
Vibrational Analysis of Constrained Molecular Systems
Published as part of The Journal of Physical Chemistry A virtual special issue “Krishnan Raghavachari
Festschrift”.

Ankur K. Gupta* and Krishnan Raghavachari

Cite This: J. Phys. Chem. A 2024, 128, 28−40 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Vibrational spectroscopy, including infrared (IR), Raman spectroscopy, and vibrational circular dichroism, is
instrumental in determining the structure and composition of molecules. These techniques are highly sensitive to molecular
conformations. However, full molecular optimization, necessary for theoretical vibrational spectra, can lead to unintended
conformational changes, especially in large biomolecules like polypeptides. To address this, dihedral angle constraints can be
imposed during optimization to preserve the molecule’s native conformation. Constraint-optimized molecular geometries, not being
true stationary points in the full configurational space, pose challenges for traditional vibrational analysis. We address this by
considering such geometries as subspace minima, reformulating vibrational analysis to incorporate constraints. Normal modes and
spectra consistent with these constraints are obtained by projecting the force constant matrix onto a space orthogonal to the
constrained coordinates. This method, illustrated by the example of enkephalin, yields 3N − 6 − m nonzero frequencies after
constraint projection, demonstrating its applicability to biomolecules with flexible conformations. Our approach offers a
comprehensive mathematical framework to compute vibrational spectra of molecules with conformationally flexible subunits under
environmental constraints.

1. INTRODUCTION
Vibrational spectroscopy is a crucial technique for uncovering
molecular structures and compositions but is often confronted
with the complexity of experimental spectra. While the
experimental spectra hold unique information about the
chemical bonds in a molecule, the inherent spectral
bandwidths can cause the overlap of spectral features,
complicating their analysis. Thus, theoretical approaches are
commonly used to interpret the origins and details of
vibrational spectral signatures, with cross-validation against
experimental data being a standard practice.
Molecular vibrations are typically described using a

harmonic oscillator model, which assumes that atoms oscillate
about their equilibrium positions, necessitating the molecule to
be at its minimum energy configuration.1 Therefore, molecular
geometry optimization is required before performing frequency
calculations to obtain spectra. However, the actual molecular

geometry may differ from this theoretical minimum, especially
when the complete chemical system is not accounted for in the
computations. This is observed in cases like catalysts trapped
in zeolite sieves, molecules within nanocapsules, and
biomolecules in dense cellular environments.
Peptide molecules exhibit vibrational interactions that are

highly sensitive to their conformation, which in turn can be
influenced by the surrounding environment. These influences
may cause peptides to assume conformations that do not
correspond to their most energetically favorable states.
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Theoretically capturing every facet of these complex
biochemical environments poses a significant computational
challenge, leading to quantum mechanical calculations often
being performed on truncated chemical structures in the gas
phase or with simple solvation models. Neglecting the
molecule’s actual chemical environment can result in
substantial structural changes during optimization. As a result,
achieving full geometry optimization while maintaining the
experimentally observed structure often proves to be an
incongruent objective for conformationally flexible molecules.
In response to these challenges, the field has seen the

development of various innovative approaches. A notable
example is the Cartesian Coordinate Transfer (CCT) method,
introduced by Bour and colleagues, which has been utilized for
molecules containing as many as 10,000 atoms.2−5 Given the
impracticality of brute force optimization and frequency
calculations for large systems with current computational
resources, the CCT method leverages the transferability of
tensor derivatives from molecular fragments to their parent
system, thereby circumventing the need for intensive
calculations on the entire parent molecule. However, CCT is
not without its limitations, as it employs a nonequilibrium
molecular geometry, leading to nonzero forces. Furthermore,
the full molecular Hessian in CCT contains inherent
approximations, primarily due to its construction from
aggregated Hessians of individual molecular fragments or
subsystems. As a result, this approach might yield several
imaginary frequencies when diagonalizing the CCT Hessian.
Despite these limitations, CCT has been proven effective in
accurately predicting experimental spectra for medium to very
large molecular systems.
In a related research, Polavarapu and colleagues investigated

a conformationally flexible tetrapeptide, WUGW, which
undergoes a notable conformational shift during optimization.6

