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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Thermal radiation directionality (TRD) characterizes the anisotropic signature of most surface targets in the
thermal infrared domain. It causes significant uncertainties in estimating surface upward longwave radiation

Keywords: (SULR) from space observations. In this regard, kernel-driven models (KDMs) are suitable to remove TRD effects

Thermal radiation directionality correction

from remote sensing dataset as they are computationally efficient. However, KDMs requires simultaneous multi-
Time-evolving Kernel Driven Model

; ) angle observations as inputs to be well calibrated, which yields a difficulty with geostationary satellites as they
Geostationary satellite . . . s . . .
Surface upward longwave radiation can only provld'e a single-angle observation. ”["o overcor.ne'thls issue, we proposed a six-parameter tujne—evolvmg
ABI/GOES-16 KDM that combines a four-parameter SULR diurnal variation model and a two-parameter TRD amplitude model

to correct the TRD effect for single-angle estimated SULR dataset of geostationary satellites. The significant
daytime TRD effect when solar zenith angle is within 60° can be effectively eliminated. The modeling accuracy of
the time-evolving KDM is evaluated using a simulated SULR dataset generated by the 3D Discrete Anisotropic
Radiative Transfer (DART) model; the TRD correction method based on the new time-evolving KDM is validated
using a two-year single-angle estimated SULR dataset derived from data of the Advanced Baseline Imager (ABI)
onboard Geostationary Operational Environmental Satellite-16 (GOES-16) against in situ measurements at 20
AmeriFlux sites. Results show that the proposed time-evolving KDM has a high accuracy with an R? > 0.999 and
a small RMSE = 1.5 W/m? the TRD correction method based on the time-evolving KDM can greatly reduce the
GOES-16 SULR uncertainty caused by the TRD effect with an RMSE decrease of 4.5 W/m? (22.1%) and mean bias
error decrease of 7.9 W/m? (62.7%). Hence, the proposed TRD correction method is practically efficient for the
operational TRD correction of SULR products generated from the geostationary satellites (e.g., GOES-16, FY-4A,
Himawari-8, MSG).

1. Introduction spectral-domain (Monteith and Szeicz, 1962; Francois et al., 1997;
Sobrino et al., 2005; Lagouarde et al., 2010; Garcia-Santos et al., 2015;

Thermal radiation directionality (TRD) is an anisotropic phenome- Cao et al., 2019b; Coll et al., 2019; Bian et al., 2022; Pérez-Planells et al.,
non to be taken into account when measuring the Earth's surface 2022). The TRD phenomenon was initially reported in a study about the
simultaneously at different view angles in the thermal infrared (TIR) energy balance for a range of natural surfaces (Monteith and Szeicz,
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1962) and was subsequently investigated using in situ, aircraft, and
satellite observations (Cao et al., 2019b) on a variety of land covers,
including vegetation (McGuire et al., 1989; Du et al., 2007; Rasmussen
et al., 2011; Bian et al., 2017; Bian et al., 2020; Liu et al., 2020a), water
surfaces (Masuda et al., 1988; Sobrino and Cuenca, 1999; Cuenca and
Sobrino, 2004b), bare soil (Sobrino and Cuenca, 1999; Cuenca and
Sobrino, 2004a; Garcia-Santos et al., 2012; Ermida et al., 2020) and
urban areas (Lagouarde et al., 2010; Lagouarde et al., 2012; Hu et al.,
2016a; Dyce and Voogt, 2018; Wang et al., 2021). Accordingly, TRD is a
major and well-known factor contributing to the estimation un-
certainties in the Earth's surface thermal related parameters derived
from remote sensing, such as surface upward longwave radiation (SULR,
defined as the sum of the surface-emitted thermal radiation and the first-
order reflected component of atmospheric downward longwave radia-
tion in 4-100 pm) (Otterman et al., 1995; Jiao et al., 2015; Cheng and
Liang, 2016; Hu et al., 2019) and the land surface temperature (LST)
(Trigo et al., 2008; Vinnikov et al., 2012; Guillevic et al., 2013). How-
ever, the algorithms of existing TIR satellite products placed a disregard
to the TRD effect, thereby leading to some incompatibilities between the
different products.

Several studies evaluated the TRD amplitude based on different
satellite products and land covers. For two geostationary satellites or one
geostationary satellite and one polar-orbit satellite, Minnis and Khaiyer
(2000), Trigo et al. (2008) and Guillevic et al. (2013) found that the LST
differences at different viewing angles could reach 6-12 K. For one
polar-orbit satellite, Hu et al. (2016a) quantified the TRD effect over
cities using the Moderate Resolution Imaging Spectroradiometer
(MODIS) LST product and found that the TRD amplitude can reach 9 K
for the most urbanized areas. Coll et al. (2019) analyzed the TRD effect
over sparsely vegetated surfaces using the double-angle Advanced
Along-Track Scanning Radiometer observations and found that the
surface directional brightness temperature (DBT) difference between
two angles can reach 8 K during summertime. Actually, non-negligible
TRD effect existed in the current satellite LST/SULR products requires
special effort of modeling and correction before being used.

Physically-based radiative transfer models (Verhoef et al., 2007; Cao
etal., 2018; Yang et al., 2021), geometric optical models (Pinheiro et al.,
2004; Bian et al., 2022), hybrid models (Du et al., 2007; Li et al., 2022),
3D models (Gastellu-Etchegorry et al., 2015; Qi et al., 2019), semi-
physical kernel-driven models (KDMs) (Vinnikov et al., 2012; Duffour
et al., 2016) and empirical directional emissivity models (Garcia-Santos
et al., 2014; Hu et al., 2019) have been considered to simulate and
remove the TRD effect. Physically-based models (i.e., radiative transfer,
geometric optical, hybrid, and 3D model) need to receive inputs about
the scene structural properties (e.g., leaf area index) and the thermal
status (e.g., the components of temperature), which is difficult to obtain
in practice, at least at the landscape scale. At the opposite, semi-physical
KDM models are directly driven by multi-angle observations, and
therefore they offer the best potential to be used in satellite remote
sensing applications (Cao et al., 2019b; Jiang et al., 2021). In the visible
and near-infrared (VNIR) domain, the KDMs have been widely used for
generating directionally adjusted reflectance/albedo product using
accumulative multi-temporal observations for polar-orbiting (Schaaf
et al., 2002; Roy et al., 2016) and geostationary (Geiger et al., 2008; He
et al., 2019) satellites. However, the existing TIR KDMs could only be
driven by the simultaneously acquired (i.e., single-temporal) multiangle
observations because the LST changes with time (i.e., changing with the
solar energy absorption amount). It is relatively easy to achieve a single-
temporal multiangle observations from ground and airborne measure-
ments, but more difficulty at satellite scale. The only satellite mission
that provides more than one observation angle in TIR domain is the
dual-angle (0° and 55°) ATSR series (including ATSR, ATSR-2, AATSR,
SLSTR) (Ghent et al., 2017; Coll et al., 2019), however, the two angles
are not enough to solve the existing KDMs with three or four unknow
parameters.

Some TRD correction working on satellite products were reported.
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They are based on existing TIR KDMs (Vinnikov et al., 2012; Ermida
et al., 2017; Ermida et al., 2018) that can only be applied on multi-
satellite overlap areas. Until now, the TRD correction for a single sat-
ellite (either geostationary or polar-orbiting satellite) is not reported.
Therefore, all widely used SULR estimation methods (e.g., the hybrid
method (Wang et al., 2009) and temperature-emissivity method (Tang
and Li, 2008)) could not deal with the problem of TRD effect. Although
geostationary satellites can't provide instantaneously multiangle obser-
vations as required to invert existing TIR KDM, they can deliver sub-
hourly observations under a constant viewing angle with varying solar
angles. If the existing fixed-time KDM could be extended to a time-
evolving KDM, the daily multi-temporal observations of a geosta-
tionary satellite could be used to achieve the TRD correction of SULR
product. This is a main objective of this study to propose a six-parameter
time-evolving KDM that contain a four-parameter SULR diurnal varia-
tion model (DVM) and a two-parameter diurnal dynamic TRD amplitude
model.

The remainder of this paper is organized as follows. Section 2 pre-
sents the methodology of the time-evolving KDM and the TRD correction
method. The modeling accuracy of the time-evolving KDM is validated
in section 3 using simulated data; and the TRD correction method based
on the time-evolving KDM is validated in section 4 using Advanced
Baseline Imager (ABI) data from GOES-16 and in situ pyrgeometer
measurements. Finally, the conclusions are presented in section 5.

2. Methodology

Theoretically, the SULR is the directional and spectral integration
result of the ground leaving radiances in the upper hemisphere at a
broad spectral range (usually defined in 4-100 pm (Wang et al., 2009;
Qin et al., 2020) with the unit of W/mz), which is termed as hemi-
spherically integrated SULR (SULRpey,) and can be expressed as Eq. (1):

2m z 100
SULRhem = / [ / Iground—lcaving (ﬂ, gva §0V)Sl'”9vCUS9vd/1d9vd(Pv (1)
0 0 4

where 6, and ¢, are the viewing zenith angle (VZA) and viewing azi-
muth angle (VAA), 1 is the wavelength in the unit of pm, and
Lyround—teaving (4, 0y, @) is the spectral and viewing angle-related ground-
leaving radiance with the unit of W/ (m2-3r~pm).

