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Efficient digitization is required for quantum simulations of gauge theories. Schemes based on discrete
subgroups use a smaller, fixed number of qubits at the cost of systematic errors. We systematize this
approach by deriving the single plaquette action through matching the continuous group action to that of a
discrete one via group character expansions modulo the field fluctuation contributions. We accompany this
scheme by simulations of pure gauge over the largest discrete crystal-like subgroup of SUð3Þ up to the fifth
order in the coupling constant.
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I. INTRODUCTION

Quantum computing has the potential to dramatically
advance our understanding of quantum field theory [1–3]—
especially for the dynamics of QCD [4–6]. Performing such
simulations will require a large, albeit at present unknown,
scale of the quantum computers in terms of memory and
circuit depths [7]. This scale is certainly beyond the current,
noisy devices. Thus, it is therefore essential to explore the
possibilities of reducing the requirement of quantum
resources so that any near-future field theory simulations
on a quantum computer become feasible. Such investiga-
tions could not only help to determine the advantages of
various quantum algorithms in different circumstances but
also be beneficial in the future when quantum computing
becomes commonplace by providing general frameworks
for cost-effective QCD simulations.

For real-time QCD simulations, large quantum resources
are allocated to digitize the gluon fields due to their bosonic
nature and thus unbounded Hilbert space. Many approaches
exist with different and, presently, poorly understood costs.
Prominent proposals for digitization [8] can be broadly
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classified into Casimir dynamics [9–16] potentially with
auxiliary fields [17], conformal truncation [18], discrete
groups [19–23], dual variables [24–28], light-front kinemat-
ics [5,29], loop-string-hadron formulation [30–32], meshes
and subsets [19,33], quantum link models [34–37], and
qubit regularization [38–40]. Each approximation reduces
symmetries—either explicitly or through finite truncations
[11]. Thus, one must proceed with caution as the regulated
theory may not have the original theory as its continuum
limit [41–46]. In this spirit, a number of recent works have
attempted to quantify the truncation needed to achieve fixed
accuracy for a lattice simulation [7,32,47,48].

Studies of the quantum simulations of lattice field theories
typically use the Hamiltonian formalism, with the Kogut-
Susskind Hamiltonian [49] being the most investigated for
gauge theories. In this work, we will instead work in the
action formalism. This allows us to construct modified
actions that can be studied nonperturbatively on classical
computers today. For the eventual simulation on quantum
computers, one can derive the modified Hamiltonian
straightforwardly via the transfer matrix [50–52].

One strategy pursued in the early days of lattice QCD
involved approximating the gauge group SUð3Þ by its
largest crystal-like subgroup V [53,54], thus maintaining a
remnant of the gauge symmetry of the parent group.
Depending on the action chosen, the accuracy of the
approximation varies greatly. The first studies considered
merely replacing the continuous group G by its discrete
subgroup H  in the Wilson gauge action. The viability of
this approximation was studied in detail for Uð1Þ [55,56]
and SUðNÞ [57–59], with the inclusion of fermions [60,61].
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These studies met with mixed success. In order to improve
the agreement between lattice observables for H  and G,
modified actions in H  were considered, which generally
lead to vastly improved results [20,62]. The drawback to
these ad hoc actions is that they were found empirically
through substantial classical simulations, and thus a
theoretical and systematic understanding of them is
lacking.

The resulting discrepancy from such approximations can
be analyzed systematically through expansions of various
parameters in the same spirit of the modern effective field
theory approach with a matching procedure. There are two
natural ways to attempt the matching between the con-
tinuous and discrete groups: classical or quantum improve-
ment. The latter was exploited recently in performing a
cumulant expansion to order Oðβ3Þ through a group
decimation technique [22]. These systematic results gave
insight into how quantum fluctuations in the Wilson action
should be accounted for when replacing G by H. In this
paper, we examine the former possibility, namely, matching
at the classical level the Boltzmann weights e−S  through the
character expansion.

