more stable performance for different crown 
shapes and LADs with an RMSE from 1.4 W/m2 to 1.5 W/m2. Fig. 10b 
shows that the time-evolving KDM has an RMSE 昀氀uctuation between 1.0 
W/m2 and 2.1 W/m2 at different local times. The maximum RMSE of 2.1 
W/m2 at local time 13:30 is close to that of LAI = 1 in Fig. 10a (2.0 W/ 
m2). Therefore, the new 6-parameter time-evolving KDM has an 
acceptable modeling accuracy for different LAIs, crown shapes, LADs 
and local times. 

3.4. Sensitivity analysis of the time-evolving KDM with different numbers 
of inputs and temporal combinations 

All available observations with SZA f 60ç were used to drive the 
time-evolving KDM in the section 3.3, however, not all observations are 
available due to the existence of clouds in reality. Therefore, it is 
important to study the performance of the time-evolving KDM with 
different numbers of inputs and different temporal combinations. Here, 
the observations of Location 1 at 10:00–15:30 (see Fig. 6a; 12 obser-
vations per day) of all 48 days (4 typical days *3 scenes with spherical 
crown shapes and spherical LAD * 4 groups of component temperatures) 
were adopted to perform the sensitivity analysis. 

The performance of the time-evolving KDM with N inputs (N*[6,12]) 
was evaluated using 48*N*CN

12 (N*[6,12]) observations. Fig. 11a shows 
the modeling accuracies of the time-evolving KDM with N numbers of 
inputs. The time-evolving KDM has a better performance with the in-
crease of N. The overall RMSE decreases from 3.68 W/m2 of N = 6 to 
1.80 W/m2 of N = 12. Then, we further studied the performance of the 
time-evolving KDM with different temporal combinations, taking N = 6 

with 924 combinations as an example (i.e., C6
12=924). Each combination 

has 48*6 values. Fig. 11b plots the 924 RMSEs using the average value 
(Avg., see y-axis below) and standard derivation (STD, see x-axis below) 
of each combination as axes. Results show that the combinations with 
larger STD (more scattered in time) and larger average SULR values 
(more likely around noon) have better performance (i.e., relatively 
lower RMSE values in blue color). In summary, the time-evolving KDM 
will get a better accuracy with a larger number of inputs, with tempo-
rally scattered local times and with larger average SULR values. 

4. Validation of the TRD correction method based on ABI/GOES- 
16 and in situ measurements 

4.1. Validation strategy of the TRD correction method 

As a practical method to correct the TRD effect of SULR product of 
geostationary satellites, it is important to assess its performance on a 
speci昀椀c satellite product. Here, the TRD correction method is further 
validated with GOES-16 ABI dataset and AmeriFlux in situ measure-
ments. As indicated by previous studies (Minnis and Khaiyer, 2000; Coll 
et al., 2019), the TRD amplitude is much larger during the daytime and 
for heterogeneous surfaces. The TRD correction method is validated 
under daytime clear-sky conditions, based on ABI satellite observations 
and in situ SULR measurements for 20 vegetated AmeriFlux sites. The 
昀氀owchart of the validation work is shown in Fig. 12. 

There are three main steps in the validation of the TRD correction 
method with ABI/GOES-16 satellite data: (1) the clear-sky single-angle 
SULR was 昀椀rst estimated using Eq. (I.1) of the hybrid method (Wang 
et al., 2009) with inputs of the ABI TOA radiance in bands 11, 14 and 15 
(i.e., 8.5, 11.2 and 12.3 μm, respectively), clear-sky masks, corre-
sponding viewing angles, and SULR estimation coef昀椀cients (see Ap-
pendix I for more details); (2) the estimated single-angle SULR, the 
corresponding imaging time, and corresponding viewing and illumina-
tion angles forms input of the time-evolving KDM model to get its co-
ef昀椀cients and then implement the TRD correction (see section 2 above); 
(3) the proposed method is validated by comparing the TRD-corrected 
SULR with the in situ measured SULR. The comparison results can be 
found in section 4.3. 

4.2. Data for validation 

4.2.1. ABI data from GOES-16 
GOES-16 is the 昀椀rst of the GOES-R satellite series. It was declared 

operational on December 18th, 2017. ABI instrument onboard GOES-16 
is positioned at 0çN, 75.2çW. ABI includes six VNIR bands, four 
shortwave/mid-wave infrared bands, and six TIR bands. Its spatial 

Fig. 10. Performance of the time-evolving KDM at different LAIs, crown shapes, LADs (a) and local times (b).  
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resolution at the satellite subpoint is 0.5 km for one band (0.64 μm), 1 
km for three bands (0.47, 0.865, 1.61 μm), and 2 km for the other bands, 
notably TIR bands. Its temporal resolution could be better than 30 min 
per scanning. Here, we take advantage of the highest frequency of 
geostationary satellite observations to validate the proposed time- 
evolving KDM and TRD correction method. 

