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Abstract. We establish new results on the Fiat-Shamir (FS) security
of several protocols that are widely used in practice, and we provide
general tools for establishing similar results for others. More precisely,
we: (1) prove the FS security of the FRI and batched FRI protocols;
(2) analyze a general class of protocols, which we call §-correlated, that
use low-degree proximity testing as a subroutine (this includes many
“Plonk-like” protocols (e.g., Plonky2 and Redshift), ethSTARK, RISC
Zero, etc.); and (3) prove FS security of the aforementioned “Plonk-like”
protocols, and sketch how to prove the same for the others.

We obtain our first result by analyzing the round-by-round (RBR)
soundness and RBR knowledge soundness of FRI. For the second result,
we prove that if a §-correlated protocol is RBR (knowledge) sound under
the assumption that adversaries always send low-degree polynomials,
then it is RBR (knowledge) sound in general. Equipped with this tool, we
prove our third result by formally showing that “Plonk-like” protocols are
RBR (knowledge) sound under the assumption that adversaries always
send low-degree polynomials. We then outline analogous arguments for
the remainder of the aforementioned protocols.

To the best of our knowledge, ours is the first formal analysis of the
Fiat-Shamir security of FRI and widely deployed protocols that invoke
it.

1 Introduction

Succinct Non-interactive ARguments of Knowledge (SNARKS) and their zero-
knowledge variants (zkSNARKSs) are a thriving field of study both in theory and
practice. Allowing for fast verification of complex statements made by untrusted
parties, zkSNARKSs have now been deployed in a myriad of applications. A popu-
lar paradigm for constructing (zk)SNARKSs is via the following two-step process:
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(1) construct a public-coin® interactive protocol; and (2) remove all interaction
using the Fiat-Shamir (FS) transformation [31], adding zero-knowledge as nec-
essary.

Non-interactivity is essential in many applications of zkSNARKSs. In general,
interactive protocols are not publicly verifiable and hence cannot be used in
settings where anyone in the world should be able to verify the proof. There
are various proposals (e.g., [5]) to render interactive protocols publicly verifi-
able using so-called randomness beacons [61] (i.e., publicly verifiable sources of
random bits, such as contents blockchain block headers) and the transaction-
ordering functionality offered by public blockchains (which enable the public to
verify that the prover sent a message before it knew what the verifier’s response
to that message would be). However, to the best of our knowledge, such propos-
als have not been deployed at scale. They are also fraught with performance and
security considerations; for example, blockchain headers are at least somewhat
biasable [17,57], and splitting an interactive proof across many blockchain blocks
can substantially increase latency and fees.

Regardless, the Fiat-Shamir transformation is pervasive and has been used
extensively in a variety of schemes beyond zkSNARKS, e.g., signature schemes
and non-interactive zero-knowledge [31,54,58|, inspiring a rich line of research
into understanding both its applicability and pitfalls. The FS transformation is
typically modeled and analyzed in the random oracle model (ROM) for security
proofs. When using FS in practice, one then assumes that a suitable concrete
hash function (e.g., SHA256) is an adequate replacement for said random oracle.

However, there are surprisingly many open problems regarding specific appli-
cations of the FS transformation. In particular, the FS transformation is not
secure in general [3,13,36], even in the random oracle model, when applied to
many-round protocols. Specifically, its use can lead to a loss in the number of “bits
of security” that is linear in the number of rounds r of the protocol to which it is
applied. Here, the number of bits of security roughly refers to the logarithm of
the amount of work an attacker has to do to succeed with probability close to 1.

Accordingly, the FS transformation is often applied to many-round protocols
without formal security proofs for the resulting SNARKS’ security. That is, the
security analysis of these protocols is often provided only for their interactive
versions. Without further analysis, the security (measured in bits) lost via the F'S
transformation may be a factor equal to the number of rounds of the protocol.
Even a 30% loss in security would be devastating in practical deployments (e.g.,
reducing the number of bits of security from 100 down to 70), and (more than)
such a loss can occur even when Fiat-Shamir is applied to protocols with just
two rounds. There are also some works that claim FS-security of their protocols,
but in fact show this only under the assumption that certain many-round sub-
protocols used in the overall protocol are FS-secure [25,26,44].

L A protocol is public-coin if all messages sent by the verifier are sampled uniformly at
random from a challenge space and are independent of all prior prover and verifier
messages.
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In this work, we fill this gap in these security analyses and provide general
tools for doing so for certain varieties of protocols. Specifically, we show that for
the protocols we are interested in, the security of the FS-transformed protocol
resembles the security of the interactive one (pre-FS) (or more precisely, what is
currently known about the interactive security). This adds to a recent fruitful
line of work has introduced many tools to understand FS security of many-
round protocols. These include the notions of state-restoration soundness [9],
round-by-round soundness [22], and (generalized) special soundness [2,28,72].
Nonetheless, in the literature on SNARKS, relatively few protocols are known to
be FS-secure, despite the above tools existing. These include the GKR protocol
[22,37] (or more generally, anything based on the sum-check protocol [49]), the
GMW protocol and other natural classes of “commit-and-open” protocols [41],
and any protocol satisfying the notion of (generalized) special soundness [2],
which includes IPA /Bulletproofs [18,20]. Bulletproofs [18,20] and Sonic [50] have
separately been shown to be FS-secure in the algebraic group model [35].

In this introduction, we informally refer to protocols that experience little-to-
no loss in the number of bits of security when the FS transformation is applied
in the random oracle model as F'S-secure.

1.1 Our Results

We formally analyze and prove FS-security of the FRI protocol [4] and of some
protocols that have wide use in practice which use low-degree proximity test-
ing as a subroutine. For the latter, we build a general tool that allows us to
prove FS-security of a certain type of protocol, which we call a d-correlated IOP,
by analyzing its round-by-round soundness assuming an adversary sends low-
degree polynomials. We formally apply this tool to “Plonk-like” protocols such
as Plonky2 [60], and we outline how the tool can be used on other constructions
such as ethSTARK [65]. In particular, we either formally prove or we outline
a proof that the security of all these protocols, after applying the Fiat-Shamir
transformation, (nearly) matches what is known about its security when run
interactively.

As mentioned, we focus on these protocols due to their current popularity.
For example, FRI is currently used in various Layer-2 Ethereum projects [59,66]
to help secure hundreds of millions of dollars of assets [46]. Some projects are
deploying FRI with (at most) 80-bits (dYdX) or 96-bits (those using the SHARP
prover) of interactive security before the FS transformation is applied [6,65,66].
More precisely, the best known attacks on these interactive protocols have success
probability 278 or 2796, These attacks are conjectured to be optimal [65], though
only partial results in this direction are known [6]. Similarly, Plonk-like protocols
are utilized in a variety of blockchain networks and Layer 2 Ethereum projects
(e.g., [30,51,55,56,67]),

When it comes to the FRI protocol, we do not address the gaps between
the conjectured and known soundness of the interactive protocol. We merely
analyze the security of the FS-compiled protocol as a function of the security of
the interactive protocol.
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1.2 Technical Details

In a nutshell, we formally establish the round-by-round (knowledge) soundness
[22] of both FRI and several protocols that rely on a form of low-degree proximity
testing. For analyzing round-by-round (RBR) soundness, there is a protocol
state that can either be “doomed” or not. The state of the protocol starts off as
doomed whenever a prover falsely claims that an input is valid. If at the end of
interaction the state is doomed, the verifier rejects. The protocol is said to be
RBR sound if, whenever the state is doomed, the protocol is still doomed in the
next round of interaction, except with negligible probability, no matter what a
prover does. RBR knowledge soundness is a similar notion, except that in this
case, the protocol always starts off in a doomed state, and after each round,
except with negligible probability, it remains doomed unless the prover knows a
valid witness; see Sect. 2.1 for more discussion.

By establishing the round-by-round (knowledge) soundness of these proto-
cols, we can then leverage the so-called BCS transformation [9], which (infor-
mally) compiles any interactive protocol? into a (zk)SNARK via (a variant
of) the Fiat-Shamir transformation in the random oracle model. Applying the
BCS transformation on a round-by-round (knowledge) sound protocol preserves
(knowledge) soundness (yielding a SNARK) [25,26].% In fact, round-by-round
soundness of the interactive protocol was even shown to imply that the BCS-
transformed SNARK is secure against quantum adversaries [25]. Thus, we estab-
lish the Fiat-Shamir security of both FRI and the rest of protocols via proving
their round-by-round (knowledge) soundness.

Round-by-Round Soundness of FRI. The FRI protocol [4], which stands
for Fast Reed-Solomon Interactive Oracle Proof of Proximity is a logarithmic
round interactive oracle proof. Briefly, an interactive oracle proof (IOP) [9] is an
interactive protocol where the verifier is given oracle (i.e., query) access to the
(long) prover messages, and an IOP of Proximity (IOPP) is an IOP for proving
proximity of a function to some pre-specified linear error-correcting code [4].
The FRI protocol proves that a function is close to the space of Reed-Solomon
codewords [62] of a certain degree over some pre-specified domain over a finite
field. This protocol is both of theoretical and practical interest. On the theory
side, FRI gives a polylogarithmic-size proof for proving the proximity of messages
to some pre-specified Reed-Solomon code, which is an important primitive in
many proof systems [4]. On the practical side, FRI is used as a sub-protocol
in the design and construction of many SNARKSs and has the benefit of being
plausibly post-quantum secure due to its avoidance of elliptic curve cryptography
(and in fact, it follows from our results that FRI, when run non-interactively via
Fiat-Shamir, is unconditionally secure in the quantum random oracle model).

2 More formally, the BCS transformation is applied to interactive oracle proofs [9].

3 Actually, [9,25] prove this for state-restoration soundness; however, subsequent works
observed that round-by-round soundness is an upper bound on state-restoration
soundness [22,25,26,44].
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Despite intense interest from both theorists and practitioners, we are unaware
of any formal security proof for FRI under Fiat-Shamir.

Theorem 1 (Informally Stated; see Theorem 6). For finite field F, evalu-
ation domain L C F of size 2", constants p € (0,1), 6 € (0,1 —+/p), and positive
integer €, the FRI protocol has round-by-round (knowledge) soundness error

efR(E, p, 6,n, €) = max{0(2*" /(p*/*|F])), (1 - 6)°}.

Establishing the round-by-round (knowledge) soundness of FRI is a crucial first
step to establishing the Fiat-Shamir security of FRI. In particular, given the
round-by-round soundness of FRI, we can now apply the BCS transformation
[9] to obtain a secure non-interactive argument in the random oracle model using

FRI

Corollary 1 (Informally Stated; see Corollary 4). For finite field F, eval-
uation domain L C F of size 2", constants p € (0,1), 6 € (0,1 —+/p), and positive
integer €, given a random oracle with k-bits of output and query bound Q > 1,
compiling FRI with the BCS transformation yields a non-interactive argument
i the random oracle model with adaptive soundness error and knowledge error

e R\(E, p,6,n,€,0, k) = QetR(F, p, 6,1, £) + O(Q?/2Y).

Moreover, the transformed non-interactive argument has adaptive soundness
error and knowledge error ®(Q - SERI(F, 0,0,n,€,Q)) against O(Q)-query quantum,
adversaries.

Exzxtension to Batched FRI. In practice, it is common to run a Batched FRI proto-
col, which allows a prover to simultaneously prove the §-correlated agreement?
of ¢ functions fi,..., f; by running the FRI protocol on the batched function
G = ); a;f; for randomly sampled «@; provided by the verifier. We extend our
analysis of FRI to this version of Batched FRI and establish its round-by-round
(knowledge) soundness.