The paper is organized as follows. In Sec. II, we
summarize the group properties of V , the largest crystal-
like subgroup of SUð3Þ. This is followed by Sec. III, where
we demonstrate the matching via a systematic character
expansion. Section IV is reserved for numerical results with
analysis of the viability of character expansion. The paper
is finally concluded in Sec. V.

II. CHARACTERS OF V

The 1080 elements of the SUð3Þ subgroup V can be
classified into 17 conjugacy classes [63], generated by
its total 17 independent characters for which we denote as
χ0 with r ¼  1; 2; …; 17. These 17 characters are linearly
related to a subset of SUð3Þ characters χðλ;μÞ that are
organized by two non-negative integers1 λ and μ,

χ0 ¼  
X

mr;ðλ;μÞχðλ;μÞ; ð1Þ
ðλ;μÞ

where mr;ðλ;μÞ are a set of integers systematically obtainable
by matching the character definitions of the two groups.
The explicit linear relations between χ0 and χðλ;μÞ are given
in Table I for r  ¼  1; 2; …; 9; 12; …; 17.

It is worth nothing that although χ0      þ  χ0      is expressible
in terms of χðλ;μÞ in a simple fashion as given in Table I,
individual expressions for χ10 and χ11 in terms of SUð3Þ

1We note that, in Ref. [22], another notation was adopted for
general SUðNÞ characters labeled by N integers fλ  ; λ ; … ; λ  g
with λ ≥  λ ≥   ≥  λ . For the special case of SUð3Þ that is our sole
interest throughout this paper, all characters can be denoted by
only two non-negative integers ðλ;μÞ [64]. We employ the ðλ;μÞ
convention hereafter.
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characters are rather lengthy. We note that, in practice, χ0

and χ11 always appear together as χ10 þ  χ11 and thus the
absence of their expressions individually leads to no issues
in our derivations.

On the other hand, in order to obtain the action of χ0

and χ11 on all V elements, we exploit the orthonormality
condition of the character representation, allowing us to fix
the last elements in the character table in Table II. We point
out that the conjugacy classes C8 and C9 , both of which are
composed of traceless V elements, are distinguishable only
through these two characters χ10 and χ11, as can be read
from Table II.

III. CHARACTER EXPANSION OF
WILSON ACTION

In this section, we first carry out the character expansion
for the Boltzmann weight using the Wilson action to
sufficiently high orders in SUð3Þ. The domain of the
resulting expansion is then reduced from SUð3Þ to V with
the help of Eq. (1) of which the lowest-weight characters
are found in Table I. Clearly, this step lowers the theory
complexity at the cost of approximation errors which are
quantifiable through theoretical and/or numerical means
(e.g., [22]). Finally, we derive the effective action SðuÞ over
V by matching e−SðuÞ onto the corresponding character
expansion.

We start with the pure gauge Wilson action,

SðUÞ ¼  −
X  β 

ReTrðUpÞ; U � SUð3Þ; ð2Þ
p

where the summation runs over all plaquettes. Up denotes
a product of gauge links in the adjoint representation of
SUð3Þ. The resulting Boltzmann weight, e−SðUÞ, can be
decomposed into the orthonormal SUð3Þ characters basis,

e−SðUÞ ¼  
X
βðλ;μÞχðλ;μÞðUÞ; ð3Þ

ðλ;μÞ

giving rise to a series of character coupling constants βðλ;μÞ.
The resulting partition function central to the classical
lattice calculation can therefore be presented as

Z  ≡  
Z 

DU e−SðUÞ ¼  
X Z  

DUβðλ;μÞχðλ;μÞðUÞ: ð4Þ
ðλ;μÞ

For the Wilson action defined in Eq. (2), the explicit form
of βðλ;μÞ can be written as an infinite sum in terms of Bessel
functions [64],
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TABLE I.     Character expansion of V characters in terms of SUð3Þ characters and in trace representation.

