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ABSTRACT: Hybrid methods such as ONIOM (QM:QM) are
widely used for the study of local processes in large systems.
However, the intrinsic need for system partitioning often leads to a
less-than-desirable performance for some important chemical
processes. This is due to the missing interactions in the chemically
important model region (i.e., active site) of the high-level theory.
The missing interactions can be categorized into two classes, viz.
charge transfer (i.e., charge redistribution) and long-range
electrostatic interactions. Our group presented two entirely
different methods to treat these deficiencies individually.
ONIOM-CT and ONIOM-EE methods have been demonstrated
to improve the performance of ONIOM by incorporating charge
transfer and missing electrostatic interactions, respectively. In general, the inclusion of the missing interactions separately in two
different calculations may not be sufficient to reach a high accuracy. Thus, it is highly desirable to develop a method to correct both
deficiencies simultaneously. In this work, we aim to connect the methods ONIOM-CT and ONIOM-EE for a more comprehensive
treatment. A “stepwise” model was found to be necessary for a robust performance. This model employs a stepwise procedure by
first satisfying the ONIOM-CT condition for charge balance before accounting for the electrostatic interactions from the rest of the
system perturbatively. This has the advantage of easy interpretation due to the clear separation of the two effects. We demonstrate
the performance of our method using embedding charges determined from a Mulliken population analysis. An efficient analytic
gradient expression for this method is derived and implemented by requiring three sets of z-vector self-consistent equations. The
performance of our method is assessed against full system calculations in high-level theory for a set of three proton transfer reactions
representing different degrees of electrostatic embedding.

1. INTRODUCTION
The computational cost of the in silico simulation of chemical
reactions using electronic structure methods grows rapidly with
system size, limiting the applicability of highly accurate
methods to a modest number of atoms. This bottleneck may
be overcome by realizing the local nature of most chemical
processes. Hybrid methods take advantage of this aspect of
chemical reactions by dividing molecules into different regions.
Warshel and Levitt introduced QM/MM to study enzymic
reactions where QM (charge distribution and bond cleavage in
substrate) and MM (steric and electrostatic interactions
between substrate and enzyme) complement each other.1

The general energy expression of QM/MM is given in eq 1.
QM and MM energies are added, along with an interaction
term. Thus, it is often referred to as an additive scheme.2

= + +E E E EQM/MM QM MM QM MM
Interaction

(1)

The interaction term, in eq 1, can be fairly convoluted and
dependent on the choice of combination of methods and
systems.3−5 Maseras and Morokuma suggested an alternative
scheme called IMOMM (integrated molecular orbital+molec-

ular mechanics), avoiding any interaction term.6 This is often
termed an extrapolation (or embedding) scheme. The
IMOMM scheme, despite the ease of application, needs
force field parameters for the QM region, which may not be
available in many cases. A variant of this, called IMOMO,
involving only QM methods, was proposed by Morokuma et
al., which is more broadly applicable.7 Both of these methods
were subsequently combined and extended to n-layers, which
was called ONIOM (our own N-Layer integrated molecular
orbital molecular mechanics).8 The flexibility in choice of
number of layers and combination of methods enables a
diverse set of applications. The development and application of
this popular method is summarized in a recent review.9 The
energy expression for the two-layer ONIOM is given in eq 2.
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= +E E E EONIOM RL MH ML (2)

Following standard notation, “high (H)” and “low (L)”
represent the two different methods in hybrid calculations with
higher and lower accuracy, respectively, and “model (M)” and
“real (R)” regions represent the active region and the full
system, respectively. Thus, the target energy is ERH and the
ONIOM error (S-value) is given by

= E EErrONIOM ONIOM RH (3)

The aim of the two-layer ONIOM method is to approximate
the computationally expensive RH calculation using three
computationally inexpensive calculations (RL, ML, and MH).
Typically, ONIOM is applied in chemical applications such as
reaction energies, excitation energies, or relative energies where
the difference in energy between two states removes systematic
error. In addition, the simple form of the energy leads to the
efficient calculation of properties and geometry optimizations.
Vreven and Morokuma have summarized these applications in
their review.10

The necessity to split systems into multiple regions has the
potential to introduce errors in hybrid methods, such as
ONIOM. This is due to the missing interactions in the
chemically important model region calculations. These
interactions can be broadly classified into charge transfer and
electrostatic interaction. The charge transfer (or charge
imbalance) issues originate from the boundary passing through
a covalent bond, and the electrostatic interactions are from the
missing long-range effects from the rest of the system on the
model region. In standard QM/MM and ONIOM, the
resulting dangling bond due to the boundary passing through
a covalent bond is capped using a hydrogen link atom.
Standard QM/MM and ONIOM include polarization by fixed
charges and low-level (RL) calculations, respectively.
Improvements to these oversimplified treatment of missing

interactions have been achieved in QM/MM. Field11

implemented the fluctuating charge model12 based on
electronegativity equalization method13 to condensed-phase
simulations in QM/MM. Gao presented a molecular orbital-
derived potential (MODEL) for QM/MM simulations.14