Theorem 2 (Informally Stated, see Theorem 7). For finite field F, evalu-
ation domain L C F of size 2", constants p € (0,1), 6 € (0,1 —+/p), and positive
integers €, t, the Batched FRI protocol has round-by-round (knowledge) soundness
error

e \(F, p, 6, m, £,1) = max{O((2°")/(p**[F|)), (1 - 6)°}.

As before, establishing round-by-round soundness allows us to securely apply
the BCS transformation, obtaining a non-interactive argument in the random
oracle model.

4 Informally, functions have d-correlated agreement if they are all 6-close to some pre-
specified Reed-Solomon code and all have the same agreement set; see [14] for full
details.



8 A. R. Block et al.

Corollary 2 (Informally Stated; see Corollary 5). For finite field F, eval-
uation domain L C F of size 2", constants p € (0,1), 6 € (0,1 —+/p), and positive
integers £, t, given a random oracle with k-bits of output and query bound Q > 1,
compiling Batched FRI with the BCS transformation yields a mon-interactive
argument in the random oracle model with adaptive soundness error and knowl-
edge error

e N, p,0,n, 6,1, 0,k) = Q- eh N (F, p,6,m, ,1) + O(Q% /2°).

Moreover, the transformed mon-interactive argument has adaptive soundness
error and knowledge error ®(Q 'SPSFRI(F, 0,0,n,4,t,0, k) against O(Q)-query quan-
tum adversaries.

To the best of our knowledge, our results are the first to establish the security
of non-interactive analogs of FRI and Batched FRI in the random oracle model.

A Variant of Batched FRI. To save on communication costs, a variant of
Batched FRI is sometimes used, where the batched function G has the form
G = Y; a1 f; for challenge a randomly sampled and sent by the verifier. In both
the context of regular soundness and round-by-round soundness, this version
of Batched FRI incurs some soundness loss proportional to ¢. In particular, in
Theorem 2, the round-by-round soundness error for this Batched FRI protocol
is sﬁ’b':rR'(]F, 0, 0,1, €, 1) = max{O((2%" - 1)/(p*/2|F])), (1 — 6)¢}; see [14] for complete
details.

Round-by-Round Soundness Error versus Standard Soundness FError of FRI.
Ben-Sasson et al. [6] give the best known provable soundness bounds for
(Batched) FRI; in fact, we leverage many tools from their results to show
our round-by-round soundness bounds. Roughly speaking, [6] show that the
soundness error of (Batched) FRI is &1 + & + &3, where &, = 0(2%"/(p*/?|F|)),
gy = O((2" - ny/p)/|E|), and &3 = (1 - 8)¢. Then our RBR soundness bound for
(Batched) FRI is given by max{ey, 3}.

Round-by-Round Knowledge Error. Both FRI and Batched FRI additionally
have round-by-round knowledge error |25,26,44| identical to the round-by-round
soundness errors given in Theorems 1 and 2. The BCS transformation preserves
this type of knowledge soundness, yielding a SNARK. See Sect.2.1 for more
discussion.

A General Tool for Proving RBR (Knowledge) Soundness. We go on
to analyze proof systems that rely on the FRI protocol as a subroutine. To this
end, we introduce a family of IOPs which we call §-correlated IOPs, where 6 > 0
is a parameter. This family encompasses all of the aforementioned protocols. In
a nutshell, we say an IOP is d-correlated if the prover is supposed to send oracles
to maps that are d-close to low-degree polynomials in a correlated manner. Cor-
relation here means that the domain where these maps agree with low-degree
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polynomials is the same among all the maps. In a d-correlated IOP, during the
verification phase, the verifier: (1) checks some algebraic equalities involving
some evaluations of these maps; and (2) verifies that all the received oracles
correspond indeed to §-correlated maps (we assume the verifier has another ora-
cle to perform this check). When 6 = 0, a §-correlated IOPs can be seen as a
subclass of RS-encoded IOPs [8,26]. See [14] for a more in-depth comparison.

This points to a “recipe” for building a particular family of SNARKSs: first,
construct a d-correlated IOP; then, instantiate the check for §-correlation using
an interactive protocol, e.g., Batched FRI [6]. This produces an IOP as a result.
Finally, use the aforementioned BCS transformation on this IOP to produce a
succinct non-interactive argument. If this argument is knowledge sound, one has
obtained a SNARK. Figure 1l summarizes this construction. It is immediate to
see that the previously mentioned protocols (Plonky2, RISC Zero, ethSTARKS,
etc.) are actual instantiations of this construction.

IOPP for BCS
o-correlation Transformation

o-correlated IOP I0P SNARG/SNARK

Fig. 1. A recipe for building a succinct non-interactive argument.

We then provide general results for proving that the resulting succinct non-
interactive argument is knowledge sound. Precisely, we prove the following:

1. RBR soundness of Batched FRI. As a general result, we prove that
the (Batched) FRI protocol is RBR sound and RBR knowledge sound. We
remark that Batched FRI can be used for checking §-correlated agreement of
a collection of maps [6].

2. From RBR knowledge when the adversary sends low degree poly-
nomials, to general RBR knowledge. Consider a d-correlated IOP [,
and suppose attackers always send oracles to low degree polynomials. We
prove that if 1 is RBR (knowledge) sound under this assumption, then it is
also RBR (knowledge) sound in general, and that the soundness error only
increases by a (relatively) small factor.

3. From a RBR knowledge sound ¢-correlated IOP to a RBR knowl-
edge sound IOP. Again let 1 be a d-correlated IOP. By using an interactive
protocol lNca to check for §-correlation, I1 can be turned into a regular IOP
Meompited- We prove that this compilation preserves RBR (knowledge) sound-
ness, assuming lMca is RBR sound (not necessarily RBR knowledge sound).

4. From a RBR knowledge sound IOP to a SNARK. We then apply the
BCS compilation results from [9] to obtain a SNARK.

In conclusion, we show that given any succinct non-interactive argument con-
structed as in Fig.1 (using Batched FRI to check for §-correlation), one can
show its knowledge soundness simply by proving RBR knowledge soundness
of the underlying d-correlated IOP wunder the assumption that the adversary is
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constrained to sending oracles to low-degree polynomials. The latter can greatly
simplify the analysis since it allows one to work with the simplicity of IOPs (as
opposed to arguments) and the convenient properties of polynomials.

Thus, our methods not only allow us to prove FS-security, they also remove
the complexity of dealing with maps that are close to low-degree polynomials
when using FRI within a protocol. This allows us to analyze the interactive
version of these protocols in a similar way as when one studies Polynomial IOPs
[21], where, by definition, soundness is only considered for adversaries that send
low-degree polynomials.

According to our formalism, a §-correlated IOP where we constrain adver-
saries to always send low-degree polynomials is in fact a O-correlated IOP. Then,
Item (2) above can be seen as a result that relates the RBR knowledge soundness
of a d-correlated IOP for 6 = 0 and for 6 > 0. Overall, our security results can
be organized and depicted as in Fig. 2; also see Theorem 3.

10OP(P) for
RBR (knowled u RBR (knowled d-correlation BCS
(knowledge) Theorem (knowledge) + Ourresults  RBR (knowledge) Transform SNARG
sound O-correlated —  sound d-correlated ———— _—
OP 1OP sound IOP (SNARK)

Fig. 2. Another recipe for building a SNARG/SNARK.

Theorem 3 (Informally Stated, see Theorem 8). Let I_Ig) be a 5-correlated
IOP, where O is an oracle for §-correlated agreement. Let 0 < p,n < 1 and
0 =1—+/p—mn. Assume My has RBR knowledge soundness with error . Then
Ms has RBR knowledge soundness with error g/(2+/pn).

Moreover, if I’ is an IOP for testing &-correlated agreement in a Reed-
Solomon code with RBR soundness error &', then the protocol MNcompiled 0btained
by replacing O in Ils with I1"” has RBR knowledge soundness with error &compiled =
max{e/(2+y/pn),e’}. Finally, given a random oracle with k-bits of output and
query bound Q > 1, compiling MNeompiled with the BCS transformation yields a
succinct non-interactive argument in the random oracle model with knowledge

error Q - max{e/(2+/pn), &'} + O(Q?/2%).

Remark 1. As we mentioned, the notion of §-correlated IOP is closely related to
that of RS-encoded IOP from [8,26]. The works of [8,26] also provide a method
for compiling a RBR (knowledge) sound RS-encoded IOP into RBR (knowledge
sound IOPs); e.g., see [26, Theorem 8.2|. However, our result allows to use a
proximity parameter up to the Johnson bound, i.e., we can select 6 = 1-+/p—7
for any arbitrarily small n > 0, while the compilation results from [8,26] constrain
0 to be within the unique decoding radius § < 1_79. On the other hand, in some
sense, RS-encoded IOPs encompass a wider class of protocols than d-correlated
ones. See [14] for further discussion.
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Remark 2. Many security analyses of SNARKS obtained by combining Plonk-like
protocols with so-called KZG polynomial commitments [43] can assume that an
adversary always sends oracles to polynomials of appropriate degree. Intuitively,
this is due to the fact that the KZG polynomial commitment scheme ensures
that a committed function is indeed a polynomial of appropriate degree.

However, in our scenario, due to the usage of the FRI protocol instead of
KZG, adversaries are only constrained to sending (oracles to) maps that are
close to polynomials of appropriate degree. This makes the soundness analysis
of our protocols more subtle. Indeed, as we mentioned, besides showing that FRI
itself is RBR sound, most of our work is concerned with reducing the analysis
to the case when the adversary actually sends oracles to polynomials of the
appropriate degree.

Round-by-Round Soundness of Specific §-Correlated Proof Systems.
We can apply all the tools developed so far to specific protocols whose construc-
tion follows the outline from Figs. 1 and 2. In short, these are protocols obtained
by compiling a d-correlated IOP into a succinct non-interactive argument via
a protocol for §-correlated agreement and the BCS transformation. Thanks to
Theorems 2 and 3, we can prove the knowledge soundness of these protocols
just by proving that the corresponding 0-correlated IOP has RBR knowledge
soundness. Recall that in a 0-correlated IOP, the adversary is assumed to always
send oracles to low-degree polynomials.

Some of the protocols that fit into this framework are many “Plonk-like” proof
systems that use FRI instead of the KZG polynomial commitment scheme; e.g.,
Plonky2 [60], Redshift [44], and RISC Zero [68]. Here we use the term “Plonk-
like” to loosely refer to protocols that use an interactive permutation argument
[15,19,47,48,73] as a subroutine (we use the term “Plonk-like” because the Plonk
SNARK [34] helped popularize the use of this permutation-checking procedure).
Other protocols that fit in our framework but are not “Plonk-like” are echSTARK
or DEEP-ALI [10].

We focus our attention mostly on Plonky2 since we believe that, among
all these protocols in 0-correlated IOP form, Plonky2 is the most involved to
analyze. Indeed, Plonky2 was designed to be used over a small field (the 64-bit
so-called Goldilocks field). Because of this, some checks are repeated in parallel
in order to increase its security. The task of correctly designing these parallel
repetitions is subtle, and indeed in the full version of our work [14], we describe
an (arguably more natural) variation of Plonky2 with dramatically less security
than Plonky2 itself. To the best of our knowledge, this variation is not used in
practice—we are highlighting it here to illustrate a potential pitfall to be avoided.