To preserve its observed conformation, the peptide’s dihedral
angles were constrained. Frequencies were then obtained by
diagonalizing the Hessian at the partially optimized structure.
It is important to note that since this constrained geometry
does not constitute a true minimum, the resulting forces would
be nonzero, which might lead to some imaginary frequencies.
Nonetheless, the comparison between the theoretical and
experimental spectra was reported to be satisfactory.
In our current work, we aim to establish a protocol that

preserves the molecule’s native conformation through
constraints while yielding a mathematically consistent Hessian
and, consequently, accurate vibrational spectra. For studying
large molecular systems, environmental restrictions can be
represented as internal coordinate constraints within the
molecule of interest. Therefore, we impose geometric
constraints during optimization to maintain the molecule’s
native conformation. To incorporate these constraints into the
Hessian, we have adapted a technique by Lu et al.,7,8 which
involves projecting out internal coordinate constraints from the
Hessian matrix. This adaptation enables us to develop new
protocols for obtaining vibrational spectra of constrained
molecules.

2. METHODS: VIBRATIONS IN A CONSTRAINED
MOLECULE

Understanding molecular vibrations is best achieved through
the lens of classical formalism. To determine the fundamental
frequencies of molecular vibrational motions, it is essential to
establish an appropriate frame of reference. The Casimir−

Eckart conditions, also known as Sayvetz conditions, provide a
framework for defining an instantaneous coordinate system
that neutralizes any rotational motion resulting from
vibrations.9,10 Within this framework, the molecular kinetic
and potential energies can be expressed, which are then utilized
to formulate a set of equations of motion in the Lagrangian
form.
When formulating the potential energy function for deriving

the Lagrangian, it is crucial that the first-order term (the
gradient or force) in the truncated Taylor expansion of the
potential is zero. This condition holds only when the molecule
is in its minimum energy (equilibrium) configuration.
Consequently, solving the secular equation derived from the
Lagrangian simplifies to the diagonalization of the Hessian
matrix. This process yields the fundamental frequencies and
their corresponding normal modes.
In practice, the six eigenvalues corresponding to translations

and rotations obtained from the diagonalized Hessian, as
calculated by quantum chemistry software, are not exactly
zero.11 Frequencies for translational modes are typically
around 0.01 cm−1 but can reach up to 50 cm−1 for rotational
coordinates. This discrepancy occurs because molecular
geometry is optimized to a finite gradient value rather than
precisely zero. Additionally, grid-related numerical issues in
density functional theory methods, particularly for heavier
elements, also contribute to this variance.
For most large molecules of practical interest, frequencies of

the pure low-frequency vibrational modes may overlap with
those of the “rotational” modes, potentially resulting in
unreliable values for the 3N − 6 fundamental frequencies.
To circumvent potential ambiguities, translational and rota-
tional coordinates are systematically projected out from the
Cartesian force constant matrix prior to its diagonalization.
The secular equation, which facilitates the derivation of

fundamental frequencies, is valid if the molecular geometry
corresponds to a stationary point on the 3N-dimensional
potential energy surface. Our study focuses on molecules that
undergo substantial conformational changes during their
optimization, rendering the entire optimization process
unphysical. As such, these systems pose significant challenges
for theoretical investigation, especially when using conforma-
tionally sensitive techniques such as vibrational spectroscopy.
In practical scenarios, constraints must be applied to the

molecule to maintain its native conformation. The molecular
configuration achieved through this constrained optimization
does not represent a stationary point in the full 3N-
dimensional configuration space (R3N). Nonetheless, it can
be considered as a stationary point within the subspace defined
by the unconstrained degrees of freedom. This approach allows
for a generalized normal-mode analysis of the molecule,
preserving its original conformation while allowing a partially
relaxed geometry in a reduced vector space.
Constraints are typically represented as curvilinear internal

coordinates, such as interatomic distances, bond angles, and
dihedral angles, due to their ease of visualization, interpreta-
tion, and implementation. The force constant matrix,
consistent with these constraints, can be calculated once the
projection operator for the constrained coordinates is
identified. This process is detailed in eq A7 in the Appendix,
where we provide a full derivation of the constrained Hessian
formalism. In the main text, we focus on outlining the key
concepts.
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To formulate the necessary projection operator, as outlined
in eq A6, the constraints must match the basis of the Hessian
matrix, typically defined in mass-weighted Cartesian displace-
ment coordinates. Consequently, for small-amplitude vibra-
tions, a transformation from Cartesian to internal displacement
coordinates is required. This transformation is given in
standard treatments as follows:1