Several improved treatments15−17 of the boundary region in
QM/MM have also been made, most notably GHO18

(generalized hybrid orbital), which, together with MODEL,14

constitutes the X-POL method.19 Variational formulation and
implementation of analytic derivatives of the method enable
efficient MD simulations.20 The DSCF (double self-consistent

field) form has some similarity with fragmentation methods
such as FMO21 and EE-MIM.22

The analogous methods for ONIOM (QM:QM) have not
yet been fully developed. Two different methods were
proposed by our group to account for the missing interactions
separately, viz., ONIOM-CT23,24 (ONIOM with Charge
Transfer corrections) and ONIOM-EE25−28 (ONIOM with
electrostatic embedding) to correct for charge transfer and
electrostatic interactions, respectively. The current work aims
to bring these two distinct methods together under one
umbrella. Furthermore, analytic gradients of the method have
been derived and implemented for the efficient optimization of
structures with this method. We note that some popular
methods like X-POL19 have been reformulated to enable
efficient analytic gradient implementation.20 In this work, our
models will also be derived with a focus on the efficient
implementation of the analytic gradient. The exact form of the
gradient depends on the charge model. This work will employ
Mulliken charge29 model. This work is organized as follows.
Section 2 gives background information. Section 3 presents our
method. Section 4 presents the results and the corresponding
discussion. Section 5 analyzes the computational cost. Section
6 summarizes our conclusions.

2. BACKGROUND
The current work aims to correct for both electrostatic
interaction and charge transfer deficiencies in ONIOM. Here,
we briefly describe the ONIOM-CT and ONIOM-EE methods
to account for the two deficiencies individually. The difference
between the methods lies in the creation of the model systems.
Figure 1 presents the two methods.
Since we are combining two different methods, some

notations are tweaked for ease of generalization. We will use Ẽ
to represent the energy without embedding (both charge on
link atom and/or background charges wherever applicable)
contributions in an embedded calculation. μ, ν, λ, and σ will be
used to represent atomic orbitals. Parameters P, S, and C will
represent density matrix, overlap matrix, and MO coefficients,
respectively. Parameters i, j, k, and l represent occupied
orbitals, parameters a and b represent unoccupied orbitals, and
parameters p and q represent general molecular orbitals. These
notations are used throughout the rest of the text.

2.1. ONIOM-CT. Mayhall and Raghavachari suggested this
method to correct for charge redistribution effects across the
boundary of ONIOM.23 This method places a point charge on
the link atom nucleus to balance the charge in the model

Figure 1. Workflow of the model system preparation for ONIOM-CT and ONIOM-EE methods. First the “Model region” is identified using
chemical intuition. Model system is represented by ball and stick. ONIOM model system is prepared by placing a link atom to cap the dangling
bond. ONIOM-CT corrects the charge transfer issues by placing a charge on the link atom nucleus (z). ONIOM-EE (point charge embedding)
embeds the model system in external point charges placed at the position of atoms of rest of the system.
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region by pushing or pulling electrons in or out of it. ONIOM-
CT has been shown to improve the performance of ONIOM
using 3 different charge models, i.e., Mulliken, Löwdin, and
Hirshfeld. The ONIOM-CT energy expression is given in eq 4.

= +E E E EONIOM CT RL MHCT MLCT (4)

EMHCT and EMLCT are model region energies at high (H) and
low (L) levels of theory, respectively, using charge z on the link
atom satisfying the condition qIMLCT = qIRL. Here, qIMLCT and qIRL
are model region charges in ML and RL calculations,
respectively, in ONIOM-CT. Note that the model region
does not include the link atom. We will use the notation
MHCT and MLCT to represent the MH and ML calculations,
respectively, using the above charge z on the link atom.
The analytic gradient of ONIOM-CT has also been

developed.24 In order to obtain the analytic gradient, the
energy expression is written as in eq 5:

= + +E E E E z zONIOM CT RL MHCT MLCT (5)

=z z zMHCT; MLCT; (6)

Here, z is the additional charge on the link atom required to
satisfy the ONIOM-CT condition. The interaction of the
charge on the link atom with the model system is denoted by
the term zΔϕz, where Δϕz is the difference in electrostatic
potential between MH (ϕMHCT;z) and ML (ϕMLCT;z)
calculations at the link atom, as per eq 6. Differentiating this
expression, the analytic gradient is given as follows:

= + +

+

E E E E z

z z

x x x x
z

x

z
x x

z

ONIOM CT RL MHCT MLCT MHCT;

MLCT; (7)
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(8)

where B (eq 9) represents the inverse of the response of the
model region charge with respect to the link-atom nuclear
charge in the ONIOM-CT calculation, and must be obtained
numerically.
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zzzzzz=B

q

z
I
MLCT 1

(9)

The analytical gradient of ONIOM-CT has been obtained
for Mulliken and Löwdin charge models. For their exact
expressions and a full derivation, please see ref 24.

