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ARTICLE INFO ABSTRACT

Keywords: Recently, solar-induced chlorophyll fluorescence (SIF) is a promising tool to estimate gross primary production

SIF (GPP). Photosynthesis gradually saturates with the increasing light, but fluorescence tends to keep increasing,

GPP. leading to a nonlinear SIF-GPP relationship. This nonlinearity occurs for sunlit leaves but not for shaded leaves

:EZ:;Z;‘T;:;S for which photosynthesis is light-limited. However, the separation of sunlit and shaded SIF has not been sys-

TROPOMI tematically investigated when estimating GPP from SIF. Therefore, it is promising to develop a model for GPP
estimation considering such differences. This study proposed an approach to separate the total canopy SIF
emission (SIF,) from TROPOspheric Monitoring Instrument (TROPOMI) SIF into their sunlit and shaded
components (SIFg,, and SIFghaqe). The nonlinearity and linearity in SIF-GPP relationships for sunlit and shaded
leaves were incorporated into a two-leaf hybrid model, which was fitted using flux tower data and then evaluated
using leave-one-site-out crossing validation. We also elucidated the distinct SIF-GPP relationships between sunlit
and shaded leaves using the Soil-Canopy-Observation of Photosynthesis and the Energy balance (SCOPE) model
simulation. Compared to previously used linear (R2 = 0.68, RMSE = 2.13 gC‘m’2~d’1) or hyperbolic (R2 =0.72,
RMSE = 2.01 gC-m~2.d"1) model based on the big-leaf assumption, our proposed two-leaf hybrid model has the
best performance on GPP estimation (R? = 0.77, RMSE = 1.79 gC-m~2.d"1). We also applied this two-leaf hybrid
model to estimate the global GPP during the main growing season in Northern Hemisphere, which were highly
correlated with several existing GPP products, with R? ranging from 0.79 to 0.88. These results will improve our
understanding of the relationship between SIF and GPP for sunlit and shaded leaves and will advance application
of satellite SIF data to GPP estimation.

1. Introduction

Solar-induced chlorophyll fluorescence (SIF), which is emitted by
chlorophyll-a during the photosynthetic process (Krause and Weis,
1991; Meroni et al., 2009), has been a promising remotely sensible
parameter to estimate terrestrial gross primary production (GPP) across
multiple spatial and temporal scales (Frankenberg et al., 2011; Damm
et al., 2015; Sun et al., 2017; Li et al., 2018). Recently, several studies
have used satellite SIF to estimate regional or global GPP either by
directly using their statistical relationships (Guanter et al., 2014; Li and
Xiao, 2019; Zhang et al., 2020a) or constraining process-based models

(Lee et al., 2015; MacBean et al., 2018; Norton et al., 2018).

The direct linear or nonlinear model is widely adopted in calibrating
the relationship between SIF and GPP due to its efficiency (Frankenberg
et al., 2011; Sun et al., 2017; Maguire et al., 2020; Liu et al., 2022).
Although the relationship between SIF and GPP is nonlinear in theory
(Gu et al., 2019), the practical use of linear or nonlinear model depends
on multiple factors, such as photosynthesis pathway (He et al., 2020;
Zhang et al., 2020b), spatiotemporal scales (Zhang et al., 2016; Magney
et al., 2020), and the ratio between the sunlit and shaded portion of the
canopy (Liu et al., 2022). For example, the nonlinear relationship be-
tween SIF and GPP tends to be linear when the SIF and GPP are averaged
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Fig. 1. Flowchart used in this study. Key steps were shown in green arrows for better visualization. Details about the input parameters can be found in the

following sections.

Table 1

The input parameters of the SCOPE model simulations.
Parameter Meaning Value
Cab (ug-cm™?) Chlorophyll content 40
Cca (ug-cm ™) Carotenoid content 10
Cdm (g-cm™2) Dry matter content 0.0012
Cw (g-em™?) Water content 0.009
N Leaf thickness parameters 1.5
Vemax25 Maximum carboxylation 40 and 80

(umol-m~2s71) capacity

Leaf inclination and
variation

LIDFa, LIDFb Planophile (1, 0), Erectophile
(-1, 0), Plagiophile (0, —1),
Extremophile (0, 1), Sphereical

(—0.35, —0.15), Uniform (0, 0)

LAI (m2m~2) Leaf area index 6

Rin (W~m’2) Incoming shortwave 10-600
radiation (0.4-2.5 um)

Fqe Fluorescence quantum 0.01

yield efficiency at
photosystem level

from the hourly scale to the weekly or longer scale (Zhang et al., 2016;
Pierrat et al., 2022). Regardless of the linear or nonlinear model, these
studies mainly considered the canopy as a whole and aggregated
photosynthesis and fluorescence into a single element: the so-called
big-leaf model. However, the big-leaf model may not accurately cap-
ture the quantum response of leaf photosynthesis due to the vertical
heterogeneity of absorbed irradiance and photosynthetic capacity, as
demonstrated by many authors (Pury and Farquhar, 1997; Wang and
Leuning, 1998; Guan et al., 2021).

