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ABSTRACT: We present a quantum mechanical/machine learning (ML) framework based on random forest to accurately predict
the pKas of complex organic molecules using inexpensive density functional theory (DFT) calculations. By including physics-based
features from low-level DFT calculations and structural features from our connectivity-based hierarchy (CBH) fragmentation
protocol, we can correct the systematic error associated with DFT. The generalizability and performance of our model are evaluated
on two benchmark sets (SAMPL6 and Novartis). We believe the carefully curated input of physics-based features lessens the model’s
data dependence and need for complex deep learning architectures, without compromising the accuracy of the test sets. As a point of
novelty, our work extends the applicability of CBH, employing it for the generation of viable molecular descriptors for ML.

1. INTRODUCTION
The acid dissociation constant (Ka) and its logarithmic
equivalent (pKa) are valuable quantitative tools for assessing
the strength of an acid or the stability of its conjugate base in
solution. pKas are employed as a useful metric in numerous
fields, including total synthesis, medicinal chemistry, and
catalysis.1−5 Experimental measurements of pKas are often
complicated by complex solvent effects, synthetic challenges, as
well as difficulties associated with compound isolation and
purification.6 Due to such complications, theoretical methods
are frequently used to corroborate or even replace
experimentally determined pKas. Computationally, pKa deter-
mination involves the evaluation of the free energy change for
the deprotonation reaction. pKa is calculated as

K
G

RT
p

2.303a
aq=
*

(1)

where ΔGaq* is the aqueous free energy change for the
deprotonation reaction, R is the gas constant, and T is the
absolute temperature.
The efficient calculation of pKas for complex drug-like

molecules remains a challenging task for computational
chemists. Highly accurate, correlated methods like coupled-

cluster theory including single and double excitations with
perturbative triples (CCSD(T)7) are capable of chemical
accuracy (<1 pKa), though such methods come with steep
computational costs. Due to the computational expense, the
application of such methods has been limited.7 Accurate
composite theories such as the Gaussian-n and complete basis
set (CBS) methods are associated with decreased CPU time,
though they are limited to systems with no more than 20 heavy
atoms.
To tackle more sizable systems, quantum chemists typically

employ faster density functional theory (DFT) methods.
Despite DFT’s relative speed, its accuracy often proves
inadequate. For example, the absolute error of DFT-derived
pKa predictions of alcohols and anilines can exceed 3 pKa units
compared to experimental results.8 These functional groups are
central to many biochemical processes and are among the most

Received: December 4, 2023
Revised: January 17, 2024
Accepted: January 18, 2024
Published: February 1, 2024

Articlepubs.acs.org/jcim

© 2024 American Chemical Society
712

https://doi.org/10.1021/acs.jcim.3c01923
J. Chem. Inf. Model. 2024, 64, 712−723

D
ow

nl
oa

de
d 

vi
a 

IN
D

IA
N

A
 U

N
IV

 B
LO

O
M

IN
G

TO
N

 o
n 

M
ay

 2
9,

 2
02

4 
at

 1
8:

30
:5

2 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alec+J.+Sanchez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+Maier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Krishnan+Raghavachari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.3c01923&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.3c01923?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/64/3?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/3?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/3?ref=pdf
https://pubs.acs.org/toc/jcisd8/64/3?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf


commonly encountered when studying bioactive molecules.9

Thus, efficient computational models that maintain high
accuracy across a broad range of chemical groups are in high
demand.
To address this demand, several recent studies have

demonstrated the successful integration of quantum mechan-
ical (QM) calculations and machine learning (ML) techniques
for highly accurate physicochemical property prediction. The
adaptation of ML as a viable tool in the quantum chemist’s
toolbox has led to numerous applications in materials
discovery, catalysis, drug design, etc.10−15 When it comes to
pKa prediction, one QM/ML model by Hunt et al.16 used
semiempirical features along with radial basis functions to
obtain commendable performance on the SAMPL6 and Jensen
data sets.17 Similarly, Lawler et al.18 used features derived from
DFT with a kernel ridge regression model to achieve a low
mean absolute error (MAE) of 0.60 on oxoacids.
In the current study, we introduce a random forest (RF)-

based QM/ML framework for the prediction of highly accurate
pKas. Specifically, we illustrate the development of a QM/ML
pKa prediction model for use on complex drug-like molecules.
The current work achieves chemically accurate pKa predictions
by leveraging an ML model to correct low-level DFT. The RF
model is trained using a modest data set of 2147 experimental
pKas, originally published by Hunt et al.16 Despite the modest
training set size, our model can achieve high accuracy (MAE
<1 pKa unit) and performs well in a benchmark against several
state-of-the-art models found in the literature. Such accuracy is
achieved in part through a carefully curated input of chemically
relevant features. We employ physics-based features from DFT,
along with several descriptors derived from molecular
structure.8

As a point of novelty, we introduce a new class of ML
descriptors for pKa prediction, the RootedCBH fingerprint.19,20

This fingerprint acts as a basis for representing molecular
substructure and its effect on pKa.

