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Abstract
The accurate prediction of the acid dissociation constants (pKa) of organic and drug molecules is known to be a challenging 
problem in computational quantum chemistry. Specifically, density functional theory-based predictions suffer from a high 
dependence on the nature of the functional group as well as the underlying exchange–correlation functional. Additionally, 
the introduction of explicit solvent molecules is known to be important for accurate prediction of the pKa values for many 
functional groups in water, making it a particularly challenging problem. The inclusion of only implicit solvation effects, 
though highly efficient, is often inadequate for the prediction of pKas. In this paper, we have considered a data set of 303 
molecules containing 13 different functional groups to assess the predictability of DFT for the calculation of pKas. Using 
just implicit solvation models with DFT, each functional group shows a linear correlation with experiment, though with 
different slopes for different functional groups. Using simple linear regression-based corrections for systematic errors of 
different functional groups, we show that DFT including implicit solvation can be used to make reliable predictions of pKas 
with a mean absolute deviation of only 0.397 pKa units. For a test set of 100 larger and more complex drug molecules, the 
performance of our model is very good, though with a slightly larger mean absolute deviation of 0.629 pKa units. More 
importantly, our pKa protocol is general and applicable to any underlying density functional, making it an effective compu-
tational tool for pKa predictions.

1  Introduction

Accurately predicting the acid dissociation constant (pKa) 
for organic and bio-organic molecules containing different 
functional groups in solution has been an ongoing chal-
lenge in computational quantum chemistry [1–5]. Many of 
the popular protocols involving highly correlated levels of 
theory for calculating pKa are limited in applicability due to 
the accuracy–cost trade-off inherent to all quantum mechani-
cal methods, as well as the added complexity of accurately 
modeling solvation effects [2, 5–9]. To overcome this bot-
tleneck, approximate methods, such as density functional 
theory (DFT) paired with an implicit solvation model (e.g., 
polarizable continuum model (PCM), COSMO), are often 
the most practical options to represent the solute–solvent 
interactions [4, 5, 10–15]. While these tools can be readily 
used to estimate pKas of complex systems, such implicit 

solvation models fail to give an adequate description of the 
chemical environment of the functional group being (de)
protonated since they ignore explicit interactions with the 
solvent (typically, H2O) via hydrogen bonding [10]. Recent 
reports from the Raghavachari group have introduced a more 
feasible pKa calculation protocol which uses the connec-
tivity-based hierarchy (CBH) in conjunction with a recom-
mended number of explicit water molecules depending on 
the functional group [16]. Although this protocol has been 
used to achieve chemical accuracy for a set of bio-organic 
molecules, modeling solvent interactions explicitly is much 
more computationally demanding and may not be practi-
cal to study larger biomolecular systems [16]. Furthermore, 
state-of-the-art pKa calculations with both implicit and 
explicit solvation models suggest that the significance of 
explicit solvation is not uniform among different molecular 
systems [6, 10, 17–19]. Thus, a broadly applicable proce-
dure, not requiring explicit solvation, would greatly benefit 
the field and remove the need to analyze individual systems. 
Herein, we propose an alternative method for pKa prediction 
to circumvent the need for explicit solvation entirely. In our 
method, we exploit the local nature of the acid dissociation 
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constant to perform systematic error corrections via a sim-
ple chemical informatics-based linear regression model to 
achieve high accuracy. Our initial goal was to make reliable 
predictions with a target accuracy of < 1 pKa unit for a wide 
variety of functional groups, though, as demonstrated below, 
we achieve much higher accuracy.

2 � Background

The negative logarithm of the acid dissociation constant 
(pKa) plays an essential role in chemical and biological 
processes related to solvation, protein–ligand binding, and 
protein structure [1, 5, 20–22]. In drug design, the physio-
chemical properties that are screened for in ADME (absorp-
tion, distribution, metabolism, and excretion) are directly 
correlated with the protonated and deprotonated forms of 
the molecule [1, 23, 24]. In materials science, the charge 
state of a molecule can influence properties of nanomaterials 
such as dispersibility, catalysis, 3-D structure, and the tau-
tomeric form [25]. Since the equilibrium of the protonated 
and deprotonated states is dependent on the change in Gibbs 
free energy ( ΔG ), pKa can be described via a well-defined 
thermodynamic process [5] [26].

