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A B S T R A C T   

Recently, solar-induced chlorophyll 昀氀uorescence (SIF) is a promising tool to estimate gross primary production 
(GPP). Photosynthesis gradually saturates with the increasing light, but 昀氀uorescence tends to keep increasing, 
leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves 
for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been sys-
tematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP 
estimation considering such differences. This study proposed an approach to separate the total canopy SIF 
emission (SIFtotal) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded 
components (SIFsun and SIFshade). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded 
leaves were incorporated into a two-leaf hybrid model, which was 昀椀tted using 昀氀ux tower data and then evaluated 
using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit 
and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model 
simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC⋅m−2⋅d−1) or hyperbolic (R2 = 0.72, 
RMSE = 2.01 gC⋅m−2⋅d−1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the 
best performance on GPP estimation (R2 = 0.77, RMSE = 1.79 gC⋅m−2⋅d−1). We also applied this two-leaf hybrid 
model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly 
correlated with several existing GPP products, with R2 ranging from 0.79 to 0.88. These results will improve our 
understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application 
of satellite SIF data to GPP estimation.   

1. Introduction 

Solar-induced chlorophyll 昀氀uorescence (SIF), which is emitted by 
chlorophyll-a during the photosynthetic process (Krause and Weis, 
1991; Meroni et al., 2009), has been a promising remotely sensible 
parameter to estimate terrestrial gross primary production (GPP) across 
multiple spatial and temporal scales (Frankenberg et al., 2011; Damm 
et al., 2015; Sun et al., 2017; Li et al., 2018). Recently, several studies 
have used satellite SIF to estimate regional or global GPP either by 
directly using their statistical relationships (Guanter et al., 2014; Li and 
Xiao, 2019; Zhang et al., 2020a) or constraining process-based models 

(Lee et al., 2015; MacBean et al., 2018; Norton et al., 2018). 
The direct linear or nonlinear model is widely adopted in calibrating 

the relationship between SIF and GPP due to its ef昀椀ciency (Frankenberg 
et al., 2011; Sun et al., 2017; Maguire et al., 2020; Liu et al., 2022). 
Although the relationship between SIF and GPP is nonlinear in theory 
(Gu et al., 2019), the practical use of linear or nonlinear model depends 
on multiple factors, such as photosynthesis pathway (He et al., 2020; 
Zhang et al., 2020b), spatiotemporal scales (Zhang et al., 2016; Magney 
et al., 2020), and the ratio between the sunlit and shaded portion of the 
canopy (Liu et al., 2022). For example, the nonlinear relationship be-
tween SIF and GPP tends to be linear when the SIF and GPP are averaged 
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from the hourly scale to the weekly or longer scale (Zhang et al., 2016; 
Pierrat et al., 2022). Regardless of the linear or nonlinear model, these 
studies mainly considered the canopy as a whole and aggregated 
photosynthesis and 昀氀uorescence into a single element: the so-called 
big-leaf model. However, the big-leaf model may not accurately cap-
ture the quantum response of leaf photosynthesis due to the vertical 
heterogeneity of absorbed irradiance and photosynthetic capacity, as 
demonstrated by many authors (Pury and Farquhar, 1997; Wang and 
Leuning, 1998; Guan et al., 2021). 

Although 昀氀uorescence is intrinsically linked to photochemical ef昀椀-
ciency and can be used to track the plant photochemistry (Genty et al., 
1989; Porcar-Castell et al., 2014, 2021), 昀氀uorescence and photosyn-
thesis are not identical in response to the variation in illumination. 
Under the clear sky, the photosynthesis rate is light-saturated for the 
upper leaves (such as sunlit leaves) but light-limited for the bottom 
leaves (such as shaded leaves), however, 昀氀uorescence is nearly linearly 
related to absorbed radiation (van der Tol et al., 2009a; Damm et al., 
2015; Zhang et al., 2016; Gu et al., 2019). These indicate that sunlit and 
shaded leaves may have different SIF-GPP relationships and such dif-
ferences cannot be captured by the big-leaf model that just represents 
the averaged conditions. 

To address the aforementioned issue, a possible strategy is to sepa-
rate all leaves into sunlit and shaded components (Pury and Farquhar, 
1997; Leuning et al., 1998; Wang and Leuning, 1998; Chen et al., 1999) 
and this strategy has been also incorporated into the two-leaf light use 
ef昀椀ciency model (TL-LUE) (Zhou et al., 2016; Xie and Li, 2020; Guan 
et al., 2021; Bi et al., 2022). Recently, several studies have suggested to 

separately model the sunlit and shaded component of SIF (Sun et al., 
2023) and the Community Land Model version 5 has implemented the a 
single-layer two leaf representation of SIF (Li et al., 2022). However, to 
the best of our knowledge, none of studies have considered the differ-
ence in SIF-GPP relationships between sunlit and shaded leaves in 
practice due to the lack of observations of sunlit and shaded SIF and 
GPP. The only related study was conducted by He et al. (2017) who 
derived sunlit and shaded SIF based on the geometric-optical model, but 
they did not investigate the model difference in SIF-GPP relationships 
between shaded and sunlit leaves. 

Therefore, it is promising to estimate GPP from SIF considering the 
difference in SIF-GPP relationships between sunlit and shaded leaves. 
Since sunlit and shaded SIF and GPP cannot be directly observed, the 
Soil-Canopy-Observation of Photosynthesis and the Energy balance 
(SCOPE) model (van der Tol et al., 2009b) provides a unique tool to 
investigate the mechanistical link between SIF and GPP for sunlit and 
shaded leaves separately. Furthermore, the knowledge obtained from 
the SCOPE model simulation can be applied to actual scenarios for GPP 
estimation. The objectives of this study were (1) to explore the differ-
ences in SIF-GPP relationships between sunlit and shaded leaves using 
the SCOPE model, (2) to propose an approach to deriving sunlit and 
shaded SIF from observed SIF, and (3) to establish a model for GPP 
estimation based on sunlit and shaded SIF. 