21 Inspired by the ECFP22

fingerprint as well as the class of so-called “rooted finger-
prints”,23 the RootedCBH fingerprint is a new molecular
descriptor that addresses the importance of chemical
substructure in pKa prediction. RootedCBH provides a concise
description of the chemical units that constitute a molecule as
well as their proximity to a site of (de)protonation.

2. METHODS
2.1. pKa Calculation Using DFT. Given a general

deprotonation reaction, e.g., AH ↔ A− + H+, the
corresponding logarithmic equivalent (pKa) of the acid
dissociation constant is calculated as

K
G

RT
p

2.303a
aq=
*

(2)

where ΔGaq* is the aqueous free energy change for the
deprotonation reaction, R is the gas constant (1.985 × 10−3

kcal/mol·K), and T is the absolute temperature (298.15 K).
ΔGaq* is calculated as

G G G Gaq A H AH,aq ,aq ,aq
* = * + * *+ (3)

where GA ,aq
* and GAH,aq

* are the free energies associated with the
conjugate base (A−) and conjugate acid (AH) species,
respectively, in aqueous phase using SMD24 (solvation model
based on density) implicit solvation. GH,aq

*+ is the free energy of
a proton and is calculated via

G G G GH H H
1 atm 1 M

,aq ,gas ,solv
* = ° + * ++ + + (4)

where GH,solv
*+ (−265.9 kcal/mol)25−27 is the change in free

energy of a solvated proton, ΔG1atm→1M (1.89 kcal/mol) is the
change in free energy associated with converting from 1 atm in
the standard state to 1 molarity in aqueous media, and GH,gas

°+ is
the gas phase proton free energy.

G H TSH gas gas,gas
° = ° °+ (5)

( )H RTgas
5
2

° = is the enthalpic contribution of hydrogen gas,
Sgas° (26.05 cal/mol·K) is the entropic contribution of
hydrogen gas, and T is the absolute temperature (298.15 K).

2.2. Connectivity-Based Hierarchy + QM Descriptors.
Previous reports from the Raghavachari group provide an
extensive review of the connectivity-based hierarchy (CBH),
an error cancelation protocol based on a generalization of the
isodesmic bond separation scheme.28,29 CBH provides error
corrections to low-level theory by generating reaction schemes
with high degrees of bond-type matching and error
cancellation. First, a molecule is broken down into its

Figure 1. CBH-2 reaction scheme where ΔCBHcorrection represents the correction to the low-level energy Elow of the full system.
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constituent fragments based on a chosen rung of the hierarchy
(i.e., CBH-n). While advancing through the rungs of the
hierarchy, fragment size increases systematically, with CBH-0
units consisting of a single heavy (i.e., non-hydrogen) atom,
CBH-1 units consisting of two adjacent heavy atoms (i.e., a
single heavy atom bond), and CBH-2 units consisting of one
heavy atom along with all heavy atoms in its immediate
bonding environment. Explicit hydrogens are added to
maintain the original hybridization.
Resultant fragments are then used to generate a correction

term, which may be added to the low-level energy to
extrapolate to the high-level energy. To illustrate, the
difference in the sum of fragment energies for the low and
high levels of theory is computed and then added to the low-
level full system calculation to obtain the extrapolated high-
level total energy. Energies of the overlapping fragments are
subtracted to prevent overcounting. An example of a CBH-2
energy correction scheme is given in Figure 1. For a thorough
explanation of CBH, please see Ramabhadran and Raghava-
chari.28

