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Abstract

The accurate prediction of the acid dissociation constants (pK,) of organic and drug molecules is known to be a challenging
problem in computational quantum chemistry. Specifically, density functional theory-based predictions suffer from a high
dependence on the nature of the functional group as well as the underlying exchange—correlation functional. Additionally,
the introduction of explicit solvent molecules is known to be important for accurate prediction of the pK, values for many
functional groups in water, making it a particularly challenging problem. The inclusion of only implicit solvation effects,
though highly efficient, is often inadequate for the prediction of pK,s. In this paper, we have considered a data set of 303
molecules containing 13 different functional groups to assess the predictability of DFT for the calculation of pK,s. Using
just implicit solvation models with DFT, each functional group shows a linear correlation with experiment, though with
different slopes for different functional groups. Using simple linear regression-based corrections for systematic errors of
different functional groups, we show that DFT including implicit solvation can be used to make reliable predictions of pK,s
with a mean absolute deviation of only 0.397 pK, units. For a test set of 100 larger and more complex drug molecules, the
performance of our model is very good, though with a slightly larger mean absolute deviation of 0.629 pK, units. More
importantly, our pK, protocol is general and applicable to any underlying density functional, making it an effective compu-

tational tool for pK, predictions.

1 Introduction

Accurately predicting the acid dissociation constant (pK,)
for organic and bio-organic molecules containing different
functional groups in solution has been an ongoing chal-
lenge in computational quantum chemistry [1-5]. Many of
the popular protocols involving highly correlated levels of
theory for calculating pK, are limited in applicability due to
the accuracy—cost trade-off inherent to all quantum mechani-
cal methods, as well as the added complexity of accurately
modeling solvation effects [2, 5-9]. To overcome this bot-
tleneck, approximate methods, such as density functional
theory (DFT) paired with an implicit solvation model (e.g.,
polarizable continuum model (PCM), COSMO), are often
the most practical options to represent the solute—solvent
interactions [4, 5, 10-15]. While these tools can be readily
used to estimate pK,s of complex systems, such implicit
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solvation models fail to give an adequate description of the
chemical environment of the functional group being (de)
protonated since they ignore explicit interactions with the
solvent (typically, H,O) via hydrogen bonding [10]. Recent
reports from the Raghavachari group have introduced a more
feasible pK, calculation protocol which uses the connec-
tivity-based hierarchy (CBH) in conjunction with a recom-
mended number of explicit water molecules depending on
the functional group [16]. Although this protocol has been
used to achieve chemical accuracy for a set of bio-organic
molecules, modeling solvent interactions explicitly is much
more computationally demanding and may not be practi-
cal to study larger biomolecular systems [16]. Furthermore,
state-of-the-art pK, calculations with both implicit and
explicit solvation models suggest that the significance of
explicit solvation is not uniform among different molecular
systems [6, 10, 17-19]. Thus, a broadly applicable proce-
dure, not requiring explicit solvation, would greatly benefit
the field and remove the need to analyze individual systems.
Herein, we propose an alternative method for pK, prediction
to circumvent the need for explicit solvation entirely. In our
method, we exploit the local nature of the acid dissociation
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constant to perform systematic error corrections via a sim-
ple chemical informatics-based linear regression model to
achieve high accuracy. Our initial goal was to make reliable
predictions with a target accuracy of < 1 pK, unit for a wide
variety of functional groups, though, as demonstrated below,
we achieve much higher accuracy.

2 Background

The negative logarithm of the acid dissociation constant
(pK,) plays an essential role in chemical and biological
processes related to solvation, protein—ligand binding, and
protein structure [1, 5, 20-22]. In drug design, the physio-
chemical properties that are screened for in ADME (absorp-
tion, distribution, metabolism, and excretion) are directly
correlated with the protonated and deprotonated forms of
the molecule [1, 23, 24]. In materials science, the charge
state of a molecule can influence properties of nanomaterials
such as dispersibility, catalysis, 3-D structure, and the tau-
tomeric form [25]. Since the equilibrium of the protonated
and deprotonated states is dependent on the change in Gibbs
free energy (AG), pK, can be described via a well-defined
thermodynamic process [5] [26].