Although fluorescence is intrinsically linked to photochemical effi-
ciency and can be used to track the plant photochemistry (Genty et al.,
1989; Porcar-Castell et al., 2014, 2021), fluorescence and photosyn-
thesis are not identical in response to the variation in illumination.
Under the clear sky, the photosynthesis rate is light-saturated for the
upper leaves (such as sunlit leaves) but light-limited for the bottom
leaves (such as shaded leaves), however, fluorescence is nearly linearly
related to absorbed radiation (van der Tol et al., 2009a; Damm et al.,
2015; Zhang et al., 2016; Gu et al., 2019). These indicate that sunlit and
shaded leaves may have different SIF-GPP relationships and such dif-
ferences cannot be captured by the big-leaf model that just represents
the averaged conditions.

To address the aforementioned issue, a possible strategy is to sepa-
rate all leaves into sunlit and shaded components (Pury and Farquhar,
1997; Leuning et al., 1998; Wang and Leuning, 1998; Chen et al., 1999)
and this strategy has been also incorporated into the two-leaf light use
efficiency model (TL-LUE) (Zhou et al., 2016; Xie and Li, 2020; Guan
et al., 2021; Bi et al., 2022). Recently, several studies have suggested to

separately model the sunlit and shaded component of SIF (Sun et al.,
2023) and the Community Land Model version 5 has implemented the a
single-layer two leaf representation of SIF (Li et al., 2022). However, to
the best of our knowledge, none of studies have considered the differ-
ence in SIF-GPP relationships between sunlit and shaded leaves in
practice due to the lack of observations of sunlit and shaded SIF and
GPP. The only related study was conducted by He et al. (2017) who
derived sunlit and shaded SIF based on the geometric-optical model, but
they did not investigate the model difference in SIF-GPP relationships
between shaded and sunlit leaves.

Therefore, it is promising to estimate GPP from SIF considering the
difference in SIF-GPP relationships between sunlit and shaded leaves.
Since sunlit and shaded SIF and GPP cannot be directly observed, the
Soil-Canopy-Observation of Photosynthesis and the Energy balance
(SCOPE) model (van der Tol et al., 2009b) provides a unique tool to
investigate the mechanistical link between SIF and GPP for sunlit and
shaded leaves separately. Furthermore, the knowledge obtained from
the SCOPE model simulation can be applied to actual scenarios for GPP
estimation. The objectives of this study were (1) to explore the differ-
ences in SIF-GPP relationships between sunlit and shaded leaves using
the SCOPE model, (2) to propose an approach to deriving sunlit and
shaded SIF from observed SIF, and (3) to establish a model for GPP
estimation based on sunlit and shaded SIF.

2. Materials and methods

The overall flowchart used in this study is shown in Fig. 1, mainly
including four steps: (1) the choice of the fitting function between GPP
and SIF for sunlit and shaded leaves based on the SCOPE model, (2) the
estimation of SIF yields at photosystem level for sunlit and shaded leaves
(SIFYgyn and SIFYghade), (3) the estimation of SIF for sunlit and shaded
leaves (SIFgy, and SIFgha4e), and (4) the GPP model calibration based
SIFsy, and SIFgpade, The first step was presented in Section 2.1, the sec-
ond and third steps were presented in Section 2.2, and the fourth step
was presented in Section 2.3. The description of SIF and GPP were
presented in Sections 2.4 and 2.5, respectively.

2.1. SCOPE model simulation

The SCOPE v2.0 model (van der Tol et al., 2009b; Yang et al., 2021)
was used to simulate the sunlit and shaded SIF and GPP. The SCOPE
model can simulate absorption and scattering of SIF with meteorolog-
ical, structural, biochemical parameters as well as a given
sun-target-viewing geometry. The main parameters were listed in
Table 1 and other input parameters were set to their default values in the
original SCOPE model. The relationships between SIF and GPP were
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Fig. 2. Scattering plots of SIF and GPP for sunlit (red circle) and shaded (blue square) leaves based on the SCOPE model simulations for different leaf angle dis-
tributions: (A) planophile, (B) erectophile, (C) plagiophile, (D) extremophile, (E) spherical, and (F) uniform under the V pax of 40 pmol~m’2~s’1. (G-L) Similar to (A-

F) but for the Vpnax of 80 prn01~m’2-s’1

compared for sunlit and shaded leaves, separately (Fig. 2). In particular,
we analyzed the effects of maximum carboxylation capacity (Vemax) on
the relationship between SIF and GPP due to its vital importance for
photosynthesis (van der Tol et al., 2014; Zhang et al., 2016). Different
leaf angle distributions (LiDFa, LIDFb) were also considered. We used a
relative high LAI (6) to better visualize the difference in the model for
SIF and GPP between sunlit and shaded leaves. When the incoming
shortwave radiation (Rg) exceeds 800 W'm_z, we found the simulated
GPP starts to decline. Therefore, we only used the Rg in the range of 10 —
600 W-m 2. In addition, we also observed negative GPP output from the
SCOPE model under the weak illumination (such as 10 W-m 2).
Therefore, we subtracted the minimal GPP from the simulated GPP for
both sunlit and shaded leaves to keep the minimal GPP as zero.