The success of CBH and its fragmentation schemes in
achieving chemical accuracy at DFT cost for various
thermodynamic properties, and specifically for pKa, is well
established.28−37 Such work underscores how representative
fragment reactions can be used to approximate complex
chemical transformations. Through CBH, we observe the
molecular substructures that form the basis of chemical space.
More recently, molecular descriptors based on CBH

fragments were used as inputs to an ML model. In a 2020
study19 by our group, vectors containing the coefficients of
CBH-2 reactants and products (overlapping fragments) were
used as novel ML fingerprints, coupled with a simple neural
network framework, in order to accurately predict the heats of
formation of small molecules. CBH fingerprints indicate the
presence and count of various molecular substructures in each
molecule. In this way, CBH fingerprints resemble the widely
used ECFP fingerprint. The scope of our previous work was
limited to the heats of formation of small molecules. The
current study extends the applicability of CBH descriptors to a
problem of increased complexity: the accurate determination
of pKas for drug-like molecules. The following paragraphs
discuss the generation of our newly developed RootedCBH
fingerprints, a new class of CBH-based ML descriptors, as
implemented in the current study.
First, CBH-2 product fragments were generated for all

molecules in the training set (vide infra) using an in-house
Python program and xyz structures as input. All resultant
fragments were combined, and duplicate fragments removed,

generating a set of unique CBH fragments. Due to the
presence of sulfone and nitro groups, double bonds between
oxygen and sulfur/nitrogen were not cut during fragmentation.
Additionally, bonds to phosphorus were not cut during
fragmentation due to the presence of phosphate groups. To
limit the complexity of the feature space, those fragments that
appeared in less than 10 unique molecules were removed. This
procedure resulted in 81 unique CBH-2 product fragments.
Higher rungs of CBH (i.e., CBH-3, 4, etc.) generate larger
fragments and thus increase the complexity of the chemical
descriptor space. CBH-2-based fragment descriptors were
adopted for this study, striking a balance between two goals:
maximizing the information content of the feature vectors and
minimizing the feature space. The CBH feature vector length
was set to 81, with one dimension reserved for each fragment.
Once a molecule is fragmented into its corresponding CBH-

2 reactant fragments, the path-length (number of bonds)
between the center of each fragment and the site of
(de)protonation is determined (x in Figure 2). This path-
length, x, between each fragment and the site of (de)-
protonation is passed to the function 1/(x + 1) and embedded
in the feature vector at the appropriate index. In the limit that a
fragment is infinitely far from the (de)protonation site, the
weight is zero. Fragments absent from a molecule likewise
carry a weight of zero. If a fragment is present more than once,
only the minimum path-length fragment is kept.
The procedure for the generation of a RootedCBH

fingerprint is illustrated in Figure 2. Here, concentric circles
represent steps in the path, centered at the site of
(de)protonation, with a gray arrow indicating increasing
path-length. In Figure 2, gray substructures correspond to
CBH fragments mapped to zero in the feature vector. These
fragments are either not present in the molecule or do not
correspond to the fragment with the minimum path length.
In addition to the CBH features, we include a description of

the functional group involved in the (de)protonation reaction.
Functional groups covered in this study include the following:
phenol (Ph−OH), carboxylic acid (R−COOH), benzoic acid
(Ph−COOH), thiol (R−SH), aliphatic alcohol (R−OH),
primary amine (R−NH2), secondary amine with deprotona-
tion (R2−N−), secondary amine with protonation (R2−NH+),
tertiary amine (R3−N), heterocyclic phenol (Het−OH), and
alanine (Ph−NH2). Functional groups were identified using
SMARTS strings and then one-hot encoded. Additional
features specific to the (de)protonation site (e.g., hybridization
and aromaticity) were generated with RDKit. We refer to the
features from SMARTS and RDKit as “RDKit” for the
remainder of the paper.

Figure 2. Example of RootedCBH where nitrogen is the site of protonation. Fragments in gray are either not present in the molecule or do not
correspond to the fragment with the minimum path length.
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Finally, a key point of our model is the use of physics-based
DFT descriptors. DFT features were obtained from the M06-
2X calculations described in the Methods Section and are
enumerated in pink in Table 1. Thus, calculated pKas along

with additional DFT-, CBH-, and RDKit-derived features were
used as input features in the RF model. The model was trained
to reproduce experimentally derived pKas. Feature permutation
(Table S1) was performed to identify the most important
features for our model.
The final feature vector was of length 103. All features are

listed in Table 1. Δ indicates the difference between the
conjugate acid and conjugate base. In the table, the label
“heteroatom” signals the heavy atom being (de)protonated.
The enthalpy correction from DFT mentioned in Table 1 is
obtained as the sum of the correction to the internal thermal
energy (translational, rotational, vibrational, and electronic
contributions) and kBT.
2.3. Data Sets. A carefully curated data set16 of 2386

molecules published by Hunt et al.16 was used, featuring a
diverse set of elements (C, N, O, S, F, Cl, Br, Si, P, and I).
Experimental pKas for this data set range from −5.5 to 16.0.
The data set covers a wide chemical space and includes