2. Materials and methods 

The overall 昀氀owchart used in this study is shown in Fig. 1, mainly 
including four steps: (1) the choice of the 昀椀tting function between GPP 
and SIF for sunlit and shaded leaves based on the SCOPE model, (2) the 
estimation of SIF yields at photosystem level for sunlit and shaded leaves 
(SIFYsun and SIFYshade), (3) the estimation of SIF for sunlit and shaded 
leaves (SIFsun and SIFshade), and (4) the GPP model calibration based 
SIFsun and SIFshade, The 昀椀rst step was presented in Section 2.1, the sec-
ond and third steps were presented in Section 2.2, and the fourth step 
was presented in Section 2.3. The description of SIF and GPP were 
presented in Sections 2.4 and 2.5, respectively. 

2.1. SCOPE model simulation 

The SCOPE v2.0 model (van der Tol et al., 2009b; Yang et al., 2021) 
was used to simulate the sunlit and shaded SIF and GPP. The SCOPE 
model can simulate absorption and scattering of SIF with meteorolog-
ical, structural, biochemical parameters as well as a given 
sun-target-viewing geometry. The main parameters were listed in 
Table 1 and other input parameters were set to their default values in the 
original SCOPE model. The relationships between SIF and GPP were 

Fig. 1. Flowchart used in this study. Key steps were shown in green arrows for better visualization. Details about the input parameters can be found in the 
following sections. 

Table 1 
The input parameters of the SCOPE model simulations.  

Parameter Meaning Value 
Cab (ug⋅cm−2) Chlorophyll content 40 
Cca (ug⋅cm−2) Carotenoid content 10 
Cdm (g⋅cm−2) Dry matter content 0.0012 
Cw (g⋅cm−2) Water content 0.009 
N Leaf thickness parameters 1.5 
Vcmax25 

(umol⋅m−2⋅s−1) 
Maximum carboxylation 
capacity 

40 and 80 

LIDFa, LIDFb Leaf inclination and 
variation 

Planophile (1, 0), Erectophile 
(−1, 0), Plagiophile (0, −1), 
Extremophile (0, 1), Sphereical 
(−0.35, −0.15), Uniform (0, 0) 

LAI (m2⋅m−2) Leaf area index 6 
Rin (W⋅m−2) Incoming shortwave 

radiation (0.4–2.5 um) 
10–600 

Fqe Fluorescence quantum 
yield ef昀椀ciency at 
photosystem level 

0.01  
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compared for sunlit and shaded leaves, separately (Fig. 2). In particular, 
we analyzed the effects of maximum carboxylation capacity (Vcmax) on 
the relationship between SIF and GPP due to its vital importance for 
photosynthesis (van der Tol et al., 2014; Zhang et al., 2016). Different 
leaf angle distributions (LiDFa, LIDFb) were also considered. We used a 
relative high LAI (6) to better visualize the difference in the model for 
SIF and GPP between sunlit and shaded leaves. When the incoming 
shortwave radiation (Rg) exceeds 800 W⋅m−2, we found the simulated 
GPP starts to decline. Therefore, we only used the Rg in the range of 10 – 

600 W⋅m−2. In addition, we also observed negative GPP output from the 
SCOPE model under the weak illumination (such as 10 W⋅m−2). 
Therefore, we subtracted the minimal GPP from the simulated GPP for 
both sunlit and shaded leaves to keep the minimal GPP as zero. 

The relationships between SIF and GPP for sunlit and shaded leaves 
are simulated separately using SCOPE (Fig. 2). GPPsun quickly transited 
from being light limited to light saturated at the low level of Vcmax (40 
μmol⋅m−2⋅s−1) and thus exhibited clear nonlinearity for all leaf angle 
distributions (Fig. 2A-F). The point at which this transition occurred was 
larger at the higher level of Vcmax (80 μmol⋅m−2⋅s−1), weakening the 
nonlinearity for SIFsun and GPPsun to some extent (Fig. 2G-L). However, 
linear relationships were observed from GPPshade and SIFshade regardless 
of the level of Vcmax. These results indicate that there are clear differ-
ences in SIF-GPP relationships between sunlit and shaded leaves, espe-
cially for the low level of Vcmax. 

2.2. Separation of sunlit and shaded leaves 

The separation of sunlit SIF (SIFsun) and shaded SIF (SIFshade) was 
achieved in two steps. The 昀椀rst step was to derive the total canopy SIF 
emission (SIFtotal) before scattering and reabsorption from the observed 
SIF (SIFobs) using the re昀氀ectance-based methods as below: 

SIFtotal =
SIFobs

fesc

(1)  

fesc =
NIRV

π × i0 × Kλ

(2)  

where fesc is the probability of 昀氀uorescence escaping from canopy and 
NIRV is the near-infrared re昀氀ectance of vegetation (Badgley et al., 2017, 
2019). NIRV is calculated with the re昀氀ectance at red (R) and 
near-infrared (NIR) bands that should be in the same sun-view geometry 
of TROPMI SIFobs. In this study, R and NIR were simulated by driving the 
RossThick-LiSparseR model using the MODIS BRDF parameters that 

were provided by MCD19A3 (Lyapustin et al., 2011, 2018). i0 was 
derived with the G-function, leaf area index (LAI), clumping index (CI), 
and solar zenith angle (SZA, θ). MODIS LAI was obtained from 
MCD15A2H (Myneni et al., 2002) and CI was obtained from (He et al., 
2012). All satellite products were aggregated into 0.2ç grids for spatial 
consistency. Kλ is ratio of leaf albedo to the escape probability of 昀氀uo-
rescence from photosystem to leaf surface at 740 nm and was set as 1.2 
for far-red SIF (Zhang et al., 2021). A comprehensive description of fesc 
and its uncertainty can be found in Zhang et al. (2021). 