2.2. ONIOM-EE. ONIOM-EE was initially implemented
using point charges and later generalized to electronic
density28 as the embedding charges for the model system.
The point charge implementations include Mulliken charges,25

Löwdin charges27 and generalized asymmetric Mulliken
charges.26 All of these implementations include both energy
and analytic gradients. The general form of energy of ONIOM-
EE methods using point charges can be conveniently written as

= + +E E E E q q
A

A A
A

A AONIOM EE RL MH
Emb

ML
Emb

MH;
Emb

ML;
Emb

(10)

where qA is the embedded charge on atom A during model
system calculations, ϕMH;A

Emb and ϕML;A
Emb are the corresponding

electrostatic potentials in MH and ML calculations, respec-
tively. The last two terms in eq 10 represent the embedding
potential on the model system. The above notation of using
the superscript “Emb” to denote model system calculations
involving embedded charges will be used throughout the rest
of the text. Differentiating eq 10 gives the following analytic
gradient:

= + +

+

E E E E q

q q q

x x

A
A A

A
A A

A
A
x

A
A

A
x

A

ONIOM EE RL MH
Emb

ML
Emb

MH;
Emb

ML;
Emb

MH;
Emb

ML;
Emb

x x x

x

(11)

The final resulting exact expressions used in the
implementation are dependent on the charge model. Please
refer to their original papers25−27 for further information. We
will use notations A and B to denote the locations of the
embedded charges throughout the rest of the text.

2.3. Mulliken Charges. Charges on atoms are a coarse-
grained representation of the electronic density, and their

Figure 2. Process of model system preparation for (a) stepwise and (b) simultaneous models of EE-ONIOM-CT. In the case of the “stepwise”
model, we first treat the charge transfer effect and later take the effect of the rest of the system while maintaining the ONIOM-CT condition. On
the other hand, the “simultaneous” model takes into account both charge transfer and polarization effects simultaneously. This is performed by
considering the background charges during ONIOM-CT iterations resulting in additional charge on link atoms (zS) being different than that of
regular ONIOM-CT (z).
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magnitudes are dependent on the charge model of choice.
Mulliken charge model is a basis set dependent charge model
that is most widely used in embedding methods20 and charge
balance16 purposes due to its inexpensive nature and ease of
formulation of analytic gradient. We will be using this charge
model in the current work. The Mulliken charge on atom A
(qA) and its analytic gradient (qAx) are the following:

=q Z P SA A
A (12)

= +q P S P S( )A
x

A

x x

(13)

3. EE-ONIOM-CT METHOD
EE-ONIOM-CT method uses point charges as embedding
charges and an additional charge on the link atom to balance
the charge in the model region. Thus, it needs to effectively
perform both ONIOM-EE and ONIOM-CT. We propose two
different models to achieve this, as shown in Figure 2.
These models are called “stepwise” and “simultaneous”

because of the approach used to combine ONIOM-EE and
ONIOM-CT. In the following two subsections, we discuss the
implementation of the two models for systems with only one
link atom. However, the extension to multiple link atoms is
straightforward by summing over potentials on all of the link
atoms. This is enabled by our previous formulation of
ONIOM-CT, which places equal charge on all the link
atoms, assuming the bonds being cut are similar in nature
(typically C−C bonds).24 This formulation has the added

advantage of not requiring the numerical gradients with respect

to the link atom charge (e.g.,
z

AMHCT; in eq 18) to be calculated
individually, keeping the computational cost low.

3.1. “Stepwise” Model. As the name suggests, this model
treats the two deficiencies in a stepwise manner by first
satisfying the ONIOM-CT condition for charge balance before
accounting for the electrostatic interactions from the rest of the
system. This is conceptually a perturbative approach and has
the advantage of easy interpretation due to the clear separation
of the two effects. The energy of this model is obtained as
follows.