The TOA radiance products of ABI bands 11 (8.55 μm), 14 (11.2 μm), 
and 15 (12.3 μm) and the cloud mask product were used to calculate the 
clear-sky SULR. Full disk data satisfying the 昀椀ltering criteria 
(10:00–17:00 local time with an interval of 30 min) for 2018 and 2019 
were downloaded from the national oceanic and atmospheric adminis-
tration comprehensive large array-data stewardship system (http:// 
www.class.noaa.gov/) to estimate the SULR. The downloaded dataset 
includes 10,950 full disk imagery in total. 

4.2.2. AmeriFlux in situ measurement dataset 
The coarse resolution of the ABI TIR bands requires a selection of 

validation sites having good spatial representativeness at large scale. 
Chu et al. (2021) classi昀椀ed the representativeness of 214 AmeriFlux sites 
as high, medium, and low homogeneity at footprint radii of 250–3000 m 
around 昀氀ux towers by analyzing the measurement heights, underlying 

land cover, ground surface characteristics, wind directions, and turbu-
lent state of the atmosphere. At the scale of 2 km corresponding to the 
nadir spatial resolution of ABI TIR bands, 20 AmeriFlux sites were 
retained based on GOES-16/ABI disk coverage and in situ data avail-
ability in 2018–2019, which include 昀椀ve highly representative sites and 
15 moderately representative sites. 

The spatial distribution of these 20 AmeriFlux sites is plotted in 
Fig. 13 with the base map of 500 m-resolution MCD12Q1 2018 yearly 
International Geosphere Biosphere Programme (IGBP) land cover clas-
si昀椀cations (Friedl et al., 2002). The detailed information of these sites is 
summarized in Table 3. The 20 selected AmeriFlux sites include seven 
types of IGBP land covers: one site of woody savanna (WSA), three sites 
of open shrubland (OSH), four sites of grassland (GRA), one site of 
cropland (CRO), one site of mixed forest (MF), four sites of deciduous 
broadleaf forest (DBF), and six sites of evergreen needleleaf forest (ENF). 
The temporal resolutions of the downloaded in situ measured SULR were 
30 min at all sites except site US-MMS. Furthermore, part of the SULR 
observations were missing for sites US-Kon, US-Syv, and US-Ho1, whose 
temporal coverages were 2018.01–2018.10, 2018.01–2018.11 & 
2019.08–2019.12, and 2018.01–2018.06, respectively. The temporal 
coverages of the remaining sites were 2018.01–2019.12. 

The in situ measurements were 昀椀ltered with three criteria: local solar 
time of 10:00–17:00, SZAf60ç , and the number of daily clear-sky half- 
hour observations g6. Finally, we obtained 34,220 groups of validation 
data, including 13,847 groups of highly representative site data and 
20,373 groups of moderately representative site data. The count distri-
butions of the validation data by site, month, and local time are plotted 
in Fig. 14. As shown in Fig. 14a, a suf昀椀cient number of data is available 
at each site to conduct a reliable validation. For instance, the number of 
validation data for the 5 most representative sites ranges from 1014 to 
3561 with an average value of 2769. The number of available validation 
data points of the 15 moderately representative sites ranges from 225 to 
3546 with an average value of 1358. Fig. 14b demonstrates that the 
count distribution of validation data by month shows an increasing 
trend from January to June and a decreasing trend from June to 
December because the SZA is relatively small in summer; therefore, 
more days satis昀椀ed the criterion of g6 clear-sky observations were 
selected under the restriction of SZAf60ç . Likewise, as shown in 
Fig. 14c, the validation data showed an increasing trend from morning 
to noon and a decreasing trend from noon to afternoon because the SZA 
at noon is relatively small, while the SZA in the early morning and late 
afternoon is more likely to be excluded. There were adequate numbers of 
data points among the highly and moderately representative sites in 
different months and local times, as shown in the two kinds of color in 
Fig. 14b-c. 

Fig. 11. The modeling accuracy of the time-evolving KDM with different number of inputs (a) and different temporal combinations (b).  

Fig. 12. Flowchart of the validation using ABI/GOES-16 data and AmeriFlux in 
situ measurements. 
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Fig. 13. Spatial distribution of the 20 AmeriFlux validation sites taking the 500 m-resolution MCD12Q1 yearly IGBP land cover classi昀椀cation in 2018 as a base map.  

Table 3 
Summary of the 20 AmeriFlux validation sites.  