In the second step, SIFtotal was used to directly separate SIFsun and 
SIFshade because SIFtotal is insensitive to the canopy structural and 
angular effects (Yang and van der Tol, 2018; Zeng et al., 2019; Liu et al., 
2020; Zhang et al., 2021) and can simplify the separation process. 
Analogous to the LUE model, SIFsun and SIFshade can be expressed as 
below: 
SIFsun = APARsun × SIFYsun (3)  

SIFshade = APARshade × SIFYshade (4)  

SIFtotal = APARsun × SIFYsun + APARshade × SIFYshade (5)  

where APARsun and APARshade are the PAR absorbed by sunlit and 
shaded leaves, respectively. SIFYsun and SIFYshade are the SIF yield at 
photosystem level for sunlit and shaded leaves, respectively. 

We calculated APARsun and APARshade according to previous studies 
(Chen et al., 1999; Bi et al., 2022): 

APARshade =

(

PARdiffuse − PARdiffuse, u

LAI
+C

)

× LAIshade (6)  

APARsun =

(

PARdircosβ

LAI
+

PARdiffuse − PARdiffuse, u

LAI
+C

)

× LAIsun (7)  

LAIsun = 2cosSZA ×

[

1− exp

(

−
LAI × CI

2cosθ

)]

(8)  

LAIshade = LAI − LAIsun (9)  

C = 0.07 × CI × PARdir × (1.1− 0.1 × LAI) × exp(−cosθ) (10)  

PARdiffuse,u = PARdiffuse × exp

(

−
0.5 × LAI × CI

0.537 + 0.025 × LAI

)

(11)  

where PARdirect and PARdiffuse are the direct and diffuse PAR, respec-

Fig. 2. Scattering plots of SIF and GPP for sunlit (red circle) and shaded (blue square) leaves based on the SCOPE model simulations for different leaf angle dis-
tributions: (A) planophile, (B) erectophile, (C) plagiophile, (D) extremophile, (E) spherical, and (F) uniform under the Vcmax of 40 μmol⋅m−2⋅s−1. (G-L) Similar to (A- 
F) but for the Vcmax of 80 μmol⋅m−2⋅s−1. 
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tively. PARdirect and PARdiffuse were obtained by interpolating the 
MERRA-2 reanalysis data (Gelaro et al., 2017). PARdiffuse,u is the diffuse 
PAR reaching to the ground. β is the mean leaf-sun angle, which is set as 
60ç, a good approximation in θ from 30 to 60ç (Chen et al., 1999; Bi 
et al., 2022). 

SIFYsun and SIFYshade are unknown but can be estimated. Assuming 
SIFYsun and SIFYshade are constant or change slowly during a 昀椀xed 
period, the combination equation (Eq. (12)) can be used to estimate 
SIFYsun and SIFYshade using the least square method. More details about 
the least square method can be found in Text A1 in the Appendix. Once 
SIFYsun and SIFYshade were estimated, SIFsun and SIFshade can be esti-
mated using Eqs. (3) and (4). 
SIF1

total = APAR1
sun × SIFYsun + APAR1

shade × SIFYshade

⋮

SIFN
total = APARN

sun × SIFYsun + APARN
shade × SIFYshade

(12)  

where N is the number of day when TROPOMI SIF was available during a 
昀椀xed period. To increase the stability of the estimated SIFYsun and 
SIFYshade, we solved Eq. (12) in a 16-day interval and 1ç × 1ç moving 
window assuming the environmental conditions were similar. 

2.3. GPP estimation model based on sunlit and shaded SIF 

Based on the SCOPE model simulations, nonlinear and linear models 
were used to 昀椀t the SIF-GPP relationship for sunlit and shaded leaves, 
respectively (see Section 2.1). For sunlit leaves, the hyperbolic model 
proposed by Damm et al. (2015) was used to account for the saturation. 
Because the sunlit and shaded GPP were not available from the 昀氀ux 
tower, the model coef昀椀cients were not 昀椀tted for sunlit and shaded leaves 
separately. On the contrary, we directly 昀椀tted the model for the whole 
canopy GPP as Eq. (13) (denoted as a two-leaf hybrid model). For 
comparison purpose, the GPP estimation models directed based on 
SIFtotal using linear or hyperbolic model were also considered, denoted 
as a big-leaf linear (Eq. (14)) or hyperbolic (Eq. (15)) model, 
respectively. 
GPP = (a1 × SIFsun)/(SIFsun + a2) + (a3 × SIFshade + a4) (13)  

GPP = a5 × SIFtotal + a6 (14)  

GPP = (a7 × SIFtotal)/(SIFtotal + a8) (15)  