In practice, the SULR is estimated from a single-angle observation of
TIR spaceborne sensor with the assumption of isothermal land surface
(Tang and Li, 2008; Wang et al., 2009; Qin et al., 2020). A constant value
() is used to replace the directional integration in Eq. (1), which leads to
a positive or negative bias to the SULRp.m value. The single-angle esti-
mated SULR (SULRg;,) can be explained as Eq. (2):

100
SULRy, = 1t / Loround—teaving (A)dA @
4

Fig. 1 illustrates the significant difference between the SULRy; and
SULRpem, showing as an angle-dependent 3D mesh surface and an angle-
independent flat plane, respectively. The intersection line indicates the
directions with SULR iy = SULRper,. The red and blue lines on the mesh
surface denote the SULRg;, in the solar principal plane (SPP) and cross
solar principal plane (CSPP), respectively. The hot spot direction (i.e.,
the peak) and the nadir direction (i.e., the cross point of SPP and CSPP)
can be observed in SPP. Both SPP and CSPP lines have two cross points
with the intersection line. The cross point within SPP with azimuth angle
equal to solar azimuth angle (SAA) + 180° is shown as a magenta tri-
angle, whose viewing angle can be termed as (6y-,1,¢,_,; ). In this study,
the aim of developing a novel TRD correction method is to convert the
SULR gir to SULRper, (i.e., physically reduce the bias between the SULRg;r
and SULRpey,), since the SULR is both theoretically defined (see Eq. (1))
and practically measured (with pyrgeometer) as a hemispherically in-
tegrated value.

The following methodology contains three subsections: section 2.1
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Fig. 1. Illustration of the SULRgiy, SULRpem, SPP, CSPP, and a specific viewing
direction (6y—1,¢,_,1) in the SPP (opposite side of the solar direction) with a
SULRg;r equal to SULRpep.

describes the derivation of the six-parameter time-evolving KDM; sec-
tion 2.2 presents the constraints on the six parameters in the estimation
based on the prior knowledge of TRD phenomenon; section 2.3 in-
troduces the TRD correction process using the estimated parameters of
the time-evolving KDM.

2.1. Time-evolving KDM for single-angle estimated SULR

TIR KDMs were successfully used to simulate the angular depen-
dence of several surface quantities, such as the bottom-of-atmosphere
(BOA) DBT (Ren et al., 2014; Cao et al., 2019b), BOA directional
narrowband radiance (Hu et al., 2016b) and BOA directional broadband
radiance in 4-100 pm (Hu et al., 2017). SULRg;r can also be an input into
the KDM to simulate the angular dependence since it is the product of
the BOA directional broadband radiance and z under the assumption of
thermal isotropy (Qin et al., 2020). In the satellite scale, the hybrid
method (Wang et al., 2009) was widely used to generate SULRg; prod-
ucts with top-of-atmosphere (TOA) radiances as inputs. More details on
the hybrid method for generating GOES ABI SULRg; are given in Ap-
pendix I.
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where 6; and ¢; are the SZA, SAA, respectively; fiso, femissiviey and fcnen are
the coefficients of the isotropic, emissivity (Kgmissiviey> i-€., base shape
kernel) and Chen (Kcpen, i-€., hotspot kernel) kernels, which are related
to the component temperature distribution; The hotspot width B is a
structure-dependent variable which needs to be calibrated (a larger B
leads to a wider hotspot, details can be found in Fig. 2(d) and Fig. 17(d)
in Cao et al. (2021)); ¢ is the angular distance between the illumination
and viewing directions.

To introduce the SULRpen, (i.e., the target of TRD correction, it can be
directly measured by the in situ pyrgeometer) into the time-evolving
KDM, we assume there exists a specific viewing direction (6y—y1,
@y—y1) in the SPP (see the magenta triangle in Fig. 1), where SULR;:(0;,
@s, Ov—y1, Py—y1) is exactly equal to SULRpem. Then, the SULRpem, can be
calculated using the Vinnikov-Chen model and the specific viewing ge-
ometry as shown Eq. (7):

SULRhem = Jiso JrfEmissiv[ty‘KEm[s:ivily (evzvl ) +fChen 'KChen (0:7 Py gv:vl s Py=y1» B)
@)

Next, the difference between SULR;(0s, @s, Oy, ¢y) and SULRper, can
be obtained:

SULRdir(esy %7 0v7 (pv) - SULRhem :fEmissivity' (Cosav:vl - COSHV)

—E(05.05 8v.0y) —E(9s 05 Gv—y1 #v=v1)
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®

For the simulation of daily multi-temporal observations of a geo-
stationary satellite, some parameters were rewritten as the function of
time ¢, including the solar directions (i.e., 65(t) and ¢4(t)), surface ther-
mal state-related parameters (i.e., SULRpem(t), fEmissiviey(), and fenen(t))
and the specific viewing directions (i.e., 6,—,1(t), @y—y1(t), see the
magenta triangle in Fig. 1); some parameters remain unchanged,
including the fixed viewing direction of geostationary satellite (i.e.,
6y—v0, Py=y0) and the hotspot width parameter that was determined by
the canopy architecture (i.e., B) (Cao et al., 2021). Eq. (8) can be
rewritten as:

SULRdir(H:(t) 7(.0.;-(’) o — (pv:v()) = SULR}em ([) +f1?missivify(t)'(Cosav:vl (t) — €050,-,0 )+

—£(05 (1) 05 () Oy 0 Pv10) —E(05 () 05 (1) By () Py (1)
Sehen ([) e 7B —e =B

In recent, Cao et al. (2021) proposed a general framework of TIR
KDM by reconsidering the physical difference between the TIR (i.e.,
emission) and VNIR (i.e., reflection) domains. It contains four parame-
ters with three kernel coefficients (i.e., isotropic kernel coefficient, base
shape kernel coefficient, and hotspot kernel coefficient) and an adjust-
able hotspot width. Four KDMs with R? > 0.940 were designed ac-
cording to this general framework. Here, the Vinnikov-Chen model
among them was chosen as the basis to derive the time-evolving KDM for
correcting the TRD effect of SULR;, since it has the simplest expression
as given in Egs. (3-6).

SULRJ,‘, (gg s P gv » (pv) :ﬁ.m +fEmi.mivity 'KEmis.xivizy (9\’) +fChen 'KChen (gr 5Py 9\’ Py 7B)
3

)]

The Eq. 9 could be further simplified based on the current un-
derstandings of kernels and kernel coefficients. Firstly, the SULRpem(t) is
parameterized as a four-parameter DVM (i.e., diurnal variation model)
with the equation of SULRpe,(t) = SULRg + SULRg-cos(n/opym-(t-tm)),
which is referenced to the daytime diurnal temperature cycle (DTC)
models of LST (Duan et al., 2012). The SULRy, SULR,, opym and t, are
unknown parameters to be estimated. The detailed rationale of
modeling SULR DVM with the same formatted equation of LST DTC
could be found in Appendix II. Secondly, the femissiviey(t) (i.€., the influ-
ence of vegetation and soil component mean temperature difference
(Cao et al., 2021)) is ignored according to the approach adopted by
Lagouarde and Irvine (2008) and Liu et al. (2020c). Then, the fcpen(t) (i
e., the influence of sunlit and shaded mean temperature difference (Cao
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Fig. 2. Global map of the B parameter generated from the global k map.

etal., 2021)) is parameterized as fchen(t) = AeSULRpem(t)ecosdy(t) (A is an
unknown parameter to be calibrated) referenced to the approach
adopted by Vinnikov et al. (2012) and Wang et al. (2020), which is
expected to be changed with the incoming solar radiation and surface

. . —£(05(0) 95 (0) Oym1 () pyr ©) .
thermal condition. Finally, the term e =8 (i.e., Kgpen in

the direction of 0,_,1,¢,-y1) was ignored based on the shape of Kcpe, (it
declines quickly when viewing direction is away from the solar direction
(Lagouarde and Irvine, 2008; Cao et al., 2021)) and the specific location
of (Oy—y1, @y=y1) (it locates in the opposite side of solar direction in the
SPP plane, see Fig. 1). A six-parameter time-evolving KDM can be ob-
tained after the four steps previously introduced (see Eq. 10 below).

SULR 5 (6,(1),0,(1) Oss0: 0, 10) = (SULRO +SULR,,~cos( ” (tftm)) ) +
@pym

—£(05 (0 95 (0 0y—10 #y=10)
B

A (SULR0+SULRa~c'0s( (t—tm)) ) -cos0,(t)-e
@pyyu

o ST
(10)

where SULRy; and SULRpe, are the directional SULR and the hemi-
spherically integrated SULR, respectively; t denotes the local time; 65(t)
and ¢; (t) are the temporally varied SZA and SAA, respectively; ,_,p and
@y—yo are the fixed VZA and VAA for a specific geolocation of geosta-
tionary satellite; £(6s(t), @s(t), Oy—v0, @y—vo) is the angular distance be-
tween temporally varied solar geometry and the fixed viewing direction
of geostationary satellite. The A and B are unknown parameters that
indicating the hotspot amplitude and hotspot width, respectively; the
SULR, SULR,, wpyy and t, are the unknown parameters that indicating
the residual SULR near sunrise (t;), the SULR amplitude, the half-period
parameter and the time at the SULR maximum, respectively. The ty is
the time near sunset. The t; and t; are easy to determine given the
geolocation and date (Sinnott, 1994). The six parameters of the time-
evolving KDM (i.e., SULRy, SULR,, wpym, tm, A, B) could be calibrated
with not less than six clear sky directional observations.

The half-period parameter of LST DTC model (i.e., wprc) can be
calculated using geolocation and date (Gottsche and Olesen, 2001; Duan
et al., 2012). The half-period parameter of DVM model (i.e., wpya) is
related to the wpyc because the SULR is the 4th power of LST. However,
there exists an offset between wpyy and wprc. We found wpyy-wpre €
[-3.8, —0.2] with 36,300 groups of synthetic datasets. The wpr¢
calculation using geolocation and date and the boundary determination
of wpyp-wprc using synthetic dataset could be found in Appendix III.