Accordingly, we rigorously define a general “Plonk-like” §-correlated 1OP,
which captures many ‘“Plonk-like” protocols that rely on the FRI protocol. We
denote this d-correlated IOP by OPlonky(5). We then formally prove that when
6 = 0 (i.e., when adversaries are constrained to sending low-degree polynomi-
als), OPlonky(0) has RBR soundness and knowledge soundness. Together with
our general results and our results on batched FRI, this proves in particular
that the SNARK version of Plonky?2 is indeed knowledge sound (as well as all
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other “Plonk-like” protocols of the form OPlonky(6)). Adapting Theorem 3 to
our abstraction OPlonky, we obtain the following result.

Theorem 4 (Informally Stated, see Lemmas 1 and 3). Let F be a finite
field and K be a finite extension of F and let D C F be an evaluation domain for
maps. Let P = {Py, ..., Px} be alist of 2r+€-variate circuit constraint polynomials
over F for k,r,€ > 1. For parameters n,t,u > 1, s = [r/ul], and m > 3,p =
(n+1)/|D| € (0,1),n7 € (0,4/p/2m) and 6 = 1 - +/p —n, the protocol OPIonkyO,
when the verifier is given an oracle O for §-correlated agreement in the Reed-
Solomon code RS[F, D,n + 1], has round-by-round soundness error

ngl))I:’lonky,O(F, K, D,n, k,r,s,t,u,d, p,n)
1 n(r+u)\’ k+st\"\ n-max{u+1,d}
= —— -max<{0 ,0 i ’
2np [E] [F] K\ D]

where d = max;{deg(P;)} and D is an evaluation domain for RS codes. Moreover,
when 6 = 0 then we have

8OPIonky,O(F’ K, D,n, k,r,s,t,u,d,p,mn)

rbr
— max n(r+u)\’ k+ st n~max{u+1,d}}
= ma {0(( i ))0(( F )) K\Dl |-

Remark 3. The parameter ¢ in Theorem 4 controls the number of times certain
checks in OPlonky are performed “in parallel”. In most Plonk-like protocols, one
uses t = 1 and a large field F to ensure an adequate security level. However,
some projects (e.g., Plonky2) currently feature a 64-bit field F, and use 7 = 2 to
increase security.

We show in this paper that, if done properly, the resulting FS-transformed
protocol does achieve the targeted security level. However, in the full version of
our work [14], we explain that this result is surprisingly subtle: certain natu-
ral ways of implementing the r-fold repetition actually result in RBR security
(and, correspondingly, the post-FS security [2]) that is much lower than the one
attained in Theorem 4. While (to our knowledge) all existing projects do imple-
ment the t-fold repetition properly so as to ensure FS-security, we highlight this
subtlety so that protocol designers continue to avoid this potential pitfall.

We can instantiate the oracle O in Theorem 4 with Batched FRI and obtain
the following result.

Theorem 5 (Informally Stated, see Theorem 9). Let F be a finite field,
K be a finite extension of F, and D C F*. Let P = {Pi,...,Px} be a list of
2r + {-variate circuit constraint polynomials over F for k,r,{,n > 1. For integer
u>1,s = [r/u], and parameters p,n > 0, 6 = 1 —+/p—1n, and N,q > 1, the
protocol OPlonky composed with Batched FRI (replacing O) has round-by-round
soundness error:

80P|Onk}/(F, K D, n, k, r,s, t, u, d7 p9 77, Na q)

rbr
= max{sgflonky’O(F, K, D,n, k,r,s,t,u,d, p,n), sf’bFrR'(F, D, p,6,N,q)},
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where d = max;{deg(P;)}.

Given the above protocol is a round-by-round sound IOP, as in Theorem 3,
we can now apply the BCS transformation to obtain a secure non-interactive
argument in the random oracle model.

Corollary 3 (Informally Stated; see [14]). Let F be a finite field, K be a finite
extension of B, and D C F*. Let P = {P, ..., Px} be a list of 2r + -variate circuit
constraint polynomials over E for k,r,{,n > 1. For integers u,t > 1, s = [r/u],
and parameters p,n > 0, 6 =1 —+/p—n, and N,q > 1, given a random oracle
with k-bits of output and a query bound Q > 1, using the BCS transformation to
compile OPlonky composed with Batched FRI yields a non-interactive argument

i the random oracle model with adaptive soundness error and knowledge error

gZPb”ky(F, K, D,n k,r,s,t,u,d,p,n,N,q, & Q)

= Qgrct)fb"ky(}F, K, D,n, k,r,s,t,u,d, p,n, N, q) + O(Q?/2%),

where d = max;{deg(P;)}. Moreover, the the transformed non-interactive argu-
ment has adaptive soundness error and knowledge error

O(Q - X" " (B K, D, k, 15,1, u, d, p,n, N, g, , Q)

versus O(Q)-query quantum adversaries.

Remark 4. We stress that the above theorems do not imply anything for the
original work of Plonk [34], or any other Plonk variants that utilize the so-called
KZG polynomial commitment scheme [43] as their low-degree test. The tools we
leverage to show Fiat-Shamir security of our protocols rely on the low-degree
test also being an IOP or an IOP of Proximity, which the KZG scheme is not.
While it is likely one can extend our analysis to handle using the KZG scheme,
we do not explore that direction in this work.

RISC Zero and ethSTARK. When it comes to RISC Zero and ethSTARK, we
sketch why their 0-correlated formulations have RBR knowledge soundness, as
opposed to fully formally proving these facts. We do that due to brevity (since
formally describing these protocols is a lengthy task), and because proving that
these 0-correlated IOPs are RBR knowledge sound is a relatively straightforward
task, as our analysis of OPlonky indicates. Moreover, RISC Zero’s whitepaper is
in draft form at the moment of writing [68]. We hope practitioners can follow
the techniques and ideas exposed in this paper to prove in a relatively simple
way that their SNARKSs are indeed FS-secure.

1.3 Additional Related Work

The Fiat-Shamir (FS) transform [31] has been studied and used extensively to
remove interaction from interactive protocols. While it is known that the FS
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transformation is secure when applied to sound protocols with a constant num-
ber of rounds in the random oracle model (ROM) [1,31,58], it is well-known
that there exist protocols that are secure under F'S in the ROM but insecure for
any concrete instantiation of the random oracle [3,13,36|. Furthermore, several
natural classes of secure interactive protocols are rendered insecure when apply-
ing F'S (e.g., sequential repetition of a protocol and parallel repetition of certain
protocols) [2,22,72], and real-world implementations of F'S are often done incor-
rectly, leading to vulnerabilities [12,29]. Despite this, F'S is widely deployed and
is a critical component in the majority of SNARG and SNARK constructions.

Recent work has extensively studied which protocols can be securely instan-
tiated under Fiat-Shamir (either in the ROM or using suitable hash-function
families). As mentioned before, the general tools of state-restoration soundness
[9], round-by-round soundness [22]|, and special soundness [2,28,72] have been
introduced as soundness notions that “behave nicely” under Fiat-Shamir. Prior to
these tools, a variety of works [23,40,42] circumvented the impossibility results of
[13] by utilizing stronger hardness assumptions to construct Fiat-Shamir com-
patible hash function families. Another line of work [7,16,27,37,63,64,69,71|
follows the frameworks of Kilian [45] and Micali [53] to compile interactive ora-
cle proofs [9] into efficient arguments and SNARKSs via collision-resistant hash
functions [9,45] or in the random oracle model [9,53].

1.4 Organization

In Sect.2, we give an overview of our main technical results. Section 3 presents
our main results in full detail. Section 4 discusses some future directions. Due to
space constraints, most technical details are deferred to the full version of our
paper [14].

2 Technical Overview

Our main technical contributions are three-fold. First, we formally prove the
round-by-round (knowledge) soundness of the FRI protocol. Second, we build a
general tool for proving round-by-round (knowledge) soundness of d-correlated
IOPs. Third, we give a é-correlated IOP called OPlonky, prove its round-by-
round (knowledge) soundness, and showcase how it captures many “Plonk-like”
protocols used in practice. Additionally, we sketch how to extend the OPlonky
analysis to the ethSTARK protocol. In Sect. 2.1, we briefly discuss round-by-
round soundness and its relation to Fiat-Shamir; in Sect. 2.2, we give an overview
of the round-by-round soundness of FRI and Batched FRI; in Sect. 2.3, we intro-
duce the concept of d-correlated IOP and prove our general results about them;
in Sect. 2.4, we give an overview of the round-by-round (knowledge) soundness

of OPlonky; in Sect. 2.5, we discuss how a similar analysis can be done for the
ethSTARK protocol.
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2.1 Round-by-Round Soundness and Fiat-Shamir

Our tool of choice for establishing Fiat-Shamir security is round-by-round sound-
ness |22]. Informally, a public-coin interactive protocol for a language L is round-
by-round sound (RBR sound) if at any point during the execution of the protocol,
the protocol is in a well-defined state (depending on the protocol execution so
far) and some of these states are “doomed”, where being “doomed” means that
no matter what message the prover sends, with overwhelming probability over
the verifier messages, the protocol remains “doomed”. A bit more formally, RBR
soundness error ¢ states that: (1) if x ¢ L the initial state of the protocol is
“doomed”; (2) if the protocol is in a “doomed” state during any non-final round
of the protocol, then for any message sent by the prover, the protocol remains
doomed with probability at least 1 — & over the verifier messages; and (3) if the
protocol terminates in a “doomed” state, then the verifier rejects. Chiesa et al.
[25] extend RBR soundness to RBR knowledge soundness, which roughly says
that if (1) the protocol is in a “doomed” state during any round of interaction,
and (2) every prover message can force the protocol to leave this “doomed” state
with probability at least ¢ (over the verifier randomness), then an extractor
can efficiently extract a witness (with probability 1) simply by examining the
current protocol state and the prover’s next message.

Canetti et al. [22] introduced RBR soundness as a tool for showing Fiat-
Shamir security of interactive proofs [38] when used in conjunction with a suit-
able family of correlation intractable hash functions [24]. In particular, random
oracles are correlation intractable when the set of “doomed” states of a protocol
is sufficiently sparse; i.e., for small enough RBR soundness error. RBR sound-
ness readily extends to the language of interactive oracle proofs (IOPs) [9], and
hence the Fiat-Shamir compiler result of [22]| readily extends to IOPs, and can
be readily adapted to the random oracle model as well. However, applying this
compiler to IOPs directly introduces some undesirable effects: the constructed
non-interactive argument would have proof lengths proportional to the length of
the oracle sent by the prover since the compiler of [22] does not compress prover
messages in any way. This leads to long proofs and verification times, negating
any succinct verification the IOP may have had. Moreover, the transformation of
[22] says nothing about the knowledge soundness of the resulting non-interactive
argument, even in the random oracle model.

While it is likely that, in the random oracle model, one could argue that the
transformation of [22] retains knowledge soundness if the underlying IOP is RBR
knowledge sound, we do not prove this fact; moreover, the loss of verifier succinct-
ness is still an issue even if knowledge soundness is retained. Thus to circumvent
the above issues, we utilize the BCS transformation [9] for IOPs. Informally, the
BCS transformation first compresses oracles sent by the prover using a Merkle
tree [52] and then replaces any queries made by the verifier to prover oracles with
additional rounds of interaction where the verifier asks the prover its queries, and
the prover responds with said queries and Merkle authentication paths to verify
consistency. It was shown that if an IOP is round-by-round sound then apply-
ing BCS to this IOP gives a SNARK in the random oracle model [25,26]. Thus
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showing the RBR soundness of FRI and OPlonkyallows us to readily show Fiat-
Shamir security of these protocols under the BCS transformation in the random
oracle model, yielding our results. Thus in what follows, we give a high-level
overview of the round-by-round soundness proofs for both FRI and OPlonky.