Representativeness 
level 

Number of 
sites 

Site ID Latitude, 
Longitude 

Elevation 
(m) 

IGBP 
Landcover 

Temporal 
resolution 
(minutes) 

Period 

High 

1 US-SRM 31.8214çN, 
110.8661çW 1120 WSA 30 2018–2019 

2 US-Ses 34.3349çN, 
106.7442çW 1604 OSH 30 2018–2019 

3 US-xSR 31.9107çN, 
110.8355çW 983 OSH 30 2018–2019 

4 US-Kon 39.0824çN, 
96.5603çW 417 GRA 30 2018.01–2018.10 

5 US-Seg 34.3623çN, 
106.7019çW 1622 GRA 30 2018–2019 

Moderate 

6 US-Whs 31.7438çN, 
110.0522çW 1370 OSH 30 2018–2019 

7 US-xCP 40.8155çN, 
104.7456çW 1654 GRA 30 2018–2019 

8 US-xKZ 39.1008çN, 
96.5631çW 381 GRA 30 2018–2019 

9 US-Ro5 44.6910çN, 
93.0576çW 283 CRO 30 2018–2019 

10 US-Syv 46.2420çN, 
89.3477çW 540 MF 30 2018.01–2018.11 & 

2019.08–2019.12 
11 US-WCr 45.8059çN, 

90.0799çW 520 DBF 30 2018–2019 

12 US- 
MMS 

39.3232çN, 
86.4131çW 275 DBF 60 2018–2019 

13 US- 
UMB 

45.5598çN, 
84.7138çW 234 DBF 30 2018–2019 

14 US- 
UMd 

45.5625çN, 
84.6975çW 239 DBF 30 2018–2019 

15 US-Vcm 35.8884çN, 
106.5321çW 3003 ENF 30 2018–2019 

16 US-Vcp 35.8624çN, 
106.5974çW 2542 ENF 30 2018–2019 

17 US-Vcs 35.9193çN, 
106.6142çW 2752 ENF 30 2018–2019 

18 US-GLE 41.3665çN, 
106.2399çW 3197 ENF 30 2018–2019 

19 US-Ha2 42.5393çN, 
72.1779çW 360 ENF 30 2018–2019 

20 US-Ho1 45.2041çN, 
68.7402çW 60 ENF 30 2018.01–2018.06  
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4.3. Validation results with ABI/GOES-16 data and AmeriFlux in situ 
measurements 

4.3.1. Accuracy with all data 
The density scatter plots between the in situ measured SULR and the 

single-angle estimated SULR and TRD-corrected SULR are presented in 
Fig. 15. It can be found that the 34,220 groups of SULR validation data 
covered a wide range from 231.3 W/m2 in winter to 678.9 W/m2 in 
summer. The single-angle estimated SULR had an obvious positive MBE 
of 12.6 W/m2 due to the TRD effect in the daytime. After correcting the 
TRD effect with the time-evolving KDM, the MBE was reduced to 4.7 W/ 
m2 with an improvement of 7.9 W/m2 (62.7%). Furthermore, the RMSE 
of the single-angle estimated SULR was 20.4 W/m2, which is similar to 
the daytime validation results of previous research based on polar 
orbiting satellite observations (Qin et al., 2020; Zeng et al., 2020). The 
overall RMSE value after the TRD correction was reduced to 15.9 W/m2 

with a signi昀椀cant improvement of 4.5 W/m2 (22.1%). 

4.3.2. Accuracy in different seasons 
The accuracy of the time-evolving KDM was further evaluated in 

different seasons (Fig. 16). The SULR ranges varied among the different 
seasons. Spring had the widest SULR range of [231.3, 640.2] W/m2, 
followed by autumn with a SULR range of [246.3, 636.6] W/m2 and 
then by summer with a SULR range of [372.3, 678.9] W/m2. Winter had 
the smallest SULR range of [251.4, 509.3] W/m2. In addition, summer 
and winter had the highest and lowest average SULR values, 
respectively. 

The MBEs of the single-angle estimated SULR for the four seasons 
were all positive. The MBEs for the four seasons were 15.4 W/m2 

(spring), 11.0 W/m2 (summer), 13.8 W/m2 (fall), and 6.2 W/m2 

(winter). After correcting the TRD effect, the MBEs were reduced to 6.8 
W/m2, 3.2 W/m2, 5.9 W/m2 and 0.2 W/m2 with improvements of 8.6 
W/m2 (55.8%), 7.8 W/m2 (70.1%), 7.9 W/m2 (57.2%) and 6.0 W/m2 

(96.8%) for spring, summer, fall and winter, respectively. 
The RMSEs of the single-angle estimated SULR were 21.1 W/m2, 

Fig. 14. Histograms of the number of validation data points in different sites, months, and local times.  

Fig. 15. Accuracy of the single-angle estimated SULR and the TRD-corrected SULR. (a) Single-angle estimated SULR. (b) TRD-corrected SULR.  
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22.1 W/m2, 20.0 W/m2, and 9.3 W/m2 for spring, summer, fall, and 
winter, respectively. After correcting the TRD effect, the RMSEs were 
reduced to 15.3 W/m2, 17.6 W/m2, 16.2 W/m2, and 7.6 W/m2 with 
improvements of 5.8 W/m2 (27.5%), 4.5 W/m2 (20.4%), 3.8 W/m2 

(19.0%) and 1.7 W/m2 (18.3%), respectively. The outstanding ability of 
the time-evolving KDM in correcting the TRD effect of SULR was proven 
in all four seasons in this study. 