= +E E EEE ONIOM CT
SW

ONIOM CT Int (14)

=E q
A

A AInt
(15)

=A A AMHCT; MLCT; (16)

Here, ϕMHCT;A and ϕMLCT;A are electrostatic potentials on
background charge (qA) from unembedded MH and ML
calculations, respectively, post convergence of ONIOM-CT
cycle. The energy calculation can be conveniently divided into
following five phases:
(1) Perform RL calculation and extract the embedded

charges (qA) and qIRL. This step yields ERL.
(2) Perform ONIOM-CT cycle to obtain the appropriate

charge (z) to be added to the link atom nuclear charge.
In this cycle, ML calculations are performed in the
absence of the background charges (qA) on atoms in the

Figure 3. Flowchart for the calculation of (a) energy (EEE‑ONIOM‑CT
SW ) and (b) analytic gradient (EEE‑ONIOM‑CT

SWd

x

) using the “stepwise” model. The
different phases are color-coded for ease of distinction.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00497
J. Chem. Theory Comput. 2023, 19, 5791−5805

5794

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00497?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00497?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00497?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


rest of the system. This step yields EMLCT along with the
electrostatic potentials on atoms of the rest of the system
(ϕMLCT;A) from ML calculation.

(3) Next, perform MH calculation using the same charge on
link atom nucleus (z) as in the MLCT calculation. This
step yields EMHCT along with the electrostatic potential
on atoms of the rest of the system (ϕMHCT;A) from MH
calculation.

(4) The potential obtained from last two steps and the
charges obtained from the first step are used to calculate
EInt (eq 15).

(5) Finally, the energies from the last four steps are summed
appropriately to get the EE-ONIOM-CT energy
(EEE‑ONIOM‑CT

SW ).
The workflow to obtain the energy is presented in Figure 3a.

The energy workflow resembles that of ONIOM-CT due to
the interaction energy being calculated separately. However,
this does not apply to the calculation of gradients which will be
discussed next.
Differentiating the energy in eq 14 and using the ONIOM-

CT gradient from eq 7, we get

i
k
jjjjj

y
{
zzzzz

= + +

+

+ +

E E E E z

z z

q
x x

q
d

d

d

d

SW x x x
z

x

z
x x

z

A
A

A A
A
x

A

EE ONIOM CT RL MHCT MLCT MHCT;

MLCT;

MHCT; MLCT;

x

(17)

Since, the electrostatic potentials (ϕMHCT;A and ϕMLCT;A) at
qA depend both on the coordinates and the charge on link
atom (z), their gradients can be written as follows:

= +
x z

z
d

d
A

A
x A xMHCT;

MHCT;
MHCT;

(18)

= +
x z

z
d

d
A

A
x A xMLCT;

MLCT;
MLCT;

(19)

Using the expression of zx from eq 8, the analytic gradient
can be rewritten as follows:
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Rearranging eq 20, EEE‑ONIOM‑CT
SWd

x

can be written as follows:

= +E E E Ex x x
EE ONIOM CT
SW

RL MH ML
x

(21)

where

= + +E E B q qx x
I

A
A
x

ARL RL
RLx

(22)

= + +E E z qx x
z

x

A
A A

x
MH MHCT MHCT; MHCT;

(23)

= + + +E E z B q qx x
z

x
I

A
A A

x
ML MLCT MLCT;
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x

(24)
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A
A AMHCT; MLCT;

(25)

The terms
z

AMHCT; and
z

AMLCT; are obtained numerically.
Equations 22, 23, and 24 result in three independent
calculations to be summed to obtain the final gradient. The
order of the calculations must be carefully determined for
maximum efficiency. The procedure is performed in five phases
as follows:
(1) Perform RL calculation and extract the embedded

charges (qA) and qIRL. This step yields ERL.
(2) Perform ONIOM-CT cycle to obtain the appropriate

charge (z) to be added to the link atom nuclear charge.
In this cycle, ML calculations are performed in the
absence of the background charges (qA) on atoms in the
rest of the system. This step yields EMLCT along with the
electrostatic potentials on atoms of the rest of the system
(ϕMLCT;A) from ML calculation.

(3) Next, perform ML calculations using a slightly modified
charge on link atom ((z + Δ) and (z − Δ)), to obtain B

and
z

MLCT;A by symmetric finite differentiation. This is
followed by analogues numerical gradient using MH

calculations to compute
z

MHCT;A .
(4) The gradients for MH, ML and RL calculations are

performed in that order according to eqs 22, 23, and 24,
respectively. MH calculation used the same charge on
link atom nucleus (z) as ML calculation.

(5) Finally, the gradients from the last step are summed
appropriately to get the EE-ONIOM-CT gradient
(EEE‑ONIOM‑CT

SWd

x

). An efficient workflow is designed and
presented in Figure 3b.