Quantum mechanical methods including higher-order
electron correlation effects can typically be used to predict
the acid dissociation constant of small molecules [16, 27, 28,
28, 29]. Due to the steep computational scaling, the applica-
bility of these methods toward larger molecules (i.e., drug
molecules) may not be practical, particularly when a large
number of molecules have to be screened. One example of
a popular QM-based ab initio program is Jaguar pK,, which
utilizes linear fit equations for 1 K molecules along with
functional group-specific parameters to predict the pK, [30].
Although the performance is strong, the shell model that is
used for pK, prediction is part of a commercial software
package that is not openly available and may require frequent
updates involving the latest literature data [30, 31]. QSAR
(quantitative structure—activity relationship) algorithms are
also commonly used and are typically faster and more accu-
rate compared to ab initio predictors for common functional
groups [32, 33]. Unfortunately, many of these algorithms
perform poorly for functional groups that are not well rep-
resented, or with molecules (typically found in materials sci-
ence) containing multiple conformations or resonance forms.
Finally, there has been a growing interest and excitement
toward artificial intelligence, specifically machine learning
(ML), which stems from the low computational cost, and
ability to model complex real-world problems [32, 34-37].

In this manuscript, we develop and compare 3 sim-
ple chemical informatics-based models that overcome the
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accuracy—cost trade-off inherent to all quantum mechanical
methods. In Model 1, raw pK_s are calculated using density
functional theory (DFT) and implicit solvation. For Model 2,
the systematic error associated with DFT in the raw pKs is
corrected using a single linear regression over the entire data
set. In Model 3, we exploit the local nature of pK,s through
functional group-specific linear fits that are applicable for large
drug molecules. In future work, we plan to represent the local
nature of pK,s as molecular descriptors for machine learning
models and assess the performance against Model 3.

3 Computational models
3.1 Raw pK, evaluation procedure
3.1.1 Model1

Calculating the raw pK, of the deprotonation reaction, e.g.,
AH < A~ + H*, can be described using the following
protocol,

AG?
aq

. 1
2.303RT )

Raw pK, =

where AG? is the aqueous free energy change for the depro-
q

tonation reaction, R is the molar gas constant, and 7 is the

temperature (298.15 K). AGZq can be calculated as

AGZ(] = G::;m + G;Zq — G::H,aq (2)

where G_ and G}, are the free energies associated with
aq aq

the deprofonated (A7) and protonated (AH) species in aque-
ous phase using SMD [38] (solvation model based on den-

sity) implicit solvation. G, is the free energy of a proton in
b

aqueous phase and is given as,

%  __ /o * latm—1M
GHL, = GH:;uS + AGH;]V + AG 3)
where AG;;+ = —265.9 [39-42] kcal/mol is the change in

ssolv
free energy of a solvated proton, AG'*™~1™ = 1 89 kcal/mol
is the change in free energy associated with converting from
1 atm in the standard state to 1 molarity in aqueous media,
o 710 o . .
and G Hy, = HgaS - TSgas is the free energy of a proton in the

gas phase. Hg°as = (%)RT is the enthalpic contribution of
hydrogen gas while Sgas = 26.05 cal /(mol « K) is the entropic
contribution of hydrogen gas. As recommended from previ-
ous studies [13, 43, 44], a thermodynamic cycle was not

used to calculate AGZq.
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3.2 Systematic error correction associated with DFT
3.2.1 Models2and 3

From the linear regression fit of the entire pK, set in our
model, the loss function was minimized to correct for the
systematic errors. This can be calculated as

Y1 = m(raw pKa) + b 4)

where Y/ is the corrected calculated pK,, m the slope, and
b the y-intercept of the linear regression equations. Given
the corrected calculated pK,, the mean absolute deviation
(MAD) can be calculated as

MAD = M where |Y? — Y| = absolute deviation,
n=number of pK_s

In Model 2, a single regression was used for the entire set
of molecules. In Model 3, the linear regression was carried
out for individual functional groups to correct for the sys-
tematic errors for each functional group (vide infra).