4.3.3. Accuracy at different levels of representativeness 
The 20 selected validation sites included 昀椀ve highly representative 

sites and 15 moderately representative sites as introduced in Table 3. We 
further studied the validation results at different levels of representa-
tiveness (see Fig. 17). The validation data from the highly representative 
sites covered a SULR range of [307.7, 678.9] W/m2 while the range for 

the moderately representative sites was [231.3, 645.3] W/m2. For the 
data from the 昀椀ve highly representative sites, the RMSE and MBE of the 
single-angle estimated SULR reached 21.1 W/m2 and 15.6 W/m2, 
respectively, and after correcting the TRD effect, the RMSE and MBE 
were reduced to 15.1 W/m2 and 5.7 W/m2, respectively, with corre-
sponding improvements of 6.0 W/m2 (28.4%) and 9.9 W/m2 (63.4%). 

For the data from the 15 moderately representative sites, the RMSE 
and MBE of the single-angle estimated SULR were 19.9 W/m2 and 10.6 
W/m2, respectively. They are lower than those for the highly repre-
sentative sites. After implementing the TRD correction, the RMSE and 
MBE of the moderately representativeness sites were reduced to 16.3 W/ 
m2 and 4.0 W/m2, respectively, with corresponding improvements of 
3.6 W/m2 (18.1%) and 6.6 W/m2 (62.3%). The slightly greater accuracy 
improvements at the highly representative sites are likely due to the 

Fig. 16. Accuracy of the single-angle estimated SULR and the TRD-corrected SULR in the four seasons. (a-b) Spring. (c-d) Summer. (e-f) Fall. (g-h) Winter.  
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relatively higher representativeness of these 昀椀ve sites. 

4.3.4. Accuracy for different sites and land cover categories 
The performance of the time-evolving KDM for different sites and 

different land cover classes was further analyzed as plotted in Fig. 18. As 
shown in Fig. 18a, the RMSEs of the single-angle estimated SULR among 
the 20 sites ranged from 9.7 W/m2 to 34.0 W/m2, which decreased to 
[6.9, 26.0] W/m2 after the TRD correction. Sixteen sites showed a RMSE 
decrease of [0.5, 8.3] W/m2. Meanwhile, the RMSEs of four moderately 
representative sites (US-xKZ, US-Ro5, US-Syv, and US-UMd) had a slight 
RMSE increase of [0.03, 2.2] W/m2. This may explain by the relatively 

lower RMSE values at these four sites (10.5–16.6 W/m2) and the rela-
tively lower representativeness of these four sites. 

Fig. 18b indicates that the |MBE| range of the single-angle estimated 
SULR among the 20 sites was [0.2, 30.4] W/m2, which was reduced to 
[0.5, 22.6] W/m2 after correcting the TRD effect. Fifteen sites exhibited 
a signi昀椀cant reduction in the |MBE|, with a decrease of [3.5, 10.0] W/ 
m2. On the other hand, 昀椀ve moderately representative sites (US-xKZ, US- 
Ro5, US-Syv, US-WCr, and US-UMd) had an |MBE| increase of [3.3, 6.8] 
W/m2, which was attributed to the relatively lower TRD effect at these 
sites. The single-angle estimated |MBE| values at these 昀椀ve sites were 
<2 W/m2. 

Fig. 16. (continued). 

Fig. 17. Accuracy of the single-angle estimated SULR and the TRD-corrected SULR at different levels of representativeness. (a-b) Highly representative sites. (c-d) 
Moderately representative sites. 
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As shown in Fig. 18c, the RMSE range of the single-angle estimated 
SULR among the seven land cover types was [11.1, 27.4] W/m2, which 
decreased to [10.5, 21.0] W/m2 after applying the TRD correction. The 
RMSE of 昀椀ve land cover types (WSA, OSH, GRA, DBF and ENF) decrease 
by [0.9, 8.2] W/m2 after the TRD correction, while the CRO and MF 
slightly increased by 0.03 W/m2 and 0.9 W/m2, respectively. This may 
be due to the relatively lower RMSEs (<15 W/m2) for these two land 
cover types. Likewise, Fig. 18d reveals that the |MBE| range of the 
single-angle estimated SULR among the seven land cover types was [0.2, 
21.6] W/m2, which was reduced to [1.8, 14.8] W/m2 after the TRD 
correction. The |MBE| of the same 昀椀ve land cover types decreased by 
[0.7, 9.9] W/m2 after correcting the TRD effect, while the CRO and MF 
increased by 5.1 W/m2 and 4.6 W/m2 from a |MBE| < 2 W/m2. 

4.3.5. Accuracy at different local times 
We studied the performance of the time-evolving KDM at different 

local times, as the TRD effect is closely related to the surface thermal 
state which exhibits an obvious time-dependent tendency. Fig. 19 il-
lustrates the fact that the MBE and RMSE of the single-angle estimated 
SULR clearly showed a diurnal variation in the daytime with an 
increasing trend from 10:00 to 10:30 and a decreasing trend from 10:30 

to 17:00. The MBE and RMSE ranges of the single-angle estimated SULR 
were [1.4, 16.7] W/m2 and [12.5, 22.8] W/m2, respectively. Further-
more, the maximum MBE and RMSE of the single-angle estimated SULR 
from the satellite dataset occurred in the morning (10:30). This was 
because the subpoint of GOES-16 was southeast of the 20 validation sites 
and the minimum phase angle (i.e., the angle distance between the 
illumination angle and viewing angle) occurred in the morning, leading 
to the relatively high TRD values in the morning. 