= Bs x (1)

where vectors s and x represent the sets of internal and
Cartesian displacement coordinates, respectively.
The so-called “Wilson B matrix”, determined using

molecular geometry, is generally a rectangular matrix. These
Wilson vectors are utilized to construct the projection
operators in accordance with eq A6, corresponding to the
internal coordinate constraints imposed on the molecule. For a
molecule with m independent internal coordinate constraints,
the corresponding projection operator is formulated as follows:

=
=

P b bC

i

m

i i
1

T

(2)

where bi represents the Wilson vector for the ith internal
coordinate. When constraints are not independent, an
orthogonal set of vectors can be obtained through QR
factorization.
Additionally, it is necessary to ensure that these constrained

vectors are orthogonal to translational and rotational normal
modes before constructing the projection operator using eq 2.
Following this, the force constant matrix and the gradient
vector can be projected onto a space that is independent of
both the imposed constraints and the rotational and transla-
tional movements, as detailed in eqs A7 and AA8, using the
following equations:

=f I P I P f I P I P( )( ) ( )( )RTC C RT RT C (3)

= I P I Pg g( )( )RTC C RT (4)

When the projected Hessian matrix (fRTC′) is diagonalized, it
results in 3N − 6 − m nonzero eigenvalues, indicating a
reduction in the vibrational space dimensionality for the
molecule. If a molecule is optimized with m constraints, the
projected gradient (as per eq 4) should theoretically be close
to zero, within numerical precision. Additionally, all
eigenvalues of the projected Hessian (as per eq 3) should be
positive, signifying a minimum in the reduced space. The
vibrational modes derived from the projected force constant
matrix (fRTC′) ensure that the constrained coordinates remain
stationary. Consequently, within the projected Hessian frame-
work, coordinates deviating from their equilibrium positions
do not engage in vibrational motion, a conclusion consistent
with physical principles.
The vibrational spectrum of a molecular system is

graphically depicted as a function of its fundamental
frequencies and associated intensities. These intensities are
calculated from molecular property tensors, including dipole
moment derivatives, atomic axial tensors, and polarizability
derivatives. Standard quantum chemistry packages typically
provide these tensors based on the Cartesian coordinate
system. However, for constructing a spectral plot (fundamental
frequencies versus intensities), these tensors must be trans-
formed to the basis of normal coordinates. Therefore, all
property tensors are projected onto the normal modes

obtained from the projected force constant matrix (fRTC′).
This process enables the calculation of the derivative of a
physical property, A, with respect to a normal coordinate, Qi, as
demonstrated by the following formula:12

=
=

A
Q

A
x

ld
d i k

N

k
ki

1

3

(5)

In this equation, xk represents the Cartesian displacement
coordinates and lki are the eigenvector components corre-
sponding to the normal mode Qi.

3. COMPUTATIONAL DETAILS
For vibrational analysis of conformationally flexible molecules,
such as polypeptides, the typical approach involves full
geometry optimization either in vacuo or within an implicit
solvent environment. This optimization can be performed
using any standard quantum chemistry package; in our study,
we utilized Gaussian 1613 for all computations. After
optimization, the molecular geometry in its optimized state is
compared with its initial configuration to assess the extent of
conformational changes. For larger polypeptides, significant
structural changes may not be immediately visually evident.
Thus, we employed the root-mean-square deviation (RMSD)
of atomic positions to quantify structural alterations. In a
molecule with N atoms, if vector X represents the coordinates
of the initial conformation and X′ those of the optimized
conformation, the RMSD between them is calculated as
follows:

=
=N

X XRMSD
1

i

N

i i
1

2

(6)