The relationships between SIF and GPP for sunlit and shaded leaves
are simulated separately using SCOPE (Fig. 2). GPPgy, quickly transited
from being light limited to light saturated at the low level of Vpax (40
pmol-m’z-s’l) and thus exhibited clear nonlinearity for all leaf angle
distributions (Fig. 2A-F). The point at which this transition occurred was
larger at the higher level of Vipnax (80 pmol-m’z-s’l), weakening the
nonlinearity for SIFg,, and GPPg,, to some extent (Fig. 2G-L). However,
linear relationships were observed from GPPgpade and SIFgh,4e regardless
of the level of V¢max. These results indicate that there are clear differ-
ences in SIF-GPP relationships between sunlit and shaded leaves, espe-
cially for the low level of V pax.

2.2. Separation of sunlit and shaded leaves

The separation of sunlit SIF (SIFg,,) and shaded SIF (SIFghaqe) Was
achieved in two steps. The first step was to derive the total canopy SIF
emission (SIFya1) before scattering and reabsorption from the observed
SIF (SIFps) using the reflectance-based methods as below:

SIF ¢
SIF g = 22 €]
ﬂSC
NIRy
= 2
foo = iR @)

where f. is the probability of fluorescence escaping from canopy and
NIRy is the near-infrared reflectance of vegetation (Badgley et al., 2017,
2019). NIRy is calculated with the reflectance at red (R) and
near-infrared (NIR) bands that should be in the same sun-view geometry
of TROPMI SIF . In this study, R and NIR were simulated by driving the
RossThick-LiSparseR model using the MODIS BRDF parameters that

were provided by MCD19A3 (Lyapustin et al., 2011, 2018). iy was
derived with the G-function, leaf area index (LAI), clumping index (CI),
and solar zenith angle (SZA, 6). MODIS LAI was obtained from
MCD15A2H (Myneni et al., 2002) and CI was obtained from (He et al.,
2012). All satellite products were aggregated into 0.2° grids for spatial
consistency. K; is ratio of leaf albedo to the escape probability of fluo-
rescence from photosystem to leaf surface at 740 nm and was set as 1.2
for far-red SIF (Zhang et al., 2021). A comprehensive description of fs
and its uncertainty can be found in Zhang et al. (2021).

In the second step, SIFiy, was used to directly separate SIFg,, and
SIFshade because SlFiy is insensitive to the canopy structural and
angular effects (Yang and van der Tol, 2018; Zeng et al., 2019; Liu et al.,
2020; Zhang et al.,, 2021) and can simplify the separation process.
Analogous to the LUE model, SIFg,, and SIFgha4e can be expressed as
below:

SIF ., = APARy,, X SIFY g, (3)
SIF pade = APAR jage X SIFY gpage (4)
SIF o = APARgy X SIFY sy + APAR e X SIFY ghade ()

where APARg,, and APARgy.de are the PAR absorbed by sunlit and
shaded leaves, respectively. SIFYg,, and SIFYgpa4e are the SIF yield at
photosystem level for sunlit and shaded leaves, respectively.

We calculated APAR,, and APARgh,de according to previous studies
(Chen et al., 1999; Bi et al., 2022):

PARiu:e 7PAR iffuse, u
APAR e = ( e DA +c) X LAl ©
PARgi,cosfp PARgiguse — PARiguse, u
APARy,, = LAI,
( AT 1Al +C ) x LAy, @)
LAI x CI
LAI,, = 2cosSZA x |1 — - 8
cos { exp( 2cos6 )} ®
LAIshade =LAl — LAIsun (9)
C=0.07 x CI x PARs x (1.1—-0.1 x LAI) x exp(—cosf) 10)
0.5 x LAI x CI

PAR iffuseu — PAR liffuse T AN EAT NOAE W T AT 11
i difie > EXP ( 0.537 + 0.025 x LAI) an

where PARgire: and PARgyp are the direct and diffuse PAR, respec-
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Fig. 3. Global map of (A) SIFg,, and (B) SIFsaqe derived from TROPOMI averaged over May to September in 2018.

tively. PARgie: and PARgj, were obtained by interpolating the
MERRA-2 reanalysis data (Gelaro et al., 2017). PARguse . is the diffuse
PAR reaching to the ground. f is the mean leaf-sun angle, which is set as
60°, a good approximation in § from 30 to 60° (Chen et al., 1999; Bi
et al., 2022).

SIFYgyn and SIFYghage are unknown but can be estimated. Assuming
SIFYgyn and SIFYghade are constant or change slowly during a fixed
period, the combination equation (Eq. (12)) can be used to estimate
SIFYgun and SIFYghade using the least square method. More details about
the least square method can be found in Text Al in the Appendix. Once
SIFYgyn and SIFYghade Were estimated, SIFg,, and SIFghade can be esti-
mated using Egs. (3) and (4).