Quantum mechanical methods including higher-order 
electron correlation effects can typically be used to predict 
the acid dissociation constant of small molecules [16, 27, 28, 
28, 29]. Due to the steep computational scaling, the applica-
bility of these methods toward larger molecules (i.e., drug 
molecules) may not be practical, particularly when a large 
number of molecules have to be screened. One example of 
a popular QM-based ab initio program is Jaguar pKa, which 
utilizes linear fit equations for 1 K molecules along with 
functional group-specific parameters to predict the pKa [30]. 
Although the performance is strong, the shell model that is 
used for pKa prediction is part of a commercial software 
package that is not openly available and may require frequent 
updates involving the latest literature data [30, 31]. QSAR 
(quantitative structure–activity relationship) algorithms are 
also commonly used and are typically faster and more accu-
rate compared to ab initio predictors for common functional 
groups [32, 33]. Unfortunately, many of these algorithms 
perform poorly for functional groups that are not well rep-
resented, or with molecules (typically found in materials sci-
ence) containing multiple conformations or resonance forms. 
Finally, there has been a growing interest and excitement 
toward artificial intelligence, specifically machine learning 
(ML), which stems from the low computational cost, and 
ability to model complex real-world problems [32, 34–37].

In this manuscript, we develop and compare 3 sim-
ple chemical informatics-based models that overcome the 

accuracy–cost trade-off inherent to all quantum mechanical 
methods. In Model 1, raw pKas are calculated using density 
functional theory (DFT) and implicit solvation. For Model 2, 
the systematic error associated with DFT in the raw pKas is 
corrected using a single linear regression over the entire data 
set. In Model 3, we exploit the local nature of pKas through 
functional group-specific linear fits that are applicable for large 
drug molecules. In future work, we plan to represent the local 
nature of pKas as molecular descriptors for machine learning 
models and assess the performance against Model 3.

3 � Computational models

3.1 � Raw pKa evaluation procedure

3.1.1 � Model 1

Calculating the raw pKa of the deprotonation reaction, e.g., 
AH ↔ A− + H+ , can be described using the following 
protocol,

where ΔG∗
aq

 is the aqueous free energy change for the depro-
tonation reaction, R is the molar gas constant, and T is the 
temperature (298.15 K). ΔG∗

aq
 can be calculated as

where G∗
A−
,aq

 and G∗
AH,aq

 are the free energies associated with 
the deprotonated (A−) and protonated (AH) species in aque-
ous phase using SMD [38] (solvation model based on den-
sity) implicit solvation. G∗

H+
,aq

 is the free energy of a proton in 
aqueous phase and is given as,

where ΔG∗
H+

,solv

 =  − 265.9 [39–42] kcal/mol is the change in 
free energy of a solvated proton, ΔG1atm→1M = 1.89 kcal/mol 
is the change in free energy associated with converting from 
1 atm in the standard state to 1 molarity in aqueous media, 
and G◦

H+
,gas

= H◦

gas
− TS

◦

gas
 is the free energy of a proton in the 

gas phase.  H◦

gas
=
(

5

2

)
RT  is the enthalpic contribution of 

hydrogen gas while S◦

gas
= 26.05 cal∕(mol ∙ K) is the entropic 

contribution of hydrogen gas. As recommended from previ-
ous studies [13, 43, 44], a thermodynamic cycle was not 
used to calculate ΔG∗

aq
.
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3.2 � Systematic error correction associated with DFT

3.2.1 � Models 2 and 3

From the linear regression fit of the entire pKa set in our 
model, the loss function was minimized to correct for the 
systematic errors. This can be calculated as

where Y′ is the corrected calculated pKa, m the slope, and 
b the y-intercept of the linear regression equations. Given 
the corrected calculated pKa, the mean absolute deviation 
(MAD) can be calculated as

MAD =
∑n

i=1
�Y�−Y�
n

 where |Y� − Y| = absolute deviation, 
n = number of pKas

In Model 2, a single regression was used for the entire set 
of molecules. In Model 3, the linear regression was carried 
out for individual functional groups to correct for the sys-
tematic errors for each functional group (vide infra).