2.4. TROPOMI SIF data 

TROPOMI onboard the Sentinel-5 Precursor satellite is an imaging 
spectrometer, which collects the spectral data at an improved spatial 
resolution (5.6 km × 3.5 km and 5.6 km × 3.5 km at nadir after August 
6, 2019), with a wide swath of approximately 2600 km that allows for 
almost daily surface coverage. Due to its high spectral resolution in the 

spectral region overlapping with the solar Fraunhofer lines, SIF has been 
successfully retrieved with a singular value decomposition (SVD) tech-
nique (Köhler et al., 2018b; Guanter et al., 2021). This study adopted SIF 
that was retrieved by the ESA-TROPOSIF team using the spectral range 
of 743–758 nm (Guanter et al., 2021). The retrieved SIF was normalized 
to 740 nm using a reference 昀氀uorescence spectrum. SIF observations 
with a cloud fraction larger than 0.2 were excluded and then the 
remaining SIF observations were aggregated into 0.2ç grids for each day. 
Averaging multiple individual observations into a single value would 
effectively reduce the retrieval noise of SIF (Frankenberg et al., 2014; 
Yu et al., 2019). Therefore, we only used these 0.2ç grids averaged from 
at least six observations. We used the TROPOMI SIF from May 2018 to 
December 2021 and presented the spatial patterns during May to 
September (when the fraction of green vegetation is maximal) in 2018 as 
an example. The instantaneous SIFsun and SIFshade at the overpass time of 
TROPOMI SIF were derived using Eq. (12). The daily mean SIFsun and 
SIFshade were obtained by converting the instantaneous 昀氀uorescence to 
daily averages following the method of Frankenberg et al. (2011). 

2.5. Tower and global GPP data 

Two types of GPP data were used in this study: tower GPP estimated 
from tower-based measurements and multiple global GPP products that 
are available in 2018. The tower 昀氀ux data at 45 sites from AmeriFlux 
(http://ameri昀氀ux.ornl.gov/), European Flux Database (www.europe- 
昀氀uxdata.eu/home), and OzFlux (http://data.oz昀氀ux.org.au/portal/ho 
me), were used after checking the land homogeneity and data avail-
ability from 2018 to 2021 and their information can be found in 
Table A1. The half-hourly GPP was obtained by partitioning the 
measured net ecosystem exchange of carbon dioxide based on the 
nighttime partitioning approach Reichstein et al., 2005). The 
half-hourly GPP was averaged into the daily GPP to 昀椀t the GPP models 
(Eqs. (13)–(15)). The estimation accuracy was evaluated using the 
widely leave-one-site-out cross-validation strategy (Bodesheim et al., 
2018; Joiner et al., 2018). Only sites with C3 plants were considered for 
simplicity because the latest global fractional map of C4 plants was not 
available. 

The best model from Eqs. (13)–(15) was used to estimate the global 
GPP by applying the model to each 0.2ç grid. Then, the estimated GPP 
was averaged for each monthly from May 2018 to December 2020. The 
estimated GPP from SIF was then compared with 昀椀ve global GPP 
products, including TL-LUE (Bi et al., 2022), VPM (Zhang et al., 2017), 
PML v2 (Zhang et al., 2019), FLUXCOM (Tramontana et al., 2016), and 
FluxSat v2 (Joiner and Yoshida, 2020). The details about these products 
can be found in the cited references. In particular, the TL-LUE model also 
provided the global sunlit and shaded GPP (Bi et al., 2022), which were 
compared with the derived TROPOMI sunlit and shaded SIF (see Section 
3.2). All these GPP products were spatially aggregated into 0.2ç grids, 
except for FLUXCOM that was originally provided in 0.5ç grids. 

Fig. 3. Global map of (A) SIFsun and (B) SIFshade derived from TROPOMI averaged over May to September in 2018.  
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Therefore, the GPP estimated from SIF can be compared with GPP from 
TL-LUE, VPM, PML v2, and FluxSat v2 in a consistent spatial resolution. 

3. Results 

3.1. Global map of SIFsun and SIFshade from TROPOMI 

The global maps of SIFsun and SIFshade derived from TROPOMI SIF 
averaged over May to September in 2018 are shown in Fig. 3. The spatial 

Fig. 4. (A) Latitudinal patterns of SIFsun and SIFshade, with the shaded area indicating the standard deviation. (B) Box plots of SIFsun and SIFshade per vegetation type. 
Data was obtained from Fig. 3. 

Fig. 5. Global fractions of (A) SIFshade, (B) LAIshade, and (C) PARdiffuse averaged over May to September in 2018. (D) Global pattern of solar zenith angle (SZA) at the 
overpass time of TROPOMI. 
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distributions of SIFsun and SIFshade were clearly different. High SIFsun 
was observed in the middle latitude in the Northern Hemisphere, such as 
the US corn belt and the western Europe (Fig. 3A), while SIFshade was 
high in the low latitude tropics (Fig. 3B). In addition, these differences 
can be easily observed from the latitudinal patterns of SIFsun and SIFshade 
(Fig. 4A). SIFshade was systematically higher than SIFsun in the latitude 
from −10ç to 25ç, but lower in other latitudes on average. As a result, 

EBF (mainly grown in low latitudes) exhibited higher SIFshade than 
SIFsun, but other vegetation types exhibited higher SIFsun (Fig. 4B). 

The spatial differences of SIFsun and SIFshade were mainly related to 
LAI, the fraction of diffuse radiation, and SZA based on its calculation 
process (see Section 2.2). We compared the spatial fraction of SIFshade, 
the fraction of LAIshade, the fraction of PARdiffuse, and SZA (Fig. 5). The 
high fraction of SIFshade (Fig. 5A) in low latitudes were jointly 

Fig. 6. Density plots of SIF and GPP for (A) sunlit and (B) shaded leaves. SIFsun and SIFshade were derived from TROPOMI and GPPsun and GPPshade were obtained 
from TL-LUE. 

Fig. 7. Comparisons of tower GPP and GPP estimated from (A) a big-leaf-based linear model, (B) a big-leaf based hyperbolic model, and (C) a two-leaf-based hybrid 
model using the leave-one-site-out crossing validation. The black dotted lines represent the 1:1 line. 