We should note that the interaction term (EInt), required to
obtain energy, is calculated during the calculation of ÊML

x . Since
ϕMHCT;A and ϕMLCT;A are part of the interaction, they are
treated as perturbations and their explicit gradient is obtained
as follows:
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(28)

= | |V rA A; 1
1

L L L L (29)

Here, ZM is the nuclear charge on atom M and RMA is its
distance from the embedded charge on A. PμdHν dH

and PμdLνdL
are
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MH and ML density matrices, respectively. VμdHνdH;A and VμdLνdL;A

are electrostatic potentials on A from MH and ML

calculations, respectively, in the AO basis. Since only the

difference in electrostatic potentials between MH and ML is

used, the nuclear contribution cancels out. Using eq 26 in eq

23 and eq 28 in eq 24, and assuming Mulliken charges, the

final form of ÊRL
x , ÊMH

x and ÊML
x take the following form.
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This form of the gradient allows for the use of interchange
theorem and, consequently, the z-vector method of Handy and
Schaefer.30 The transformation of the density matrix (P)
gradient term from AO to MO basis was necessary to use the

Figure 4. Flowchart for the calculation of (a) energy (EEE‑ONIOM‑CT
Simul ) and (b) analytic gradient (EEE‑ONIOM‑CT

Simuld

x

) of EE-ONIOM-CT using the
“simultaneous” model. The different phases are colored for ease of distinction.
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general Post-Hartree−Fock gradient formalism.31 These
equations are converted to a Lagrangian formalism to complete
the implementation via the z-vector method. Further details
can be found in the Appendix.
An efficient workflow is designed and presented in Figure

3b. Note that the gradient requires solving three sets of z-
vector self-consistent equations, one each for RL, ML, and
MH. In addition, one numerical gradient with respect to the
extra charge on the link atom is evaluated for both ML and
MH calculations. Despite the presence of these terms, we
show, in Section 5, that the gradient implementation is very
efficient.
Overall, the stepwise implementation allows for easy

interpretation of the effects of each term (EE vs CT).
Moreover, the procedure is numerically stable since the extra
charge on the link atom is obtained through a previously
known and well-tested method ONIOM-CT.23

3.2. “Simultaneous” Model. This is conceptually more
sophisticated and perhaps more intuitive than the stepwise
model. The name “simultaneous” refers to its ability to account
for both the deficiencies simultaneously as shown in Figure 2b.
This is achieved by performing ONIOM-CT iterations, while
embedding the model system in background charges. At
convergence, the ONIOM-CT condition (qIMLCT = qIRL) gets
satisfied while polarizing the model system using the
embedded charges, as in ONIOM-EE. The energy is obtained
as per eq 35.

= +E E E EEE ONIOM CT
Simul

RL MHCT
Emb

MLCT
Emb (35)

= + +E E z qS z
A

A AMHCT
Emb

MHCT
Emb

MHCT;
Emb

MHCT;
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S (36)

= + +E E z qS z
A

A AMLCT
Emb

MLCT
Emb

MLCT;
Emb

MLCT;
Emb

S (37)

Here, zS is the extra nuclear charge placed on the link atom,
ϕMHCT;A
Emb and ϕMHCT;z dS

Emb are electrostatic potentials on the
embedded charges (qA) and link atom, respectively, from MH
calculation and ϕMLCT;A

Emb and ϕMLCT;z dS

Emb are electrostatic
potentials on the embedded charges (qA) and link atom,
respectively, from ML calculation. The extra charge on the link
atom, zS, is obtained using the ONIOM-CT cycle with the
model system being embedded using background charges (qA).
We distinguish the extra charge on link atom in this model of
EE-ONIOM-CT from ONIOM-CT due to the presence of
embedded charges in the current ONIOM-CT cycle. The
workflow followed is presented in Figure 4a.
There are two primary differences between the current and

the stepwise model in the energy calculation.
(1) No extra interaction needs to be calculated in this

model.
(2) All model system calculations are performed in the

presence of embedded charges.
Given the number of iterations being equal, the computa-

tional cost of the energy calculation will be the same for both
models. However, this may not hold for the gradient that will
be formulated next.
The analytic gradient is obtained by differentiating the

energy expression in eq 35:

= +E E E Ex
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Using eqs 36 and 37, the gradient expression can be
transformed to a more practical form, which is as shown in
eq 39:
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The terms in eq 39 need to be grouped into three groups, one
each representing RL, ML, and MH. This is due to the
presence of only three types of calculations in two-layer
ONIOM. Electrostatic potentials are one electron integrals,
and their derivatives can be performed with the corresponding
calculations. ϕMHCT;z dS