3.3 � Computational details

Geometry optimizations for each molecule in the model and 
test set were obtained with the B3LYP [45–47] functional, 
6–311 ++ G(d,p) [48–52] basis set, and SMD [4] univer-
sal solvation model for implicit solvation. To explore the 
dependence of the computed results on the density functional 
used, the deprotonation free energy was obtained using 
the following levels of theory: B3LYP/6–311 ++ G(d,p), 
B3LYP-D3(BJ)/6–311 ++ G(d,p),  and ⍵B97X-D 

(4)Y� = m(raw pKa) + b

[53]/6–311 ++ G(d,p). The treatment of solvent was done 
implicitly through the SMD continuum solvation model. 
In B3LYP-D3(BJ), Grimme’s empirical dispersion model, 
D3(BJ) [54, 55], was used in conjunction with the B3LYP 
functional. In addition, all three density functionals were 
used with the 6–31G(d) basis set to explore whether a much 
smaller basis set is adequate for pKa studies, but the results 
were substantially worse, and will not be discussed further. 
The deficiency of the 6–31G(d) basis is likely due to the 
absence of diffuse functions that are known to be important 
for the treatment of anions. All computational work was per-
formed using the Gaussian 16 program suite [56].

3.4 � Training set

To encompass a wide chemical space, 13 functional groups 
with a total of 303 molecules and 330 raw pKas were used as 
the framework for our chemical informatics model (Table 1). 
Not only do functional groups identify the regions of a mol-
ecule where the chemical reaction occurs, but also can be 
used as a general descriptor for a set of structurally similar 
set of molecules (e.g., amino acids). Out of the 13 functional 
groups, tertiary amine, secondary amine, aliphatic alcohol, 
aromatic alcohol, and carboxylic acid were cited in a list of 
10 most frequent functional groups in bioactive molecules 
found in the medicinal chemistry literature [57]. In addition, 
since chloro and fluoro groups were also frequently present 
in medicinal chemistry, molecules that contained either of 
them, regardless of the deprotonation site, were used to cre-
ate separate linear fits to explore their behavior (SI Fig. 1). 

Table 1   List of 13 functional 
groups and mean absolute 
error (MAE) associated with 
calculated and experimental 
pKa at the B3LYP/6–
311 ++ G(d,p) level of theory 
with implicit solvation

a Total MAE for functional group

Functional group Number of  
molecules

Number of pKa MAE |ΔpKa|

Ni�trogen containing
   Aromatic groups

24 24 0.717

Aliphatic alcohols 20 20 7.842
Aliphatic thiols 20 20 8.120
Primary amines 21 21 0.714
Secondary amines 16 16 0.568
Tertiary amines 14 14 0.883
Carboxylic acids 38 38 1.831
Thiophenols 13 13 4.933
Phenols 41 41 3.680
Anilines 36 36 3.733
Benzoic acids 26 26 1.757
Carbon acids 14 14 4.171
Amino acids 20 47 2.000a, 2.008(COOH), 

1.744(NH3 +), 
2.728(R-group)

Total 303 330 3.000
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However, these two fits were separate from any of the final 
models to avoid introducing duplicate data.

4 � Results and discussion

Each model utilizes computationally inexpensive DFT 
methods to calculate the pKa values. Of the three function-
als tested, B3LYP/6–311 ++ G(d,p) was slightly better than 
the other two for the raw errors and was chosen to illustrate 
the performance for the remainder of this study. However, 
the conclusions are similar for all three functionals.

4.1 � Model 1

In Model 1, a DFT calculation (B3LYP/6–311 ++ G(d,p)) 
with implicit solvation was performed on 303 molecules for 
330 pKas and when compared to experimental values, had a 
large MAE of 3.000 pKa units. Since pKa is measured on the 
logarithmic scale, the chemical insight provided by Model 
1 is minimal.

4.2 � Model 2

The same DFT-calculated pKas were then fit to the corre-
sponding experimental values using a standard linear regres-
sion, shown in Fig. 1.

The observed linear regression is then used to derive 
Model 2. Each pKa was plugged into the linear fit equation 

from Fig. 1 to correct for the systematic error associated 
with DFT. This resulted in a reduction of error from 3.000 to 
1.281 pKa units going from Model 1 to Model 2. The results 
from Model 1 and Model 2 are shown in Fig. 2.