molecules with up to 49 heavy atoms. Additionally, the data set
features zwitterions and encompasses a diverse set of
functional groups. The data set, as it was originally published,
includes dications and dianions. These molecules are excluded
from this study, noting that they make up less than 2% of the
entire data set. The authors of the data set provide an
“unambiguous and clear”16 assignment of the (de)protonation
site for each molecule, which we adopted. Further analysis of
the data set (i.e., ring count and number of heteroatoms) can
be found in Figure 3.
To evaluate the generalizability of our model and to

compare its performance against popular ML models and
commercial programs mentioned in the literature, we included
the SAMPL638 and Novartis39 data sets as external test sets.
The SAMPL6 data set, shown in Figure 4, features 24 unique
drug-like molecules with 31 unique experimental pKas and is
often used to benchmark pKa predictive tools. Sites of
(de)protonation were chosen based on the work by Xiong et
al.,40 where 29 of the 31 experimental pKas were labeled as
belonging to either the most acidic or basic site. If the site was
labeled most acidic, then each functional group was
deprotonated and the lowest calculated pKa from DFT was
used. If the site was labeled the most basic, each functional
group was protonated, and the highest calculated pKa from
DFT was used. For the two pKas not labeled (SM14:
experimental pKa of 2.58 and SM18: experimental pKa of
11.02), the aniline group of SM14 was protonated, and the
amide nitrogen not in a ring of SM18 was deprotonated.
In addition to the SAMPL6 data set, we included an

additional test set of 101 molecules, which represent a subset
of the total Novartis data set. For simplicity, only those
molecules that contained a single reported site of (de)-
protonation were selected. For these molecules, sites of
(de)protonation were taken from the work by Liao and
Nicklaus.39 Molecules from SAMPL6 and Novartis were
excluded from the training set (2147).

2.4. Computational Details. For pKa calculations using
DFT, a conformational search was first performed on the
neutral form of each molecule using the LowModeMD
method, as implemented in the Molecular Operating Environ-

Table 1. Features Used in the RF Model

Figure 3. Properties of the total data set of 2386 molecules used to train, validate, and test the ML model.
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ment (MOE) software (version 2019.01).41 Structural
complexity, the presence of many rotatable bonds, and
intramolecular hydrogen bonding with the (de)protonation
site underline the need for a conformational search in this
study. An energy window of 7 kcal/mol was used. Two
conformations were considered identical if their root-mean-
square deviations (RMSDs) were less than 0.25 Å.
Following the search, the 10 lowest energy conformations as

identified by MOE were further refined via a protocol
described by Zeng et al.42 The protocol prescribes geometry
optimization with the M06-2X functional using tight
convergence and an ultrafine integration grid. The protocol
employs the SMD24 implicit solvation model in water to
account for solvent effects. If the reaction corresponding to
each experimental pKa (neutral as reactant) is a protonation,
the 6-31G(d) basis set is used for both the neutral and charged
species; otherwise, 6-31+G(d) is used. The use of different
basis sets accounts for the diffuse nature of anions. For
molecules containing iodine, the LANL2DZ pseudopotential
was used.
Frequency calculations were performed on the lowest energy

conformer obtained from DFT and scaled by 0.9465 and
0.9500 for calculations employing 6-31G(d) and 6-31+G(d),
respectively. With the optimized geometry of the neutral
molecule, (de)protonation was carried out, and optimization
and frequency calculations were performed again using the
same level of theory as the neutral molecule. All geometries
were confirmed to be local minima. In the case of zwitterions,
6-31+G(d) was used, and frequencies were scaled by 0.9500.
All DFT calculations were performed using the Gaussian 16
program suite.43

2.5. RF Methods. For the ML portion of the study, the
data set was split 90:10 for training and testing, respectively.
The data was split using the stratified_continuous_split

function of the verstack44 Python library to ensure that the
distribution of experimental pKas in the training set resembled
that of the entire data set. This split type was chosen to ensure
that experimental pKas near the extrema were included in
training. Figure 3 clearly illustrates the bimodal distribution of
experimental pKas, with peaks near 5 and 10, with experimental
pKas below 0 and above 12 being far less represented in the
data set.
RF is one of the most popular supervised learning algorithms

and consists of an ensemble of decision trees that can be used
for classification or regression. Decision trees are made up of
decision nodes and have criteria (e.g., if-else statements) that
partition and pass the data to subsequent decision nodes.
When there are no more decision nodes, one has reached a
root node, and a prediction is made based on an average of the
data points in that node. Since RF utilizes bagging (sampling
with replacement), each decision tree is trained using only a
subset of the data. Additionally, each tree sees a subset of the
feature set, thereby mitigating the issue of overfitting.
To tune the hyperparameters of the RF model, we submitted

the training set to k-fold cross validation (k = 3) as
implemented in scikitlearn. Hyperparameters of the RF
model were tuned using a randomized grid search in scikitlearn
(Table S2). The parameters which gave the lowest validation
error are given as n_estimators = 2000, max_features = 0.5,
max_depth = 40, min_samples_split = 2, and min_sample-
s_leaf = 2. The full hyperparameter grid is given in Table S2.