Embd

x

and ϕMHCT;A
Embd

x

are grouped into MH

calculation, ϕMLCT;z dS

Embd

x

and ϕMLCT;A
Embd

x

are grouped into the ML
calculation. Note, in this model, the electrostatic potentials of
the embedded charges were present in the ML and MH
Hamiltonians and do not need to be treated as perturbations.
qAx can be performed along with RL calculation as explained in
ref 25. This leaves us with the following value: zSx. Since, zS is
obtained using an iterative process, its gradient is nontrivial. To
formulate zSx, we will start from the convergence criterion
which is as follows:

=q q z q( ; )I I S A
RL MLCT

(42)

qIMLCT depends on coordinates, extra charge on link atom (zS)
and the embedded charges (qA). Differentiating eq 42, we get
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eq 43 can be rearranged as follows to obtain the form of zSx.
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Using eq 44 in eq 39 and rearranging, the final form of
EEE‑ONIOM‑CT
Simuld

x

can be written as follows:
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The terms BS and BA need to be obtained numerically.
Equations 48, 49, and 50 result in three independent
calculations to be summed to obtain the final gradient. Similar
to the “stepwise” model, the order of the calculations must be
carefully determined for maximum efficiency. The procedure is
performed in five phases as follows:

(1) Perform RL calculation and extract the embedded
charges (qA) and qIRL. This step yields ERL.

(2) Perform ONIOM-CT cycle to obtain the appropriate
charge (zS) to be added to the link atom nuclear charge.
In this cycle, ML calculations are performed while
keeping the background charges (qA) on atoms in the
rest of the system (except the support atom, which is
substituted by the link atom) fixed. This step yields
EMLCT
Emb .

(3) Next, perform a set of ML calculations, using a slightly
modified charge on link atom ((zs + Δ) and (zs−Δ)), to
obtain BS as per eq 45. This is followed by analogues
numerical gradients to compute BA corresponding to
each of the embedded charges (qA) as per eq 46.

(4) The gradients for MH, ML, and RL calculations are
performed in that order according to eqs 48, 49, and 50,
respectively. MH calculation used the same background
charges (qA) and extra charge on link atom nucleus (zS)
as ML calculation.

(5) Finally, the gradients from the last step are summed
appropriately to get the EE-ONIOM-CT gradient
(EEE‑ONIOM‑CT

Simuld

x

). An efficient workflow is designed and
presented in Figure 4b.

The RL and ML calculations must be performed using the z-
vector method of Handy and Schaefer.30 Thus, they must be
transformed from an AO to an MO basis. Using Mulliken
charges and their gradient from eqs 12 and 13, exact form of
RL and ML gradients can be written as follows:
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These equations are converted to Lagrangian formalism to
complete the implementation. Further details can be found in
the Appendix.
This completes the formulation of EE-ONIOM-CT which

simultaneously treats both the deficiencies, i.e., polarization
and charge rearrangement of ONIOM. However, our initial
exploration suggests that this model is less robust, sometimes
leading to unphysical charges on the link atom, particularly if
sizable quantity of external charges are present close to the
regional boundary. This may be similar to the overpolarization
effects commonly seen in QM/MM methods when the
embedding charges are too close. In addition, our current
formalism requires a numerical differentiation of the model
system charge with respect to all the background charges (BA)
and may be impractical for many applications. While
simplifications may be possible, we have not explored them,
since the method appears to be less robust. Comparison

Figure 5. (a) 2,2,2-trifluoroacetic acid.(H2O)2, (b) 3,3,3-trifluoroacetic-2,2-bis(trifluoromethyl)propanoic acid·(H2O)2 and (c) 4,4,4-trifluoro-2,2-
bis(2,2,2-trifluoroethyl)butanoic acid·(H2O)2 are representative molecules of different sizes to test the efficiency and veracity of our method EE-
ONIOM-CT. The shown structures correspond to the first point of rigid scans illustrated in Figure 6. Model system is represented by ball and stick.
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between the charge on link atom for the two models and their
performance is presented in the Supporting Information.
The above issues are not present in the “stepwise” model

described earlier. Additionally, in the “stepwise” model, the
numerical gradients with respect to all the embedded charges

are replaced by only one numerical gradient using MH

calculations. Thus, for the applications considered in this

paper, the stepwise model will be considered the default model

for performing EE-ONIOM-CT.