2.2 Round-by-Round Soundness of FRI

We give a high-level sketch of the round-by-round soundness of FRI in this
section; for full details, see [14]. As previously stated, FRI is an interactive oracle
proof of proximity for testing whether or not a polynomial specified by a prover
is “close to” a particular space of Reed-Solomon codewords. More formally, for
finite field F, multiplicative subgroup Lo C F* of size N = 2", and degree bound
dy = 2K for k € N, RS := RS[F, Ly, dy] < EV is the set of all polynomials f: Ly — F
of degree at most dy — 1, and the FRI protocol allows for a prover to succinctly
prove to a verifier that a function Gg: Ly — F is within some proximity bound
6 of the RS code. That is, if a verifier accepts the interaction, then the verifier
is convinced that there exists f € RS such that A(Gg, f) < 6N, where A is the
Hamming distance between Gy and f (when viewing them as vectors in FV). We
say that such a Gy is 6-close to RS; otherwise, we say that G is d-far from RS
(i.e., A(Go, f) = 6N for all f € RS).

To achieve succinct verification, the FRI protocol first interactively com-
presses Gq during a folding phase,® which proceeds as follows. First, the prover
sends oracle G to the verifier. Next, the verifier samples xy € F uniformly at ran-
dom and sends it to the prover. Now the prover defines new oracle G;: L; —» F
over the new domain L; = (Lg)? := {z?: z € Ly} of size N/2, where for any s € L,
if s’,5” € Ly are the square roots of s, then we have

G1(s) = (x0 = 8')(s” = 5" Go(s") + (x0 = s”)(s" = 5") " Go(s"). (1)

Given Gy, the prover and verifier now recursively engage in the above folding
procedure with the function G;, where the claim is that G, is 6-close to a new
Reed-Solomon code RS[F, Ly, d1] for di = dy/2; this recursion continues log(dy) =
k times which results in prover oracles Go, G1,...,Gr_1 and verifier challenges
X0s X1y e v o9 Xk—1-

After the folding phase, the prover and verifier now engage in the query
phase. During this phase, the prover sends a constant value Gy € F to the
verifier, and the verifier samples a uniformly random challenge sy € Ly tto check
the consistency of all pairs of functions G;_1, G; for i € {1,..., k} as follows. The
verifier first checks consistency of Gy and G; using Eq. (1); in particular, if we
set s1 = (s9)? and let 7y be the other square root of s1 (i.e., (tg)> = s1 and to # o),
the verifier checks that G1(s1) is consistent with Go(sg) and Go(tp) via Eq. (1).
This check is then performed for every pair of functions G;_; and G; via Eq. (1)
using challenge x;_; and G;(s;), Gi—1(si—1), and G;_1(t;—1), where s; = (s;—1)? and
ti-1 # si—1 is the other square root of s;. The verifier accepts if and only if all of

5 [4] refers to this as the commit phase. We view the term “folding phase” as more
appropriate given the nature of the compression.
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these checks pass. More generally, the verifier performs the above query phase
(in parallel) € > 1 times and outputs accept if and only if all checks pass.

To show RBR soundness of FRI, we first turn to the prior soundness analyses
of FRI. Suppose that Gg is 6-far from RS[F, Ly, dy], then it turns out a malicious
prover has two strategies for fooling the verifier: (1) “luck out” in the sense that

for xo & F sent by the verifier, the new function G is é-close to RS[F, Ly, d,]; or
(2) send some G} # G that is ¢-close to RS[F, Ly, d;]. Intuitively, strategy (2)
never increases the probability the prover can fool the verifier since even though
G is closer to the Reed-Solomon codespace, this improvement is offset by the
fact that G, and G’ will differ at many different points. Thus the optimal prover
strategy is to simply behave honestly by sending the correct function during
every round using Eq. (1), and hoping to “luck out” from the verifier challenge
during that round.

FRI Round-by-Round Soundness Overview. We adapt the above intuition
for the RBR soundness of FRI. Let P* be our (possibly malicious) prover. Let
&1 be the probability that P* “lucks out” as described above. First, since Gy
is assumed to be o-far, and moreover Gy is honestly sent to the verifier, the
protocol, begins in a doomed state. Then if the verifier sends xg such that P*
“lucks out” and the function G; is d-close, then we say the protocol is no longer
in a doomed state. This happens with probability at most &;.

Building on this, suppose the partial transcript so far consists of (G, x¢) and
suppose that this state is doomed; that is, both Gy and G; are §-far functions.
Now the prover P* may send some function G that may or may not be equal
to Gy (as given in Eq. (1)), and then the verifier responds with challenge x;.
However, as described before, sending G| # G; doesn’t increase the probability
that the prover fools the verifier, and we want the RBR soundness analysis to
reflect this as well. Thus we say that the current state of the protocol, given
by (Go, xo0, G, x1) is not doomed if and only if G| = G; and P* “lucks out” with
the function G (again defined via Eq. (1) using x; and Gy). In other words, the
protocol remains in a doomed state if: (1) G| # G1; or G, is 6-far (i.e., the prover
didn’t “luck out”). Thus the protocol leaves its doomed state with probability
at most £;. This analysis generalizes to all rounds of the folding phase: given
any partial transcript (Go, xo, G}, x1, ..., G;_;, x;-1) that is in a doomed state, if
P* sends function G; and the verifier sends challenge x;, then the protocol is no
longer doomed if and only if (1) the prover “lucked out” and G;4; is d-close; and
(2) all G;. =G, for j € {1,...,i—1}. And again, the protocol is no longer doomed
with probability at most ;.

To complete the analysis, we now consider the final round of the protocol,
which consists of the query phase. Suppose that the partial transcript for this
round is given by (Go, xo, G, X1, . . .,G,’(_l, xr_1) and suppose the protocol is in a
doomed state. At this point, P*’s hands are tied: it must send a constant Gy € F
to the verifier, and the verifier then uniformly samples s(()l), .. .,sff) € Ly and
performs its checks. Thus, the only way the protocol can leave the doomed state
is if all of these checks pass; in particular, if a single check fails then the protocol
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remains doomed (and, in fact, the verifier rejects). Let €2 denote the probability
that a single verifier check passes; that is, a single chain of checks depending
on sél) passes (i.e., computing the squares and square roots at every level, and
checking consistency across all levels with this check). Then the probability P*
can leave the doomed state is exactly &o; extending this to € checks (which are
performed uniformly and independently at random) gives us that the protocol
leaves the doomed state with probability at most eg. Considering the folding
and query phases, the discussion above shows that the FRI protocol has RBR

FRI _ ¢
soundness error g/ = max{&y, &}.

Batched FRI Round-by-Round Soundness Overview. Extending the
above analysis to Batched FRI is straightforward. Briefly, Batched FRI invokes
FRI on a random linear combination of ¢ functions fi,..., f;: Lo — F. In more
detail, first the prover sends oracles fi,..., f; to the verifier, then the verifier
responds with random challenges ay, ..., a;. The prover and verifier then engage
in the FRI protocol using function Gy = Y); @; f;.% Finally, Batched FRI modifies
the query phase of FRI to also check consistency between f; and G exactly via
the equation Gg = }; a;fi. Key to Batched FRI is that if all f; are 6-close to
RS[F, Lo, dp], then Gy is also d-close, and if even one f; is o-far, then with high
probability Gy is also d-far.

The RBR soundness analysis of Batched FRI proceeds as follows. Let P* again
denote our (possibly malicious) prover. The protocol begins in a doomed state;
namely, there exists at least one f; that is o-far from RS[F, L, dy]. Then P* hon-
estly sends fi, ..., f; to the verifier,” and the verifier responds with a1,...,a, € F
sampled uniformly and independently at random. Let & be the probability that
Gy is o-close given that there exists at least one f; that is 6-far, where the proba-
bility is taken over aj, ..., ;. Then we say the protocol is no longer in a doomed
state if and only if G is d-close; thus during this round, P* can leave the doomed
state with probability at most ;. Now suppose that (fo, ..., fi,@1,..., @) is the
current protocol state and that this state is doomed. The prover and verifier now
engage in FRI using some function G|, constructed by P* as input. The observa-
tion here is that we can now invoke the RBR soundness analysis of FRI directly,
with the following slight change for the first round of FRI. Suppose P* sends G|
to the verifier and the verifier responds with xg. Then the protocol is no longer
in a doomed state if and only if G = Gg and G is é-close, where G, is defined
via Eq. (1) with respect to the correct function Ggy. In particular, the intuition
behind the prover’s strategy remains the same: if P* sends some other G|, # Go,
then the verifier is more likely to detect this change when checking consistency
of G and f1,..., fi, so P* can only leaved the doomed state of the protocol if it
behaves honestly and “lucks out” with verifier challenge xy. Finally, we remark

6 In practice to save on communication, only a single a is sent and the linear combi-
nation is computed with @; = a~1, at the cost of an increased soundness error; see
[14] for details.

7 This is necessary, if a malicious prover is allowed to send dishonest fis- .. ff such
that all are d-close, then the protocol reduces to the honest prover analysis.
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that the final round (i.e., the query phase) of Batched FRI with the additional
checks between fi,..., f; and G{| has the same RBR soundness error &, as with
FRI. Thus the RBR soundness error of Batched FRI is 8:’bFrR' = max{é&;, 81,85 },
where ¢ is the number of times the query phase is repeated.

Instantiating &1, &2, and &3. For the query phase, the best one can hope for
is &5 = (1 - 6) [4,6,11,70]; for the folding phase, there is a long line of work
done towards improving the bounds on &; [4,6,11]. In our work, we utilize the
best known provable bounds on &; given by Ben-Sasson et al. [6], and note that
any improvements for &; directly improve the round-by-round soundness error of
FRI. In particular, we have g1 = O(22"/(p-|F|)), where p = dy/|Lo| and |Lg| = 2".
This yields our stated round-by-round soundness error in Theorem 1. Finally, [6]
also show that &, = &; for Batched FRI, which gives us Batched FRI round-by-
round soundness error sberR' = max{el,sg}, yielding our stated round-by-round
soundness error in Theorem 2. See [14] for a complete discussion and proof of
the round-by-round soundness of FRI and Batched FRI.

FRI Round-by-Round Knowledge Overview. Recall that a protocol has
RBR knowledge error gy if for any “doomed” state of the protocol, if every mes-
sage the prover can send will put the protocol in a non-“doomed” state with
probability at least ¢ over the verifier randomness, then an extractor can effi-
ciently recover a witness (with probability 1) when given the current protocol
state and the prover’s next message. In the context of FRI, RBR knowledge
soundness means we can extract a 6-close function G, and for Batched FRI we
can extract ¢ functions fi,..., f; that are all d-close. For both FRI and Batched
FRI, it turns out we obtain RBR knowledge soundness more or less for free.
Recall that both protocols have RBR soundness error max{eq, sg} from our dis-
cussion above. Then we claim that these protocols both have RBR knowledge
error exactly gx = max{eq, ag}.