SIF)

total

, = APAR!  x SIFY,,, + APAR., . % SIFY 4
: 12)
SIFY , = APARY

toi sun

X SIFYy + APARY, 1o X SIFY gude

where N is the number of day when TROPOMI SIF was available during a
fixed period. To increase the stability of the estimated SIFYg,, and
SIFY hade, We solved Eq. (12) in a 16-day interval and 1° x 1° moving
window assuming the environmental conditions were similar.

2.3. GPP estimation model based on sunlit and shaded SIF

Based on the SCOPE model simulations, nonlinear and linear models
were used to fit the SIF-GPP relationship for sunlit and shaded leaves,
respectively (see Section 2.1). For sunlit leaves, the hyperbolic model
proposed by Damm et al. (2015) was used to account for the saturation.
Because the sunlit and shaded GPP were not available from the flux
tower, the model coefficients were not fitted for sunlit and shaded leaves
separately. On the contrary, we directly fitted the model for the whole
canopy GPP as Eq. (13) (denoted as a two-leaf hybrid model). For
comparison purpose, the GPP estimation models directed based on
SIF;ota) using linear or hyperbolic model were also considered, denoted
as a big-leaf linear (Eq. (14)) or hyperbolic (Eq. (15)) model,
respectively.

GPP = (a) X SIFy) / (SIFyun + @2) + (a3 X SIFypaqe + ts) a3
GPP = a5 x SIF 1 + dg as
GPP = (a7 % SIF )/ (SIF a + a5) 1s)

2.4. TROPOMI SIF data

TROPOMI onboard the Sentinel-5 Precursor satellite is an imaging
spectrometer, which collects the spectral data at an improved spatial
resolution (5.6 km x 3.5 km and 5.6 km x 3.5 km at nadir after August
6, 2019), with a wide swath of approximately 2600 km that allows for
almost daily surface coverage. Due to its high spectral resolution in the

spectral region overlapping with the solar Fraunhofer lines, SIF has been
successfully retrieved with a singular value decomposition (SVD) tech-
nique (Kohler et al., 2018b; Guanter et al., 2021). This study adopted SIF
that was retrieved by the ESA-TROPOSIF team using the spectral range
of 743-758 nm (Guanter et al., 2021). The retrieved SIF was normalized
to 740 nm using a reference fluorescence spectrum. SIF observations
with a cloud fraction larger than 0.2 were excluded and then the
remaining SIF observations were aggregated into 0.2° grids for each day.
Averaging multiple individual observations into a single value would
effectively reduce the retrieval noise of SIF (Frankenberg et al., 2014;
Yu et al., 2019). Therefore, we only used these 0.2° grids averaged from
at least six observations. We used the TROPOMI SIF from May 2018 to
December 2021 and presented the spatial patterns during May to
September (when the fraction of green vegetation is maximal) in 2018 as
an example. The instantaneous SIFg;, and SIFg,4e at the overpass time of
TROPOMI SIF were derived using Eq. (12). The daily mean SIFg,, and
SIFshade Were obtained by converting the instantaneous fluorescence to
daily averages following the method of Frankenberg et al. (2011).

2.5. Tower and global GPP data

Two types of GPP data were used in this study: tower GPP estimated
from tower-based measurements and multiple global GPP products that
are available in 2018. The tower flux data at 45 sites from AmeriFlux
(http://ameriflux.ornl.gov/), European Flux Database (www.europe-
fluxdata.eu/home), and OzFlux (http://data.ozflux.org.au/portal/ho
me), were used after checking the land homogeneity and data avail-
ability from 2018 to 2021 and their information can be found in
Table Al. The half-hourly GPP was obtained by partitioning the
measured net ecosystem exchange of carbon dioxide based on the
nighttime partitioning approach Reichstein et al.,, 2005). The
half-hourly GPP was averaged into the daily GPP to fit the GPP models
(Egs. (13)-(15)). The estimation accuracy was evaluated using the
widely leave-one-site-out cross-validation strategy (Bodesheim et al.,
2018; Joiner et al., 2018). Only sites with C3 plants were considered for
simplicity because the latest global fractional map of C4 plants was not
available.

The best model from Egs. (13)-(15) was used to estimate the global
GPP by applying the model to each 0.2° grid. Then, the estimated GPP
was averaged for each monthly from May 2018 to December 2020. The
estimated GPP from SIF was then compared with five global GPP
products, including TL-LUE (Bi et al., 2022), VPM (Zhang et al., 2017),
PML v2 (Zhang et al., 2019), FLUXCOM (Tramontana et al., 2016), and
FluxSat v2 (Joiner and Yoshida, 2020). The details about these products
can be found in the cited references. In particular, the TL-LUE model also
provided the global sunlit and shaded GPP (Bi et al., 2022), which were
compared with the derived TROPOMI sunlit and shaded SIF (see Section
3.2). All these GPP products were spatially aggregated into 0.2° grids,
except for FLUXCOM that was originally provided in 0.5° grids.
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Therefore, the GPP estimated from SIF can be compared with GPP from 3. Results
TL-LUE, VPM, PML v2, and FluxSat v2 in a consistent spatial resolution.
3.1. Global map of SIFy;, and SIFspeq. from TROPOMI