Finally, we obtained a six-parameter time-evolving KDM (including
SULRg, SULR,, @pyms, tm, A, B) to correct the TRD effect of geostationary
satellite SULR datasets by conducting temporal extension to the original

TIR KDM. This proposed time-evolving KDM was composed of a four-
parameter SULR DVM and a two-parameter TRD amplitude model.
The six parameters of the time-evolving KDM can be regressed using not
less than six clear-sky daytime observations and then the SULRg4; can be
easily corrected to SULRpep,.

2.2. Constraints on the KDM parameters

Physically-based initial guesses and ranges of the six parameters of
the time-evolving KDM determine the quality of the retrieved parame-
ters using the least square regression. Here, the widely-used “trust-re-
gion-reflective” algorithm (Li and Coleman, 1994; Coleman and Li,
1996) integrated in the MATLAB platform was adopted. For the wpyp,
the initial value was set as wpr¢-2 and the boundary was set as [wprc —
3.8, wprc — 0.2] (more details could be found in Appendix III). For the
another three DVM parameters, the regressed corresponding DVM pa-
rameters based on multi-temporal SULR; (i.e., SULR’O, SULR;, and t'm)
were used as the initial values of the unknown DVM parameters of
SULRpem (i.e., SULRy, SULR,, and t;). Then, the boundaries of SULR,
SULR,, and t;, were set as [SULR;-80, SULR,, + 80|, [SULR,-80,SULR,, +
80] and [t,,-2,t,, + 2], respectively, considering that the bias of absolute
SULR values is usually <80 W/m? and the bias of time is always <2 h.
Parameter A in Eq. (10) indicates the maximum TRD amplitude. Its
initial value (A") was set to 0.05 with boundaries of [0, 0.1]. This
parameter relies on a reasonable assumption: the maximum TRD
amplitude is usually <10% of SULR (Hu et al., 2016b). Parameter B in
Eq. (10) is a structure-dependent hotspot width. Ermida et al. (2018)
generated the global hotspot width k values of Vinnikov-RL KDM
through clustering the surface characteristics. Cao et al. (2021) built the
relationship between the hotspot width B of Vinnikov-Chen KDM and
the hotspot width k of the Vinnikov-RL KDM. Fig. 2 below shows the B
value distribution computed from the global k map (personal commu-
nication). The B value in Fig. 2 was set as the initial value (B") with
boundaries of [0.5-B’, 1.5-B’]. The initial values and boundaries of the all

Table 1

Initial values and boundaries of the six parameters of the time-evolving KDM.
Parameter Initial value Boundaries
SULRy SULR, [SULR,, — 80, SULR,, + 80]
SULR, SULR, [SULR, — 80,SULR, + 80]
@Opvm Wprc—2 [wpre— 3.8, wpre— 0.2]
tm ¢, [t,— 2,6, + 2]
A A' [0, 0.1]
B B [0.5-B, 1.5-B']
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six parameters are listed in Table 1.

2.3. TRD correction with the regressed six parameters of the time-evolving
KDM

Multi-temporal observations of geostationary satellite make the six-
parameter of the time-evolving KDM (i.e., Eq. 10) solvable. The TRD-
corrected SULR (SULR;,,) at a specific daytime hour t) can be directly
calculated with Eq. (11) once the four DVM parameters of SULRpen, (i.€.,
SULRg, SULR,, wpyu, and t,) are calibrated.

T
fo — 1,
(DDVM< m))

The SULR accuracy before and after applying the TRD correction can
be quantified by the RMSE and mean bias error (MBE) taking in situ
measured SULRp, as a reference (Egs. (12) and (13)).

SULR,,,, = SULR, + SULR,-cos ( (1)

N 2
i—1 (SULR; — SULRyei
RMSE = \/Z" ( hems) (12)

N

1 N
MBE = > (SULR; — SULRj 1)

i=1

13)

where N is the number of clear-sky observation samples, SULR; is the
estimated SULR before (SULRg;r,;) or after (SULR'hem,L-) TRD correction for

the i sample, and SULRpen, ; is the hemispherically integrated true value
of SULRpem, for the i" observation (e.g., the in situ measured result).

3. Validation and sensitivity analysis of the time-evolving KDM
based on a DART-simulated dataset

3.1. Validation and sensitivity analysis strategy

Before being used in the satellite observations, the KDMs are usually
validated using a simulated dataset generated by 3D physically-based
models (Wang et al., 2018; Cao et al., 2019a; Jiang et al., 2021), such
as the widely-used Discrete Anisotropic Radiative Transfer (DART)
model. The DART model is one of the most comprehensive and accurate
3D models to simulate the radiative budget and satellite observations of
land surfaces in the visible, near infrared, and TIR spectral regions
(Gastellu-Etchegorry et al., 2012; Gastellu-Etchegorry et al., 2015; Wang
etal., 2022). It is powerful to realistically describe vegetation and urban
landscapes, which makes it suitable to cross-validate analytical and
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parametric models (Pinheiro et al., 2006; Cao et al., 2018; Wang et al.,
2018; Cao et al., 2019a). The time-evolving KDM proposed in section 2
was validated with a dataset issued from DART mock-up. Fig. 3 shows
the detailed flowchart of the validation and sensitivity analysis process
of the time-evolving KDM using the DART-simulated dataset. The vali-
dation and sensitivity analysis strategy were presented in section 3.1.
The DART-simulated dataset was introduced in section 3.2. Finally, the
validation and sensitivity results were given in section 3.3 and section
3.4, respectively.

DART was run with the scene description parameters as inputs, for
example, the numbers of trees adapted with the leaf cover fraction, the
geolocations related to the satellite viewing angles, the dates and times
that determine the solar illumination angles, the temperatures and
emissivities of each component, and finally the wavelengths that
describe the spectral ranges of interest. Section 3.2 describes the DART
input parameters, the SULR integration process, and the simulated
dataset. The DART-simulated daily multi-temporal SULRg; values of a
geostationary satellite, viewing and illumination geometry values, and
corresponding imaging times formed inputs of the 6-parameter time-
evolving KDM (i.e., Eq. 10) to calibrate the parameters. Then, the
KDM-fitted SULRg;r using the calibrated 6 parameters will be evaluated
against the DART-simulated SULRg; values. Section 3.3 presents the
validation results of the proposed time-evolving KDM in modeling
directional SULR values at different situations. Section 3.4 conducts the
sensitivity analysis with different numbers of inputs and temporal
combinations to further study the performance of time-evolving KDM at
different observation conditions.

3.2. DART-simulated dataset

As shown in Fig. 4, we synthesized nine 90 m x 90 m forest scenes to
study the impact of scene structure on the TRD effect, named Scene 1-9,
respectively. The forest scenes consist of three crown shapes (spherical,
ellipsoidal, and cylindrical shape with a conical top (i.e., cone-cylinder)
(Chen and Leblanc, 1997)) and three leaf area index (LAI) values (LAI =
1 with 83 trees, LAI = 2 with 187 trees and LAI = 4 with 342 trees). For
each scene, three typical leaf angle distributions (LADs, i.e., spherical,
planophile and erectophile (Chen and Black, 1991)) were considered.
The trunks and tree crowns are simulated with facets in DART and the
directional radiance are generated using the DART-Lux mode (Wang and
Gastellu-Etchegorry, 2021; Wang et al., 2022).The emissivity spectra of
the scene elements are obtained from the DART optical database: “loam
gravelly brown dark” for the soil, “leaf deciduous” for the leaves, and
“bark deciduous” for the trunks.

Scene configuration
parameters (i.e., configuration
tree numbers) parameters

Solar/ viewing angle

Component temperature/
emissivity configuration
parameters

Wavelengths

v

DART simulation and SULR integration from spectral radiances (see Section 3.2)

v

Daily SULR;, values, viewing/illumination geometries and local times
corresponding to geostationary satellite (i.e., fixed viewing angles)

v

Time-evolving KDM (Eq. 10)

2

v

Validation of the time-evolving KDM in
modeling directional SULR at different
situations (see Section 3.3)

Sensitivity analysis with different numbers
of inputs and temporal combinations of
the time-evolving KDM (see Section 3.4)

Fig. 3. Flowchart of the validation and sensitivity analysis of the time-evolving KDM using the DART-simulated dataset.
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Crown shapes LAI= 1, 83 trees LAI =2, 187 trees LAI = 4, 342 trees Fig. 4. DART-simulated forest scenes. (a-i) Scenes 1-9. The

Spherical

(a) Scene 1 (b) Scene 2 (c)

trees in spherical forest scenes (Scenes 1-3) are identical
which have the same tree height (6 m) with 2 m radius tree
crown and 2 m trunk height below the crown; while the trees
in ellipsoidal and cone-cylinder forest scenes (Scenes 4-6 and
Scenes 7-9) are different which have tree heights ranging 4 m
- 8 m (6 m on average in each scene) with 2 m trunk height
below the crown. The semiminor axis of the spheroid and the
Scene 3 radius of the cylinder are both equal to the radius of the

Ellipsoidal

(d) Scene 4 (e) Scene 5 (f)

spherical crown (2 m). The trunk diameters of all trees are 0.1
m.