3.3 Computational details

Geometry optimizations for each molecule in the model and
test set were obtained with the B3LYP [45—-47] functional,
6-311++ G(d,p) [48-52] basis set, and SMD [4] univer-
sal solvation model for implicit solvation. To explore the
dependence of the computed results on the density functional
used, the deprotonation free energy was obtained using
the following levels of theory: B3LYP/6-311 ++ G(d,p),
B3LYP-D3(BJ)/6-311 ++ G(d,p), and wB97X-D

[53]1/6-311 ++ G(d,p). The treatment of solvent was done
implicitly through the SMD continuum solvation model.
In B3LYP-D3(BJ), Grimme’s empirical dispersion model,
D3(BJ) [54, 55], was used in conjunction with the B3LYP
functional. In addition, all three density functionals were
used with the 6-31G(d) basis set to explore whether a much
smaller basis set is adequate for pK, studies, but the results
were substantially worse, and will not be discussed further.
The deficiency of the 6-31G(d) basis is likely due to the
absence of diffuse functions that are known to be important
for the treatment of anions. All computational work was per-
formed using the Gaussian 16 program suite [56].

3.4 Training set

To encompass a wide chemical space, 13 functional groups
with a total of 303 molecules and 330 raw pK,s were used as
the framework for our chemical informatics model (Table 1).
Not only do functional groups identify the regions of a mol-
ecule where the chemical reaction occurs, but also can be
used as a general descriptor for a set of structurally similar
set of molecules (e.g., amino acids). Out of the 13 functional
groups, tertiary amine, secondary amine, aliphatic alcohol,
aromatic alcohol, and carboxylic acid were cited in a list of
10 most frequent functional groups in bioactive molecules
found in the medicinal chemistry literature [57]. In addition,
since chloro and fluoro groups were also frequently present
in medicinal chemistry, molecules that contained either of
them, regardless of the deprotonation site, were used to cre-
ate separate linear fits to explore their behavior (SI Fig. 1).

Table 1 List of 13 functional

Functional group Number of Number of pK, MAE IApK,|
groups and mean absolute molecules
error (MAE) associated with
calculated and experimental Nitrogen containing 24 24 0717
pKa at the B3LYP/6— Aromatic groups
ilnlht;;fglfzgfvvgl;f theory Aliphatic alcohols 20 20 7.842
Aliphatic thiols 20 20 8.120
Primary amines 21 21 0.714
Secondary amines 16 16 0.568
Tertiary amines 14 14 0.883
Carboxylic acids 38 38 1.831
Thiophenols 13 13 4.933
Phenols 41 41 3.680
Anilines 36 36 3.733
Benzoic acids 26 26 1.757
Carbon acids 14 14 4.171
Amino acids 20 47 2.000% 2.008(COOH),
1.744(NH3 +),
2.728(R-group)
Total 303 330 3.000

#Total MAE for functional group
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Fig. 1 Relationship between experimental and calculated pK, for 303
molecules (330 total pK,s) calculated at B3LYP/ 6-311++G(d,p)
level of theory with SMD solvation. Set of molecules are found in SI
Table 1

However, these two fits were separate from any of the final
models to avoid introducing duplicate data.

4 Results and discussion

Each model utilizes computationally inexpensive DFT
methods to calculate the pK, values. Of the three function-
als tested, BALYP/6-311 ++4 G(d,p) was slightly better than
the other two for the raw errors and was chosen to illustrate
the performance for the remainder of this study. However,
the conclusions are similar for all three functionals.

4.1 Model 1

In Model 1, a DFT calculation (B3LYP/6-311 ++ G(d,p))
with implicit solvation was performed on 303 molecules for
330 pK,s and when compared to experimental values, had a
large MAE of 3.000 pK, units. Since pK, is measured on the
logarithmic scale, the chemical insight provided by Model
1 is minimal.

4.2 Model 2

The same DFT-calculated pK,s were then fit to the corre-
sponding experimental values using a standard linear regres-
sion, shown in Fig. 1.

The observed linear regression is then used to derive
Model 2. Each pK, was plugged into the linear fit equation
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Fig.2 Performance of Model 1 and Model 2 for each functional/basis
set

from Fig. 1 to correct for the systematic error associated
with DFT. This resulted in a reduction of error from 3.000 to
1.281 pK, units going from Model 1 to Model 2. The results
from Model 1 and Model 2 are shown in Fig. 2.