We give an efficient extractor for the RBR knowledge soundness of FRI.
First consider any intermediate round i of the folding phase of FRI (the analysis
for Batched FRI is identical). Then the current protocol state is doomed and
is given by the transcript (Go, xo, G7, X1, ..., G;_;, Xi—1). Suppose that for any

i-1
function G’ sent by the prover, for x; EF sampled by the verifier, the protocol
state (Go, x0, G, X1, ..., G}, x;) is not doomed with probability at least ex. In
particular, this happens with probability at least &, = 0(2%"/(p|F|)). Then our
extractor, given (Go, X0, G1, X1, . . ., G7) simply reads and outputs the oracle Go.
For the query phase, the analysis is identical: let the current protocol state be
doomed for transcript (Go, xo, G1, X1, - - ., G} _;, Xk-1). Suppose for every Gy € F
sent by the prover and verifier challenges sq 1, ..., So,¢ Al Ly, the protocol state
(Go, x0, G, x1, ..., Gi, (s0,j)j<¢) is not doomed with probability at least g. In
particular, this happens with probability at least sg = (1-6)¢. Then our extractor
again simply reads and outputs oracle Gy.

Now why should we expect Gy to be a §-close function? It turns out that
by the choices of &1 and &s, if all prover messages can leave the doomed state
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with the above probabilities, it unconditionally implies that Gy must be d-close
in both cases, a result shown by [6]. First, for any round of the folding, the
function G} can leave the doomed set if and only if G] = G; (i.e., it is computed
as an honest prover would compute it) and G;41 is 6-close. If G;41 is 6-close with
probability greater than &£; over the verifier randomness, then it unconditionally
implies that G; must have been §-close as well [6]. This then recursively applies
to Gi-1, and so on, finally yielding that Gy must have been §-close as well. [6]
show that a similar result must hold for the query phase: if all verifier checks
pass with probability at least 85 during the query phase for any Gy € F sent by
the prover, then Gy must be 6-close as well. Thus the RBR knowledge error of
FRI is identical to the RBR soundness error. Finally, the above analysis proceeds
identically for Batched FRI as well; i.e., if during any round of folding or batching
phase the prover can leave with probability at least &1, then it unconditionally
implies that fi,..., f; must be 6-close functions. The Batched FRI query phase
is analogous.

2.3 Correlated I0OPs and Round-by-Round Knowledge Soundness

To conduct our security analysis beyond FRI, we formulate an abstract type of
IOP which we call a §-correlated IOP. This is a notion related and inspired by
that of Reed-Solomon Encoded IOPs [8,26] (see [14] for further comparison). In
a nutshell, when ¢ = 0, a 0-correlated IOP is an IOP where:

— The verifier has access to an oracle O that, given any number of maps
fis. .o f : D — F, determines whether each of the f; is the evaluation map
of a polynomial of degree at most d, for any d < |D|. Here D is a subset of F,
called evaluation domain.

In other words, O determines whether the maps (or words) f; belong to the
Reed-Solomon code RS[F, D, d + 1].

— During the interactive phase, the prover sends oracle access to some maps
g1,---,8m : D — F (across several rounds of interaction).

— In the last round of interaction, the verifier sends a field element 3 € K\ D to
the prover, and the prover replies with values

{gikij3) i €[ml,j € [n]} (2)

where k;; are some pre-defined field elements and n; > 1 are predefined
positive integers. Here K is either F or a field extension of F. Importantly,
each map g; appears at least once in the list Eq. (2).
— To decide whether to reject or accept the prover’s proof, the verifier:
e Check 1. Asserts that the values {gi(ki,ja) |i€[m],je [ni]} satisfy cer-
tain polynomial equations.
e Check 2. Uses its oracle O to check that the following maps belong to
RS[F, D, d]:

quotients := {(g,-(X) = gikij3)/(X=3) |ie€[m]je [”i]} . (3)
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When 6 > 0, a §-correlated IOP has the exact same form as above, except that
now O is an oracle for checking §-correlated agreement in RS[F, D, d + 1] for any
d < |D|. A sequence of maps gi1,...,gn : D — F has §-correlated agreement if
there exists a subset S C D and polynomials ¢, ..., g, of degree < d such that
gi coincides with ¢; on S, for all i € [m], and |S| > (1 - 9)|D|.

These type of IOP’s are interesting to us because several modern IOP’s can
be understood as being built on top of a 0O-correlated or §-correlated IOP for
§ > 0, e.g., all Plonk-like protocols that use FRI instead of KZG [34,44,60],
ethSTARK (or DEEP-ALI) [10,65], RISC Zero [68], etc.

We prove the following results about d-correlated 10Ps:

— Result 1. If a 0-correlated IOP MMy has round-by-round (RBR) soundness or
knowledge &, then replacing 6 = 0 by a larger 6 > 0 results in a d-correlated
IOP with RBR soundness or knowledge €&, where ¢ is certain constant related
to list decodability of Reed-Solomon (RS) codes. Namely, ¢ is the maximum
number of distinct RS codewords that can be d-close to any given word.
Here, by “replacing § = 0 by a larger 6 > 0” we refer to the d-correlated IOP
that results from taking [y and replacing the verifier’s oracle for checking
membership to RS[F, D,d + 1] (so, checking 0-correlated agreement) by an
oracle that checks for §-correlated agreement in RS[F, D, d + 1].

— Result 2. Given a §-correlated IOP 1 with RBR soundness or knowledge &,
and given a IOP or IOP of Proximity lNca for checking d-correlated agree-
ment, we can construct a new IOP (in the standard sense, i.e., an “uncorre-
lated IOP”), denoted by Mcompiled; by replacing the oracle O with the protocol
Mca. We show that if MMca has RBR soundness eca, then Meompiled has RBR
(knowledge) soundness max{e, eca}. Notice that, for RBR knowledge sound-
ness, we don’t need lNca to have RBR knowledge soundness. It suffices for Il
to have RBR knowledge soundness, and for lNca to be RBR sound.

First, we explain how these results can be applied to existing protocols, then
give a high-level overview of their proofs.

Using the Above Results. Given these results, one strategy for proving that an
IOP I has RBR (knowledge) soundness is to first try to formulate the IOP as a
o-correlated IOP that has been compiled with the method described above, then
prove that the corresponding 0-correlated IOP has RBR (knowledge) soundness.
Once this is done, our results provide RBR (knowledge) soundness error bounds
for the initial IOP T1. Figure 2 gives an overview of this methodology.

The latter task can be a significant simplification in comparison to analyzing
the initial IOP 1 directly. This is because when 6 = 0, the verifier in [1 has
an oracle for checking that the maps from the verifier’s Check 2 are low-degree
polynomials. This effectively forces the prover to send (oracles to) low-degree
polynomials throughout the interaction and to provide correct openings in its
last message. As a consequence, and roughly speaking, our methods allows to
study the IOP as if it was a Polynomial IOP (PIOP), with the Batched FRI
protocol acting as a Polynomial Commitment Scheme (PCS) used to compile
the PIOP into an interactive argument. However, note that FRI cannot be used
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as a PCS (unless 6 lies in the unique decoding radius) since it only guarantees
o-closeness to low-degree polynomials.

Later, we show how these methods can be used on “Plonk-like” protocols,
and briefly discuss how to use them on other protocols such as ethSTARK and
RISC Zero.

Proof Sketch of Result 1. Let 6 > 0, let g be a d-correlated I0P, and let My
be the same IOP except that the verifier has access to an oracle for 0-correlated
agreement instead of §-correlated agreement (equivalently, it has an oracle for
checking membership to RS[F, D,d’ + 1] for any d’ < |D|). Suppose [y is RBR
(knowledge) sound with error . We first focus on RBR soundness and discuss
RBR knowledge soundness later. Let T be a partial transcript produced during
some rounds of interaction between the prover and the verifier from [1s. For
ease of presentation, assume the prover sends maps to the verifier, as opposed
to sending oracle access to these maps. Let g1,...,gr be all prover’s maps in
7 and write T = 7(g1,...,2r) to denote that 7 contains such maps. Let 7/ =
7/(g%,- - -» &) be another partial transcript. We informally say 7’ is a low-degree
partial transcript if all of the maps g1, ..., g, are codewords from RS[F, D,d +1].
We also say 7’ has d-correlated agreement with 7 if there is § € D such that g;
coincides with g/ on § for all i € [k] and [S| > (1 - 6)|D|. Then we say that 7 is
“doomed” in s if and only if one of the following holds:

— All low-degree partial transcripts 7’ that are d-correlated with 7 are doomed
in rlo.

— 7 is a complete transcript and Check 2 of the verifier fails, i.e., the maps
quotients from Eq. (3) do not have é-correlated agreement in RS[F, D, d + 1].

This defines the doomed states for lg, i.e., the doomed states are those where
the partial transcript so far is doomed.

Now it remains to be shown that INs has RBR (knowledge) soundness error
g/(2+/pn) with respect to these doomed states. In what follows, we say that a
partial transcript is doomed in s or doomed in Ny depending on whether it is
doomed with respect to the doomed states of 15 or ly. By a i-round partial
transcript we mean a partial transcript where both prover and verifier have sent
i messages each.

Let 7 be a i-partial transcript after that is doomed in [1s. By definition, all
low-degree partial transcripts that are d-correlated with T are doomed in [y. Let
m be a prover’s message for round i + 1. We want to show that the probability
that (r,m,c) is not doomed in [s is at most &/(2+/pn), where the probability
is taken over the verifier’s (i + 1)-th message ¢. Assume (7, m,c) is not doomed
in Mg for some c¢. Then, by definition of the doomed states of lls, there is a
low-degre partial transcript v that is d-correlated with (7, m,c) and that is not
doomed in [y. This transcript must have the form v = (t/,m’, ¢), where 7’ is a
i-round low-degree partial transcript that is d-correlated with 7. In particular,
7’ is doomed in M.

Since Iy is RBR sound with error &, the fraction of challenges ¢ such that 7’
is doomed in My but (7/,m’, ¢) is not is at most €. Thus the fraction of challenges
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¢ such that 7 is doomed in lgs but (r,m,c) is not doomed in [ls is at most
{e, where ¢ is the number of i-round low-degree partial transcripts 7/ that are
d-correlated with 7. Using a lemma from [65], we can bound ¢ by 1/(2+/pn).

It remains to argue that doomed complete transcripts are rejected by the
verifier. Let 7 = 7(g1,...,gm) be a doomed complete partial transcript and let
quotients be as in Eq. (3). If the maps quotients do not have §-correlated agree-
ment in RS[F, D, d], then the verifier rejects and we are done. Hence assume
they do have d-correlated agreement. Thus, for each i € [m] and j € [n;] we
have that (g;(X) - g;(k; ;3))/(X —k; j3) agrees with a polynomial ¢g; ;(X) on a set S
(this set is the same for all 4, j). In other words, g;(X) agrees with the polynomial
u; j(X) = qi j(X)(X—k; ;3)+8i(k; j3) on S. Moreover, both g; and u; ; take the same
value on X = k; ;3, i.e., gi(k; ;3) = u; j(k; ;3). Additionally, we have |S| > (1-06)|D|,
and by how ¢ is chosen, (1 —6)|D| > d + 1. This makes u; j(X) the same for all
J € [n;]; thus, we denote any u; ;(X) simply as u;(X).

We have seen so far that g;(X) agrees with the polynomial u;(X) on S, for
all i € [m], and that g;(k;;3) = u;(k;;3), for all i,j. Thus " = t(u,...,uy) is
a low-degree partial transcript that is d-correlated with 7. Since 7 is a doomed
transcript and quotients have §-correlated agreement in RS[F, D, d], we must have
that 7" is doomed in . Note that 7’ is a complete transcript, and so y’s verifier
rejects it. Clearly, 7/ passes the O-correlated agreement check of [y’s verifier.
Hence the first check of the verifier fails, i.e., the values {u;(k; ;3) | i € [m], j € [n;]}
do not satisfy some required polynomial identities. However, these values coincide
with {gi(k;;3) | i € [m],j € [n;]}, and so the verifier of ls rejects  for the same
reason: the values do not satisfy the appropriate polynomial equations. This
proves that l1s has the claimed RBR soundness error.