Scene 6

[

Cone-cylinder

(g) Scene7 (h) Scene 8 (i)

Scene 9

Besides the scene structure description parameters, DART also needs
the input of component temperatures to simulate the canopy DBT pat-
terns. DART calculates the 3D temperature T;; of scene element j of ith
component (e.g., leaves) by assuming that the temperature of element j

(2) Group 1: data at Huailai,

northern China on 2021/09/29
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increases with increasing illumination (i.e., T;j depends on the solar
illumination of element j). Accordingly, DART first simulates the solar
illumination of the scene and then determines the T;; using a predefined
temperature property of the mean temperature T; (i.e., 0.5-(Tymax + Tj,

(b) Group 2: data at Guangzhou,
3msouthern China on 2022/02/26
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(d) Group 4: data at Dahra, northern
Senegal on 2009/07/18
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Fig. 5. Four groups of component temperatures acquired at different dates and locations. (a-b) Measured four component temperatures at Huailai, northern China on
2021/09/29 and at Guangzhou, southern China on 2022/02/26, respectively; (c-d) Measured/calculated component temperatures at Dahra, northern Senegal on

2009/11/08 and 2009/07/18, respectively.
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min)) and temperature range AT; (i.e., Tjmax-Tymin) for type i (i.e., Tjj €
[T; min> Ti;max])- Here, each scene has two types of elements: vegetation (i.
e., leaves and trunks) and background (i.e., soil). To ensure the reli-
ability of DART simulations, we used four groups of in situ measured
clear-sky diurnal cycles of temperature components at different loca-
tions and dates, including one group measured at Huailai (northern
China, geolocation: 40.349695°N, 115.7944417°E) on 2021/09/29, one
group measured at Guangzhou (southern China, geolocation:
23.06310278°N, 113.3961633°E) on 2022/02/26, and two groups of
data measured at Dahra (northern Senegal, geolocation: 15.402°N,
15.443°W) on 2009/11/08 and 2009/07/18. The two groups of four
component temperatures (i.e. sunlit/shaded soil and sunlit/shaded leaf)
acquired in China were measured by handheld “Fluke 561 thermom-
eter, while the another two groups in Dahra were measured by tower-
based “KT-15.85 IIP” TIR radiometers (self-calibrating chopped radi-
ometers, Heitronics GmbH) (Rasmussen et al., 2011). The temperature
of shaded leaves was not measured in Dahra because of the technical
difficulty in measurement with tower-based instruments (Rasmussen
etal., 2011). Here, we assumed that the temperature difference between
sunlit and shaded leaves is 3 K based on the analysis of another two
groups of in situ datasets measured in China. Fig. 5 shows the measured/
calculated temperature values of the four components.

The geolocations of the scenes and the imaging dates and times need
to be predefined to determine the illumination directions. Here, we
defined four sites in different geolocations: Location 1 (0°N, O°E) ,
Location 2 (15°N, 0°E), Location 3 (30°N, 0°E), and Location 4 (45°N,
0°E), and four typical dates in 2019: 2019/04/01 (spring), 2019/07/01
(summer), 2019/10/01 (autumn), and 2019/01/01 (winter). The solar
direction (Fig. 6) was simulated every 30 min for each day in the period
of 10:00-17:00 to achieve the high-frequency observation of geosta-
tionary satellite. The situations with SZA>60" (i.e., black circles in
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Fig. 6. Polar plots of the illumination angles on 2019/04/01 (spring), 2019/
07/01 (summer), 2019/10/01 (autumn), and 2019/01/01 (winter) for the four
sites: (a) Location 1 (0°N, 0°E) and (b) Location 2 (15°N, 0°E); (c¢) Location 3
(30°N, 0°E); (d) Location 4 (45°N, 0°E). The concentric circles and radial lines
indicate the solar zenith angles and solar azimuth angles, respectively.
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Fig. 7. Polar plots of viewing angles for the four sites and 530 discrete DART-
simulated directions in the upper hemisphere for 2019/04,/01 10:00 for Loca-
tion 1. The concentric circles and radial lines indicate the viewing zenith angles
and viewing azimuth angles, respectively.

Fig. 6) were not considered due to the relatively weak TRD effect for the
late afternoon. The temporal changes in the solar direction differ
markedly on these four days as shown in Fig. 6, showing 8-14 available
observations except the winter day of Location 4 (see Fig. 6(d)).

We considered a geostationary satellite with a subpoint located at
latitude = 0° and longitude = 0° that observes the predefined four sites.
The viewing angles (VZA, VAA) are (0°, 180°), (17.62°, 180°), (34.96°,
180°), and (51.82°, 180°) for Location 1-4, respectively. Location 1
(2-4) was selected to study the TRD influence of nadir (oblique) viewing
direction on the estimated SULR. The polar plots of viewing angles of
this virtual geostationary satellite for the four sites were plotted in Fig. 7
(see blue triangles). DART was run with 500 directions in the lower
hemisphere and 530 directions in the upper hemisphere (including 30
additional directions in the hot spot region). Fig. 7 shows an example of
the 530 discrete DART-simulated directions in the upper hemisphere for
2019/04/01 10:00 for Location 1.

To obtain accurate SULR values when integrating spectral radiance,
the interval 4-100 pm was sampled with 66 narrow bands in DART
simulations. Bands 1-40 locate in 4-14 pm interval with A\ = 0.25 pm,
bands 41-51 were set in 14-25 pm with AL = 1 pm and bands 52-66
were set in 25-100 pm with AX =5 pm. The directional spectral radiance
was simulated using DART, and then the SULRgi;, SULRper,, and TRD
were calculated using Egs. (14-16).

SULR4, () = 3" Luun (30,244, a4
SULRj o, = Z:j?wfos@ﬂﬂj (15)
TRD = SULR i, — SULR)01, (16)

where Laqr(4;, £2)) is the DART-simulated ground-leaving radiance of the
scene (including the surface emitted radiance and the reflected atmo-
sphere downwelling longwave radiance) for the spectral band (4;,A4)), i
€ [1, 66], for the upward discrete direction £; with j € [1, 530] and 6; is
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Table 2
Summary of the main input parameters of DART.
Parameter Value Parameter Value
Scene area 90 m x 90 m Lf:af .ang%e Spherlcal., planophile, and
distribution erectophile
Cell size O.E x 0.5 x 0.5 Crown shape Spherlca}, ellipsoidal and
m cone-cylinder crown shapes
Nur.nber. of 1030 Sm% .. loam_gravelly_brown_dark
directions emissivity
b: i Trunk
Wavelength 66 bands in ru.n .. bark_deciduous
4-100 pm emissivity
Number of (83,187, 3421 < leaf deciduous
trees emissivity
. (0°N, 0°E), (15°N, 0°E),
LAI [1.0, 2.0, 4.0] Geolocation (30°N, 0°E), and (45°N, 0°E)
6 m for spherical
crown shape,
. 4-8 m for = .
Tree height ellipsoidal and T and AT See Fig. 5
cone-cylinder
crown shape
Trunk height 2019/04/01, 2019/07/01,
below the 2m Date 2019/10/01, and 2019/01/
crown 01
Trunk 10 em Time Restricted to 10:00-17:00
diameter (30-min step) and SZA<60
Atmosphere
brightness 260 K
temperature
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the zenith angle of direction £2;. The atmosphere brightness temperature
is set as the default value of 260 K in the simulations. See Appendix IV
for the sensitivity analysis of SULR to atmosphere downwelling long-
wave radiation (DLR) variation in one day.

Table 2 summarizes the main input parameters used in the DART
simulation. It can be found that a total of 19,224 simulations were
carried out with 9 scenes, 3 LADs, 4 groups of component temperatures,
4 locations, 4 dates, and 8-14 measurements per day. The numbers of
DART-simulated data points at different local times are shown in Fig. 8.
Because of the restriction of SZA<60°, a relatively small numbers of data
points are obtained in the morning (10:00) and late afternoon
(14:30-16:30).

3.3. Validation results with the DART-simulated dataset

The value of B’ (initial guess for B) is required for each scene in the
fitting of SULRg;, as described in section 2.2. However, B value in Fig. 2
was not suitable here since the scenes were manually constructed in
DART (i.e., no specific geographic location). The configurations of the
trees in this study (Scenes 1-3, 4-6, and 7-9) were the same as the scenes
D, E, and F of Cao et al. (2021). Hence, B values were calculated using
the simulated multiangle DBTs in their work. The B values (0.15, 0.13,
and 0.10 for Scene 1/4/7, 2/5/8, and 3/6/9) were directly set as the
initial values (B’). Using the DART-simulated daily multitemporal
SULRg;r values, the corresponding viewing/illumination directions and
time t, the six unknowns of the time-evolving KDM can be calibrated and
then the modeled SULRg; values can be calculated. Scatterplot between
the DART-simulated SULRg; and time-evolving KDM modeled SULR g
with all simulation dataset and the related histogram of the modeling

2000 T T i T
1500
2
3 1000
Q
500
0
10 11 12 13 14 15 16
Local time (h)
Fig. 8. The count distribution of 19,224 DART simulations at different local times.
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Fig. 9. Scatterplot between DART-simulated SULRy; and time-evolving KDM modeled SULRg; with all simulation dataset (a) and the related histogram of the
modeling bias (b).
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bias are plotted in Fig. 9a and Fig. 9b, respectively.

Fig. 9a demonstrates that the simulated SULR ;- dataset covers a wide
range of values from 392.0 W/m? to 604.0 W/m?2. The time-evolving
KDM can model the daily multi-temporal SULRg;- values with an R? =
0.9992, an RMSE of 1.5 W/m? and an MBE of 0.0 W/m?, which shows a
good fitting ability of the time-evolving KDM. The RMSE of time-
evolving KDM is comparable to that of the single temporal Vinnikov-
Chen KDM (i.e., 0.21 K) (Cao et al., 2021), noting that a LST bias of 1
Kis equivalent to a SULR bias of 6 W/m? when LST around 300 K. Fig. 9b
shows the histogram of the modeling bias, indicating 98% of the bias
ranges in [—4.7, 4.2] W/m? (taking the cumulative histogram of 1% and
99% as two thresholds). The relatively symmetric distribution of
modeling bias explains the situation of MBE = 0.0 W/m? in Fig. 9a.