While Model 2 is a significant improvement compared
to Model 1 (uncorrected DFT-calculated pKa), it is still not
within the target accuracy of <1 pK, unit. For several of
the functional groups, e.g., aliphatic thiol, primary amine,
secondary amine, and thiophenol, the MAE of Model 2 was
quite far from target accuracy (over 2 pK, units) though the
coefficient of determination R?>>0.92 was quite high for
most of the groups. This indicates that QM calculated depro-
tonation energies are systematic for each functional group.
Furthermore, for primary, secondary, and tertiary amines,
the MAE was worse using Model 2 than Model 1, indicat-
ing that a global correction does not accurately represent all
functional groups in the data set, leading to Model 3.

4.3 Model 3

For Model 3, the full set was divided into functional groups
and separate linear fit equations were used to correct for the
systematic errors associated with each group (Fig. 3).

Thus, in Model 3, the DFT-calculated pK,s of each func-
tional group were fitted separately to the corresponding
experimental pKs. This correction lowered the error for the
full set of molecules from 1.281 to 0.396 pK, units, which
is well within our target accuracy. The results for all three
models are shown for the individual functional groups are
shown in Fig. 4.

As shown in Fig. 4, aliphatic thiols had the largest drop
in error (8.120 to 0.476 pK, units), while aliphatic alcohols
were the second most improved group with a reduction from
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Fig. 3 Functional group-specific linear fits used to correct for systematic errors
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Fig.4 Effect of the model 9
used on the absolute difference
between the calculated and 8
experimental pK, for each func- g
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7.842 to 0.498. The smallest improvement was with nitrogen
containing heterocycle (0.717 to 0.475) and secondary amines
(0.568 to 0.311) since they were already quite accurate com-
pared to experimental values. Similar errors were obtained in a
different study [16] which utilized an optimal number of water
molecules for 12 of the functional groups studied. However,
our work suggests that explicit solvation may not be required
to derive chemically accurate pKs, but can be obtained instead
through systematic error correction. There were a few groups
(primary, secondary, tertiary amines) that when used in Model
2, MAE increased compared to Model 1, clearly demonstrat-
ing that a single linear regression for all systems is inadequate
for cases where the raw performance in Model 1 is fortui-
tously very good. As expected, Model 3 with individual linear
regressions performs very well on these systems with accuracy
within 0.5 pKa units. The largest errors in Model 3 can be seen
in more complex groups such as carbon acids which cover a
large range of pKas (14 units) and amino acids which can have
a doubly charged or zwitterionic form. Nevertheless, after the
Model 3 correction, the MAE decreased for all 13 functional
groups and resulted in all of them falling well within the target
accuracy of 1 pK, unit (Fig. 4). As mentioned earlier, Model
3 corrections for chloro- and fluoro-containing molecules
were also separately fitted (SI Fig. 1) to explore their behav-
ior, regardless of the site of deprotonation. They both show
a good linear trend (R*>0.80) and reasonable performance
(0.921 and 1.022 pK, unit MAD, respectively), suggesting that
perturbations from highly electron withdrawing groups can
also be systematically corrected and may play a role in pKa
calculations. Nevertheless, separating the molecules into their
corresponding functional group-specific fit, as we have done

@ Springer
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Fig.5 Error between calculated and experimental pK, for entire 303
molecule set. Model 1 is the raw pK,, Model 2 includes systematic
error correction on raw pK, using linear fit for all molecules (Fig. 2).
Model 3 includes functional group-specific linear fit equations to cor-
rect for the systematic error (Figs. 3, 4). Dashed line indicates target
accuracy < 1 pK, unit

in this work, is still most important and performs best. For
simplicity and to avoid introducing duplicate molecules into
the training set, chloro- and fluoro-specific fits were not used
in the final models.