χ r of V

χ1ðuÞ
χ2ðuÞ
χ3ðuÞ
χ0 ðuÞ
χ0 ðuÞ
χ0 ðuÞ
χ0 ðuÞ
χ0 ðuÞ
χ9ðuÞ

χ10ðuÞ þ  χ11ðuÞ

χ12ðuÞ

χ13ðuÞ

χ14ðuÞ

χ15ðuÞ

χ16ðuÞ

χ17ðuÞ

P
ðλ ;μÞ mr;ðλ;μÞχðλ;μÞ

χð0;0ÞðuÞ

χð1;0ÞðuÞ
χð0;1ÞðuÞ
χð1;1ÞðuÞ
χð2;0ÞðuÞ
χð0;2ÞðuÞ
χð2;1ÞðuÞ
χð1;2ÞðuÞ
χð3;0ÞðuÞ

χð1;1ÞðuÞ þ  χð2;2ÞðuÞ
þχð3;0ÞðuÞ −  χð4;1ÞðuÞ

χð3;0ÞðuÞ þ  χð2;2ÞðuÞ
þχð4;1ÞðuÞ −  χð3;3ÞðuÞ

−χð1;1ÞðuÞ −  2χð3;0ÞðuÞ
−χð2;2ÞðuÞ þ  χð3;3ÞðuÞ

χð3;1ÞðuÞ −  χð1;2ÞðuÞ

χð1;3ÞðuÞ −  χð2;1ÞðuÞ

χð3;2ÞðuÞ −  χð2;1ÞðuÞ
−χð1;3ÞðuÞ

χð2;3ÞðuÞ −  χð1;2ÞðuÞ
−χð3;1ÞðuÞ

Trace representation

1

trðuÞ

trðu†Þ

trðuÞtrðu†Þ −  1
1 ðtr2ðuÞ þ  trðu2ÞÞ
1 ðtr2ðu†Þ þ  trðu†2ÞÞ
1 trðu†Þðtr2ðuÞ þ  trðu2ÞÞ −  trðuÞ
1 trðuÞðtr2ðu†Þ þ  trðu†2ÞÞ −  trðu†Þ

6 ðtr3ðuÞ þ  2trðu3Þ þ  3trðuÞtrðu2ÞÞ

−1 þ  1 ðtr2ðuÞtr2ðu†Þ þ  tr2ðuÞtrðu†2Þ þ  tr2ðu†Þtrðu2Þ þ  trðu†2Þtrðu2ÞÞ
−  1  trðu†Þðtr4ðuÞ þ  6tr2ðuÞtrðu2Þ þ  3tr2ðu2Þ þ  8trðuÞtrðu3Þ þ  6trðu4ÞÞ
þ 3  ðtr3ðuÞ þ  3trðuÞtrðu2Þ þ  2trðu3ÞÞ

−trðuÞtrðu†Þ −  1 ðtr2ðu†Þ þ  trðu†2ÞÞðtr2ðuÞ þ  trðu2ÞÞ
þ 1  ðtr2ðuÞtr2ðu†Þ þ  tr2ðuÞtrðu†2Þ þ  tr2ðu†Þtrðu2Þ þ  trðu2Þtrðu†2ÞÞ
þ  1  ðtr3ðu†Þ þ  3trðu†Þtrðu†2Þ þ  2trðu†3ÞÞðtr3ðuÞ þ  3trðuÞtrðu2Þ þ  2trðu3ÞÞ
þ 2 4  trðu†Þðtr2ðuÞ þ  6tr2ðuÞtrðu2Þ þ  3tr2ðu2Þ þ  8trðuÞtrðu3Þ þ  6trðu4ÞÞ