Fig. 8. Comparison of RMSE for the big-leaf linear model, big-leaf hyperbolic model, and two-leaf hybrid model. ENF = evergreen needleleaf forest, EBF = evergreen 
broadleaf forest, DBF = deciduous broadleaf forest, SAV = savanna, GRA = grassland, CRO = cropland, SHR = shrubland, and WET = wetland. 
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determined by the high fraction of LAIshade (Fig. 5B) and PARdiffuse 
(Fig. 5C). However, we also observed a few high fractions of SIFshade at 
the northern Russia (Fig. 5A), which would be mainly related to the high 
fraction of PARdiffuse (Fig. 5C) and SZA (Fig. 5D). These results indicated 
that the spatial fraction of SIFshade was complex due to the compound 
effects of multiple factors. 

3.2. Relationships between SIF and GPP for sunlit and shaded leaves 

Besides the model simulations, TROPOMI SIF and TL-LUE GPP were 
also used to analyze the SIF-GPP relationships for sunlit and shaded 
leaves separately (Fig. 6). SIFsun and SIFshade were derived from TRO-
POMI SIF, and GPPsun and GPPshade were obtained from TL-LUE GPP. We 
found consistent patterns with the model simulations: nonlinear for 
sunlit leaves (Fig. 6A) and linear for shaded leaves (Fig. 6B) for all 
vegetation types. Therefore, it is reasonable to estimate GPP from SIF by 
considering such model differences between sunlit and shaded leaves. In 
particular, the nonlinearity of the GPPsun and SIFsun is more clear for 
forests and other vegetation types than for crops (Fig. A2). 

3.3. Accuracy evaluation of GPP estimation models 

We compared the performance of three models (a big-leaf-based 
linear model, a big-leaf-based hyperbolic model, and a two-leaf-based 
hybrid model) on GPP estimation using the leave-one-site-out crossing 
validation. If not considering the difference between sunlit and shaded 
leaves, the big-leaf-based linear model estimated GPP with a R2 of 0.68 
and RMSE of 2.13 gC⋅m−2⋅d−1 (Fig. 7A). However, the big-leaf hyper-
bolic model (Fig. 7B: R2 = 0.72, RMSE = 2.01 gC⋅m−2⋅d−1) was slightly 

better than the linear model, since the linear model ignored the 
nonlinear relationship between SIFsun and GPPsun. Furthermore, the 
two-leaf-based hybrid model that considered the difference in sunlit and 
shaded leaves performed best with a R2 of 0.77 and RMSE of 1.79 
gC⋅m−2⋅d−1 (Fig. 7C). 

The accuracies of three GPP estimation models for different vegeta-
tion types are presented in Fig. 8. In general, the two-leaf-based hybrid 
model resulted in lower RMSE than the big-leaf-based linear or hyper-
bolic models. Compared to the big-leaf-based linear model, the RMSE of 
the two-leaf-based hybrid model reduced by ~0.5 gC⋅m−2⋅d−1 for forests 
(ENF, EBF, and DBF). However, the improvements in RMSE were less 
than ~0.5 gC⋅m−2⋅d−1 for other non-forest vegetation types, and the 
smallest improvement was obtained for CRO. 

3.4. Global estimation of GPP 

Furthermore, the two-leaf-based hybrid model was used to estimate 
the global GPP using SIFsun and SIFshade (denoted as TL-SIF hereafter) 
due to its best performance. TL-SIF can depict the spatial patterns of 
vegetation GPP globally, with high values occurring at the low latitude 
tropics, the US corn belt, the western Europe, and the southeast China 
(Fig. 9A). We compared the spatial patterns of TL-SIF derived GPP with 
multiple existing GPP products that were available for the year of 2018 
(Fig. 9B-F). In general, TL-SIF GPP exhibited consistent spatial patterns 
with the current GPP products. The consistency was also demonstrated 
by high correlations between TL-SIF GPP and other GPP products (R2 >
0.79, Fig. 10), with the highest correlation TL-SIF GPP and FluxSat GPP 
(R2 = 0.88, Fig. 10D). 

Fig. 9. Global maps of GPP derived from different products: (A) TL-SIF, (B) TL-LUE, (C) VPM, and (D) PML-v2, (E) FLUXCOM, and (F) FluxSat-v2 averaged over May 
to September in 2018. 
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4. Discussion 

4.1. Debate on the linear or nonlinear relationships between SIF and GPP 

The inherent relationship between SIF and GPP tends to be non- 
linear because GPP saturates at high light but SIF does not (Damm 
et al., 2015; Zhang et al., 2016; Gu et al., 2019; Kim et al., 2021). This 
nonlinearity between SIF and GPP can be observed from our SCOPE 
simulations for sunlit leaves with a wide range of illumination (Fig. 2). 
Although SCOPE is a 1-D model, it is also widely used to characterize the 
SIF and GPP relationship for forests (Hao et al., 2021). Therefore, it is 
reliable to conclude that the relationship between SIF and GPP is 
nonlinear for sunlit leaves (Fig. 2). However, many studies have 

reported the linear relationships between SIF and GPP over last decades 
(Frankenberg et al., 2011; Yang et al., 2015; Sun et al., 2017; Miao et al., 
2018; Zhang et al., 2020a). Several potential reasons for such a con-
tradictory have been clari昀椀ed by Magney et al. (2020) who stated that 
the temporal and spatial aggregations of SIF and GPP strengthen their 
linearity. 