The performance of the time-evolving KDM at different LAIs, crown
shapes and LADs were given in Fig. 10a. All of the nine RMSEs were
within 2 W/m?, which shows the acceptable modeling accuracy of the
time-evolving KDM. The RMSE:s of different LAI values have a relatively
larger range from 1.0 W/m? (LAI=4)to 2.0 W/m?> (LAI = 1). The time-
evolving KDM has a much more stable performance for different crown
shapes and LADs with an RMSE from 1.4 W/m? to 1.5 W/m?2. Fig. 10b
shows that the time-evolving KDM has an RMSE fluctuation between 1.0
W/m? and 2.1 W/m? at different local times. The maximum RMSE of 2.1
W/m? at local time 13:30 is close to that of LAI = 1 in Fig. 10a (2.0 W/
m?). Therefore, the new 6-parameter time-evolving KDM has an
acceptable modeling accuracy for different LAlIs, crown shapes, LADs
and local times.

3.4. Sensitivity analysis of the time-evolving KDM with different numbers
of inputs and temporal combinations

All available observations with SZA < 60° were used to drive the
time-evolving KDM in the section 3.3, however, not all observations are
available due to the existence of clouds in reality. Therefore, it is
important to study the performance of the time-evolving KDM with
different numbers of inputs and different temporal combinations. Here,
the observations of Location 1 at 10:00-15:30 (see Fig. 6a; 12 obser-
vations per day) of all 48 days (4 typical days *3 scenes with spherical
crown shapes and spherical LAD * 4 groups of component temperatures)
were adopted to perform the sensitivity analysis.

The performance of the time-evolving KDM with N inputs (N€[6,12])
was evaluated using 48*N“"C’1\’2 (N€e[6,12]) observations. Fig. 11a shows
the modeling accuracies of the time-evolving KDM with N numbers of
inputs. The time-evolving KDM has a better performance with the in-
crease of N. The overall RMSE decreases from 3.68 W/m? of N = 6 to
1.80 W/m? of N = 12. Then, we further studied the performance of the
time-evolving KDM with different temporal combinations, taking N = 6

2.5 r - -
(a) Different LAls, crown shapes and LADs
LATL Crown shape: LAD:
2 I LA -1 BB Sphercal [N Spherical
LAl =2 [ Ellipsoidal [ Planophile
~ik LAl =4 [ Cone-cylinder [ Erectophile
é 15} o
[4a
[
05r 1
0 L |
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with 924 combinations as an example (i.e., C$,=924). Each combination
has 48%6 values. Fig. 11b plots the 924 RMSEs using the average value
(Avg., see y-axis below) and standard derivation (STD, see x-axis below)
of each combination as axes. Results show that the combinations with
larger STD (more scattered in time) and larger average SULR values
(more likely around noon) have better performance (i.e., relatively
lower RMSE values in blue color). In summary, the time-evolving KDM
will get a better accuracy with a larger number of inputs, with tempo-
rally scattered local times and with larger average SULR values.

4. Validation of the TRD correction method based on ABI/GOES-
16 and in situ measurements

4.1. Validation strategy of the TRD correction method

As a practical method to correct the TRD effect of SULR product of
geostationary satellites, it is important to assess its performance on a
specific satellite product. Here, the TRD correction method is further
validated with GOES-16 ABI dataset and AmeriFlux in situ measure-
ments. As indicated by previous studies (Minnis and Khaiyer, 2000; Coll
et al., 2019), the TRD amplitude is much larger during the daytime and
for heterogeneous surfaces. The TRD correction method is validated
under daytime clear-sky conditions, based on ABI satellite observations
and in situ SULR measurements for 20 vegetated AmeriFlux sites. The
flowchart of the validation work is shown in Fig. 12.

There are three main steps in the validation of the TRD correction
method with ABI/GOES-16 satellite data: (1) the clear-sky single-angle
SULR was first estimated using Eq. (I.1) of the hybrid method (Wang
et al., 2009) with inputs of the ABI TOA radiance in bands 11, 14 and 15
(i.e., 8.5, 11.2 and 12.3 pm, respectively), clear-sky masks, corre-
sponding viewing angles, and SULR estimation coefficients (see Ap-
pendix I for more details); (2) the estimated single-angle SULR, the
corresponding imaging time, and corresponding viewing and illumina-
tion angles forms input of the time-evolving KDM model to get its co-
efficients and then implement the TRD correction (see section 2 above);
(3) the proposed method is validated by comparing the TRD-corrected
SULR with the in situ measured SULR. The comparison results can be
found in section 4.3.

4.2. Data for validation

4.2.1. ABI data from GOES-16

GOES-16 is the first of the GOES-R satellite series. It was declared
operational on December 18th, 2017. ABI instrument onboard GOES-16
is positioned at 0°N, 75.2°W. ABI includes six VNIR bands, four
shortwave/mid-wave infrared bands, and six TIR bands. Its spatial
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—
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Fig. 10. Performance of the time-evolving KDM at different LAIs, crown shapes, LADs (a) and local times (b).
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Fig. 11. The modeling accuracy of the time-evolving KDM with different number of inputs (a) and different temporal combinations (b).
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Step 1: Single-angle SULR estimation with the hybrid method
(see Appendix I)
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Step 2: Regression of time-evolving KDM coefficients and TRD
correction (see section 2)
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Step 3: TRD correction method validation (see section 4.3)

Fig. 12. Flowchart of the validation using ABI/GOES-16 data and AmeriFlux in
situ measurements.

resolution at the satellite subpoint is 0.5 km for one band (0.64 pm), 1
km for three bands (0.47, 0.865, 1.61 pm), and 2 km for the other bands,
notably TIR bands. Its temporal resolution could be better than 30 min
per scanning. Here, we take advantage of the highest frequency of
geostationary satellite observations to validate the proposed time-
evolving KDM and TRD correction method.

The TOA radiance products of ABI bands 11 (8.55 pm), 14 (11.2 pm),
and 15 (12.3 pm) and the cloud mask product were used to calculate the
clear-sky SULR. Full disk data satisfying the filtering -criteria
(10:00-17:00 local time with an interval of 30 min) for 2018 and 2019
were downloaded from the national oceanic and atmospheric adminis-
tration comprehensive large array-data stewardship system (http://
www.class.noaa.gov/) to estimate the SULR. The downloaded dataset
includes 10,950 full disk imagery in total.

4.2.2. AmeriFlux in situ measurement dataset

The coarse resolution of the ABI TIR bands requires a selection of
validation sites having good spatial representativeness at large scale.
Chu et al. (2021) classified the representativeness of 214 AmeriFlux sites
as high, medium, and low homogeneity at footprint radii of 250-3000 m
around flux towers by analyzing the measurement heights, underlying

10

land cover, ground surface characteristics, wind directions, and turbu-
lent state of the atmosphere. At the scale of 2 km corresponding to the
nadir spatial resolution of ABI TIR bands, 20 AmeriFlux sites were
retained based on GOES-16/ABI disk coverage and in situ data avail-
ability in 2018-2019, which include five highly representative sites and
15 moderately representative sites.

The spatial distribution of these 20 AmeriFlux sites is plotted in
Fig. 13 with the base map of 500 m-resolution MCD12Q1 2018 yearly
International Geosphere Biosphere Programme (IGBP) land cover clas-
sifications (Friedl et al., 2002). The detailed information of these sites is
summarized in Table 3. The 20 selected AmeriFlux sites include seven
types of IGBP land covers: one site of woody savanna (WSA), three sites
of open shrubland (OSH), four sites of grassland (GRA), one site of
cropland (CRO), one site of mixed forest (MF), four sites of deciduous
broadleaf forest (DBF), and six sites of evergreen needleleaf forest (ENF).
The temporal resolutions of the downloaded in situ measured SULR were
30 min at all sites except site US-MMS. Furthermore, part of the SULR
observations were missing for sites US-Kon, US-Syv, and US-Ho1, whose
temporal coverages were 2018.01-2018.10, 2018.01-2018.11 &
2019.08-2019.12, and 2018.01-2018.06, respectively. The temporal
coverages of the remaining sites were 2018.01-2019.12.

The in situ measurements were filtered with three criteria: local solar
time of 10:00-17:00, SZA<60°, and the number of daily clear-sky half-
hour observations >6. Finally, we obtained 34,220 groups of validation
data, including 13,847 groups of highly representative site data and
20,373 groups of moderately representative site data. The count distri-
butions of the validation data by site, month, and local time are plotted
in Fig. 14. As shown in Fig. 14a, a sufficient number of data is available
at each site to conduct a reliable validation. For instance, the number of
validation data for the 5 most representative sites ranges from 1014 to
3561 with an average value of 2769. The number of available validation
data points of the 15 moderately representative sites ranges from 225 to
3546 with an average value of 1358. Fig. 14b demonstrates that the
count distribution of validation data by month shows an increasing
trend from January to June and a decreasing trend from June to
December because the SZA is relatively small in summer; therefore,
more days satisfied the criterion of >6 clear-sky observations were
selected under the restriction of SZA<60'. Likewise, as shown in
Fig. 14c, the validation data showed an increasing trend from morning
to noon and a decreasing trend from noon to afternoon because the SZA
at noon is relatively small, while the SZA in the early morning and late
afternoon is more likely to be excluded. There were adequate numbers of
data points among the highly and moderately representative sites in
different months and local times, as shown in the two kinds of color in
Fig. 14b-c.
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Fig. 13. Spatial distribution of the 20 AmeriFlux validation sites taking the 500 m-resolution MCD12Q1 yearly IGBP land cover classification in 2018 as a base map.