The global maps of SIFg, and SIFs,qe derived from TROPOMI SIF
averaged over May to September in 2018 are shown in Fig. 3. The spatial
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distributions of SIFg,, and SIFgade Were clearly different. High SIFg,,
was observed in the middle latitude in the Northern Hemisphere, such as
the US corn belt and the western Europe (Fig. 3A), while SIFghaqe was
high in the low latitude tropics (Fig. 3B). In addition, these differences
can be easily observed from the latitudinal patterns of SIFg,, and SIFghaqe
(Fig. 4A). SIFshade Was systematically higher than SIFg, in the latitude
from —10° to 25°, but lower in other latitudes on average. As a result,

EBF (mainly grown in low latitudes) exhibited higher SIFgade than
SIFgyn, but other vegetation types exhibited higher SIFg,, (Fig. 4B).
The spatial differences of SIFg,, and SIFgy,qe Were mainly related to
LAI, the fraction of diffuse radiation, and SZA based on its calculation
process (see Section 2.2). We compared the spatial fraction of SIFghade,
the fraction of LAIgpage, the fraction of PARgjffse, and SZA (Fig. 5). The
high fraction of SIFgage (Fig. 5A) in low latitudes were jointly
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Fig. 9. Global maps of GPP derived from different products: (A) TL-SIF, (B) TL-LUE, (C) VPM, and (D) PML-v2, (E) FLUXCOM, and (F) FluxSat-v2 averaged over May

to September in 2018.

determined by the high fraction of LAIgade (Fig. 5B) and PARgjfruse
(Fig. 5C). However, we also observed a few high fractions of SIFgaqe at
the northern Russia (Fig. 5A), which would be mainly related to the high
fraction of PARg;tfyse (Fig. 5C) and SZA (Fig. 5D). These results indicated
that the spatial fraction of SIFg,q. Was complex due to the compound
effects of multiple factors.

3.2. Relationships between SIF and GPP for sunlit and shaded leaves

Besides the model simulations, TROPOMI SIF and TL-LUE GPP were
also used to analyze the SIF-GPP relationships for sunlit and shaded
leaves separately (Fig. 6). SIFgy, and SIFgade Were derived from TRO-
POMI SIF, and GPPg,,, and GPPg,,4. were obtained from TL-LUE GPP. We
found consistent patterns with the model simulations: nonlinear for
sunlit leaves (Fig. 6A) and linear for shaded leaves (Fig. 6B) for all
vegetation types. Therefore, it is reasonable to estimate GPP from SIF by
considering such model differences between sunlit and shaded leaves. In
particular, the nonlinearity of the GPPg,, and SIF,, is more clear for
forests and other vegetation types than for crops (Fig. A2).

3.3. Accuracy evaluation of GPP estimation models

We compared the performance of three models (a big-leaf-based
linear model, a big-leaf-based hyperbolic model, and a two-leaf-based
hybrid model) on GPP estimation using the leave-one-site-out crossing
validation. If not considering the difference between sunlit and shaded
leaves, the big-leaf-based linear model estimated GPP with a R? of 0.68
and RMSE of 2.13 gC-m2.d~! (Fig. 7A). However, the big-leaf hyper-
bolic model (Fig. 7B: R? = 0.72, RMSE = 2.01 gC-m~2.d ") was slightly

better than the linear model, since the linear model ignored the
nonlinear relationship between SIFy,, and GPPg,,. Furthermore, the
two-leaf-based hybrid model that considered the difference in sunlit and
shaded leaves performed best with a R% of 0.77 and RMSE of 1.79
gC-m~2.d7! (Fig. 7C).

The accuracies of three GPP estimation models for different vegeta-
tion types are presented in Fig. 8. In general, the two-leaf-based hybrid
model resulted in lower RMSE than the big-leaf-based linear or hyper-
bolic models. Compared to the big-leaf-based linear model, the RMSE of
the two-leaf-based hybrid model reduced by ~0.5 gC-m~2.d ! for forests
(ENF, EBF, and DBF). However, the improvements in RMSE were less
than ~0.5 gC-m~2.d~! for other non-forest vegetation types, and the
smallest improvement was obtained for CRO.

3.4. Global estimation of GPP

Furthermore, the two-leaf-based hybrid model was used to estimate
the global GPP using SIFg,, and SIFgpade (denoted as TL-SIF hereafter)
due to its best performance. TL-SIF can depict the spatial patterns of
vegetation GPP globally, with high values occurring at the low latitude
tropics, the US corn belt, the western Europe, and the southeast China
(Fig. 9A). We compared the spatial patterns of TL-SIF derived GPP with
multiple existing GPP products that were available for the year of 2018
(Fig. 9B-F). In general, TL-SIF GPP exhibited consistent spatial patterns
with the current GPP products. The consistency was also demonstrated
by high correlations between TL-SIF GPP and other GPP products (R? >
0.79, Fig. 10), with the highest correlation TL-SIF GPP and FluxSat GPP
(R? = 0.88, Fig. 10D).