This measurement assumes proper superposition of the two
structures. This measurement assumes that the two structures
are properly superimposed. This measurement assumes proper
superposition of the two structures. RMSD is usually expressed
in angstroms (Å). Typically, an RMSD value less than 1.5 Å
indicates a close resemblance between the optimized geometry
and its original structure, while an RMSD greater than 2.5 Å
suggests a significant deviation of the optimized molecule’s
conformation from its native state.14 The RMSD value can
vary with the level of theory used; ideally, it should approach
zero as the theoretical model increasingly reflects real system
behaviors. Consequently, a balanced level of theory [B3LYP/6-
31G(d)] was selected for our computations, considering both
accuracy and computational efficiency.
To define a set of curvilinear internal coordinates for

constraining a molecule during its optimization process, we
took into consideration that the energy changes resulting from
alterations in bond lengths and angles are typically greater than
those associated with changes in dihedral angles. Conse-
quently, dihedral angles are more prone to deviate from their
initial values during geometry optimization, potentially altering
the polypeptide’s conformation. Therefore, our protocol
involved freezing appropriate dihedral angles during energy
minimization to preserve the molecule’s initial geometry. In
the examples presented in this paper, this protocol entailed
constraining all dihedral angles associated with single bonds
involving only heavy (non-hydrogen) atoms. Torsions
associated with partial double bonds were not constrained,
owing to their higher energy barriers to rotation. Likewise,
dihedral angles in five-membered rings or smaller were
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excluded due to inherent constraints within their cyclic
structure. Following constrained optimization, both the force
constant matrix and gradient were projected (using eqs 3 and
4) onto a subspace orthogonal to that spanned by dihedral
angle constraints. The resulting Hessian was then diagonalized
to derive the fundamental frequencies and corresponding
eigenvectors.

4. RESULTS AND DISCUSSION
4.1. Illustrative Example: Enkephalin (1PLW). The

process of obtaining vibrational spectra for geometrically
constrained molecular systems is best illustrated with a specific
peptide example. For our study, we chose enkephalin (PDB
ID: 1PLW), a neuropeptide prevalent in the central nervous
system, known for interacting with nerve cell membranes and
adopting a conformation suitable for binding to opiate
receptors.15 Its structure, depicted in Figure 1, was obtained

from the PDB file, determined using multidimensional proton
NMR in solution. Among the 80 available conformers of
1PLW in the PDB database, we selected conformer 1 for our
quantum chemistry simulations. Preliminary structural adjust-
ments included protonating the carboxylic terminus and
deprotonating the amine group, neutralizing the structure for
computational analysis. The RMSD between the initial PDB
structure of 1PLW and its fully optimized geometry,
considering all atoms, was 2.64 Å. Consequently, we
reoptimized it with 16 dihedral angle constraints. This partial
optimization resulted in a reduced RMSD of 0.86 Å, indicating
preservation of the peptide's conformation. The IR spectrum
derived from the unprojected force constant matrix is
presented in Figure 3a, where the most intense peaks near
1800, 1500, and 1200 cm−1 correspond to the amide I, II, and
III vibrational modes. Amide I is primarily related to the C�O
bond stretch, while amide II and III modes are combinations
of C−N stretching and H−N−C bending. These modes are

crucial for identifying secondary structural changes in proteins
due to their sensitivity to noncovalent interactions and peptide
geometry.
The Hessian matrix and the gradient vector, derived from

the partially relaxed geometry, were projected using eqs 3 and
4, respectively. A flowchart visually representing our projection
protocol is illustrated in Figure 2. After projection, the RMS
gradient decreased from 1.7 × 10−3 to 5.2 × 10−6 a.u., and all
eigenvalues of the projected Hessian were positive, indicating
that the constrained optimized structure represents a minimum
in the subspace orthogonal to the constrained vectors. The
resulting projected IR spectrum is displayed in Figure 3b.
When comparing the spectra in Figure 3a,b, the spectrum
obtained after projection shows a broader distribution of
absorption peaks. This effect arises from excluding the
constrained degrees of freedom from the vibrational space.
In the unprojected case, all internal (or Cartesian) coordinates
could vibrate harmonically, despite some not being at their
equilibrium positions. However, by projecting constraints from
the Hessian, these constrained coordinates are omitted from
vibrations, leading to modified normal modes and potential
shifts in frequencies and intensities. The extent of these shifts
generally relates to the involvement of a constrained internal
coordinate in the original normal mode. The projection may
also affect the three amide modes, given their partial
dependence on dihedral angle movements.