3. RESULTS AND DISCUSSION
For the total data set of 2386 molecules, M06-2X calculations
produced an MAE of 1.82 pKa units and an RMSE of 2.38 pKa
units compared to those from experiment. These results are
commendable, given that DFT often produces much higher

Figure 4. SAMPL6 data set featuring 24 unique molecules with 31 unique pKas.
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errors.8,37,45−50 Nonetheless, chemical accuracy is regarded as
<1 pKa unit. Thus, DFT alone does not achieve chemical
accuracy. In fact, nearly 40% of the data had an absolute
deviation larger than two pKa units, as seen in the histogram of
Figure 5. When compared to the x = y line (black diagonal in
Figure 5), the DFT results are skewed significantly, with a
slope of 0.59. Nevertheless, the high correlation (R2 = 0.85) in
the linear fit suggests that the error in the calculated values is
systematic, a common observation with QM calculations. ML
models are often effective at removing such a systematic error.
Recognizing that the DFT error is systematic, we used a RF

framework to correct DFT-calculated pKas. Calculated pKas,
along with additional DFT-, CBH-, and RDKit(+SMARTS)-
derived features, were used as input features in our RF model.
The model was trained to reproduce experimentally derived
pKas. The data set (2386 molecules) was split 90:10 for
training (2147) and testing (239), respectively. Figure 6
highlights the distribution of functional groups in the training
and test splits. The figure shows a similar distribution in the
two sets, which may be a result of the stratified split. Aliphatic
alcohols and amines dominate the data set, while heterocyclic
alcohols and thiols are not well-represented.
The model was first evaluated on the test split (∼240

molecules). It achieved MAE and RMSE values of 0.51 and
0.76 pKa units, respectively. After application of the RF
correction, nearly 90% of calculated pKa absolute errors fall
within 1 pKa unit, and ∼95% fall within 2 pKa units. The
maximum error of the test set is 3.02 pKa units. By comparison,

using DFT alone, ∼35% of absolute errors fall within 1 pKa
unit, ∼65% fall within 2 pKa units, and the maximum error is
9.45 pKa units.
An in-depth look at the functional group dependence of

systematic error, considering DFT and RF-corrected values,
shows that aliphatic alcohols, R−OH, thiols, R−SH, and
anilines, Ph−NH2 have the largest DFT MAEs (5.35, 4.08, and
3.04 pKa unit error, respectively, with respect to experiment)

Figure 5. Correlation and distribution of absolute error between the
calculated pKa from DFT and experimental pKa in the full data set
(2386 molecules).

Figure 6. Frequency of deprotonated/protonated functional groups in the train and test split.

Figure 7. Spider plot of the functional-group-specific MAEs
associated with DFT and RF model on the test split.

Figure 8. Violin plot of the RF absolute errors of the test split at
different ranges of experimental pKas. From bottom to top, the dashed
lines indicate the 25th percentile, median, and 75th percentile.
Distributions less than zero are a fabrication of the kernel density
estimation function.
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but were effectively corrected (0.88, 0.54, and 0.29 pKa unit
error, respectively, with respect to those of experiment) using
the RF model with RDKit + RootedCBH + QM features. This
fact is illustrated in Figure 7. In fact, the error for every
functional group was improved by using our model. After
application of the RF correction, all functional-group-specific
MAEs fall within chemical accuracy except for heterocyclic
alcohols. Interestingly, heterocyclic alcohols were one of the
most underrepresented groups in the training set (53
molecules) and test (7 molecules) set. This is illustrated in
Figure 6. In addition, five of the seven heterocyclic alcohol test

compounds contained two or more heterocyclic atoms,
increasing the chemical complexity of these systems.
We also explored the model performance across the full