Figure 5 summarizes the performance of all three models
for the training set used.
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Scheme 1 Sample of drug molecules in test set (15 out of 100)

5 Rigorous assessment of model 3 for more
complex systems

To gauge the chemical span and applicability of our
model, a set of 100 drug molecules with multiple func-
tional groups were randomly chosen. No constraints were
made on the characteristics (i.e., size, stereochemistry) of
the drug molecules studied, and a sample from the test set
of molecules can be found in Scheme 1.

With the same framework as before, the
B3LYP/6-311 ++ G(d,p) functional and basis set were used
in conjunction with implicit solvation (SMD) to obtain QM
calculated deprotonation energies that can be used to deter-
mine the acid dissociation constant. Since literature values
present only one pK,, the drug molecules in our study were
deprotonated individually at all functional group sites. While
it may seem intuitive to compare the closest calculated raw
pK, to the experimental value, as we saw earlier, because of

0 NH

HN A AP

“OH

\ 0
— HoN _N._NH (o)
N N ) >
”/\/ (o) N& O/

the systematic error inherent for each functional group, one
must correct each pK, using the functional group-specific
linear fit equations before comparing with the literature val-
ues. The corrected values closest to the experimental pK,
were used for comparison. In most cases, the assignments
were unambiguous.

A list of the drug molecules along with their associated
raw pK,s can be found in the supplemental information (SI
Table 2). After obtaining the correct raw pK,, each drug
molecule was then corrected using the corresponding func-
tional group-specific linear fit (Model 3) to obtain the new
predicted pK,. As expected, the correction dropped the over-
all error for all 100 drug molecules from 1.381 to 0.629
pK, units, highlighting the predictive strength of Model 3
on large molecules with multiple functional groups. The
final error is slightly larger than the value for the training
set, but not entirely surprising since the drug molecules are
both larger and more complex. However, it was somewhat
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surprising that the uncorrected (raw) MAE was only 1.381
pK, units. While the drug molecules were arbitrarily cho-
sen, many of them were basic, which may be one possible
cause for the unexpectedly low uncorrected MAE of 1.381.
In addition, the functional groups with the largest raw errors
were less represented in this test set. To get a more complete
gauge of the Model 3 performance, a broader distribution of
acidic and basic drugs may be needed. It is also worth not-
ing that in the test set, there was one molecule (triazolam)
which had a deviation of >3 pKa units. The molecule con-
tained a triazole group attached to a 7-membered ring with
phenyl and chloro groups. For this rare case, very different
from any of the molecules in the training set, the protonated
amine was unable to be fully represented by the functional
group-specific fit. In a separate instance, there was a drug
molecule (methadone) which had a poor initial structure and
optimized to a geometry that had a phenyl group hovering
directly over a protonated amine. The electrostatic attrac-
tion between the two groups resulted in an overestimated
pKa and required a rotation of the amine away from the ring
to reach a more stable conformation that performed better.
A conformer search should be used in future work to avoid
such issues. Nevertheless, the overall performance of Model
3 is well within the target accuracy of 1 pK, unit even for
such complex systems.

One of the major advantages with Model 3 is that the
computational cost for creating and testing the model was
very inexpensive, making it feasible to quickly expand the
chemical space. To improve Model 3, it would be benefi-
cial to include a conformational search for molecules with
many rotatable bonds, ensuring that the optimized structure
is described by the local minimum on the potential energy
surface. Developing an algorithm that can choose the correct
micro-pK, would also be a huge improvement and decrease
the chance of assigning the wrong deprotonation site. Fur-
thermore, it should be interesting to see whether we could
formulate a similar model or correction term that could pre-
dict the pK, in different solvents (e.g., DMF).

6 Conclusions

To summarize, we derived an accurate predictive model,
Model 3, by starting from an inexpensive method such as
DFT with an implicit solvation model and taking advantage
of the locality of the acid dissociation constant. Using simple
linear regression-based corrections for systematic errors of
different functional groups, Model 3 was able to obtain pK,s
with a mean absolute deviation of only 0.397 pK, units. For
a test set of 100 larger and more complex drug molecules,
the performance of our model is still very good, though with
a slightly larger mean absolute deviation of 0.629 pK, units.
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More importantly, our pK, protocol is general and applicable
to any underlying density functional, making it an effective
computational tool for pK, predictions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00214-023-03024-6.
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