1 −  1 ðtr2ðu†Þ þ  trðu†2ÞÞðtr2ðuÞ þ  trðu2ÞÞ þ  1 ð−tr3ðuÞ −  3trðuÞtrðu2Þ −  2trðu3ÞÞ
þ 1  ð−tr2ðuÞtr2ðu†Þ −  tr2ðuÞtrðu†2Þ −  tr2ðu†Þtrðu2Þ −  trðu†2Þtrðu2ÞÞ
þ 3 6  ðtr3ðu†Þ þ  3trðu†Þtrðu†2Þ þ  2trðu†3ÞÞðtr3ðuÞ þ  3trðuÞtrðu2Þ þ  2trðu3ÞÞ
1 ðtr3ðuÞ þ  2trðu3Þ þ  3trðu2ÞtrðuÞÞtrðu†Þ −  1 ðtr2ðuÞ þ  trðu2ÞÞ
− 2  trðuÞðtr2ðu†Þ þ  trðu†2ÞÞ þ  trðu†Þ

ðχ14ðuÞÞ

− 1  trðu†Þðtr2ðuÞ þ  trðu2ÞÞ þ   1  ðtr2ðu†Þ þ  trððu†Þ2ÞÞðtr3ðuÞ þ  3trðuÞtrðu2Þ þ  2trðu3ÞÞ
− 1  trðu†Þðtr2ðuÞ þ  trðu2ÞÞ þ  trðuÞ −  1 ðtr3ðu†Þ þ  2trðu†3Þ þ  3trðu†2Þtrðu†ÞÞtrðuÞ
þ 2  ðtr2ðu†Þ þ  trðu†2ÞÞ

ðχ16ðuÞÞ

0    1
β β β

ρþn     3 σ−1þn     3 n−2     3
∞  

βðλ;μÞðβÞ ¼ detB I ρþ 1 þ n      
β I σþn     

β I n−1     
β     

C ;
n¼−∞   

β β β
ρþ2þn     3 σþ1þn     3 n     3

ð5Þ

where ρ ¼  λ þ  μ, σ ¼  μ, and I k is the Bessel function of the
first kind [64]. Explicit expressions of βðλ;μÞ that are relevant
for our current study are collected in Table III in the form of
Taylor series of β. In practice, we found that taking jnj ≤  40
in Eq. (5) is sufficient numerically.

We are now ready to extract the effective action over V,
the finite discrete crystal subgroup of SUð3Þ. The starting
point of our procedure is to substitute U � SUð3Þ on the rhs

of Eq. (3) by u � V, effectively reducing the domain of the
character expansion. The SUð3Þ characters χðλ;μÞðUÞ are
then mapped to their V counterparts χrðuÞ using either
Eq. (1) or Table II by solving a system of 17 linear
equations. Subsequently, the SUð3Þ character couplings
βðλ;μÞ are also rearranged into V character couplings β0 .
Detailed relations between βr and βðλ;μÞ are collected in
Table IV. The resulting V character expansion is finally
matched onto the V effective action SðuÞ as follows:

17

e−SðuÞ ¼ β0 χ0 ðuÞ; u � V: ð6Þ
r¼1

We emphasize that once the order of truncation for
the SUð3Þ character expansion is determined, the rhs of
Eq. (6) is completely fixed through Eq. (1) (or Table I).
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TABLE II.     Character table for V [63]. μ1 ¼  ð1 −  
p

5Þ=2; μ2 ¼  ð1 þ  
p

5Þ=2, ω ¼  ð1 þ  i
p

3Þ=2, ω ¼  ð1 −  i
p

3Þ=2. The integer in the
second row indicates the number of elements in each class, and the letter behind denotes the cycle induced by the class elements.