4.2. Minimizing Coupling Interference between
Constrained Coordinates and Amide Modes. While our
earlier-described procedure yields frequencies that are
mathematically consistent with imposed constraints, it is
important to note that amide modes may be affected due to

Figure 1. Representation of enkephalin’s molecular geometry (PDB
ID: 1PLW) as sourced from the Protein Data Bank (PDB). The
structure illustrates the spatial arrangement of atoms in enkephalin as
determined experimentally.

Figure 2. Flowchart illustrating the protocol for obtaining vibrational
spectra consistent with imposed constraints. The process begins with
the constrained optimization of a molecule, employing an initial set of
dihedral angle constraints for every rotatable bond. Next, the Hessian
matrix is computed at the partially optimized geometry, which is then
diagonalized to compute the frequencies and normal modes, resulting
in the raw (unprojected) vibrational spectrum. This Hessian is
subsequently processed with an external script to align the spectrum
with the imposed constraints. This step involves projecting the
Hessian onto a subspace orthogonal to these constraints, as per eq 3,
followed by diagonalization to generate a spectrum that accurately
reflects the constraints.
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their partial dependence on the constrained dihedral angles.
Therefore, it can be advantageous to choose dihedral angle

constraints that minimally interfere with high-intensity normal
modes (notably, 1100−1900 cm−1 for amide vibrations), while

Figure 3. Infrared (IR) spectra of enkephalin (1PLW) with a full-width at half maximum (FWHM) of 14 cm−1 (a) displays the IR spectrum
derived from the unprojected Hessian matrix (raw spectra), while (b) shows the IR spectrum from the Hessian matrix projected using eq 3,
following the protocol illustrated in Figure 2. Both spectra are obtained under the optimization involving 16 dihedral angle constraints.
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still keeping the RMSD from the original PDB structure low.
As outlined in Figure 5, we have developed a systematic

protocol to select dihedral angle constraints for every rotatable
bond between heavy (non-hydrogen) atoms in a molecule. For
enkephalin, this process led to the identification of 16
constraints, as discussed in Section 4.1. After imposing these
constraints, the molecule undergoes optimization and the
Hessian matrix is computed for the partially optimized
structure. This computation enables projection of the resultant
normal modes onto the internal coordinate space, allowing for
the quantification of each internal coordinate’s contribution to
specific normal modes, known as the relative weight (RW).
Recognizing the importance of high-intensity modes for
practical applications, we aimed to develop a metric that
accentuates the contribution of internal coordinates to these
significant modes. This was achieved by scaling the internal
coordinates’ contributions to normal modes (their RWs) with
the corresponding infrared intensity values. Consequently, for
each dihedral angle constraint, or any other internal
coordinate, denoted as dj, we established a measure termed
the degree of coupling (DOC).

= ·d RW IDOC( ) ( )j
i

i i
(7)

Here, (RW)i represents the relative weight of the dihedral
angle dj in the ith normal mode (between 1100 and 1900
cm−1), correlated with the infrared intensity Ii. Equation 7
clarifies that a dihedral angle constraint with a higher DOC
value suggests stronger coupling with high-intensity modes,
while a lower DOC value indicates weaker coupling. Therefore,
for constrained optimization, it is preferable to select internal
coordinates with smaller DOC values as constraints. To apply
this, the DOC value is computed for every potential dihedral
angle associated with rotation along a single bond. The
dihedral angle demonstrating the lowest DOC is then chosen
to constrain the rotation around that specific bond.
Take, for instance, a dipeptide shown in Figure 4. To

constrain rotation along the bond between atoms 2 and 3, one
of the six potential dihedral angles (1−2−3−4, 1−2−3−5, 1−
2−3−6, 7−2−3−4, 7−2−3−5, or 7−2−3−6) can be frozen.
However, each angle’s contribution to normal modes varies.
Therefore, we select the dihedral angle with the smallest DOC
to minimize its coupling with normal modes, resulting in a
spectrum with minimal lateral shifts. It's crucial to understand

that the DOC analysis is highly influenced by the nature of
normal modes, which depends on the molecule’s conformation
and geometry. Thus, applying this protocol to a raw PDB
structure, where atomic positions are unrelaxed, is inappro-
priate as it leads to inaccurate representations of the normal
modes compared to those of a relaxed geometry from
constrained optimization. Given this, our first step involves
performing a constrained optimization and full Hessian
calculation on the target molecule. This is done using a set
of initial guess constraints, such as all rotatable single bond
dihedral angle constraints. Then, a DOC analysis on the
partially optimized geometry identifies a refined set of
constraints that minimally interfere with normal modes. The