Z. Zhang et al.
_15 > -
Z AR =083 [F 5
&
=
G 10
=0
-¥
S
= 3]
jon]
)
=
0
0 5 10 15
TL-SIF GPP (gC-m2-d™")
15 > - ’
O R =019 L
? b
5
=
G 10
S0
-™
-9
S 5
3 2
P j_
=¥ ’
0

TL-SIF GPP (¢C-m>2.d”")

VPM GPP (gC-m>-d™")

FluxSat GPP (gC-m>-d")

Agricultural and Forest Meteorology 341 (2023) 109658

o
wn

B) R”®=0.81 =& .

—
>

0 5 10 15
TL-SIF GPP (gC-m2-d™")

15 5
(D) R*=0.88 e

[
>

15
TL-SIF GPP (¢C-m™>-d™")

Fig. 10. Comparisons of TL-SIF GPP and GPP estimated from (A) TL-LUE, (B) VPM, (C) PML-v2, and (D) FluxSat-v2. The black dotted lines represent the 1:1 line.

25 T T T T T T T T T T T T
—— Sunlit leaf
— Shaded leaf
20 -
st -
"l’ H
=
. H .
E 10 H B L _
7]
5+ = i
— = — =
=
H g H B =
0 I I | I | I I I | L | I
ENF EBF DNF DBF MF CSH OSH WSA SAV GRA WET CRO

Fig. Al. Box plots of SIFY,, and SIFYg,.4e per vegetation type.

4. Discussion
4.1. Debate on the linear or nonlinear relationships between SIF and GPP

The inherent relationship between SIF and GPP tends to be non-
linear because GPP saturates at high light but SIF does not (Damm
et al., 2015; Zhang et al., 2016; Gu et al., 2019; Kim et al., 2021). This
nonlinearity between SIF and GPP can be observed from our SCOPE
simulations for sunlit leaves with a wide range of illumination (Fig. 2).
Although SCOPE is a 1-D model, it is also widely used to characterize the
SIF and GPP relationship for forests (Hao et al., 2021). Therefore, it is
reliable to conclude that the relationship between SIF and GPP is
nonlinear for sunlit leaves (Fig. 2). However, many studies have

reported the linear relationships between SIF and GPP over last decades
(Frankenberg et al., 2011; Yang et al., 2015; Sun et al., 2017; Miao et al.,
2018; Zhang et al., 2020a). Several potential reasons for such a con-
tradictory have been clarified by Magney et al. (2020) who stated that
the temporal and spatial aggregations of SIF and GPP strengthen their
linearity.

Moreover, the SIF-GPP relationships are also affected by the point
when photosynthesis begins to be light-saturated, which mainly depends
on photosynthetic pathway (He et al., 2020) and V¢pax (Zhang et al.,
2016). For example, C4 plants are less light-saturated compared to Cs
plants (He et al., 2020). In addition, ENF with a low level of V. has a
small saturation point and hence shows a strong nonlinearity for SIF and
GPP (Kim et al., 2021; Liu et al, 2022). On the contrary, linear
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Fig. A2. Similar to Fig. 6 but for (A-B) forests, (C-D) crops, and (E-F) others.

relationships between SIF and GPP are observed for crops with high
levels of Vemax (Goulas et al., 2017; Miao et al., 2018; Yang et al., 2018).
These results are consistent with the model simulations showing that the
degree of nonlinearity and the SIF-GPP model difference between sunlit
and shaded leaves are sensitive to the level of Vyax (Fig. 2). Therefore,
understanding the spatiotemporal scale and photosynthetic pathway
and capacity is crucial for the GPP estimation from SIF using linear or
nonlinear relationship.

4.2. The advantage of the two-leaf hybrid model

Regardless of linear or nonlinear models adopted by previous
studies, they commonly consider the canopy as a whole (in other words
SIF and GPP are the averages of the whole canopy) and ignore the dif-
ference in SIF-GPP relationships between sunlit and shaded leaves (as
shown by Figs. 2&6). In fact, the canopy can be simply separated into
two components: sunlit and shaded leaves (Leuning et al., 1998; Wang
and Leuning, 1998). Under clear-sky conditions, sunlit leaves always
receive both direct and diffuse radiation and thus are easy to be light
saturated (Chen et al., 1999; Bi et al., 2022). However, shaded leaves
only received diffuse radiation and transmitted radiation and thus are
light-limited (Chen et al., 1999; Bi et al., 2022). Therefore, nonlinear
and linear models should be used for sunlit and shaded leaves, respec-
tively, when building the link between SIF and GPP.