range of experimental pKas featured in the test set. Figure 8
illustrates the performance of the method across four ranges of
experimental pKas. The middle two violins exhibit relatively
distinct peaks. They show a narrow distribution of errors and a
75th percentile mark well below 1 pKa. Poorer model
performance is observed in the first (considering experimental
pKas between −3 and 2.5) and last (considering experimental
pKas between 10.5 and 16) violins, which represent the
extrema of experimental values. A similar observation was
noted by Hunt et al.16 As mentioned previously, the
distribution of experimental pKas is bimodal with peaks at 5
and 10. pKas below 0 and above 12 are generally under-
represented in the data set. This shortage of data at the
extrema may lead to a degradation of model performance.
Incorporating additional data points with experimental pKas
falling in the most acidic and most basic ranges should help
alleviate this weakness.
To evaluate the generalizability and performance against

state-of-the-art academic and commercial models, we con-
ducted additional testing on two benchmark test sets: SAMPL6
and Novartis. The importance of our chosen features is
stressed in Figure 9. Site-specific features (e.g., hybridization,
aromaticity, and functional group) from RDKit with RF result
in improved RMSE values for test (2.05 pKa units) and
Novartis (1.44 pKa units) compared to those with using DFT
alone (2.38 and 1.61 pKa units). However, RDKit features
worsen the model performance for SAMPL6. This may be due
to the structural and chemical complexity of the molecules in
the SAMPL6 test set. Indeed, these molecules exhibit complex
interactions (i.e., donating/withdrawing groups and hydrogen/
halogen bonding) that may not be well-accounted for by
RDKit-derived features alone. With the inclusion of structural
features from RootedCBH, the RMSE and MAE fall to roughly
1 pKa unit for test and Novartis. SAMPL6 sees less of an
improvement in performance from the addition of Roo-
tedCBH features; however, the RMSE and MAE are still not
within acceptable accuracy (1.96 RMSE and 1.43 MAE).
With the inclusion of physics-based features from QM, the

RMSE and MAE for all three test sets fall within 1 pKa for
ML(RDKit + QM). The result illustrates the use of low-level
DFT calculations as a viable foundation for learning. This is
supported further by the results from a simple linear scaling

Figure 9.MAE and RMSE of predicted pKas from test split, SAMPL6,
and Novartis and the effect of features on the RF model. DFT
corresponds to the raw theoretical value, without ML. Linear scaling
refers to the correction from linear regression fit to the training data
(DFT-calculated pKa vs experimental pKa).

Table 2. SAMPL6 Performance of the Top Commercial and Academic Models Listed in the Literaturea. MAE and RMSE are
Given in Units of pKa

author/model class MAE RMSE R2 comments model

Hunt’s Model16 academic 0.85 ML: radial basis function + semiempirical QM
MolGpKa

51,52 academic 0.522 0.773 0.907 removed 5 pKa values (SM11, SM22_1,
SM22_2, SM14, SM18)

ML: graph neural network trained on 1.1 million
calculated pKa using ACD/pKa

ACD
Laboratories16

commercial 0.77 0.92 ACD/pKa classic

MF-SuP-pKa
52 academic 0.687 0.751 0.912 removed 5 pKa values (SM11, SM22_1,

SM22_2, SM14, SM18)
ML: graph neural network trained on 1.1 million
calculated pKa using ChemAxon

S + pKa
53 commercial 0.59 0.73 ensemble of neural networks

Graph-pKa
40 academic 0.594 0.726 0.918 removed 2 pKa values (SM14 & SM18) ML: multi-instance graph neural network trained on

17K experimental pKa

Pracht et al54 academic 0.58 0.68 0.937 removed 2 pKa values (SM14 & SM18) LFER + QM + conformer sampling
Epik v 7
emsemble55

commercial 0.48 0.61 ensemble of atomic GCNN’s trained on 42K pKa

aFull table containing twenty-one literature models can be found in Table S3.
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model, fit on the training data. Using the best fit line, the MAE
and RMSE of DFT are halved for all three test sets. This aligns
with the results published by Sanchez and Raghavachari.8 The
observation is crucial because it underscores the importance of
DFT as a feature. Simple scaling produces a low MAE for
SAMPL6. This result may be due to the comparatively high
number of amines in the training set. DFT error for amines is
relatively low. In contrast, the test and Novartis sets are
composed of molecules featuring a wider range of functional
groups, and their DFT errors are higher in comparison to those
of SAMPL6. By adding RootedCBH, the model ML(RDKit +
RootedCBH + QM) is able to achieve one of the best
performances in the literature: test (0.51 MAE), Novartis (0.58