Figure 4. Diagrammatic representation of a dipeptide molecule
illustrating the determination of the Degree of Coupling (DOC)
parameter. This figure exemplifies the process of constraining rotation
along the bond between atoms 2 and 3. Among the six potential
dihedral angles available for this bond (1−2−3−4, 1−2−3−5, 1−2−
3−6, 7−2−3−4, 7−2−3−5, and 7−2−3−6), one is selected based on
the DOC analysis. The chosen dihedral angle is the one with the
smallest DOC value, ensuring minimal interference with the
molecule’s normal modes.

Figure 5. Flowchart illustrating the protocol for obtaining vibrational
spectra consistent with constraints, refined by the Degree of Coupling
(DOC) metric (eq 7). The process initiates with the constrained
optimization of a molecule, applying dihedral angle constraints to
each rotatable bond. Subsequent to the computation and diagonaliza-
tion of the Hessian at the partially optimized geometry, the DOC
value is calculated for every dihedral angle associated with single
rotatable bonds. This step identifies a new set of dihedral angles with
the lowest DOC values, thereby minimizing interference with high-
intensity normal modes. The molecule is then reoptimized using these
optimized constraints. The resulting Hessian from this new partially
optimized geometry is further processed to align the vibrational
spectrum with these refined constraints. This involves projecting the
Hessian onto a subspace orthogonal to the constraints as per eq 3,
followed by its diagonalization to generate a spectrum that accurately
reflects these constraints.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c04395
J. Phys. Chem. A 2024, 128, 28−40

33

https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.3c04395?fig=fig5&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.3c04395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 6. Infrared (IR) spectra of enkephalin (1PLW) with a full-width at half maximum (FWHM) of 14 cm−1, obtained after applying 16 dihedral
angle constraints as determined by the DOC analysis. Subfigure (a) displays the IR spectrum derived from the unprojected Hessian matrix (raw
spectrum), illustrating the initial spectral characteristics. Subfigure (b) presents the IR spectrum from the projected Hessian matrix using eq 3,
following the DOC-enhanced protocol depicted in Figure 5, to demonstrate alterations in spectral features due to the projection.
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Figure 7. Raman scattering spectra of enkephalin (1PLW) with a full-width at half maximum (FWHM) of 14 cm−1, obtained after implementing 16
dihedral angle constraints as identified by the DOC analysis. Subfigure (a) shows the Raman spectrum derived from the unprojected Hessian
matrix (raw spectrum), capturing the original spectral characteristics. Subfigure (b) features the Raman spectrum obtained from the Hessian matrix
projected using eq 3, in accordance with the DOC-enhanced protocol illustrated in Figure 5. Notably, spectral changes are minimal due to the high
intensity peaks being in the high-frequency region, where the normal modes exhibit minimal coupling with dihedral angles.
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Figure 8. Vibrational circular dichroism (VCD) spectra of enkephalin (1PLW) with a full-width at half maximum (FWHM) of 14 cm−1, obtained
after implementing 16 dihedral angle constraints as identified by the DOC analysis. Subfigure (a) displays the VCD spectrum derived from the
unprojected Hessian matrix (raw spectrum), showcasing the original spectral characteristics. Subfigure (b) features the VCD spectrum from the
projected Hessian matrix using eq 3, following the DOC-enhanced protocol depicted in Figure 5. This projection may result in shifts or alterations
in spectral features, reflecting the influence of constrained dihedral angles on the VCD spectrum.
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molecule is then reoptimized with these new constraints, and
the resultant Hessian is projected using these constraints to
generate the desired spectrum. This process, illustrated as a
flowchart in Figure 5, may undergo further iterations to reduce
coupling between normal modes and constraints. However, we
found that additional iterations typically result in only minor
changes to structures and spectra. Therefore, our protocol
provides a balanced approach to efficiently determine the most
appropriate constraints while considering computational
demands.
Consider the DOC analysis applied to the partially