The proof that s has RBR knowledge soundness uses similar ideas. Pre-
cisely, suppose 7 is a i-round partial transcript that is doomed in ls. Let m be a
prover’s (i + 1)-th round message and assume the probability (over the verifier’s
(i + 1)-th challenge c) that (r,m, c¢) is not doomed is larger than &/(2+/pn). Since,
as we argued, there are at most 1/(2+/pn) i-round low-degree partial transcripts
7’ that are d-correlated with 7, there must exist at least one such transcript 7’
that is doomed in My such that (7/,m’, ¢) is not doomed in 1y with probability
larger than &. Then we can use the RBR knowledge soundness of Iy to extract
a valid witness from 7’. We can build an extractor that, given 7, computes all
low-degree partial transcripts 7’ that are d-correlated with 7. This can be done
in polynomial time using a method from [65]. Then for each such 7’, the new
extractor uses the extractor of Ny on 7/, until a valid witness is found.

Proof Sketch of Result 2. The second general result stated above can be proved
as follows: define a partial transcript 7 for lNcompiled to be doomed if one of the
following hold:

1. 7 is a partial transcript for 1 and 7 is a doomed state in [1.

2. T is a partial transcript of the form 7 = (71,72), where 71 is a complete
transcript of I, and 75 is a (possibly empty) partial transcript corresponding
to some rounds of lca, and either
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(a) 72 is a doomed state in MNca, or
(b) the verifier Vp from M would reject 11 due to Check 1 not passing.

We then prove that Meompiled is RBR (knowledge) sound with respect to these
doomed states and with error max{e, eca}. As before, we discuss first RBR
soundness then RBR knowledge.

The key observation is that if 7 is a doomed partial transcript of Type 1
above, then it remains doomed in the next round except with probability &
due to the RBR soundness of 1. A similar argument can be used for a partial
transcript of Type 2 of the form 7 = (11, 72), with 79 # 0. The most noteworthy
case is when 7 is of Type 2 and of the form 7 = (71, 0), i.e., the case when 7 is
exactly a complete transcript for 1. In this case, since 7 is doomed, the verifier
Vh in 1 would reject 7. Hence 7 fails either Check 1 or Check 2 of V. In the first
case, the probability of leaving the doomed state in Mcompiled is 0 since any partial
transcript 77 = (77, 7)) of Type 2 such that 7] fails Check 1 of Vp is doomed by
definition. In the latter case, Nca is executed with input a set of words that do
not have d-correlated agreement. As such, MNca starts off in a doomed state and
so the probability that the state is not doomed in the next round of interaction
is at most eca. This shows that Mcompiled is RBR sound with error max{e, eca}.

For RBR knowledge soundness, we make the following observations. First, we
define doomed states for MNcompiled as before, using the doomed states given by the
RBR knowledge (as opposed to RBR soundness) for I, and the doomed states
given by the RBR soundness for ca. Now, let 7 be a doomed partial transcript
for Meompiled- Assume the probability 6 that t stops being doomed at the next
round is larger than max{ex, eca}, where & is the RBR knowledge error of I1.
Then, if 7 is of Type 1, we can use the extractor given by the RBR knowledge
of N to obtain a valid witness from 7. On the other hand, if 6 > max{eg, eca}
then 7 = (11, 72) cannot be of Type 2 because:

— If 75 is a doomed state in lNca, then by definition of RBR soundness, the
probability that 7o is not doomed in the next round of lN¢ca is at most eca.

— If 7y would be rejected by IN’s verifier due to Check 1 failing, then the partial
transcript will be doomed at the next round because of the same reason, and
so in this case 7 has probability 0 of not being doomed in the next round.

In other words, doomed partial transcripts of Type 2 are always doomed at the
next round, except with probability at most max{e, eca}. Thus, we do not need
to describe an extractor for this type of partial transcripts.

Remark 5. This approach yields better RBR soundness bounds than some prior
known methods. For example, in [44] the authors introduce RedShift, a Plonk-
like IOP. The authors obtain a RBR knowledge error (modulo FRI) for RedShift
which has a factor of the form, roughly, ¢, where ¢ is the aforementioned “max-
imum list decoding set size”, and m is the number of oracles sent by the prover
during the interactive phase. For RedShift, m is set to 6, but similar (though not
fully identical) protocols such as Plonky2 [60] use m > 130. On the contrary, as
we mention later in this paper, with our method the factor ¢ would be reduced
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to £. We remark again that [44] also does not obtain F'S security of their protocol,
as that work does not analyze the FS security of FRI.

In Sect. 2.5 we also point out that, when applied to the eshSTARK protocol,
our approach leads to better knowledge soundness error than the one in [65]
(this improvement was already demonstrated in [39]).

2.4 Round-by-Round Knowledge of Plonk-Like Protocols

We generalize and abstract Plonk-like protocols as a correlated IOP, which we
call OPlonky, where again by “Plonk-like” we specifically mean the interactive
oracle proof abstractions underlying the protocols related to and built upon
the (IOP underlying the) Plonk SNARK. The abstraction is inspired mostly by
Plonky2 [60], which we believe to be one of the most general Plonk-like IOP’s
currently published.

The protocol OPlonky is an IOP for a Plonk-like relation Rropionky (related to
[32]), which generalizes arithmetic circuit satisfiability and seamlessly supports
custom gates. Simplifying greatly, an instance of Rropionky is characterized by
some multivariate polynomial equations Py = 0,...,Pr = 0, two integers n,r
representing the dimensions of a matrix (usually called execution trace), and a
permutation o : [n] X [r] — [r] X [r]. An input and witness pair (x, w) satisfies
such an instance if w is a n X r matrix of field elements, x is a vector of field
elements, and

— The values in each row w; of w satisty Py(w;) =... = Pr(w;) = 0.

— Certain pre-specified cells in w have the values x.

— The entries in w satisfy the copy constraints induced by o. More precisely,
W(i,j) = We,j) for all i, j € [n] X [r].

The IOP OPlonky proceeds in the following 4-round process. For the sake of
presentation, we provide a greatly simplified exposition.

1. Round 1. The prover sends r polynomials a;(X),...,a,(X) of degree < n to
the verifier as oracles. Each of these polynomials is the result of interpolating
the columns of w over a multiplicative subgroup H of F or order n. The verifier
then replies with some random challenges.

2. Round 2. The prover uses the verifier randomness from the prior round,
to construct and send oracle access to so-called permutation polynomials
m1(X),...,ng(X) of degree less than n. These polynomials will later be used
to (again roughly) check that the copy constraints are satisfied. The verifier
responds with a random challenge «.

3. Round 3. At this point, the goal of the prover is to convince the verifier
that the polynomials Q; := Pj(ai(X),...,a,(X)) and certain polynomials of the
form 6;(X) := Ri(m1(X),...,ns(X)) vanish on H, where the R; is some multi-
variate polynomial. To this end, the prover batches these constraints together
by computing

d(X) = 01(X) + @Qo(X) + ... + &*10u(X) + X 61(X) + ... + FT7L6,(X) (4)
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and proving that d(X) vanishes in H. To do so, the prover sends the ver-
ifier oracle access to the polynomial ¢(X) := d(X)/Zy(X), where Zgy(X)
is the vanishing polynomial of H. The verifier replies with a random field
element 3.

Round 4. The prover replies with the values (a;(3));, (7;(3)); and g(3).
Verification phase. The verifier performs two assertions. It accepts the
proof if and only if both of them return true.

— Assert whether ¢(3)Zy(3) = d(3), where the value d(3) is obtained by
replacing X by 3 in Eq. (4), and querying the oracles to a;(X), n;(X) for
alli € [r] and j € [s].

— Use an oracle to assert whether the following set of words has d-correlated
agreement in some Reed-Solomon code:

{qoo ~4() (aioo - q(s)) (n.;oo - q(s)) } |
i J

Ao

X -3 X -3 X -3

It is apparent from the description above that OPlonky is indeed a é-correlated
I0P.

When compiled with the Batched FRI protocol, OPlonky ,mpiled becomes
almost identical to Plonky2’s IOP [60] with some similarities to Redshift [44].
Alternatively, OPlonky could also be compiled somehow with the KZG commit-
ment scheme (which, in a sense, can act as a protocol for O-correlated agreement).
This would yield generalized versions of the original Plonk protocol and its vari-
ations (e.g., TurboPlonk). We leave this as future work.

Round-by-Round Soundness of OPlonky. With the above observations in
mind, we then go on to show that OPlonky with § = 0 has RBR soundness
and knowledge. We now provide an intuitive idea of the proof, focusing on RBR
soundness. To do so, we use the simplified description of OPlonky provided above.
As such, our analysis and resulting error bounds are also simplified.

We let OPlonky? denote the OPlonky protocol where the verifier has oracle
access to O-correlated agreement oracle O. To prove that OPlonky® has RBR
(knowledge) soundness, we need to define a set of “doomed states” the protocol
can be in. As a general rule, we will always set the state to “doomed” if the prover
has sent the verifier an oracle to a map that is not a polynomial of appropriate
degree. As argued in Sect. 2.3, in this scenario it is impossible for a malicious
prover to “recover” and eventually convince the verifier, since the verifier will
detect the dishonesty when using O in its Check 2. Moreover, by similar reasons,
we can also assume that the prover provides correct openings as its last message.

Next we describe the rest of scenarios in which we set the state to “doomed”
and analyze the probabilities of “recovering”, i.e., of not being in a doomed set
in the next round. We proceed in a round-by-round fashion.

— Given an input x for the relation Rropionky, if X is not in the language Lrpopion,
induced by Rropionky, We set the state to “doomed”.

— Now assume that at the end of round 1, it is not possible for the prover to
compute polynomials 71(X), ..., m3(X) of degree < n such that all the polyno-
mials ¢;(X) vanish on H. Then we set the state to “doomed”. We see that if
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the state was doomed before round 1, then the chances of receiving verifier
randomness such that the state is not doomed at the end of round 1 are,
roughly, rn/|F|. This probability comes from the soundness of permutation
checking procedure used in Plonk and many other protocols.

— Now suppose that at the end of round 2, the polynomial d(X) does not vanish
on Zg(X). Then we set the state to “doomed”. In this case, the probability of
starting round 2 in a doomed state and finishing it in a non-doomed state is
at most, roughly, (k+s)/|F|. This is deduced by taking an arbitrary x € H and
looking at the equality d(x) = 0 as a polynomial equation on @. This equation
either has degree ~ k +s (on @), or it is identically zero. However, we see that
if round 2 started in a doomed state, then R(x) = 0 is not identically zero for
at least one x € H. Hence, there are at most ~ k + s distinct values of a such
that d(x) =0 for all x € H.

— Finally, suppose that at the end of round 3, one has ¢(3)Zg(3) # d(3). Then we
set the state to “doomed”. In this case, the probability of ending round 3 in
a non-doomed state if the state was previously doomed is at most, roughly,
max;{deg P;} - n/|F|.® This is because either ¢(X)Zy(X) — d(X) is the zero
polynomial (as it should be), or it is a polynomial of degree max;{deg P;}n
and 3 is a root of it. We then see that if the protocol is in a doomed state
when round 3 starts, then ¢(X)Zg(X) — d(X) is a nonzero polynomial. Notice
as well that if the protocol ends in a doomed state as per our definition, then
the verifier rejects.

The above argument, at a high-level, establishes the round-by-round security of
the 0-correlated hIOP OPlonky?; complete details are given in the full version
of our work [14].