Moreover, the SIF-GPP relationships are also affected by the point 
when photosynthesis begins to be light-saturated, which mainly depends 
on photosynthetic pathway (He et al., 2020) and Vcmax (Zhang et al., 
2016). For example, C4 plants are less light-saturated compared to C3 
plants (He et al., 2020). In addition, ENF with a low level of Vcmax has a 
small saturation point and hence shows a strong nonlinearity for SIF and 
GPP (Kim et al., 2021; Liu et al., 2022). On the contrary, linear 

Fig. 10. Comparisons of TL-SIF GPP and GPP estimated from (A) TL-LUE, (B) VPM, (C) PML-v2, and (D) FluxSat-v2. The black dotted lines represent the 1:1 line.  

Fig. A1. Box plots of SIFYsun and SIFYshade per vegetation type.  
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relationships between SIF and GPP are observed for crops with high 
levels of Vcmax (Goulas et al., 2017; Miao et al., 2018; Yang et al., 2018). 
These results are consistent with the model simulations showing that the 
degree of nonlinearity and the SIF-GPP model difference between sunlit 
and shaded leaves are sensitive to the level of Vcmax (Fig. 2). Therefore, 
understanding the spatiotemporal scale and photosynthetic pathway 
and capacity is crucial for the GPP estimation from SIF using linear or 
nonlinear relationship. 

4.2. The advantage of the two-leaf hybrid model 

Regardless of linear or nonlinear models adopted by previous 
studies, they commonly consider the canopy as a whole (in other words 
SIF and GPP are the averages of the whole canopy) and ignore the dif-
ference in SIF-GPP relationships between sunlit and shaded leaves (as 
shown by Figs. 2&6). In fact, the canopy can be simply separated into 
two components: sunlit and shaded leaves (Leuning et al., 1998; Wang 
and Leuning, 1998). Under clear-sky conditions, sunlit leaves always 
receive both direct and diffuse radiation and thus are easy to be light 
saturated (Chen et al., 1999; Bi et al., 2022). However, shaded leaves 
only received diffuse radiation and transmitted radiation and thus are 
light-limited (Chen et al., 1999; Bi et al., 2022). Therefore, nonlinear 
and linear models should be used for sunlit and shaded leaves, respec-
tively, when building the link between SIF and GPP. 

In this context, the two-leaf hybrid model is proposed for the 昀椀rst 
time by taking both sunlit and shaded leaves into consideration (Eq. 
(13)). On average, the two-leaf hybrid model outperforms traditional 
big-leaf linear or hyperbolic models (Fig. 7). We also 昀椀nd that the two- 
leaf hybrid model improves more for forests (Fig. 8). This could be 
caused by the stronger nonlinearity for forests (Fig. A2A-B) due to the 
low level of Vcmax (40~60 μmol⋅m−2⋅s−1 for ENF and EBF) (He et al., 
2019) and also high level of LAI (Liu et al., 2022). Therefore, the 
separate consideration of sunlit and shaded leaves is necessary. On the 
contrary, crops have a high level of Vcmax (~80 μmol⋅m−2⋅s−1 on 
average) (He et al., 2019) or (~150 μmol⋅m−2⋅s−1 for soybean) (Zhang 

et al., 2014), therefore, the nonlinearity of SIFsun and GPPsun is weaker 
(Fig. A2C-D) and the difference in SIF-GPP relationships is smaller (see 
the second row in Fig. 2). As a result, a big-leaf linear or hyperbolic 
model is enough to capture the link between SIF and GPP, leading to the 
minimal improvement for CRO (Fig. 8). 

4.3. Future improvements of GPP based on TL-SIF 

The two-leaf hybrid model requires sunlit and shaded SIF as input 
data, which were derived from TROPOMI SIF in this study. In theory, 
two observations can be used in Eq. (12) to estimate SIFYsun and SIFY-
shade and the following SIFsun and SIFshade. The resulting SIF metrics 
would be affected by the uncertainties in the estimated APARsun and 
APARshade due to the estimation uncertainty from input data (such as LAI 
and PAR) and several assumptions made for Eqs. (6)–(11). For example, 
a constant mean leaf-sun angle (60ç) was used in this study, although it 
is a good approximate for the SZA in the range of 20−60ç For the other 
conditions with SZA 8 20ç or SZA 9 60ç, the suitability of the constant 
value deserves further study. More accurate estimation of APARsun and 
APARshade would further improve the estimation of SIFsun and SIFshade. 

In addition, satellite SIF is retrieved with inherent noises (Köhler 
et al., 2018a; Sun et al., 2018), which increase the dif昀椀culty to derive the 
accurate estimation of SIFYsun and SIFYshade. To mitigate the noise issue, 
we solved Eq. (12) using the least square method and combined all 
available observations (after quality control) within a 16-day interval 
and 1ç × 1ç moving window. This can effectively reduce the uncertainty 
in estimating SIFYsun and SIFYshade, and the estimates of SIFYsun and 
SIFYshade can be considered as smoothed values in space and time. The 
use of a 16-day period partly or completely ignores the variations in 
SIFYsun and SIFYshade in response to stress. For the sudden drought or 
昀氀ood, the SIF yield varied quickly in response to stress, therefore, this 
would lead to huge uncertainty of estimated SIF yield and hence SIF. For 
most regions, the environment at the ecosystem scale (such as 0.2ç) 
varies more slowly compared to a single site where climatic parameters 
could show high 昀氀uctuations. If more accurate SIF retrievals will be 

Fig. A2. Similar to Fig. 6 but for (A-B) forests, (C-D) crops, and (E-F) others.  
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available, a smaller 昀椀tting window with a narrower temporal period can 
be used to reduce the effects of spatial heterogeneity and day-to-day 
variation. 