Table 3
Summary of the 20 AmeriFlux validation sites.
Representativeness Number of Site ID Latitude, Elevation IGBP Temporal Period
level sites Longitude (m) Landcover resolution
(minutes)

1 US-SRM ?1:522;1:1"/\, 1120 WSA 30 2018-2019
2 US-Ses fg:g:i;lj\’/v 1604 OSH 30 2018-2019

High 3 US-xSR :;1()9;2;;15\,/\] 983 OSH 30 2018-2019
4 US-Kon gzg:i;oy\; 417 GRA 30 2018.01-2018.10
5 US-Seg ?3:35?;\1"/\/ 1622 GRA 30 2018-2019
6 US-Whs ?1;322;15"/\, 1370 OSH 30 2018-2019
7 US-xCP ‘11848;151:::061:1"/\7 1654 GRA 30 2018-2019
8 US-xKZ Zz;ggfz% 381 GRA 30 2018-2019
9 US-Ro5 g;gg;g:y\; 283 CRO 30 2018-2019
Do e EEN e e oo
11 US-WCr gzgggg:y\; 520 DBF 30 2018-2019
12 vs o damaN o @ 2015 2010

Moderate 13 EISV}B ;ig?:z:% 234 DBF 30 2018-2019
14 US L dsSEISNy o % 2015 2019
15 US-Vem ?g:gg;?jx’/v 3003 ENF 30 2018-2019
16 US-Vep ?2:25;;1:1"/\, 2542 ENF 30 2018-2019
17 US-Ves :1”269(15??102?\”\/ 2752 ENF 30 2018-2019
18 US-GLE ‘11(1)63222;1:]\,/\1 3197 ENF 30 2018-2019
19 US-Ha2 ;ifg?g:y\; 360 ENF 30 2018-2019
20 US-Hol 22323;% 60 ENF 30 2018.01-2018.06
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Fig. 15. Accuracy of the single-angle estimated SULR and the TRD-corrected SULR. (a) Single-angle estimated SULR. (b) TRD-corrected SULR.

4.3. Validation results with ABI/GOES-16 data and AmeriFlux in situ
measurements

4.3.1. Accuracy with all data

The density scatter plots between the in situ measured SULR and the
single-angle estimated SULR and TRD-corrected SULR are presented in
Fig. 15. It can be found that the 34,220 groups of SULR validation data
covered a wide range from 231.3 W/m? in winter to 678.9 W/m? in
summer. The single-angle estimated SULR had an obvious positive MBE
of 12.6 W/m? due to the TRD effect in the daytime. After correcting the
TRD effect with the time-evolving KDM, the MBE was reduced to 4.7 W/
m? with an improvement of 7.9 W/m? (62.7%). Furthermore, the RMSE
of the single-angle estimated SULR was 20.4 W/m?, which is similar to
the daytime validation results of previous research based on polar
orbiting satellite observations (Qin et al., 2020; Zeng et al., 2020). The
overall RMSE value after the TRD correction was reduced to 15.9 W/m?
with a significant improvement of 4.5 W/m? (22.1%).
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4.3.2. Accuracy in different seasons

The accuracy of the time-evolving KDM was further evaluated in
different seasons (Fig. 16). The SULR ranges varied among the different
seasons. Spring had the widest SULR range of [231.3, 640.2] W/m?,
followed by autumn with a SULR range of [246.3, 636.6] W/m? and
then by summer with a SULR range of [372.3, 678.9] W/m?. Winter had
the smallest SULR range of [251.4, 509.3] W/m2 In addition, summer
and winter had the highest and lowest average SULR values,
respectively.

The MBE:s of the single-angle estimated SULR for the four seasons
were all positive. The MBEs for the four seasons were 15.4 W/m?
(spring), 11.0 W/m? (summer), 13.8 W/m? (fall), and 6.2 W/m?
(winter). After correcting the TRD effect, the MBEs were reduced to 6.8
W/mz, 3.2 W/mz, 5.9 W/m? and 0.2 W/m? with improvements of 8.6
W/m? (55.8%), 7.8 W/m? (70.1%), 7.9 W/m? (57.2%) and 6.0 W/m>
(96.8%) for spring, summer, fall and winter, respectively.

The RMSEs of the single-angle estimated SULR were 21.1 W/m?,
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Fig. 16. Accuracy of the single-angle estimated SULR and the TRD-corrected SULR in the four seasons. (a-b) Spring. (c-d) Summer. (e-f) Fall. (g-h) Winter.

22.1 W/mz, 20.0 W/m2, and 9.3 W/m? for spring, summer, fall, and
winter, respectively. After correcting the TRD effect, the RMSEs were
reduced to 15.3 W/m?, 17.6 W/m? 16.2 W/m?, and 7.6 W/m? with
improvements of 5.8 W/m? (27.5%), 4.5 W/m? (20.4%), 3.8 W/m?>
(19.0%) and 1.7 W/m? (18.3%), respectively. The outstanding ability of
the time-evolving KDM in correcting the TRD effect of SULR was proven
in all four seasons in this study.

4.3.3. Accuracy at different levels of representativeness

The 20 selected validation sites included five highly representative
sites and 15 moderately representative sites as introduced in Table 3. We
further studied the validation results at different levels of representa-
tiveness (see Fig. 17). The validation data from the highly representative
sites covered a SULR range of [307.7, 678.9] W,/m? while the range for
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the moderately representative sites was [231.3, 645.3] W/m?. For the
data from the five highly representative sites, the RMSE and MBE of the
single-angle estimated SULR reached 21.1 W/m? and 15.6 W/m?
respectively, and after correcting the TRD effect, the RMSE and MBE
were reduced to 15.1 W/m? and 5.7 W/m?, respectively, with corre-
sponding improvements of 6.0 W/m? (28.4%) and 9.9 W/m? (63.4%).
For the data from the 15 moderately representative sites, the RMSE
and MBE of the single-angle estimated SULR were 19.9 W/m? and 10.6
W/m?, respectively. They are lower than those for the highly repre-
sentative sites. After implementing the TRD correction, the RMSE and
MBE of the moderately representativeness sites were reduced to 16.3 W/
m? and 4.0 W/m?, respectively, with corresponding improvements of
3.6 W/m? (18.1%) and 6.6 W/m? (62.3%). The slightly greater accuracy
improvements at the highly representative sites are likely due to the
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relatively higher representativeness of these five sites.

4.3.4. Accuracy for different sites and land cover categories

The performance of the time-evolving KDM for different sites and
different land cover classes was further analyzed as plotted in Fig. 18. As
shown in Fig. 18a, the RMSE:s of the single-angle estimated SULR among
the 20 sites ranged from 9.7 W/m? to 34.0 W/m?, which decreased to
[6.9, 26.0] W/m? after the TRD correction. Sixteen sites showed a RMSE
decrease of [0.5, 8.3] W/m?. Meanwhile, the RMSEs of four moderately
representative sites (US-xKZ, US-Ro5, US-Syv, and US-UMd) had a slight
RMSE increase of [0.03, 2.2] W/m?2. This may explain by the relatively
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tively lower representativeness of these four sites.

Fig. 18b indicates that the |MBE| range of the single-angle estimated
SULR among the 20 sites was [0.2, 30.4] W/mz, which was reduced to
[0.5, 22.6] W/m? after correcting the TRD effect. Fifteen sites exhibited
a significant reduction in the |MBE|, with a decrease of [3.5, 10.0] W/
m?. On the other hand, five moderately representative sites (US-xKZ, US-
Ro5, US-Syv, US-WCr, and US-UMd) had an |MBE]| increase of [3.3, 6.8]
W/m?2, which was attributed to the relatively lower TRD effect at these
sites. The single-angle estimated |MBE| values at these five sites were
<2 W/m?,
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Fig. 18. Accuracy histograms of the single-angle estimated SULR and the TRD-corrected SULR at different sites and in different categories. (a-b) Histograms of the
RMSE and MBE at different sites. (c-d) Histograms of the RMSE and MBE in different categories.

As shown in Fig. 18c, the RMSE range of the single-angle estimated
SULR among the seven land cover types was [11.1, 27.4] W/m?, which
decreased to [10.5, 21.0] W/m? after applying the TRD correction. The
RMSE of five land cover types (WSA, OSH, GRA, DBF and ENF) decrease
by [0.9, 8.2] W/m? after the TRD correction, while the CRO and MF
slightly increased by 0.03 W/m? and 0.9 W/m?, respectively. This may
be due to the relatively lower RMSEs (<15 W/m?) for these two land
cover types. Likewise, Fig. 18d reveals that the |MBE| range of the
single-angle estimated SULR among the seven land cover types was [0.2,
21.6] W/mz, which was reduced to [1.8, 14.8] W/m? after the TRD
correction. The |MBE| of the same five land cover types decreased by
[0.7,9.9] W/m? after correcting the TRD effect, while the CRO and MF
increased by 5.1 W/m? and 4.6 W/m? from a |MBE| < 2 W/m?