In this context, the two-leaf hybrid model is proposed for the first
time by taking both sunlit and shaded leaves into consideration (Eq.
(13)). On average, the two-leaf hybrid model outperforms traditional
big-leaf linear or hyperbolic models (Fig. 7). We also find that the two-
leaf hybrid model improves more for forests (Fig. 8). This could be
caused by the stronger nonlinearity for forests (Fig. A2A-B) due to the
low level of Vemax (40~60 umol-m_z-s_1 for ENF and EBF) (He et al.,
2019) and also high level of LAI (Liu et al., 2022). Therefore, the
separate consideration of sunlit and shaded leaves is necessary. On the
contrary, crops have a high level of Vemax (~80 pmolm 25! on
average) (He et al., 2019) or (~150 prnol-m_2~s_1 for soybean) (Zhang

et al., 2014), therefore, the nonlinearity of SIFg,, and GPPg,, is weaker
(Fig. A2C-D) and the difference in SIF-GPP relationships is smaller (see
the second row in Fig. 2). As a result, a big-leaf linear or hyperbolic
model is enough to capture the link between SIF and GPP, leading to the
minimal improvement for CRO (Fig. 8).

4.3. Future improvements of GPP based on TL-SIF

The two-leaf hybrid model requires sunlit and shaded SIF as input
data, which were derived from TROPOMI SIF in this study. In theory,
two observations can be used in Eq. (12) to estimate SIFYg,, and SIFY-
shade and the following SIFg,, and SIFghaqe- The resulting SIF metrics
would be affected by the uncertainties in the estimated APARg,, and
APARghade due to the estimation uncertainty from input data (such as LAI
and PAR) and several assumptions made for Egs. (6)-(11). For example,
a constant mean leaf-sun angle (60°) was used in this study, although it
is a good approximate for the SZA in the range of 20—60° For the other
conditions with SZA ( 20° or SZA ) 60°, the suitability of the constant
value deserves further study. More accurate estimation of APARg,, and
APARghade Would further improve the estimation of SIFg,, and SIFghade.

In addition, satellite SIF is retrieved with inherent noises (Kohler
etal., 2018a; Sun et al., 2018), which increase the difficulty to derive the
accurate estimation of SIFYg,, and SIFYgpaqe. To mitigate the noise issue,
we solved Eq. (12) using the least square method and combined all
available observations (after quality control) within a 16-day interval
and 1° x 1° moving window. This can effectively reduce the uncertainty
in estimating SIFYg,, and SIFYghade, and the estimates of SIFYg,, and
SIFYghade can be considered as smoothed values in space and time. The
use of a 16-day period partly or completely ignores the variations in
SIFYgyn and SIFYghade in response to stress. For the sudden drought or
flood, the SIF yield varied quickly in response to stress, therefore, this
would lead to huge uncertainty of estimated SIF yield and hence SIF. For
most regions, the environment at the ecosystem scale (such as 0.2°)
varies more slowly compared to a single site where climatic parameters
could show high fluctuations. If more accurate SIF retrievals will be
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Table A1

Flux sites used in this study. CRO = cropland, DBF = deciduous broadleaf forest,
EBF = evergreen broadleaf forest, ENF = evergreen needleleaf forest, GRA =
grass, MF = mixed forest, OSH = open shrubland, SAV = savanna, WET =

wetland, and WSA = wood savanna.
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Table A1 (continued)

Site ID Latitude Longitude IGBP  Reference

AR-CCg —35.9244 —61.1855 GRA -

CA-LP1 55.1119 —122.8414 ENF -

CA-SCB 61.3089 —121.2984 WET -

CA-SMC 63.1534 —123.2522 ENF -

MX-Aog 26.9968 —108.7892 DBF -

US-ALQ 46.0308 —89.6067 WET -

US-BZB 64.6955 —148.3208 WET -

US-BZF 64.7013 —148.3121 WET -

US-BZo 64.6936 —148.33 WET -

US-CdM 37.5241 —109.7471 WSA -

US-DFC 43.3448 —89.7117 CRO -

US-EDN 37.6156 -122.114 WET -

US-EML 63.8784 —149.2536 OSH (Belshe et al. (2012))

US-HBK 43.9397 —-71.7181 DBF -

US-Hal 42.5378 —-72.1715 DBF (Urbanski et al. (2007))

US-Ha2 42.5393 —72.1779 ENF -

US-Hn2 46.6889 —119.4641 GRA -

US-Hn3 46.6878 —119.4614 OSH -

US-Hol 45.2041 —68.7402 ENF -

US-ICt 68.6063 —149.3041 OSH -

US-Jol 32.582 —106.635 OSH -

US-Jo2 32.5849 —106.6032 OSH -

US-KFS 39.0561 —95.1907 GRA -

US-KM4 42.4423 —85.3301 CRO -

US-KPL 60.5382 —150.5061 WET -

US-LL1 31.2792 —84.5329 SAV -

US-Los 46.0827 —89.9792 WET (Sulman et al. (2009))

US-MMS 39.3232 —86.4131 DBF (Dragoni et al. (2011))

us- 42.366 —85.3526 MF -
MWF

US-Mo3 39.2311 —92.1497 CRO -

US-NR1 40.0329 —105.5464 ENF (Monson et al. (2002))

US-ONA 27.3836 —81.9509 GRA -

US-Rws 43.1675 —-116.7132 OSH (Flerchinger et al. (2019))