Round-by-Round Knowledge of RISC Zero. RISC Zero [68] is similar to the
Plonky2 protocol. More precisely, and modulo technicalities, it can be thought
of as being built on top of OPlonky with the addition that RISC Zero implements
a lookup argument [33] in the same round as the permutation check is performed.
We believe that similar methods as the ones presented in the previous section
can be used to establish the RBR knowledge soundness of RISC Zero, and thus,
the knowledge soundness of the Fiat-Shamir transformed version of RISC Zero.
Since RISC Zero’s whitepaper is in draft form at the moment of writing, we
leave formally proving this claim as an open task.

2.5 Round-by-Round Knowledge of EthSTARK

We begin by discussing the eshSTARK protocol Mehstark [65], which is a close
variation of the DEEP-ALI protocol [10]. We briefly provide a rough overview
of the protocol; see [65] for complete details.

8 This is not entirely accurate; for precise bounds, see Theorem 8.
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Description of the Protocol. In Menstark, the honest prover first sends oracle
access to a list of degree < d polynomials fi,..., f,, that interpolate the columns
of a so-called Algebraic Intermediate Representation (AIR) instance over a mul-
tiplicative subgroup H of a field F (simply put, these polynomials encode the
witness). Supposedly, these polynomials are such that certain maps of the form

[Qi(X’ fl(gi,lX)’ R} fm(gl,mX))]/ZHl (X)’ i € I’ (5)

are low-degree polynomials. Here, each Q;(X,Y1,...,Y,,) is a pre-specified (m+1)-
variate polynomial; the g; ;’s are field elements; Zg,(X) is the vanishing polyno-
mial of a subgroup H; of H; and I is a list of indices.

The verifier replies with 2|/| random elements ry,7{,..., 7, rl'I| from a field
extension K of F. As its second message, the honest prover sends oracle access
to low-degree polynomials g1 (X), ..., gx(X) such that

k
D+ X ONQX, Fi(giaX). .. Sn(em XD/ Z1,(X) = ) X7 ;X5 (6)

iel j=1

where the ¢;’s are pre-agreed positive integers such that that each summand
on the left-hand side of Eq. (6) has the same degree, and k is a conveniently
pre-agreed positive integer. The reason why the prover sends k polynomials
q1(X),...,qr(X) instead of just one polynomial g(X) that equals the left-hand
side of Eq. (6) is because the degree of g(X) would be “too large”, and hence it
is “split” into low-degree polynomials.

The verifier replies with a field element 3 uniformly sampled in a large subset
S of K. The honest prover replies with evaluations

{fl(gi,jS)’ ce '7fm(gi,j3)’ CIl(?)), . ,Qk(ﬁ) | I € I’.] € [m]} . (7)

Then, the verifier checks that Eq. (6) holds after replacing X by 3 (using the
purported evaluations in Eq. (7)), and it engages with the prover in the Batched
FRI protocol to verify that the following maps have §-correlated agreement in
some Reed-Solomon code:

;X - fi(gij3) . . q:(X) — q:(3)
{ X~ 23 |1€I,]€[m]}LJ{X—_3

| te[k]}. (8)

RBR Knowledge Soundness of the ethSTARK Protocol. 1t is clear that MehsTaRK
is the compilation of a d-correlated IOP using the Batched FRI protocol for ¢-
correlated agreement. Thus, one can prove that MNepstark has RBR (knowledge)
soundness by showing that the underlying d-correlated IOP has RBR (knowl-
edge) soundness when § = 0. Once this is done, we obtain as a consequence
that compiling MehstaRk With Merkle tree commitments and the Fiat-Shamir
transformation (i.e., the BCS transform) yields a knowledge sound succinct non-
interactive argument, i.e., a SNARK. Here, the “underlying é-correlated 10P”
is precisely the protocol MNehstark Without applying Batched FRI. Instead, we
assume the verifier has an oracle that allows for checking d-correlated agreement
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of the maps that are batched together in Batched FRI. These are the quotient
polynomials in Eq. (8).

As we mentioned, due to our results (Theorem 3), it suffices to analyze RBR
knowledge soundness when 6 = 0. This corresponds to the case when the verifier
has an oracle for checking that the maps of Eq. (8) are low-degree polynomials.
Note that if the maps in Eq. (8) have 0-correlated agreement, then so do all the
(oracles to) maps sent by the adversary during the protocol execution. This is
because if a map of the form (h(X) — y)/(X — z) for constants y, z agree with a
polynomial ¢(X) on a set S, then h(X) agrees with the polynomial ¢(X)(X —z)+y
on the same set S. Moreover, for any map 4(X) sent by the prover there is a map
of the form (h(X) - y)/(X — z) in the list of Eq. (8). Hence we only need consider
adversaries that send (oracles to) low-degree polynomials. Moreover, the check
for O-correlated agreement also forces the prover to provide correct openings for
Eq. (7).

We say that a 1-round partial transcript is doomed if the left-hand side of
Eq. (6) is not a polynomial of appropriate degree. We say that a 2-round partial
transcript is doomed if Eq. (6) does not hold for the received challenge 3. Clearly,
if a 1-round partial transcript is doomed, then a 2-round partial transcript is
doomed except with probability d’/|S|, where d’ is the degree of the polynomial
equation obtained from Eq. (6) after multiplying it by Zg(X) on each side.
Moreover, any doomed 2-round partial transcript is eventually rejected by the
verifier, no matter how it is completed, since Eq. (6) does not hold for X = 3.
Finally, if f1(X),..., fin(X) do not “encode a valid witness”, then by how the AIRs
are constructed, not all maps in Eq. (5) are polynomials of appropriate degree.
Then we claim there are at most |[K[2/=1 tuples (ri, 7], 11 rl/ll) such that the
right-hand side of Eq. (6) is a polynomial of appropriate degree. If the claim is
true, then an incorrect initial message fi(X),..., fi(X) leads to a doomed state
after Round 1 except with probability 1/|K|. To prove the claim, consider the
expression

D i+ XX, fi(gia XD, fin(@em XN Zet (X)) Zat, (X)) (9)

iel

where we view Zg(X)/Zn,(X) as a polynomial since Zg, (X) divides Zg(X). Then
the right-hand side of Eq. (6) is a polynomial of appropriate degree if and only
if Eq. (9) vanishes on H. The latter means that for each x € H, the elements
(ri,r{s - 11 r|’1|) form a solution to the equation

D+ XD AR X, - s Fn(@im X (Zia ()] Zaty () = O

iel

on the variables {r;,r/ | i € I}. Unless the right-hand side of the equation is
identically zero, there are at most |K|2/!=! such solutions. On the other hand, if
for all x € H the right-hand side of the equation was identically zero, then each
of the maps Eq. (5) would be polynomials of appropriate degree (recall that the
adversary is constrained to sending low-degree polynomials), contradicting the
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assumption that fi(X),..., fin(X) encode an incorrect witness. This proves the
claim.

It follows that, in its O-correlated form, [Menstark has RBR  (knowl-
edge) soundness error gy := max{1/|K|,d’/|S|}. Then, due to the results from
Sects. 2.2 and 2.3, Mehstark (as an IOP) has RBR (knowledge) soundness
g:= max{{’/lKl,fd’/lSl,s'rDbFrR'}, where ¢ = 1/(2+/pn) (here p and n are parame-
ters related to the RS codes used within the protocol), and 8berR' is the RBR

soundness error of batched FRI.

Remark 6. This analysis can slightly improve the knowledge soundness error for
Methstark When compared with [65]. This improvement is already demonstrated
in [39]. Using the notation of |65, Theorem 4|, the improved knowledge soundness
error is

(L/IK]) + € - (dmax + 2" + @) /(K| —a - |D| = [Ho|) + &¢ri.

The improvement here is in having the factor € in the second summand, instead
of £2.

2.6 From Round-by-Round Soundness to Fiat-Shamir Security

As stated in Sect. 2.1, we utilize the BCS transformation for IOPs due to Ben-
Sasson et al. [9] to compile our round-by-round sound IOPs into secure non-
interactive protocols in the random oracle model. At a high level, the transfor-
mation works by first compressing oracles sent by the prover with a Merkle tree
[52]; i.e., instead of sending oracle f to the verifier, the prover sends My, where
My is the root of the Merkle tree with leaves corresponding to evaluations of f
(in some canonical way). Then whenever the verifier would query oracle f at
position i, instead the prover provides the verifier with pair (f(i), 7;), where x;
is the Merkle authentication path for proving that f(i) is consistent with My.
Finally, once the IOP is transformed in this way, it is then compressed using
Fiat-Shamir to obtain a non-interactive protocol.

Ben-Sasson et al. showed that applying the BCS transformation to an IOP
yields a secure non-interactive protocol in the random oracle model if the IOP
satisfied a notion of soundness called state-restoration soundness, which roughly
says that the IOP remains secure even if the prover is allows to rewind the
verifier to any prior state at most b times for some upper bound b > 1; see
[9] for full details. However, it is known that round-by-round soundness is an
upper bound on state-restoration soundness: in particular, if a protocol has state-
restoration soundness error &g(b) and round-by-round soundness error &, then
&sr(b) < begy |25,26,44|. Moreover, Chiesa et al. [25,26] showed that if an IOP is
both round-by-round sound and round-by-round knowledge sound, then the BCS
transformed IOP is both (adaptively) sound and (adaptively) knowledge sound
versus both classical and quantum adversaries in the random oracle model.

Applying BCS to FRI and Batched FRI directly gives us a SNARK in the
random oracle model, establishing the Fiat-Shamir security for FRI and Batched
FRI (i.e., Corollary 2). Similarly, for OPlon kyO, we replace the d-correlated oracle
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O with the Batched FRI protocol, leveraging our §-correlated IOP techniques
to obtain a round-by-round sound IOP. Then again applying BCS to OPlonky
composed with Batched FRI gives us a SNARK in the random oracle model,
establishing the Fiat-Shamir security of OPlonky composed with Batched FRI
(i.e., Corollary 3). Finally, our results allow us to obtain FS security for a variety
of Plonk-like protocols; see [14] for details.

3 Our Results

In this section, we formally state all of our results. Due to space constraints, the
discussion and proofs for these results can be found in the full version of our
work [14].

3.1 Round-by-Round Soundness of FRI and Batched FRI

We formally present the FRI IOPP algorithm in Algorithm 1. The following
theorem captures the round-by-round soundness of FRI.

Theorem 6. Let F be a finite field, Ly C F* be a smooth multiplicative subgroup
of size 2", dy = 2%, p = dy/|Lo| = 27K, and € € Z*. For any integer m > 3,
n € (0,4/p/(2m)), 6 € (0,1 —+/p—1n), and function Go: Ly — F that is 6-far from
RS[F, Lo, dy], Algorithm 1 has round-by-round soundness error

&R = fRIE, Lo, p, 6, m, €) = max{[(m + 1/2)7|Lo|*1/[3p°/* - |F|], (1 - 6)(}.

We extend the above theorem to the Batched FRI protocol, a variant of
Algorithm 1 where the prover first sends ¢ oracles fi,..., f; to the verifier, and

the verifier replies with aq, ..., a & F. The prover and verifier then engage in
the FRI protocol for polynomial Gy = }; @; f;. The following theorem captures
the RBR soundness of Batched FRI.