MAE), and SAMPL6 (0.56 MAE). Hyperparameter tuning was
performed for all feature sets shown.
Importantly, our model was able to achieve results rivaling

many of the current models from the literature for the
SAMPL6 data set and the subset of the Novartis data set,
Tables 2 and 3. We give less focus to the model’s performance
on the Novartis set since we only consider a subset of the total
data set; however, all performances reported for Novartis
correspond to performances obtained on the same 101
molecules used in this study (Table 3). Our model achieves
an MAE of 0.56 pKa units and an RMSE of 0.73 pKa units on
the SAMPL6 molecules. For the subset of Novartis structures
containing a single deprotonation site, we achieve an MAE of
0.58 pKa units and an RMSE of 0.77 pKa units. Compared to
nine commercial programs in the literature, our model achieves
a respectable performance, as shown in Table 3. All absolute
errors for the SAMPL6 data set fall within 2 pKa units, and
∼85% of the errors fall within 1 pKa unit, Figure 10.
The effect of including RootedCBH fragment features

improves model performance overall on the test split and
both benchmark sets (Novartis and SAMPL6). For the test
split, the RMSE decreases from 2.05 to 1 pKa and from 1.44 to
1 pKa units for Novartis. RootedCBH fragments do not lead to
a substantial average improvement in accuracy when
considering SAMPL6. We suggest a few possible explanations
for this observation. First, CBH fragments may be unable to
capture important conformational effects present in some
SAMPL6 molecules. Second, the use of “rooted” fingerprints
which identify a single site of (de)protonation may be

Table 3. Novartis Performance across Popular Commercial Programs. MAE and RMSE are Given in Units of pKa

author class MAE RMSE comments model

Schrodinger57,58 commercial 1.02 1.56 program failed to predict 12 pKa Jaguar
ChemAxon59 commercial 1.06 1.55 Marvin
SciTegic60 commercial 0.73 1.35 program failed to predict 1 pKa Pipeline Pilot
CompuDrug61 commercial 0.59 1.14 program failed to predict 1 pKa Pallas
Schrodinger62,63 commercial 0.78 1.03 program failed to predict 2 pKa Epik
University of Georgia/Environmental Protection Agency64,65 commercial 0.73 1.01 program failed to predict 2 pKa SPARC
SimulationsPlus66 commercial 0.53 1.00 ADMET Predictor
ACD Laboratories67 commercial 0.36 0.56 ACD/pKa

Pharma algorithms68 commercial 0.33 0.52 program failed to predict 1 pKa ADME Boxes

Figure 10. Correlation and distribution of errors from the RF-
predicted pKa and experimental pKa on the test (left) and SAMPL6
set (right). Dashed lines indicate a ±1 pKa unit.

Figure 11. t-SNE plot showing the train, test, and SAMPL6 latent
space in two dimensions.

Figure 12. CBH fragments with the highest feature score based on
feature permutation.
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inappropriate when many close lying pKas are involved (the
case for several SAMPL6 molecules). It is important to note
that more than 70% of SAMPL6 absolute errors (23
molecules) improved or remained the same upon the addition
of CBH features. Only two molecules experienced an increase
in absolute error greater than 1 pKa unit upon the addition of
CBH features and seven by more than 0.5 pKa units.
For our QM/ML model, the largest prediction error on the

SAMPL6 set comes from SM24, which has an absolute error of
1.8 pKa units and squared error of 3.18 pKa units compared to
that of experiment. For this molecule, the most basic site from
DFT, a heterocyclic secondary amine, was chosen, following
the protocol by Xiong et al.40 However, in a publication by
Hunt et al.,16 the authors protonate the secondary amine in the
alkyl chain. If we compare the DFT-calculated pKas, we notice
a large discrepancy between the amine in the alkyl chain (−6
pKa) and the amine in the heterocyclic ring (2 pKa). Since
there is a discrepancy in the correct protonation site of SM24,
we also report the SAMPL6 performance with this outlier
removed (0.52 MAE and 0.67 RMSE). With the single outlier
removed, our model approaches state-of-the-art accuracy on
the SAMPL6 data set, as compared to that of the Epik v 7
ensemble model (0.48 MAE and 0.61 RMSE), which has the
best performance in the literature to the best of our knowledge.
Reduced model performance was also seen in SM05 (1.50 pKa
unit absolute error). Similar results were reported by Yang et
al.56 who hypothesized that strong intra/intermolecular
hydrogen bonding may be at play.
For Novartis, the largest outliers include id 88 and 102,

which have an absolute error of 2.42 and 2.16 pKa units,
respectively. While we believe that the protonation site is
correct for id 88, the site is part of a bridged bicyclic ring, a
rather uncommon group. Regarding id 102, the deprotonation
site is a heterocyclic alcohol that can undergo intramolecular
hydrogen bonding, and as mentioned previously, the model
yields the worst performance for heterocyclic alcohols.
One point of interest is the model’s commendable

performance despite the use of a small training set (∼2100).
Many of the models listed in Table 2 make use of extensive
data sets, with training sets ranging from 17,000 to 1.1 million
molecules. We believe that our use of physics-based descriptors
lessens our model’s dependence on big data. Additionally, the
results of a 1-nearest-neighbor model, considering all RDKit +
QM + RootedCBH descriptors, can be found in Table S4. The

results of this model suggest that the RF model has not simply
memorized the training data.
Site-specific features from RDKit, structural features from