4.3.5. Accuracy at different local times

We studied the performance of the time-evolving KDM at different
local times, as the TRD effect is closely related to the surface thermal
state which exhibits an obvious time-dependent tendency. Fig. 19 il-
lustrates the fact that the MBE and RMSE of the single-angle estimated
SULR clearly showed a diurnal variation in the daytime with an
increasing trend from 10:00 to 10:30 and a decreasing trend from 10:30
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to 17:00. The MBE and RMSE ranges of the single-angle estimated SULR
were [1.4, 16.7] W/m? and [12.5, 22.8] W/mz, respectively. Further-
more, the maximum MBE and RMSE of the single-angle estimated SULR
from the satellite dataset occurred in the morning (10:30). This was
because the subpoint of GOES-16 was southeast of the 20 validation sites
and the minimum phase angle (i.e., the angle distance between the
illumination angle and viewing angle) occurred in the morning, leading
to the relatively high TRD values in the morning.

After implementing the TRD correction, the diurnal variation trends
of the MBE and RMSE were almost completely eliminated. The |[MBE| of
the TRD-corrected SULR was within the range of [0.6, 5.7] W/m? with
improvements ranging from 0.8 (at 17:00) to 12.5 W/m? (at 10:30)
compared with the single-angle estimated SULR. Likewise, the RMSE of
the TRD-corrected SULR was within the range of [12.8, 17.0] W/m? with
improvements ranging from 1.1 W/m? (at16:30)to 7.3 W/m? (at 10:30)
at 10:00-16:30. At 17:00, the RMSE had slightly increased by 0.7 W/m?.
The overall significant post-correction accuracy improvements reflect
the excellent TRD correction ability of the proposed time-evolving KDM.
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5. Conclusion

In this study, we proposed a six-parameter time-evolving KDM con-
taining a four-parameter SULR DVM and a two-parameter TRD ampli-
tude model to correct the TRD effect for geostationary satellite SULR
datasets for the first time. The significant daytime TRD effect when solar
zenith angle is within 60° can be effectively eliminated. The new KDM
innovatively uses multi-temporal observations in a day to correct the
TRD effect, not using multiangle observations at a specific time as in the
past. The six parameters can be regressed with not less than six daytime
single-angle estimated SULR values. The proposed time-evolving KDM
was validated with a DART-simulated dataset (showing as an R% > 0.999
and a small RMSE = 1.5 W/m?); while the TRD correction method was
comprehensively validated using two years of ABI data from the GOES-
16 satellite and corresponding in situ measurements from 20 AmeriFlux
sites. Three main conclusions about the TRD correction can be drawn as
follows:

(1) The TRD effect leads to the significant uncertainty of single-angle
estimated SULR of geostationary satellites in the daytime. The
RMSE and MBE of the single-angle estimated SULR can reach
20.4 W/m? and 12.6 W/m? for the GOES-16 satellite dataset,
respectively.

(2) The proposed time-evolving KDM can greatly mitigate the TRD-
resulted uncertainty of the single-angle estimated SULR. For the
satellite dataset, the RMSE decreased by 4.5 W/m? (22.1%), and
the MBE dropped by 7.9 W/m? (62.7%).

(3) The TRD effect leads to a phenomenon that the MBE and RMSE of
the single-angle estimated SULR showed a diurnal variation in
the daytime with relatively higher values around noon and lower
values in the early morning and late afternoon. The time-evolving
KDM reduced the MBE and RMSE at most of the studied local
times except late afternoon with relatively less TRD effect.

The TRD effect is one of the main sources of error in the estimation of
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surface thermal-related parameters from satellite remote sensing. This
study demonstrates the possibility of using multi-temporal observations
to correct the TRD effect for geostationary satellite data. This newly
proposed TRD correction method has two limitations which will be the
main focuses in the near future. First, the time-evolving KDM cannot be
applied to high-latitude areas (e.g., polar regions) because these regions
cannot be observed by geostationary satellites. Second, the proposed
time-evolving KDM is not applicable for nighttime, since the TRD
anisotropy is dominated by the angular-dependent emissivity at night-
time, not the hotspot signature at daytime. Further studies should focus
on the development of new time-evolving KDM for multi-temporal
polar-orbiting satellite observations over polar regions and new time-
evolving KDM without hotspot kernel contribution for nighttime ob-
servations to overcome the limitations. The time-evolving KDM was
evaluated on flat vegetated surface in this work, and the performance of
this model on barren pixel and terrain surface still needs further studies
in the future. The hybrid method of SULR estimation should also be
evaluated through DART-based full-chain evaluation in the future. In
addition, time-evolving KDMs with lower requirements of input obser-
vations (e.g., <6 clear-sky observations) are expected for better oper-
ationality in the TRD correction of geostationary satellite products.
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Appendix I. Single-angle SULR estimation with the hybrid method

The hybrid method directly estimates the SULR from TOA radiances with a predefined model. The model coefficients could be calculated through
extensive radiative transfer simulations and regression (Wang et al., 2009), which bypasses the step of separating the LST and land surface emissivity
but can achieve a comparable (or even superior) accuracy compared with the traditional physical method (Jiao et al., 2015; Cheng and Liang, 2016).
The linear hybrid estimation method was used in this study with Eq. (I.1).

SULR iy = aop, + aig,"Lroan1 + @20, Lroa4 + a3, L1oa 15 (L1)

where 6, is the VZA, ag,-as, are the four regression coefficients at 6,, and L7oa 11, Ltoa 14, and Ltoa 15 are the ABI TOA radiances in bands 11 (8.55
pm), 14 (11.2 pm), and 15 (12.3 pm), respectively.

The regression of the model coefficients is based on a representative simulated dataset containing single-angle SULR (SULR};) and ABI TOA ra-
diances (L’TOA‘II,L'TOA_’1 4> and Ly, 1) using Eqs. (1.2-4). The inputs include the spectral surface emissivity (¢(4)), surface thermal emission calculated
by Planck's law at the equivalent surface temperature T (B(4,T)), three atmospheric parameters (i.e. atmospheric spectral transmittance 7(1), upwelling
radiance L;(1), and downwelling radiance L (1)) and the sensor spectral response function (SRF(1)).

100
SULR’d,, = ﬂ/ Igmmd—lmving (l)dﬂ (1'2)
4
Iground—leuving (i) = 8(2)3(27 T) + (1 - E(l) )Ll (l) (1.3)

' _ ;2 (Igmund—leaving (A)T(l) + LT (l) )SRFI (i)dﬂ

L =
rond J2 SRF,()d2

i€ 11,14, 15] 1.4

where Iground leaving(4) is the angle-independent spectral ground-leaving radiance, 41 and /1> are the spectral range boundaries for band i (ic[11,14,15]),
and SRF;(4) is the spectral response function of band i.

Representative database of emissivity, atmospheric profiles, and LST ranges were important to the composition of SULRy;, and Ly, ;. Here, the
database are the same as that of Qin et al. (2020), except the SRF;(1) values. We used 35 typical surface emissivities from the MODIS UCSB spectral
library (Li et al., 2013), including three for water, one for ice, one for snow, 13 for soils and minerals, and 17 for vegetation, and then extrapolated the
emissivity value of above 14 pym using method proposed by Wang et al. (2005). We selected 946 clear-sky atmospheric profiles from the TIGR database
(Chevallier et al., 1998) with the criterion that the relative humidity in all layers should be <90% (Hu et al., 2017; Qin et al., 2020) and input the
profiles into the MODTRAN model (Berk et al., 2003) to calculate the atmospheric parameters (i.e., (1), L,(1), and L;(2)). The LSTs defined with a
[-10, 15] K offset to the bottom temperature of the selected atmospheric profiles in a step of 5 K were input into Planck's function to calculate the
spectral radiance (i.e., B(4, T)).A simulation database containing 198,660 groups of SULR data (SULR'dir) and corresponding TOA radiances (L'TO A1) Was
generated.

Next, the SULR estimation coefficients of Eq. (I.1) were generated using multiple linear regression. The coefficients were generated at different
VZAs from 0° to 60° with a 10° step. The coefficients and the corresponding theoretical accuracies (R?, MBE, and RMSE) are summarized in Table I.1,
which shows that the hybrid method exhibits good accuracy with R? > 0.988, the MBEs are close to 0 W/m?2, and the RMSEs range from 6.9 to 11.3 W/
m? with different VZAs. Then, the model coefficients (a0,0,-asp,) and the ABI observed clear-sky TOA radiances (Ltoa,11, Ltoa 14, and Lroa 15) were input
into the predefined single-angle SULR model (i.e., Eq. (I.1)) to estimate SULR ;- It should be noted that the SULR value at a specific VZA was calculated
with the interpolation or extrapolation of SULR values calculated with the coefficients at adjacent VZAs.
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Table 1.1

List of the coefficients and accuracies (unit: W/mz) for the single-angle SULR estimation.
0y ay a a a3 R? MBE RMSE
0° 92.723 4.233 110.453 —81.722 0.996 0.00 6.9
10° 93.235 4.261 111.120 —82.543 0.996 0.00 7.0
20° 94.832 4.363 113.157 —85.072 0.995 0.00 7.2
30° 97.738 4.595 116.700 —89.544 0.995 0.00 7.6
40° 102.392 5.099 121.960 —96.391 0.994 0.00 8.3
50° 109.601 6.217 129.165 —106.296 0.992 0.00 9.4
60° 120.967 8.896 138.444 —120.497 0.988 0.00 11.3

Appendix II. The rationale of modeling SULR diurnal variation using the same formatted equation as LST DTC

The SULR is the 4th power of LST and also contains the surface reflected downward longwave radiation (DLR) (i.e.,SULR = &y, @ o @ LST* +
(1 — €pp) © DLR, where the ¢ is Stefan-Boltzmann constant (5.67 x 1078 W/m?/K*) and the &y is the broadband emissivity). The tendency of SULR is
much closer to ¢  LST* than to DLR considering their significant different weights (eyp, vs 1-epp). Furthermore, as shown in Fig. 1.1 bellow, the SULR
can be treated as a linear function of LST in the normal Earth surface temperature range of [260 K, 320 K]. The linear function fitting has a high R? =
0.993 which means that it's acceptable to model the SULR DVM using the same formatted equation as LST DTC. The R? is expected to be higher for one
specific day since the LST range with in one day is usually <60 K (i.e., 320 K - 260 K in Fig. IL.1).