After implementing the TRD correction, the diurnal variation trends 
of the MBE and RMSE were almost completely eliminated. The |MBE| of 
the TRD-corrected SULR was within the range of [0.6, 5.7] W/m2 with 
improvements ranging from 0.8 (at 17:00) to 12.5 W/m2 (at 10:30) 
compared with the single-angle estimated SULR. Likewise, the RMSE of 
the TRD-corrected SULR was within the range of [12.8, 17.0] W/m2 with 
improvements ranging from 1.1 W/m2 (at 16:30) to 7.3 W/m2 (at 10:30) 
at 10:00–16:30. At 17:00, the RMSE had slightly increased by 0.7 W/m2. 
The overall signi昀椀cant post-correction accuracy improvements re昀氀ect 
the excellent TRD correction ability of the proposed time-evolving KDM. 

Fig. 18. Accuracy histograms of the single-angle estimated SULR and the TRD-corrected SULR at different sites and in different categories. (a-b) Histograms of the 
RMSE and MBE at different sites. (c-d) Histograms of the RMSE and MBE in different categories. 
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5. Conclusion 

In this study, we proposed a six-parameter time-evolving KDM con-
taining a four-parameter SULR DVM and a two-parameter TRD ampli-
tude model to correct the TRD effect for geostationary satellite SULR 
datasets for the 昀椀rst time. The signi昀椀cant daytime TRD effect when solar 
zenith angle is within 60ç can be effectively eliminated. The new KDM 
innovatively uses multi-temporal observations in a day to correct the 
TRD effect, not using multiangle observations at a speci昀椀c time as in the 
past. The six parameters can be regressed with not less than six daytime 
single-angle estimated SULR values. The proposed time-evolving KDM 
was validated with a DART-simulated dataset (showing as an R2 > 0.999 
and a small RMSE = 1.5 W/m2); while the TRD correction method was 
comprehensively validated using two years of ABI data from the GOES- 
16 satellite and corresponding in situ measurements from 20 AmeriFlux 
sites. Three main conclusions about the TRD correction can be drawn as 
follows:  

(1) The TRD effect leads to the signi昀椀cant uncertainty of single-angle 
estimated SULR of geostationary satellites in the daytime. The 
RMSE and MBE of the single-angle estimated SULR can reach 
20.4 W/m2 and 12.6 W/m2 for the GOES-16 satellite dataset, 
respectively.  

(2) The proposed time-evolving KDM can greatly mitigate the TRD- 
resulted uncertainty of the single-angle estimated SULR. For the 
satellite dataset, the RMSE decreased by 4.5 W/m2 (22.1%), and 
the MBE dropped by 7.9 W/m2 (62.7%).  

(3) The TRD effect leads to a phenomenon that the MBE and RMSE of 
the single-angle estimated SULR showed a diurnal variation in 
the daytime with relatively higher values around noon and lower 
values in the early morning and late afternoon. The time-evolving 
KDM reduced the MBE and RMSE at most of the studied local 
times except late afternoon with relatively less TRD effect. 

The TRD effect is one of the main sources of error in the estimation of 

surface thermal-related parameters from satellite remote sensing. This 
study demonstrates the possibility of using multi-temporal observations 
to correct the TRD effect for geostationary satellite data. This newly 
proposed TRD correction method has two limitations which will be the 
main focuses in the near future. First, the time-evolving KDM cannot be 
applied to high-latitude areas (e.g., polar regions) because these regions 
cannot be observed by geostationary satellites. Second, the proposed 
time-evolving KDM is not applicable for nighttime, since the TRD 
anisotropy is dominated by the angular-dependent emissivity at night-
time, not the hotspot signature at daytime. Further studies should focus 
on the development of new time-evolving KDM for multi-temporal 
polar-orbiting satellite observations over polar regions and new time- 
evolving KDM without hotspot kernel contribution for nighttime ob-
servations to overcome the limitations. The time-evolving KDM was 
evaluated on 昀氀at vegetated surface in this work, and the performance of 
this model on barren pixel and terrain surface still needs further studies 
in the future. The hybrid method of SULR estimation should also be 
evaluated through DART-based full-chain evaluation in the future. In 
addition, time-evolving KDMs with lower requirements of input obser-
vations (e.g., <6 clear-sky observations) are expected for better oper-
ationality in the TRD correction of geostationary satellite products. 
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Appendix I. Single-angle SULR estimation with the hybrid method 