optimized structure of 1PLW from Section 4.1, which led to
a new set of constraints. After reoptimizing the molecule with
these enhanced constraints, we obtained corresponding raw
and projected IR spectra, as displayed in Figure 6a,b. Notably,
the absorption peaks in the new projected spectrum (Figure
6b) are less dispersed compared to those in the earlier
projected spectrum (Figure 3b). This reduced spread is
attributed to the new set of internal coordinates being less
coupled with the high-intensity normal modes. Additionally, a
Raman spectrum was generated for this geometry. As shown in
the Raman scattering spectra (Figure 7), all high-intensity
modes are in the high-frequency region, where the coupling of
dihedral angles with normal modes is minimal, leading to
negligible spectral changes after projection. The vibrational
circular dichroism (VCD) spectra (Figure 8) further illustrate
an interesting aspect where peak signs can vary, adding an extra
layer of complexity. Consequently, the projection process can
cause shifts and sign changes in spectral peaks. In the case of
1PLW, the raw spectrum shows a negative couplet for amide I,
which transforms into a (+,−,+) band pattern after projection.

5. CONCLUSIONS
This work aims to rigorously calculate the vibrational
structures of peptides while preserving their native con-
formations. Given that peptide molecules tend to alter their
conformations during optimization when removed from their
real biochemical environment, specific geometric constraints,
such as torsion angles, must be imposed on the polypeptide.
Our protocol projects out unphysical vibrations along
coordinates that are constrained and not fully optimized.
The diagonalization of the projected force constant matrix then
results in a new set of harmonic frequencies and corresponding
normal modes, which do not include contributions from the
constrained internal coordinates.
In summary, our protocol applies dihedral angle constraints

during the optimization of molecules. The force constant
matrix of the partially relaxed geometry is then projected using
appropriate projection operators, resulting in a projected force
constant matrix. This process enables us to generate a
mathematically rigorous vibrational spectrum. While our
projection method preserves all peaks associated with amide
modes, it also leads to reduced overall intensity and broader
peak distribution. This effect arises from the coupling between
the internal coordinate constraints and normal coordinates. To
mitigate this coupling interference, we have introduced a
protocol that yields a less perturbed vibrational spectrum while
still being consistent with the structural constraints.
While our results are mathematically rigorous, validating this

method against experimental data remains essential. Peptides
studied experimentally tend to be large and complex, often
existing in solution, posing significant challenges for computa-
tional modeling. For such systems, fragment-based methods

may be necessary to achieve more realistic simulations.
Crucially, our protocol is designed for seamless integration
with a variety of fragment-based methods. Its primary function
is to process the Hessian matrix with defined constraints,
rendering it adaptable and agnostic to specific computational
methods or theoretical levels.
It is crucial to acknowledge that while the projection

operator model offers a rigorous method for simulating
vibrational spectra of systems optimized with constraints,
careful application of our protocol is advised. For instance, it
may be prudent to explore the fewest torsional constraints
needed to preserve the experimental conformation during
optimization. Additionally, for complex systems in constrained
environments, the actual physical limitations experienced by
the molecule may not align perfectly with the torsional
constraints imposed in our computational model. Imposed
dihedral constraints that do not accurately reflect the molecular
environment or are based on unrealistic assumptions could
limit the physical accuracy of the model’s predictions. Despite
these considerations, our approach establishes a robust
mathematical framework for analyzing the vibrational spectra
of large molecules under environmental constraints.