5. Conclusions 

This study proposed an approach to separate the total canopy SIF 
emission (SIFtotal) from TROPOMI into their sunlit and shaded compo-
nents (SIFsun and SIFshade). By comparing SIF and GPP between sunlit 
and shaded leaves, we found clearly different SIF-GPP relationships 
between sunlit (nonlinear) and shaded (linear) leaves, which were 
consistent with the SCOPE model simulations and the theoretical anal-
ysis. Therefore, this study proposed a two-leaf hybrid model to consider 
both linearity and nonlinearity. The two-leaf hybrid model (R2 = 0.77) 
showed better performances on GPP estimation compared to the big-leaf 
linear (R2 = 0.68) or hyperbolic (R2 = 0.72) models. We also used this 
two-leaf hybrid model to estimate the global GPP during the main 
growing season in Northern Hemisphere and the estimates were highly 
correlated with several existing GPP products, with R2 ranging from 
0.79 to 0.88. These 昀椀ndings will improve our understanding of the 
relationship between SIF and GPP and advance application of satellite 
SIF data to GPP estimation. 
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Table A1 
Flux sites used in this study. CRO = cropland, DBF = deciduous broadleaf forest, 
EBF = evergreen broadleaf forest, ENF = evergreen needleleaf forest, GRA =
grass, MF = mixed forest, OSH = open shrubland, SAV = savanna, WET =
wetland, and WSA = wood savanna.  

Site ID Latitude Longitude IGBP Reference 
AR-CCg −35.9244 −61.1855 GRA – 

CA-LP1 55.1119 −122.8414 ENF – 

CA-SCB 61.3089 −121.2984 WET – 

CA-SMC 63.1534 −123.2522 ENF – 

MX-Aog 26.9968 −108.7892 DBF – 

US-ALQ 46.0308 −89.6067 WET – 

US-BZB 64.6955 −148.3208 WET – 

US-BZF 64.7013 −148.3121 WET – 

US-BZo 64.6936 −148.33 WET – 

US-CdM 37.5241 −109.7471 WSA – 

US-DFC 43.3448 −89.7117 CRO – 

US-EDN 37.6156 −122.114 WET – 

US-EML 63.8784 −149.2536 OSH (Belshe et al. (2012)) 
US-HBK 43.9397 −71.7181 DBF – 

US-Ha1 42.5378 −72.1715 DBF (Urbanski et al. (2007)) 
US-Ha2 42.5393 −72.1779 ENF – 

US-Hn2 46.6889 −119.4641 GRA – 

US-Hn3 46.6878 −119.4614 OSH – 

US-Ho1 45.2041 −68.7402 ENF – 

US-ICt 68.6063 −149.3041 OSH – 

US-Jo1 32.582 −106.635 OSH – 

US-Jo2 32.5849 −106.6032 OSH – 

US-KFS 39.0561 −95.1907 GRA – 

US-KM4 42.4423 −85.3301 CRO – 

US-KPL 60.5382 −150.5061 WET – 

US-LL1 31.2792 −84.5329 SAV – 

US-Los 46.0827 −89.9792 WET (Sulman et al. (2009)) 
US-MMS 39.3232 −86.4131 DBF (Dragoni et al. (2011)) 
US- 

MWF 
42.366 −85.3526 MF – 

US-Mo3 39.2311 −92.1497 CRO – 

US-NR1 40.0329 −105.5464 ENF (Monson et al. (2002)) 
US-ONA 27.3836 −81.9509 GRA – 

US-Rws 43.1675 −116.7132 OSH (Flerchinger et al. (2019)) 
US-Seg 34.3623 −106.7019 GRA – 

US-Ses 34.3349 −106.7442 OSH – 

US-Syv 46.242 −89.3477 MF (Sulman et al. (2009)) 
US-Ton 38.4309 −120.966 WSA (Ma et al. (2007)) 
US-Vcm 35.8884 −106.5321 ENF – 

US-WCr 45.8059 −90.0799 DBF (Sulman et al. (2009)) 
US-Whs 31.7438 −110.0522 OSH (Scott et al. (2015)) 
US-Wkg 31.7365 −109.9419 GRA (Scott et al. (2010)) 
US-xAE 35.4106 −99.0588 GRA – 

US-xBN 65.154 −147.5026 ENF – 

US-xBR 44.0639 −71.2873 DBF – 

US-xCP 40.8155 −104.7456 GRA – 

US-xDC 47.1617 −99.1066 GRA – 

US-xDJ 63.8811 −145.7514 ENF – 

US-xDL 32.5417 −87.8039 MF – 

US-xHA 42.5369 −72.1727 DBF – 

US-xHE 63.8757 −149.2133 OSH – 

US-xMB 38.2483 −109.3883 OSH – 

US-xNG 46.7697 −100.9154 GRA – 

US-xRM 40.2759 −105.5459 ENF – 

US-xSC 38.8929 −78.1395 DBF – 

US-xSL 40.4619 −103.0293 CRO – 

US-xSR 31.9107 −110.8355 OSH – 

US-xST 45.5089 −89.5864 DBF – 

US-xTA 32.9505 −87.3933 ENF – 

US-xTE 37.0058 −119.006 ENF – 

US-xTR 45.4937 −89.5857 DBF – 

US-xUN 46.2339 −89.5373 MF – 

US-xWD 47.1282 −99.2414 GRA – 

US-xYE 44.9535 −110.5391 ENF – 

AU-Cum −33.6152 150.7236 EBF (Beringer et al. (2016)) 
AU-Lit −13.179 130.7945 SAV (Beringer et al. (2016)) 
AU-Stp −17.1507 133.3502 GRA – 

AU-Whr −36.6732 145.0294 EBF – 

AU- 
Wom 

−37.4222 144.0944 EBF (Hinko-Najera et al. 
(2017)) 