US-Seg 34.3623 —106.7019 GRA -

US-Ses 34.3349 —106.7442 OSH -

US-Syv 46.242 —89.3477 MF (Sulman et al. (2009))

US-Ton 38.4309 —120.966 WSA  (Ma et al. (2007))

US-Vem 35.8884 —106.5321 ENF -

US-WCr 45.8059 —90.0799 DBF (Sulman et al. (2009))

US-Whs 31.7438 —110.0522 OSH (Scott et al. (2015))

US-Wkg 31.7365 —109.9419 GRA (Scott et al. (2010))

US-xAE 35.4106 —99.0588 GRA -

US-xBN 65.154 —147.5026 ENF -

US-xBR 44.0639 —71.2873 DBF -

US-xCP 40.8155 —104.7456 GRA -

US-xDC 47.1617 —99.1066 GRA -

US-xDJ 63.8811 —145.7514 ENF -

US-xDL 32.5417 —87.8039 MF -

US-xHA 42.5369 —-72.1727 DBF -

US-xHE 63.8757 —149.2133 OSH -

US-xMB 38.2483 —109.3883 OSH -

US-xNG 46.7697 —100.9154 GRA -

US-xRM 40.2759 —105.5459 ENF -

US-xSC 38.8929 —78.1395 DBF -

US-xSL 40.4619 —103.0293 CRO -

US-xSR 31.9107 —110.8355 OSH -

US-xST 45.5089 —89.5864 DBF -

USxTA 32.9505 —87.3933 ENF -

US-xTE 37.0058 —119.006 ENF -

US-xTR 45.4937 —89.5857 DBF -

US-xUN 46.2339 —89.5373 MF -

US-xWD 47.1282 —99.2414 GRA -

US-xYE 44.9535 —110.5391 ENF -

AU-Cum —33.6152 150.7236 EBF (Beringer et al. (2016))

AU-Lit —-13.179 130.7945 SAV (Beringer et al. (2016))

AU-Stp —17.1507 133.3502 GRA -

AU-Whr —36.6732 145.0294 EBF -

AU- —37.4222 144.0944 EBF (Hinko-Najera et al.
Wom (2017))

AU-Wrr —43.09501667  146.6545167  EBF -

Site ID Latitude Longitude IGBP  Reference

AU-Ync —34.9893 146.2907 GRA (Yee et al. (2015))
BE-Bra 51.30761 4.51984 MF (Janssens et al. (2001))
BE-Vie 50.30496 5.99808 MF (Aubinet et al. (2001))
CH-Lae 47.47808333 8.365 MF (Etzold et al. (2011))
ES-Abr 38.701839 —6.785881 SAV (Luo et al. (2018))
ES-LM1 39.94269 —5.778683 SAV (El-Madany et al. (2018))
ES-LM2 39.934592 —5.775881 SAV (El-Madany et al. (2018))
FI-Var 67.7549 29.61 ENF -

FR-Pue 43.7413 3.5957 EBF (Rambal et al. (2004))
IL-Yat 31.34504459 35.05198851  ENF -

IT-Tor 45.84444 7.578055 GRA (Galvagno et al. (2013))

available, a smaller fitting window with a narrower temporal period can
be used to reduce the effects of spatial heterogeneity and day-to-day
variation.

5. Conclusions

This study proposed an approach to separate the total canopy SIF
emission (SIFita) from TROPOMI into their sunlit and shaded compo-
nents (SIFgy, and SIFghade). By comparing SIF and GPP between sunlit
and shaded leaves, we found clearly different SIF-GPP relationships
between sunlit (nonlinear) and shaded (linear) leaves, which were
consistent with the SCOPE model simulations and the theoretical anal-
ysis. Therefore, this study proposed a two-leaf hybrid model to consider
both linearity and nonlinearity. The two-leaf hybrid model (R? = 0.77)
showed better performances on GPP estimation compared to the big-leaf
linear (R? = 0.68) or hyperbolic (R? = 0.72) models. We also used this
two-leaf hybrid model to estimate the global GPP during the main
growing season in Northern Hemisphere and the estimates were highly
correlated with several existing GPP products, with R? ranging from
0.79 to 0.88. These findings will improve our understanding of the
relationship between SIF and GPP and advance application of satellite
SIF data to GPP estimation.
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Appendix
Text A1 the least square method

Eq. (12) can be formulated as Eq. (A1) in the format of matrix, where all parameters have been defined in the context related to Eq. (12). Therefore,
the solution (x) for the unknown parameter X can be calculated using Eq. (A2) for each moving window. Once the process was repeated for all moving
windows, the global SIFYg,, and SIFYgh,qe Was obtained. Fig. A1 shows the boxplots of SIFYgy, and SIFYhaqe for each vegetation type. SIFYg, ranged
from 10> to 5 x 10~° and SIFYgpade sShowed higher values (> 0.5 x 10~4). Thisis expected that SIFYg;, at the high illumination is lower than SIFYgpaqe
at the low illumination.

Y = AXE
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