Table 1. RMS and MAX Errors of the Analytic Gradients, with Respect to Numerical Forcesa

aAll the structures are shown in Figure 5. All the calculations are performed at B3LYP/6-31+G(d):HF/3-21G level of theory. The terms
“simultaneous” and “stepwise” represent the corresponding models of EE-ONIOM-CT. Numerical gradients were obtained using a five-point
method. The RMS and MAX errors consider gradients in all three directions of all the atoms. SCF convergence criteria were set to 10−12 and 10−10

on RMS and maximum change in density. Z-vector convergence on C1(I,A) contributions is set to 10−12 for RMS and 10−11 for maximum. Default
numerical gradient step size was used (0.01 Å). bNumerical gradient step size was reduced to 0.001 Å.

Figure 6. Rigid scans performed to study O−H dissociation. Three cases representing embedded charges being located (a) close, (b) moderate,
and (c) farther away from the model system (model region represented in ball and stick). The relative energy errors are with respect to full system
calculation at high level (B3LYP/6-31+G(d)) theory. All of the calculations are performed at the B3LYP/6-31+G(d):HF/3-21G level theory.
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=E EEE ONIOM CT EE ONIOM CT
SW (55)

=E Ex
EE ONIOM CT EE ONIOM CT

SW x

(56)

3.3. Check for Correctness. Both models, EEE‑ONIOM‑CT
SW

and EEE‑ONIOM‑CT
Simul , were implemented in a development version

of Gaussian.31 During implementation, the transformed density
matrices (Pμν′ and P̀μν) and transformed overlap matrices (Sμν′
and S̀μν) were symmetrized to allow for the use of available
utilities. This is clearly evident from the expressions in the
Appendix. The analytic gradients were tested against numerical
gradients using the five-point method. Three molecules are
used, as shown in Figure 5. The molecules are labeled small,
medium, and large, to test the computational efficiency of our
method (vide infra).
These molecules also correspond to the first point of the

rigid scans discussed in the next section. The errors of the
analytic gradients with respect to the numerical gradients are
presented in Table 1. In addition to our method EE-ONIOM-
CT, we also present the corresponding errors for the other
well-known method, i.e., ONIOM, for scale. From the small
errors we can infer that our implementation is correct.

4. RESULTS AND DISCUSSION
Since EE-ONIOM-CT is a combination of two methods, our
focus will be concentrated on probing the degree of
importance of the two methods under different circumstances.
All of the EE-ONIOM-CT calculations illustrated in this
section use the “stepwise” model. The disentanglement of the
two effects in the “stepwise” model enables analysis of the
effect of electrostatic embedding separately. In order to
demonstrate this, we chose three different systems with
embedded charges being close, at a medium distance, and
farther away from the model region, as designated in Figure 5
as small, medium, and large, respectively.
We studied the O−H dissociation in all three cases using a

rigid scan starting from an O−H bond length of 1.0 to 1.6 Å.
The rigid scan kept the rest of the system frozen. The starting
geometry was obtained by optimizing the molecule at the
target level (B3LYP/6-31+G(d)). All the hybrid calculations
were carried out at the B3LYP/6-31+G(d):HF/3-21G level of
theory. To avoid the tendency of Mulliken charges becoming
unphysical,32 the small 3-21G basis set was used at the low-
level. Small basis sets have the additional benefit of keeping the
computational cost low (vide infra). The relative energy errors
are listed in Figure 6. The errors are with respect to full system
calculation at the target level with the first point of the scan
being the reference.

In all three cases, ONIOM-CT provides an improvement
over ONIOM, but the effect of electronic embedding depends
on the location of the embedding charges relative to the
regional boundary. In the first case (“Small”), the highly
charged F atoms are connected to the host atom (i.e., the C
atom is replaced by the link atom). The proximity of the
embedding charges to the boundary results in overpolarization
of the model system, as commonly observed in QM/MM
studies. This is evident from the degradation of performance
when using electrostatic embedding in Figure 6a, i.e., ONIOM-
EE and EE-ONIOM-CT perform worse than ONIOM and
ONIOM-CT, respectively. The second molecule (“Medium”)
has fluorine atoms one bond away from the host atom. The
influence of the embedded charges on fluorine atoms is
screened by the embedded charge on the carbon atom. This
results in significant improvement in performance using
electrostatic embedding as shown in Figure 6b, i.e.,
ONIOM-EE and EE-ONIOM-CT perform better than
ONIOM and ONIOM-CT, respectively. The errors also
appear to be quite low throughout the scan. In case of third
molecule (“large”), the fluorine atoms are farther away from
the model system and have very little influence, as shown by
ONIOM-EE and EE-ONIOM-CT performance being only
marginally different from ONIOM and ONIOM-CT, respec-
tively, in Figure 6c. In this case, it appears that the effect of
electrostatic embedding is similar between the high and low
levels of theory and is mostly canceled. Overall, charges too
close to the model system boundary have a stronger influence
and need careful treatment. These results suggest that the
hybrid method ONIOM is robust due to cancellation of error,
but the region in proximity of the boundary can have
significant influence on its performance and need careful
treatment.