CBH fragments, and physics-based features from DFT
calculations were used as chemically relevant features. In
order to visualize the overlap in feature space among the train,
test, and SAMPL6 sets, we include a t-distributed stochastic
neighbor embedding (t-SNE) plot in Figure 11. Here, the 103-
dimensional feature space has been condensed to 2 dimensions
for visualization. From the plot, it is clear that a majority of the
molecules in the train and test split, as well as the SAMPL6 set,
occupy similar spaces. Based on feature importance calculated
using scikitlearn, we observe that ΔSCF and calculated pKa
from DFT are the two most important features in the model.
This result underscores the importance of using DFT-derived
features.
Figure 12 shows a bar plot of the 10 most important CBH

fragments, ranked by their feature permutation score. It is
interesting to note the prevalence of fragments featuring
amines (13, 36, 16, 72, 25, 41), alcohols, and carboxylic acids
(2, 10, 25). This aligns with our expectations since N and O
are the most abundant heavy atoms (excluding carbon) in the
data set (see Figure 3). Furthermore, nitrogen and oxygen are
also present in 10 out of the 11 ionizable sites within the data
set. Based on these observations, it is easy to understand why
these fragments are important for model learning. This result is
informative as it provides us with a cheminformatics-based
understanding of our model.
Lastly, we evaluated the performance of our RootedCBH

fingerprints against commonly used structural fingerprints in
the literature (RootedFP,69 MACCS,70 AvalonFP,71 and
ECFP22) (Figure 13). Our motivation for developing the
RootedCBH was inspired by two of these feature types, ECFP
and RootedFP. For our fingerprint comparison, we kept the
RDKit and QM features consistent, replacing only Roo-
tedCBH. Hyperparameter tuning was done for each set of
features. The bar plots in Figure 13 illustrate that our
RootedCBH fingerprints perform well, with a consistent
MAE (0.51−0.58) and RMSE (0.73−0.77) across all three
test sets. It is worth noting that RootedFP, MACCS, AvalonFP,
and ECFP displayed a slightly better performance on the test
split compared to that of RootedCBH; however, these
fingerprints tend to perform significantly worse on at least
one of the test sets. For instance, AvalonFP had the lowest
MAE (0.46) on the test split compared with that of the other

Figure 13. Comparison of our RootedCBH fingerprint against popular fingerprints in the literature. RootedFP, AvalonFP, ECFP: 2048-bit size,
radius = 3 for ECFP. MACCS: 166 bit size.
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fingerprints, but conversely, it had the largest MAE on
SAMPL6 (0.71). This observation emphasizes the general-
izability of RootedCBH across various chemical spaces.
It is important to note that the length of our RootedCBH

(81 bits) is only a fraction of the size of ECFP, RootedFP,
AvalonFP (2048 bits), and MACCS (166 bits). This result is
significant because it demonstrates that RootedCBH fragments
provide a concise yet informative description of a molecule’s
structure, which in turn play a pivotal role in pKa prediction.

4. CONCLUSIONS
To summarize, we developed a QM/ML framework with RF
to accurately predict pKas of complex molecules using physics-
based features from DFT and structural features from our
CBH fragmentation protocol. Notably, this work extends the
applicability of RootedCBH fragmentation and QM/ML
frameworks as viable tools for predicting accurate physi-
ochemical properties. Our model corrects functional-group-
specific deficiencies associated with DFT and achieves
impressive accuracy on two external test sets, the SAMPL6
and Novartis data sets. If we exclude SM21 from SAMPL6, we
can achieve a near-state-of-the-art performance (0.52 MAE and
0.67 RMSE).
Despite the small training set size, our model achieves a high

accuracy. We believe the use of physics-based descriptors and
carefully curated input of chemically relevant features lessens
the model’s data dependence and need for complex deep
learning architectures. One drawback our model experiences is
the need to identify a single site of deprotonation, especially
for complex molecules with many ionizable sites and close
lying pKas. In these cases, a Boltzmann weighing of various
microstates may be more appropriate.
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