The hybrid method directly estimates the SULR from TOA radiances with a prede昀椀ned model. The model coef昀椀cients could be calculated through 
extensive radiative transfer simulations and regression (Wang et al., 2009), which bypasses the step of separating the LST and land surface emissivity 
but can achieve a comparable (or even superior) accuracy compared with the traditional physical method (Jiao et al., 2015; Cheng and Liang, 2016). 
The linear hybrid estimation method was used in this study with Eq. (I.1). 
SULRdir = a0,θv

+ a1,θv
⋅LTOA,11 + a2,θv

⋅LTOA,14 + a3,θv
⋅LTOA,15 (I.1)  

where θv is the VZA, a0,θv -a3,θv are the four regression coef昀椀cients at θv, and LTOA,11, LTOA,14, and LTOA,15 are the ABI TOA radiances in bands 11 (8.55 
μm), 14 (11.2 μm), and 15 (12.3 μm), respectively. 

The regression of the model coef昀椀cients is based on a representative simulated dataset containing single-angle SULR (SULR'
dir) and ABI TOA ra-

diances (L'TOA,11, L'TOA,14, and L'TOA,15) using Eqs. (I.2–4). The inputs include the spectral surface emissivity (ε(λ)), surface thermal emission calculated 
by Planck's law at the equivalent surface temperature T (B(λ,T)), three atmospheric parameters (i.e. atmospheric spectral transmittance τ(λ), upwelling 
radiance L↑(λ), and downwelling radiance L↓(λ)) and the sensor spectral response function (SRF(λ)). 

SULR'
dir = π

+ 100

4

Iground−leaving(λ)dλ (I.2)  

Iground−leaving(λ) = ε(λ)B(λ,T)+ (1− ε(λ) )L↓(λ) (I.3)  

L
2

TOA,i =

+ λ2

λ1

(

Iground−leaving(λ)τ(λ) + L↑(λ)
)

SRFi(λ)dλ
+ λ2

λ1
SRFi(λ)dλ

, i * [11, 14, 15] (I.4)  

where Iground-leaving(λ) is the angle-independent spectral ground-leaving radiance, λ1 and λ2 are the spectral range boundaries for band i (i*[11,14,15]), 
and SRFi(λ) is the spectral response function of band i. 

Representative database of emissivity, atmospheric pro昀椀les, and LST ranges were important to the composition of SULR'
dir and L'TOA,i. Here, the 

database are the same as that of Qin et al. (2020), except the SRFi(λ) values. We used 35 typical surface emissivities from the MODIS UCSB spectral 
library (Li et al., 2013), including three for water, one for ice, one for snow, 13 for soils and minerals, and 17 for vegetation, and then extrapolated the 
emissivity value of above 14 μm using method proposed by Wang et al. (2005). We selected 946 clear-sky atmospheric pro昀椀les from the TIGR database 
(Chevallier et al., 1998) with the criterion that the relative humidity in all layers should be <90% (Hu et al., 2017; Qin et al., 2020) and input the 
pro昀椀les into the MODTRAN model (Berk et al., 2003) to calculate the atmospheric parameters (i.e., τ(λ), L↓(λ), and L↑(λ)). The LSTs de昀椀ned with a 
[−10, 15] K offset to the bottom temperature of the selected atmospheric pro昀椀les in a step of 5 K were input into Planck's function to calculate the 
spectral radiance (i.e., B(λ, T)).A simulation database containing 198,660 groups of SULR data (SULR'

dir) and corresponding TOA radiances (L'TOA,i) was 
generated. 

Next, the SULR estimation coef昀椀cients of Eq. (I.1) were generated using multiple linear regression. The coef昀椀cients were generated at different 
VZAs from 0ç to 60ç with a 10ç step. The coef昀椀cients and the corresponding theoretical accuracies (R2, MBE, and RMSE) are summarized in Table I.1, 
which shows that the hybrid method exhibits good accuracy with R2 > 0.988, the MBEs are close to 0 W/m2, and the RMSEs range from 6.9 to 11.3 W/ 
m2 with different VZAs. Then, the model coef昀椀cients (a0,θv -a3,θv ) and the ABI observed clear-sky TOA radiances (LTOA,11, LTOA,14, and LTOA,15) were input 
into the prede昀椀ned single-angle SULR model (i.e., Eq. (I.1)) to estimate SULRdir. It should be noted that the SULR value at a speci昀椀c VZA was calculated 
with the interpolation or extrapolation of SULR values calculated with the coef昀椀cients at adjacent VZAs.  
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Table I.1 
List of the coef昀椀cients and accuracies (unit: W/m2) for the single-angle SULR estimation.  