5. COMPUTATIONAL COST ANALYSIS
Energy and force calculations are performed on all three
systems in Figure 5. Comparison between the computational
cost of the target level of theory (full system calculation at high
level) and EE-ONIOM-CT using the “stepwise” model is
presented in Figure 7. Three different sizes of systems clearly
delineate the importance of keeping the model system size
small, compared to the full system to harvest the full potential
of EE-ONIOM-CT. The energy calculation is extremely
efficient compared to the target as shown by speedups of 3
and 5 times for “medium” and “large” systems in Figure 7a.
The corresponding improvements are smaller for analytic
gradients due to the greater number of steps involved.
However, it is important to note that EE-ONIOM-CT force

Figure 7. Computation cost comparison between the target (full system calculation at a high level theory) and EE-ONIOM-CT. EE-ONIOM-CT
calculations are performed at B3LYP/6-31+G(d):HF/3-21G level theory. Thus, the target is full system calculation at B3LYP/6-31+G(d).
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calculations are efficient for “medium” and “large” systems with
greater than 2-fold speedup for the latter. Furthermore, the
increase in EE-ONIOM-CT computational cost from the
“medium” to “large” systems is marginal, unlike the full
calculation, and the expected speedups will be much larger as
the molecular size increases. In addition, when the model
system is small relative to the full molecule and a smaller basis
set is used as the low level, the performance is expected to be
optimal. Overall, the EE-ONIOM-CT method will be efficient
for many practical applications on larger molecules since the
model systems in such cases are often much smaller than the
full system.

6. CONCLUSIONS
We presented our method EE-ONIOM-CT which brings
together two separate methods, ONIOM-CT and ONIOM-EE
under one umbrella and accounts for both charge rearrange-
ment and electrostatic interactions. The use of a “stepwise”
model was found to be necessary for a stable ONIOM-CT
cycle and efficient EE-ONIOM-CT analytic gradient. The
analytic gradient required solving three sets of z-vector self-
consistent equations: one for the full system at the low level
and one each for the model system at low-level and high-level.
A detailed derivation is provided in the text. We have
implemented this method efficiently and shown significant
speedup relative to the full calculations.
In addition to efficient analytic gradients, the stepwise

implementation disentangles the effects of charge rearrange-
ment and electrostatic interactions, enabling the study of the
influence of electrostatic embedding on chemical processes.
We used a set of three proton transfer reactions to analyze the
effects. While charge redistribution provides an improvement
in all cases, the effects of electrostatic embedding depend on
the proximity of the embedding charges to the model system
boundary. Our three examples illustrate the different
possibilities, involving positive, negative, and very little impact
of electrostatic embedding. The broader impact of embedded
charges will be a topic of discussion in future publications.

■ APPENDIX
The generalized post-SCF gradient needs to be written in the
following form:

= | + +

+
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where Pμν
SCF and Wμν

SCF are HF or DFT density and energy
weighted density matrix, respectively. Pμν

Δ and Wμν
Δ are

corrections to the density and energy weighted density matrix,
respectively.

It is convenient to define the corrections in the orthonormal
MO basis.
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Both the occupied-occupied (oo) and virtual−virtual (vv)
blocks of the density matrix correction are zero. The occupied-
virtual (ov) block needs solving a single set of SCF response
equation:
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The exact form of Lai depends on the model used for EE-
ONIOM-CT.
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{
zzzzzz

= +

+

L B S C C C C

q V C C C C

( )

( )

ai
I

i a a i

A
A A i a a i

,

,
;

(A10)

For MH,

i
k
jjjjjj

y
{
zzzzzz= +L q V C C C C( )ai

A
A A i a a i

,
;

(A11)

“Simultaneous” Model
For RL,

= +L S C C C C( )ai i a a i
, (A12)

For ML,

= +L B S C C C C( )ai z S
I

i a a i
Emb

,
S

(A13)

The energy weighted density matrix corrections will also
depend on the model under consideration. Thus, we will
formulate them separately.
“Stepwise” Model

=W Pai ai i (A14)

=W 0ab (A15)

For RL,
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For ML, l

m

oooooooooooooo
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(A19)

For MH,

=W C C W
pq

p q pq
(A20)

= ||W q V C C P aj ki( )ij
A

A A i j
ak

ak;
(A21)

“Simultaneous” Model

=W Pai ai i (A22)
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=W 0ab (A23) For RL,
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For ML,
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For more information on how these equations are

implemented, see refs 25 and 33.
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