700 — y T
¢ SULR value

600 y = 5.35z — 1144.65 |
=
g 500 1
% 400
=)
n

300

200 — . . .

260 280 300 320

LST (K)

Fig. IL.1. The linear fitting result between the SULR and LST values for a normal Earth surface temperature range (LST€[260, 320] K). The &3, and DLR in calculating
SULR were set as 0.96 and 300 W/m?, respectively.

Then, the daily variation of SULRpm(t) is parameterized with a four-parameter trigonometric diurnal variation model (i.e., DVM) referenced to the
DTC model of LST. The accuracy of the SULRper,(t) DVM was evaluated using 34,220 clear-sky in-situ SULR measurement data at 20 AmeriFlux sites in
2018-2019 at 10:00-17:00 (the same dataset used in section 4). Fig. I1.2(a) shows the high fitting accuracy of SULRpem(t) DVM, with a RMSE of 1.9 W/
m? and a R? of 0.9994. Fig.11.2(b) shows the DVM fitting result of a typical clear-sky day (2018/07/16) at site US-Whs. The evaluation result shows
that the SULR DVM has an acceptable modeling accuracy.

~700f (a) Years of2018-2019 " { Moo 6501 (b) One day on 2018/07/06 <
3 2 / 0.8 (Site US-Whs)
S oo R 0.0004 y .. _eo0} |
5 ’/,//. 0.6 NE
i A | S 5501 ]
3% /’- 05 = | RMSE13
° & MBE:0.0 ’
2 400t y | § 04 = 500 - . ]
= RMSE: 1.9 0.3 7 h
> MBE: 0.0 4501+ . ot
300 @02 v ~
E Count: 34,220 0.1 T e In situ measured
d 400 - —467.0 4 117.6cos(—— +13.3)| 4
200 ; . - : . ) i 109
200 300 400 500 600 700 0 5 10 15 20
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Fig. IL.2. (a) Scatterplots between the in situ measured SULR and four-parameter DVM fitted SULR; (b) Plot of DVM fitted SULR and in situ measured SULR on 2018/
07/16 at site US-Whs.
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Appendix III. Determination of the initial value and boundary of wpr¢ using synthetic dataset

The half-period parameter of LST DTC model (i.e. wprc) can be determined by the duration of daytime (Gottsche and Olesen, 2001; Duan et al.,
2012) using Eq.(II1.1):

2
Wpre = Barccos( — tangtans) (I11.1)
where ¢ is the latitude of the location, § is the solar declination that can be expressed as a function of the day of the year (DOY) (Elagib et al., 1999),
which can be calculated by Eq.(II1.2):
0
5 = 23.45sin @%5 (2844 DOY) > (I11.2)
The half-period parameter of DVM model (i.e., wpyp) is related to the wpr¢ because the SULR is the 4th power of LST. To study the difference

between wpyyr and wpr, five groups of DTC parameters of vegetation and soil (i.e., Ty, T,, @, and t, in Eq.(I11.3)) referenced to Liu et al. (2020b) were
used to generate synthetic LST and SULR of mixed pixels. The DTC parameters were listed in Table III.1 (the same as Table 1 in Liu et al. (2020b)).

T(t) = TO + Ta'C()S (g (t - tnx) ) s Lor <t <t (IH.B)

Table IIL.1
DTC parameters of five types of vegetation (V) and soil (S) of mixed pixels.

Parameters Group 1 Group 2 Group 3 Group 4 Group 5

\ S \ S A S A% S A% S
To (K) 297.2 290.0 293.8 295.6 296.7 294.5 299.3 294.2 299.6 295.3
Tq (K) 10.0 20.7 14.0 13.7 14.1 19.5 10.5 20.5 9.8 18.0
 (h) 13.5 13.9 14.7 12.9 14.7 12.9 13.6 13.7 13.4 13.5
tm (h) 13.0 12.0 12.3 12.9 12.8 12.2 12.6 12.4 12.5 12.5

The LST of a vegetation and soil mixed pixel can be calculated using Eq. (II1.4):

(I1.4)

FVC-e,-T* + (1 — FVC)-e,.T*\ /*
LST:< C-e V—&-(g VC)-¢, x>

where FVC is the fractional vegetation cover; ¢, and & are the emissivity of vegetation (=0.98) and soil (=0.94), respectively; T, and T; are the
component temperature of vegetation and soil, respectively; ¢ is the emissivity of the mixed pixel that can be calculated using Eq. (IIL.5):

£ =FVCe,+(1—FVC)-g (1L 5)
To generate a representative dataset of LST, we set a range of reasonable offset to the FVC and the component temperature DTC parameters Ty, Tg,

and o (see Table II1.2). The t, in Table IIL.1 is constant here since it has no influence in the wprc. In total, 36,300 groups of daily LST (5 groups of
component temperatures, 11 groups of FVC values, 6 groups of Ty, 11 groups of T, and 10 groups of @) could be generated.

Table III.2
Parameters in generating representative LST dataset.

FVC values DTC parameters of components
Ty values T, values w values
Minimum 0 To-20 Tq-5 -6
Step 0.1 5 1 1
Maximum 1 To+ 5 Te+5 o+ 3

Then, the SULR values could be calculated using Eq. II1.6 based on the generated LST, Stefan-Boltzmann constant ¢ (5.67 x 1078 W/mz/K4),
broadband emissivity (epp) and atmospheric downwelling longwave radiation (DLR). The ¢, and DLR were set to constant values of 0.96 and 300 W/
2 .
m*, respectively.

SULR = 6-&4,-LST* + (1 — &y,)-DLR (IIL. 6)

Finally, the daily LST and SULR values were used to regress the LST half-period parameter (i.e., wprc) and the SULR half-period parameter (i.e.,
wpvn)- The scatterplot between the wpyy and wpre was plotted in Fig. I11.1(a), the histogram of half-period difference A (i.e., A = wpyn - @prc) was
shown in Fig. II1.1(b). It could be found that the wpr¢ calculated using the 36,300 groups of synthetic dataset covers a range of 6.9 to 17.7, and the
wpyu is always lower than wpr¢ with a negative offset between —3.8 to —0.2. Therefore, to be more rational, the wprc-2 was used as the initial value of
wpym and the boundary of wpyy, is set to be [wpr¢ — 3.8 to wpyc — 0.2].
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Fig. II.1. (a) scatterplot between LST half-period parameter wpyy and SULR half-period parameter wprc; (b) histogram of the half-period difference of wpym — wprc.

Appendix IV. The sensitivity analysis of SULR to DLR variation in one day

The DLR (DLR = o e T, , ¢ is Stefan-Boltzmann constant and the Ty, is atmosphere brightness temperature) is varied in one day, while is set as a
constant in DART simulation in section 3.2. We analyze the sensitivity of SULR to DLR variation in a typical day. Fig. IV.1 shows the in-situ measured
Tatm at AmeriFlux site US-Ses on 2018/04/01. A range of 8.8 K of diurnal DLR variation in local time 10:00-17:00 could be found.

290

280

T

T T T T

—e— DART default Ta i
—o— In-situ measured Tatm

260

250
10

11

12

13 14 15 16
Local time (h)

17

Fig. IV.1. In-situ measured Tgm of AmeriFlux site US-Ses on 2018/04/01.

The simulated SULR diurnal values with default Tgm and in-situ measured T,q, were compared in Fig. IV.2 (DART configuration: scene 2,
component temperature group 1, location 1, see section 3.2). It shows that the SULR is insensitive to the diurnal variation of DLR with SULR dif-
ferences <0.87 W/m? in one day and it's acceptable to set the T,y as a constant in DART simulations of SULR diurnal values.
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Glossary

TRD: Thermal Radiation Directionality
SULR: Surface Upward Longwave Radiation
TOA: Top-of-Atmosphere

DBT: Directional Brightness Temperature
VNIR: Visible and Near InfraRed

DVM: Diurnal Variation Model

VZA: Viewing Zenith Angle

SPP: Solar Principal Plane

SAA: Solar Azimuth Angle

DTC: Diurnal Temperature Cycle

MBE: Mean Bias Error
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LAI: Leaf Area Index

WSA: Woody Savanna

GRA: Grassland

MF: Mixed Forest

ENF: Evergreen Needleleaf Forest

ATSR-2: Along-Track Scanning Radiometer - 2

SLSTR: Sea and Land Surface Temperature Radiometer
DLR: Atmosphere downwelling longwave radiation
TIR: Thermal Infrared

LST: Land Surface Temperature

MODIS: Moderate Resolution Imaging Spectroradiometer
KDM: Kernel-driven Model

SZA: Solar Zenith angle
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ABI: Advanced Baseline Imager

VAA: Viewing Azimuth Angle

CSPP: Cross Solar Principal Plane

BOA: Bottom-of-atmosphere

RMSE: Root-mean-square error

DART: Discrete Anisotropic Radiative Transfer Model
IGBP: International Geosphere Biosphere Programme
OSH: Open Shrubland

CRO: Cropland

DBF: Deciduous Broadleaf Forest

ATSR: Along-Track Scanning Radiometer

AATSR: Advanced Along-Track Scanning Radiometer
STD: Standard derivation
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