While Model 2 is a significant improvement compared 
to Model 1 (uncorrected DFT-calculated pKa), it is still not 
within the target accuracy of < 1 pKa unit. For several of 
the functional groups, e.g., aliphatic thiol, primary amine, 
secondary amine, and thiophenol, the MAE of Model 2 was 
quite far from target accuracy (over 2 pKa units) though the 
coefficient of determination R2 > 0.92 was quite high for 
most of the groups. This indicates that QM calculated depro-
tonation energies are systematic for each functional group. 
Furthermore, for primary, secondary, and tertiary amines, 
the MAE was worse using Model 2 than Model 1, indicat-
ing that a global correction does not accurately represent all 
functional groups in the data set, leading to Model 3.

4.3 � Model 3

For Model 3, the full set was divided into functional groups 
and separate linear fit equations were used to correct for the 
systematic errors associated with each group (Fig. 3).

Thus, in Model 3, the DFT-calculated pKas of each func-
tional group were fitted separately to the corresponding 
experimental pKas. This correction lowered the error for the 
full set of molecules from 1.281 to 0.396 pKa units, which 
is well within our target accuracy. The results for all three 
models are shown for the individual functional groups are 
shown in Fig. 4.

As shown in Fig. 4, aliphatic thiols had the largest drop 
in error (8.120 to 0.476 pKa units), while aliphatic alcohols 
were the second most improved group with a reduction from 

Fig. 1   Relationship between experimental and calculated pKa for 303 
molecules (330 total pKas) calculated at B3LYP/ 6–311++G(d,p) 
level of theory with SMD solvation. Set of molecules are found in SI 
Table 1

Fig. 2   Performance of Model 1 and Model 2 for each functional/basis 
set
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Fig. 3   Functional group-specific linear fits used to correct for systematic errors
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7.842 to 0.498. The smallest improvement was with nitrogen 
containing heterocycle (0.717 to 0.475) and secondary amines 
(0.568 to 0.311) since they were already quite accurate com-
pared to experimental values. Similar errors were obtained in a 
different study [16] which utilized an optimal number of water 
molecules for 12 of the functional groups studied. However, 
our work suggests that explicit solvation may not be required 
to derive chemically accurate pKas, but can be obtained instead 
through systematic error correction. There were a few groups 
(primary, secondary, tertiary amines) that when used in Model 
2, MAE increased compared to Model 1, clearly demonstrat-
ing that a single linear regression for all systems is inadequate 
for cases where the raw performance in Model 1 is fortui-
tously very good. As expected, Model 3 with individual linear 
regressions performs very well on these systems with accuracy 
within 0.5 pKa units. The largest errors in Model 3 can be seen 
in more complex groups such as carbon acids which cover a 
large range of pKas (14 units) and amino acids which can have 
a doubly charged or zwitterionic form. Nevertheless, after the 
Model 3 correction, the MAE decreased for all 13 functional 
groups and resulted in all of them falling well within the target 
accuracy of 1 pKa unit (Fig. 4). As mentioned earlier, Model 
3 corrections for chloro- and fluoro-containing molecules 
were also separately fitted (SI Fig. 1) to explore their behav-
ior, regardless of the site of deprotonation. They both show 
a good linear trend (R2 > 0.80) and reasonable performance 
(0.921 and 1.022 pKa unit MAD, respectively), suggesting that 
perturbations from highly electron withdrawing groups can 
also be systematically corrected and may play a role in pKa 
calculations. Nevertheless, separating the molecules into their 
corresponding functional group-specific fit, as we have done 

in this work, is still most important and performs best. For 
simplicity and to avoid introducing duplicate molecules into 
the training set, chloro- and fluoro-specific fits were not used 
in the final models.

Figure 5 summarizes the performance of all three models 
for the training set used.

Fig. 4   Effect of the model 
used on the absolute difference 
between the calculated and 
experimental pKa for each func-
tional group. On x-axis, Ar–N 
corresponds to nitrogen contain-
ing aromatic, R–OH is primary 
alcohol, R–SH is thiol, R–NH2 
is primary amine, etc

Fig. 5   Error between calculated and experimental pKa for entire 303 
molecule set. Model 1 is the raw pKa, Model 2 includes systematic 
error correction on raw pKa using linear fit for all molecules (Fig. 2). 
Model 3 includes functional group-specific linear fit equations to cor-
rect for the systematic error (Figs. 3, 4). Dashed line indicates target 
accuracy < 1 pKa unit
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5 � Rigorous assessment of model 3 for more 
complex systems

To gauge the chemical span and applicability of our 
model, a set of 100 drug molecules with multiple func-
tional groups were randomly chosen. No constraints were 
made on the characteristics (i.e., size, stereochemistry) of 
the drug molecules studied, and a sample from the test set 
of molecules can be found in Scheme 1.