■ APPENDIX
Note: The equations in this section are adapted from Wilson,
E.; Decius, J.; Cross, P. Molecular Vibrations: The Theory of
Infrared and Raman Vibrational Spectra; Dover Books on
Chemistry; Dover Publications, 1980.
Projection Operators for Vibrational Analysis
Any vector v in the 3N-dimensional vector space R3N can be
written as

= +v v vS S (A1)

where vS is the projection of v on the subspace S of R3N and vS′
represents the projection of v on the complementary space (of
S), S′. The corresponding linear projection operators PS and
PS′ on the subspaces S and S′, respectively, are defined such
that

=
=

v P v

v P v

S S

S S (A2)

Some properties associated with these projection operators
are as follows

=P P( )S S2 (A3)

+ = IP PS S (A4)

=P P 0S S (A5)

If we define a subspace S1 spanned by k orthonormal vectors
(or constraints) ei, i = 1, ..., k, then the corresponding
projection operator can be written as

=
=

P e eS

i

k

i i
1

T1

(A6)

The force constant matrix (f1S) and the gradient vector (g1S)
in the subspace S1 (and its complementary space S1′) can then
be obtained as follows

=

=

f P fP

f I P f I P( ) ( )

S S S

S S S

1 1 1

1 1 1 (A7)
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=

=

g P g

g I P g( )

S S

S S

1 1

1 1 (A8)

where (I − PS
1) = P1

S′ represents the projection operator for
the complementary space S1′ following eq A4.
To project out translational and rotational coordinates from

the force constant matrix (f), it is necessary to construct
corresponding projection operators. The normal coordinates
for translational and rotational modes are derived from the six
Eckart conditions. These conditions facilitate the formation of
vectors (in the basis of mass-weighted Cartesian coordinates)
that encompass the subspace of translational and rotational
motion. Therefore, the vectors tx, ty, tz (for translation) and rx,
ry, rz (for rotation) that span this subspace can be expressed as
follows:
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where mi and (xie,yie,zie) (i = 1, ..., N) represent the mass and
position (at the reference configuration) of the ith atom,
respectively. The corresponding projection operator (PRT) can
then be obtained following eq A6 as

= + + + + +P t t t t t t r r r r r r( )RT
x x y y z z x x y y z z

T T T T T T
(A11)

The six vectors (tx, ty, tz, rx, ry, rz) spanning the translational
and rotational space must be orthonormalized (using QR
factorization) before calculating their projection operator
(PRT). They are already orthogonal if the center of mass of
the molecule lies at the origin.
Using eq A7, the force constant matrix can be projected

onto a vector space devoid of translational and rotational
coordinates

=f I P f I P( ) ( )RT RT RT (A12)

The resultant hessian matrix (fRT′) can then be diagonalized to

obtain the 3N − 6 vibrational modes of the molecule.
Wilson vectors

The elements of the B-matrix are derived by first representing

an internal coordinate in terms of the Cartesian coordinates of

the atoms, and then determining a small variation in these

coordinates (to first order) through differentiation of their

Cartesian expressions. For instance, to construct the Wilson

vector (a column in the B matrix) for the bond stretching

coordinate, we consider the square of the distance between

two atoms, a and b, expressed in terms of their Cartesian

coordinates.

= + +r x x y y z z( ) ( ) ( )ab b a b a b a
2 2 2 2

(A13)

Differentiating eq A13, a small change along the direction

connecting a and b can be obtained

= +

+

r r x x x x x x y y

y y z z

( )( ) ( )( )

( )( )

ab ab b a b a b a b a

b a b a (A14)

Rearranging eq A14, we obtain a linear relationship between

the distance variation parameter and the Cartesian displace-

ment coordinates

= · + · = · + ·r b x b x e x e x( )ab a
ab

a b
ab

b
ab

a
ab

b (A15)

where baab and bbab are the elements of the corresponding

Wilson vector and e ̂ represents a unit vector directed from

atom a to atom b. These quantities are related to each other in

the following way
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Also, the Cartesian displacement vectors for atoms a and b

are

= + + = + +x y z x y zx i j k x i j ka a a a b b b b (A17)

Equation A15 is nothing but the representation of the

internal displacement coordinate in the basis of Cartesian

displacement coordinates; hence, the Wilson vector associated

with the bond stretching coordinate between atoms a and b

can be written as
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Wilson vectors for any other curvilinear internal coordinate can
be obtained in a similar fashion. For a bond angle (ϕ) between
atoms a, b, and c (Figure A1), the corresponding Wilson vector
can be constructed using the following vectors
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(A19)

and the Wilson vector associated with a dihedral angle (τ)
formed by atoms a, b, c, and d (Figure A2) has the following
components
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