θv a0 a1 a2 a3 R2 MBE RMSE 
0ç 92.723 4.233 110.453 −81.722 0.996 0.00 6.9 
10ç 93.235 4.261 111.120 −82.543 0.996 0.00 7.0 
20ç 94.832 4.363 113.157 −85.072 0.995 0.00 7.2 
30ç 97.738 4.595 116.700 −89.544 0.995 0.00 7.6 
40ç 102.392 5.099 121.960 −96.391 0.994 0.00 8.3 
50ç 109.601 6.217 129.165 −106.296 0.992 0.00 9.4 
60ç 120.967 8.896 138.444 −120.497 0.988 0.00 11.3  

Appendix II. The rationale of modeling SULR diurnal variation using the same formatted equation as LST DTC 

The SULR is the 4th power of LST and also contains the surface re昀氀ected downward longwave radiation (DLR) (i.e.,SULR = εbb " σ " LST4 +
(1 − εbb) " DLR, where the σ is Stefan–Boltzmann constant (5.67 × 10−8 W/m2/K4) and the εbb is the broadband emissivity). The tendency of SULR is 
much closer to σ " LST4 than to DLR considering their signi昀椀cant different weights (εbb vs 1-εbb). Furthermore, as shown in Fig. II.1 bellow, the SULR 
can be treated as a linear function of LST in the normal Earth surface temperature range of [260 K, 320 K]. The linear function 昀椀tting has a high R2 =
0.993 which means that it's acceptable to model the SULR DVM using the same formatted equation as LST DTC. The R2 is expected to be higher for one 
speci昀椀c day since the LST range with in one day is usually <60 K (i.e., 320 K – 260 K in Fig. II.1).

Fig. II.1. The linear 昀椀tting result between the SULR and LST values for a normal Earth surface temperature range (LST*[260, 320] K). The εbb and DLR in calculating 
SULR were set as 0.96 and 300 W/m2, respectively. 

Then, the daily variation of SULRhem(t) is parameterized with a four-parameter trigonometric diurnal variation model (i.e., DVM) referenced to the 
DTC model of LST. The accuracy of the SULRhem(t) DVM was evaluated using 34,220 clear-sky in-situ SULR measurement data at 20 AmeriFlux sites in 
2018–2019 at 10:00–17:00 (the same dataset used in section 4). Fig. II.2(a) shows the high 昀椀tting accuracy of SULRhem(t) DVM, with a RMSE of 1.9 W/ 
m2 and a R2 of 0.9994. Fig.II.2(b) shows the DVM 昀椀tting result of a typical clear-sky day (2018/07/16) at site US-Whs. The evaluation result shows 
that the SULR DVM has an acceptable modeling accuracy.

Fig. II.2. (a) Scatterplots between the in situ measured SULR and four-parameter DVM 昀椀tted SULR; (b) Plot of DVM 昀椀tted SULR and in situ measured SULR on 2018/ 
07/16 at site US-Whs. 
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Appendix III. Determination of the initial value and boundary of ωDTC using synthetic dataset 

The half-period parameter of LST DTC model (i.e. ωDTC) can be determined by the duration of daytime (Göttsche and Olesen, 2001; Duan et al., 
2012) using Eq.(III.1): 

ωDTC =
2

15
arccos(− tanϕtanδ) (III.1)  

where ϕ is the latitude of the location, δ is the solar declination that can be expressed as a function of the day of the year (DOY) (Elagib et al., 1999), 
which can be calculated by Eq.(III.2): 

δ = 23.45sin

(

360

365
(284+DOY)

)

(III.2) 

The half-period parameter of DVM model (i.e., ωDVM) is related to the ωDTC because the SULR is the 4th power of LST. To study the difference 
between ωDVM and ωDTC, 昀椀ve groups of DTC parameters of vegetation and soil (i.e., T0, Ta, ω, and tm in Eq.(III.3)) referenced to Liu et al. (2020b) were 
used to generate synthetic LST and SULR of mixed pixels. The DTC parameters were listed in Table III.1 (the same as Table 1 in Liu et al. (2020b)). 

T(t) = T0 + Ta⋅cos
(π

ω
(t− tm)

)

, tsr f t f tss (III.3)   

Table III.1 
DTC parameters of 昀椀ve types of vegetation (V) and soil (S) of mixed pixels.  

Parameters Group 1 Group 2 Group 3 Group 4 Group 5 
V S V S V S V S V S 

T0 (K) 297.2 290.0 293.8 295.6 296.7 294.5 299.3 294.2 299.6 295.3 
Ta (K) 10.0 20.7 14.0 13.7 14.1 19.5 10.5 20.5 9.8 18.0 
ω (h) 13.5 13.9 14.7 12.9 14.7 12.9 13.6 13.7 13.4 13.5 
tm (h) 13.0 12.0 12.3 12.9 12.8 12.2 12.6 12.4 12.5 12.5  

The LST of a vegetation and soil mixed pixel can be calculated using Eq. (III.4): 

LST =

(

FVC⋅εv⋅T
4
v + (1 − FVC)⋅εs⋅T

4
s

ε

)1/4

(III.4)  

where FVC is the fractional vegetation cover; εv and εs are the emissivity of vegetation (=0.98) and soil (=0.94), respectively; Tv and Ts are the 
component temperature of vegetation and soil, respectively; ε is the emissivity of the mixed pixel that can be calculated using Eq. (III.5): 
ε = FVC⋅εv +(1−FVC)⋅εs (III. 5) 

To generate a representative dataset of LST, we set a range of reasonable offset to the FVC and the component temperature DTC parameters T0, Ta, 
and ω (see Table III.2). The tm in Table III.1 is constant here since it has no in昀氀uence in the ωDTC. In total, 36,300 groups of daily LST (5 groups of 
component temperatures, 11 groups of FVC values, 6 groups of T0, 11 groups of Ta, and 10 groups of ω) could be generated.  