With  the  same f ramework as  before ,  the 
B3LYP/6–311 ++ G(d,p) functional and basis set were used 
in conjunction with implicit solvation (SMD) to obtain QM 
calculated deprotonation energies that can be used to deter-
mine the acid dissociation constant. Since literature values 
present only one pKa, the drug molecules in our study were 
deprotonated individually at all functional group sites. While 
it may seem intuitive to compare the closest calculated raw 
pKa to the experimental value, as we saw earlier, because of 

the systematic error inherent for each functional group, one 
must correct each pKa using the functional group-specific 
linear fit equations before comparing with the literature val-
ues. The corrected values closest to the experimental pKa 
were used for comparison. In most cases, the assignments 
were unambiguous.

A list of the drug molecules along with their associated 
raw pKas can be found in the supplemental information (SI 
Table 2). After obtaining the correct raw pKa, each drug 
molecule was then corrected using the corresponding func-
tional group-specific linear fit (Model 3) to obtain the new 
predicted pKa. As expected, the correction dropped the over-
all error for all 100 drug molecules from 1.381 to 0.629 
pKa units, highlighting the predictive strength of Model 3 
on large molecules with multiple functional groups. The 
final error is slightly larger than the value for the training 
set, but not entirely surprising since the drug molecules are 
both larger and more complex. However, it was somewhat 

Scheme 1   Sample of drug molecules in test set (15 out of 100)
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surprising that the uncorrected (raw) MAE was only 1.381 
pKa units. While the drug molecules were arbitrarily cho-
sen, many of them were basic, which may be one possible 
cause for the unexpectedly low uncorrected MAE of 1.381. 
In addition, the functional groups with the largest raw errors 
were less represented in this test set. To get a more complete 
gauge of the Model 3 performance, a broader distribution of 
acidic and basic drugs may be needed. It is also worth not-
ing that in the test set, there was one molecule (triazolam) 
which had a deviation of > 3 pKa units. The molecule con-
tained a triazole group attached to a 7-membered ring with 
phenyl and chloro groups. For this rare case, very different 
from any of the molecules in the training set, the protonated 
amine was unable to be fully represented by the functional 
group-specific fit. In a separate instance, there was a drug 
molecule (methadone) which had a poor initial structure and 
optimized to a geometry that had a phenyl group hovering 
directly over a protonated amine. The electrostatic attrac-
tion between the two groups resulted in an overestimated 
pKa and required a rotation of the amine away from the ring 
to reach a more stable conformation that performed better. 
A conformer search should be used in future work to avoid 
such issues. Nevertheless, the overall performance of Model 
3 is well within the target accuracy of 1 pKa unit even for 
such complex systems.

One of the major advantages with Model 3 is that the 
computational cost for creating and testing the model was 
very inexpensive, making it feasible to quickly expand the 
chemical space. To improve Model 3, it would be benefi-
cial to include a conformational search for molecules with 
many rotatable bonds, ensuring that the optimized structure 
is described by the local minimum on the potential energy 
surface. Developing an algorithm that can choose the correct 
micro-pKa would also be a huge improvement and decrease 
the chance of assigning the wrong deprotonation site. Fur-
thermore, it should be interesting to see whether we could 
formulate a similar model or correction term that could pre-
dict the pKa in different solvents (e.g., DMF).

6 � Conclusions

To summarize, we derived an accurate predictive model, 
Model 3, by starting from an inexpensive method such as 
DFT with an implicit solvation model and taking advantage 
of the locality of the acid dissociation constant. Using simple 
linear regression-based corrections for systematic errors of 
different functional groups, Model 3 was able to obtain pKas 
with a mean absolute deviation of only 0.397 pKa units. For 
a test set of 100 larger and more complex drug molecules, 
the performance of our model is still very good, though with 
a slightly larger mean absolute deviation of 0.629 pKa units. 

More importantly, our pKa protocol is general and applicable 
to any underlying density functional, making it an effective 
computational tool for pKa predictions.
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