AU-Wrr −43.09501667 146.6545167 EBF –  

Table A1 (continued ) 
Site ID Latitude Longitude IGBP Reference 
AU-Ync −34.9893 146.2907 GRA (Yee et al. (2015)) 
BE-Bra 51.30761 4.51984 MF (Janssens et al. (2001)) 
BE-Vie 50.30496 5.99808 MF (Aubinet et al. (2001)) 
CH-Lae 47.47808333 8.365 MF (Etzold et al. (2011)) 
ES-Abr 38.701839 −6.785881 SAV (Luo et al. (2018)) 
ES-LM1 39.94269 −5.778683 SAV (El-Madany et al. (2018)) 
ES-LM2 39.934592 −5.775881 SAV (El-Madany et al. (2018)) 
FI-Var 67.7549 29.61 ENF – 

FR-Pue 43.7413 3.5957 EBF (Rambal et al. (2004)) 
IL-Yat 31.34504459 35.05198851 ENF – 

IT-Tor 45.84444 7.578055 GRA (Galvagno et al. (2013))  
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Appendix 

Text A1 the least square method 

Eq. (12) can be formulated as Eq. (A1) in the format of matrix, where all parameters have been de昀椀ned in the context related to Eq. (12). Therefore, 
the solution (�x) for the unknown parameter X can be calculated using Eq. (A2) for each moving window. Once the process was repeated for all moving 
windows, the global SIFYsun and SIFYshade was obtained. Fig. A1 shows the boxplots of SIFYsun and SIFYshade for each vegetation type. SIFYsun ranged 
from 10−5 to 5 × 10−5 and SIFYshade showed higher values (> 0.5 × 10−4). This is expected that SIFYsun at the high illumination is lower than SIFYshade 
at the low illumination. 
Y = AXE  

Y =

£
£££

SIF
1
total

⋮

SIF
N

total

§
§§§

A =

£
£££

APAR
1
sun

APAR
1
shade

⋮

APAR
N

sun
APAR

N

shade

§
§§§ (A1)  

X = [ SIFYsun SIFYshade ]

�x =
(
A

T
A
)−1

A
T
Y (A2)  

References 
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., Laitat, E., 

2001. Long term carbon dioxide exchange above a mixed forest in the Belgian 
Ardennes. Agric. For. Meteorol. 108, 293–315. 

Badgley, G., Anderegg, L.D.L., Berry, J.A., Field, C.B., 2019. Terrestrial gross primary 
production: using NIRV to scale from site to globe. Glob Chang. Biol. 25, 3731–3740. 

Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared re昀氀ectance and 
terrestrial photosynthesis. Sci. Adv. 3, e1602244. 

Belshe, E., Schuur, E., Bolker, B., Bracho, R., 2012. Incorporating spatial heterogeneity 
created by permafrost thaw into a landscape carbon estimate. J. Geophys. Res. 
Biogeosci. 117. 

Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., et al., 
2016. An introduction to the Australian and New Zealand 昀氀ux tower network – 

OzFlux. Biogeosciences 13, 5895–5916. 
Bi, W., He, W., Zhou, Y., Ju, W., Liu, Y., Liu, Y., et al., 2022. A global 0.05ç dataset for 

gross primary production of sunlit and shaded vegetation canopies from 1992 to 
2020. Sci. Data 9, 213. 

Bodesheim, P., Jung, M., Gans, F., Mahecha, M.D., Reichstein, M., 2018. Upscaled 
diurnal cycles of land–atmosphere 昀氀uxes: a new global half-hourly data product. 
Earth Syst. Sci. Data 10, 1327–1365. 

Chen, J.M., Liu, J., Cihlar, J., Goulden, M., 1999. Daily canopy photosynthesis model 
through temporal and spatial scaling for remote sensing applications. Ecol. Modell. 
124, 99–119. 

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C., Hueni, A., Buchmann, N., et al., 
2015. Far-red sun-induced chlorophyll 昀氀uorescence shows ecosystem-speci昀椀c 
relationships to gross primary production: an assessment based on observational and 
modeling approaches. Remote Sens. Environ. 166, 91–105. 

Dragoni, D., Schmid, H.P., Wayson, C.A., Potter, H., Grimmond, C.S.B., Randolph, J.C., 
2011. Evidence of increased net ecosystem productivity associated with a longer 
vegetated season in a deciduous forest in south-central Indiana, USA. Glob Chang. 
Biol. 17, 886–897. 

El-Madany, T.S., Reichstein, M., Perez-Priego, O., Carrara, A., Moreno, G., Pilar 
Martín, M., et al., 2018. Drivers of spatio-temporal variability of carbon dioxide and 
energy 昀氀uxes in a Mediterranean savanna ecosystem. Agric. For. Meteorol. 262, 
258–278. 

Etzold, S., Ruehr, N.K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., et al., 2011. The 
carbon balance of two contrasting mountain forest ecosystems in Switzerland: 
similar annual trends, but seasonal differences. Ecosystems 14, 1289–1309. 

Flerchinger, G.N., Fellows, A.W., Seyfried, M.S., Clark, P.E., Lohse, K.A., 2019. Water and 
carbon 昀氀uxes along an elevational gradient in a sagebrush ecosystem. Ecosystems 
23, 246–263. 

Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., et al., 2011. 
New global observations of the terrestrial carbon cycle from GOSAT: patterns of 
plant 昀氀uorescence with gross primary productivity. Geophys. Res. Lett. 38, 351–365. 

Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Koehler, P., et al., 2014. 
Prospects for chlorophyll 昀氀uorescence remote sensing from the Orbiting Carbon 
Observatory-2. Remote Sens. Environ. 147, 1–12. 

Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., et al., 
2013. Phenology and carbon dioxide source/sink strength of a subalpine grassland in 
response to an exceptionally short snow season. Environ. Res. Lett. 8, 025008. 
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