Table III.2 
Parameters in generating representative LST dataset.   

FVC values DTC parameters of components 
T0 values Ta values ω values 

Minimum 0 T0–20 Ta - 5 ω - 6 
Step 0.1 5 1 1 
Maximum 1 T0 + 5 Ta + 5 ω + 3  

Then, the SULR values could be calculated using Eq. III.6 based on the generated LST, Stefan–Boltzmann constant σ (5.67 × 10−8 W/m2/K4), 
broadband emissivity (εbb) and atmospheric downwelling longwave radiation (DLR). The εbb and DLR were set to constant values of 0.96 and 300 W/ 
m2, respectively. 
SULR = σ⋅εbb⋅LST4 +(1− εbb)⋅DLR (III. 6) 

Finally, the daily LST and SULR values were used to regress the LST half-period parameter (i.e., ωDTC) and the SULR half-period parameter (i.e., 
ωDVM). The scatterplot between the ωDVM and ωDTC was plotted in Fig. III.1(a), the histogram of half-period difference Δ (i.e., Δ = ωDVM - ωDTC) was 
shown in Fig. III.1(b). It could be found that the ωDTC calculated using the 36,300 groups of synthetic dataset covers a range of 6.9 to 17.7, and the 
ωDVM is always lower than ωDTC with a negative offset between −3.8 to −0.2. Therefore, to be more rational, the ωDTC-2 was used as the initial value of 
ωDVM and the boundary of ωDVM is set to be [ωDTC – 3.8 to ωDTC – 0.2]. 
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Fig. III.1. (a) scatterplot between LST half-period parameter ωDVM and SULR half-period parameter ωDTC; (b) histogram of the half-period difference of ωDVM – ωDTC.  

Appendix IV. The sensitivity analysis of SULR to DLR variation in one day 

The DLR (DLR = σ " T4atm, σ is Stefan–Boltzmann constant and the Tatm is atmosphere brightness temperature) is varied in one day, while is set as a 
constant in DART simulation in section 3.2. We analyze the sensitivity of SULR to DLR variation in a typical day. Fig. IV.1 shows the in-situ measured 
Tatm at AmeriFlux site US-Ses on 2018/04/01. A range of 8.8 K of diurnal DLR variation in local time 10:00–17:00 could be found.

Fig. IV.1. In-situ measured Tatm of AmeriFlux site US-Ses on 2018/04/01.  

The simulated SULR diurnal values with default Tatm and in-situ measured Tatm were compared in Fig. IV.2 (DART con昀椀guration: scene 2, 
component temperature group 1, location 1, see section 3.2). It shows that the SULR is insensitive to the diurnal variation of DLR with SULR dif-
ferences f0.87 W/m2 in one day and it's acceptable to set the Tatm as a constant in DART simulations of SULR diurnal values. 

B. Qin et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 294 (2023) 113599

21

Fig. IV.2. DART-simulated SULR values (a) and their SULR differences (b).  
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Glossary 

TRD: Thermal Radiation Directionality 
SULR: Surface Upward Longwave Radiation 
TOA: Top-of-Atmosphere 
DBT: Directional Brightness Temperature 
VNIR: Visible and Near InfraRed 
DVM: Diurnal Variation Model 
VZA: Viewing Zenith Angle 
SPP: Solar Principal Plane 
SAA: Solar Azimuth Angle 
DTC: Diurnal Temperature Cycle 
MBE: Mean Bias Error 
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LAI: Leaf Area Index 
WSA: Woody Savanna 
GRA: Grassland 
MF: Mixed Forest 
ENF: Evergreen Needleleaf Forest 
ATSR-2: Along-Track Scanning Radiometer - 2 
SLSTR: Sea and Land Surface Temperature Radiometer 
DLR: Atmosphere downwelling longwave radiation 
TIR: Thermal Infrared 
LST: Land Surface Temperature 
MODIS: Moderate Resolution Imaging Spectroradiometer 
KDM: Kernel-driven Model 
SZA: Solar Zenith angle 

ABI: Advanced Baseline Imager 
VAA: Viewing Azimuth Angle 
CSPP: Cross Solar Principal Plane 
BOA: Bottom-of-atmosphere 
RMSE: Root-mean-square error 
DART: Discrete Anisotropic Radiative Transfer Model 
IGBP: International Geosphere Biosphere Programme 
OSH: Open Shrubland 
CRO: Cropland 
DBF: Deciduous Broadleaf Forest 
ATSR: Along-Track Scanning Radiometer 
AATSR: Advanced Along-Track Scanning Radiometer 
STD: Standard derivation 
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