Theorem 7. Let F be a finite field, Ly C F* be a smooth multiplicative subgroup
of size 2", dy = 2%, p = dy/|Lo| = 270, and € € Z*. For any integer m > 3,
n € (0,4/p/(2m)), 6 € (0,1-+/p—n), and functions f(o), . .,ft(o): Ly — F fort>2
such that at least one fl.(o) that is 6-far from RS, the Batched FRI protocol has
round-by-round soundness error

BRI = bFRIE Lo, p,6,m, €, 1) = max{[(m + 1/2)7|Lo|?1/[3p°? - [F|], (1 - 6)°}.

Fiat-Shamir Security of FRI and Batched FRI. Given the BCS transformation
[9] (also see [14]), we can apply the BCS transformation to transform both FRI
and Batched FRI into SNARKs in the random oracle model. The following
corollaries capture this result.

Corollary 4 (FS Security of FRI). Let F be a finite field, Ly € F* be a
smooth multiplicative subgroup of size 2%, dy = 2%, p = dy/|Lo| = 27", and
t € Z*. For any integer m > 3, n € (0,4/p/(2m)), 6 € (0,1 —+/p — 1), random
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oracle H: {0,1}* — {0,1}*, query bound Q € N, and function Gy: Ly — F that
is 6-far from RSIF, Lo, do]|, compiling Algorithm 1 with the BCS transformation
[9] gives a non-interactive random oracle proof with adaptive soundness error
and knowledge error

ekN = efN(E, Lo, p.6,m, €, 0, ) = Q- &fR\F, Lo, p, 6,m, £) + (3(Q% + 1)/2).

Moreover, if y := y(F, Ly, p, 6, €) denotes the length of a FRI proof for parame-
ters B, Lo, p, 0, €, then the above non-interactive random oracle proof has adaptive
soundness error and knowledge error

Epery = Efaq(B Lo, p,6,m, 6,0, ) = O(Q - £ (F, Lo, p, 6, m, €, Q, ))

against quantum adversaries that can make at most Q — O(€ - log(y)) queries.

Corollary 5 (FS Security of Batched FRI). LetF be a finite field, Ly C F*
be a smooth multiplicative subgroup of size 2", dy = 2, p = do/|Lo| = 27", and
t € Z*. For any integer m > 3, n € (0,+/p/(2m)), § € (0,1-+/p—n), random oracle
H: {0,1}x — {0,1}k, query bound Q € N, and functions f(o), .. .,ft(o): Ly — F
fort > 2 such that at least one fi(o) is 6-far from RS[F, Lo, dy], compiling Batched
FRI with the BCS transformation [9] gives a non-interactive random oracle proof
with adaptive soundness error and knowledge error
Sft-)SFRI = SFFRI(F’ LO’ p’ 5’ m’ f’ t’ Q’ K) = QSP;RI(F’ LO’ p’ 5’ m’ f’ t) + (3(Q2 + 1)/2K).

S

Moreover, if y := y(F, Lo, p, 6, {,t) denotes the length of a Batched FRI proof for
parameters F, Ly, p, 0, €, t, then the above non-interactive random oracle proof has
adaptive soundness error and knowledge error

en i = ep s (B Lo, p,6,6,1,0,6) = O(Q - &2 N (F, Lo, p, 6,£,1, 0, K))

against quantum adversaries that can make at most Q — O(€ - log(y)) queries.

Remark 7. A variety of works (e.g., [6,65]) make conjectures about the security
of the FRI and Batched FRI protocols. We similarly adapt our above results
when assuming these conjectured security bounds; see [14] for full details.

3.2 Correlated IOPs

A key technical tool we introduce is the notion of a §-correlated (holographic)
interactive oracle proof, or d-correlated hIOP in short. A §-correlated hIOP is
an hIOP for indexed (F, H, d)-polynomial oracle relations, where we fix some
0 < 6 < 1 and assume the verifier has an oracle OCoAgg(d) for the correlated
agreement relation CoAgg(d) (see [14] for complete details). Furthermore, we
assume that the final offline verification process consists of: (1) checking that
the oracles sent by the prover satisfy a certain polynomial equation on a random
point 3 (not necessarily from H); and (2) using OCoAgg(é) to check that the
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maps corresponding to certain oracles have correlated agreement in RS[F, H, d]
(see [14] for details). We denote such a protocol as M0C°Aee(d),

Given a ¢-correlated hIOP, our first main result is showing that given a
round-by-round sound 0O-correlated hIOP, when replacing the oracle OCoAgg(0)
with another suitable IOP, results in a new hIOP that is also round-by-round
sound.

Theorem 8. Let [1°C°Age0) = (Ind, P, VOCoA0)) pe g y-round 0-correlated hIOP
for an indexed (F, D, d)-polynomial oracle relation R. Let 0 < 6 < 1 —+/p, where
p =d/|D|, and let Mca be a IOPP for §-correlated agreement in RS[F, D, d]. Let
n > 0 be such that 6 = 1 —+fp —1n. Assume lca is RBR sound with error eca.
Then:

— Suppose that MOCoALe0) s RBR sound with error &mp,—s. Then there exists a hIOP
M for R with RBR soundness error &'(1) := max {grb,_s(ﬁ)(2n\/ﬁ), SCA(ﬁCA)},
where ica = (F,D,d,5,N), and N is the number of words whose §-correlated
agreement is checked in the last verification check of MOCoAe&(®)

— Suppose u(i,x) > 1 for all i,x and NP0 has RBR knowledge error myx,
then M has RBR knowledge error max {8rb,_k(ﬁ)/(2n\/ﬁ), sCA(ﬁCA)} , where ica
has the same meaning as in above.

The proof of the above theorem relies on two technical lemmas. The first
lemma states that if you have a round-by-round sound 0-correlated hIOP when
given access to OCoAgg(0), then when given access to OCoAgg(d) for 6 > 0, the
same hIOP is now ¢-correlated and is round-by-round sound (with some loss in
the soundness error).

Lemma 1. Let M0C0A2e0) = (Ind, P, VOCAe&©)) pe ¢ y-round 0-correlated hIOP
for an indexed (F, D, d)-polynomial oracle relation R. Let 6 =1 —+/p—n. Then:

— Suppose that MOC°Aee©) js RBR sound with error &upy—s. Then MOCALE®) pq
RBR soundness error emwe—s(1)/(2n+/p).

— Suppose that NOC°Aee) a5 RBR knowledge with error &pr—x. Then O CoAge(d)
has RBR knowledge error e (1)/(2n+/p),

The second lemma then states that when one replaces the oracle OCoAgg(6)
in the above hIOP with another round-by-round sound IOP for é-correlated
agreement, then the resulting composed protocol remains round-by-round sound.

Lemma 2. Assume the notation and hypotheses of Theorem 8. Then there exists
a hIOP Mcompiled for R with the following properties:

— Suppose MNOCALe®) has RBR soundness error Erpr—s,5- 1hen MNeompiled has RBR
soundness error max {8rb,—_s,5(1'1), sCA(ﬁCA)}.

— Suppose MOCoAee(®) has RBR knowledge soundness error &wr—ks. Then
Meompiled has RBR knowledge soundness error max {8rb,_k,5(ﬁ), sCA(ﬁCA)}.
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3.3 A Plonk-Like Protocol Abstraction OPlonky

Building upon the d-correlated hIOP framework, we introduce a ¢-correlated
hIOP we call OPlonky, which abstracts the polynomial IOPs underlying many
of the variants of Plonk. This generalization is inspired in part by Plonky2
[60]. Our main technical result is establishing the round-by-round soundness of
OPlonky(0) := OPlonky®“*€8®)  where we assume the verifier has oracle access
to the 0-correlated agreement oracle OCoAgg(0).

Lemma 3. The 0-correlated agreement encoded hIOP OPlonky(0) has RBR
soundness and RBR knowledge error £(1) := max;¢[3) {£:(1)}, where

B’ + WI/IFD",  &2(i) := (1P| + (s + 2)t — 1]/|E]",
max{deg(P;) e, u+ 1} - (n/|K\ DJ)

81(11) :

Sg(fl) .

for all index 1 = (P,Q, H,o,Pl,r,r", £, t), any potential input x, and n = |H|.

Given the above lemma and our §-correlated hIOP results, we obtain our
main theorem for OPlonky: compiling OPlonky®®°A¢8©®) with the Batched FRI
protocol.

Theorem 9. Let F be a finite field, D € F* a smooth multiplicative subgroup of
F of order 2", and H a subgroup of D of order n. Let m > 3, 6 = 1—+/p—n for
some 1 € (0,+/p/2m), and let Plonky2hlOP be the hIOP obtained from OPlonky(5)
after compiling it with the Batched FRI protocol (see [14]). Then Plonky2hlOP
is RBR sound and has RBR knowledge. For each i = (P,Q, H,o,Pl,r,r',{,t) and
all g > 1, the error in both cases is given by

OPlonky /. .
8rb|:| kY(n’ Q) = maX{ (51(11)/(277\/5))16[3] ’ 8PbliRl(F’ D’ p’ 6’ N’ Q)},

where N is the total number of codewords that are batched together in the batched

FRI protocol, sf’bFrR' is the RBR soundness error of sberR' (which equals its RBR

knowledge error, see [14]) and

e1(®) = ([3n(r" + w)]/[F])", e2(1) := ([IP| + (s + 2t = 1]/|F])",

g3(1) := max{deg(P;);e[p(, u + 1}(n/[K\ DI).
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Algorithm 1: FRI-IOPP
Input: Finite field F, smooth multiplicative subgroup Ly C F* of size 2", degree
bound dgy = 2, and € € N.
P has function Go: Lo — F and V has oracle (Go(2))zeL, -
Output: The verifier V outputs accept or reject.

1 foreach i€ [k] do // Fold Phase
2 V sends x;_1 Al F to P.
3 Pand Vset d; :=d;_1/2 and L; :={z%: z € Li_1}.
4 P computes unique bi-variate polynomial Q;_1(X,Y) such that
1. degx(Qi-1) = 1;
2. degy(Qi-1) < d;; and
3. Gi—1(r) = Qi_1(r,r?) for all r € L;_;.
5 P defines G;(Y) := Q;_1(x;_1,Y).
6 ifi=k then Psends Gy =CeFtoV.
7 | else P sends oracle (Gi(z));er; to V.
8 forall j € [¢] do // Query Phase; processed in parallel
9 V samples sq_j l Lo.
10 foreach i € [k] do
11 V computes s; ; = (si—l,j)2 and slf_lj # si-1,j such that (slf_lj)2 =5
12 V queries and obtains g;_1,; = (i,-_l(s,-_Lj) and qlf_l’j = G,-_l(slf_l,j).
13 V computes linear polynomial Q;_1 ;(X) via Lagrange interpolation on
the set {(si-1,j> qi-1,) (5{_y ;»q{_1 )}-
14 V checks that G;(s; ;) = Q;-1,j(x;-1) by querying G;.
15 B if Gi(s; ;) # éi_l,j(xi_l) then V outputs reject.

16 V outputs accept.

4 Conclusions and Open Problems

In this work, we formalized the F'S-security of FRI and related SNARKSs, partic-
ularly Plonk-like protocols captured by d-correlated IOPs. Our results on Plonk-
like protocols cover multiple variants, some of which are already in production.
There are other protocols that are amenable to our general framework for corre-
lated IOP’s, e.g., ethSTARK [65] and RISC Zero [68]. We leave it as future work
to perform a RBR soundness/knowledge and F'S analysis of these protocols.

Our generalization OPlonky of IOPs using Plonk-like arithmetization along
with a protocol for low-degree testing (specifically, FRI) does not address KZG-
based Plonk-like schemes. Compiling a 0-correlated IOP with RBR soundness
and knowledge using other commitment schemes and the FS-security of such
schemes remain open problems.
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