Class: C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1E 72c5     90c4

χ1ðuÞ 1 1 1

χ2ðuÞ 3       μ2 1

χ3ðuÞ 3       μ2 1

χ4ðuÞ 8       μ2 0

χ0 ðuÞ 6 1 0

χ0 ðuÞ 6 1 0

χ7ðuÞ 15 0 −1
χ8ðuÞ 15 0 −1
χ9ðuÞ 10 0         0
χ10ðuÞ     5 0 −1
χ11ðuÞ     5 0 −1
χ12ðuÞ     8       μ1             0
χ13ðuÞ     9      −1        1
χ14ðuÞ     9      −1        1
χ15ðuÞ     9      −1        1
χ16ðuÞ     3       μ1             1
χ17ðuÞ     3       μ1             1

45c6 45c6 72c15

1          1           1
ω          ω           −μ1ω ω

ω       −μ1ω
0 0 μ1

−2ω        −2ω       −ω
−2ω     −2ω           −ω
ω          ω                0 ω

ω            0 −2
−2           0

1          1           0

1          1           0

0 0 μ2

1 1          −1
−ω           −ω          ω
−ω        −ω               ω

ω          ω           −μ2ω ω
ω       −μ2ω

72c15       120c3     120c3     90c12

1 1 1 1
−μ1ω             0           0        −ω
−μ1ω         0           0         −ω
μ1               −1         −1          0
−ω            0           0           0
−ω                0           0           0

0            0           0         ω
0            0           0          ω
0 1 1 0
0          −1 2         −1
0 2          −1         −1
μ2               −1         −1          0
−1           0           0           1

ω            0           0         −ω  ω
0           0        −ω  −μ2ω             0

0        −ω  −μ2ω         0           0

−ω

90c12     72c5       72c15

1 1 1
−ω         μ1         −μ2ω
−ω           μ1          −μ2ω
0 μ1 μ2

0          1         −ω
0          1        −ω
ω          0           0

ω              0           0

0          0           0
−1         0           0

−1         0           0

0 μ2 μ1

1        −1         −1
−ω −1 ω
−ω −1         ω −ω
μ2         −μ1ω
−ω μ2 −μ1ω

72c15       45c2 1c00 1c000

1 1           1            1
−μ2ω      −1      −3ω           −3ω
−μ2ω         −1       −3ω       −3ω
μ2                0           8            8
−ω              2        −6ω       −6ω

−ω           2       −6ω           −6ω 0
−1     −15ω        −15ω

0 −1 −15ω     −15ω
0 −2         10 10
0           1           5            5

0           1           5            5

μ1 0 8 8

−1 1 9 9 ω
1        −9ω       −9ω

ω           1       −9ω           −9ω
−μ1ω      −1      −3ω           −3ω
−μ1ω         −1       −3ω       −3ω

The relations between βr and βðλ;μÞ given in Table IV
provide a complete basis for SUð3Þ character χðλ;μÞ expan-
sion up to 0 ≤  λ þ  μ ≤  6. It is also important to remark that

here we have systematically neglected the contribution of
SUð3Þ elements which are absent in V , effectively provid-
ing us with a “leading-order” approximation. Such approx-
imations are improvable systematically by parametrizing
U ¼  ϵu [22], yielding

TABLE III.

ðλ;μÞ

(0,0)

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(2,2)

(3,1)

(4,0)

(3,2)

(4,1)

(5,0)

(3,3)

(4,2)

(5,1)

(6,0)

Series expansions of βr, x ≡  β=6 up to Oðx8Þ.

βðλ;μÞ

1 −  x2 þ  x4 −  11x6 þ  91x
0 þ

x2 3 3x4 11x5 11x6 91x7 91x8

2 8 24 80 720 2880

−x2 þ  x4 −  77x6 þ  13x8 þ
x2 x3 5x4 11x5 x6 56x7 59x8

2 2 12 30 6 365 1440
x3           5x4            11x5            7x6           13x7           3x8

2          24           24           48           72           64
x3 x4 x5 25x6 x7 113x8

6 4 12 144 48 2016
x4 9x6 27x8 187x10

4 40 320 10080

−  6 −  15 þ  8 þ  45 −  70 þ
x4             x5            53x7            19x8

24        12        1008        2880
x5 7x6 49x7 3x8

12 240 720 160
x5 7x6 x7 29x8

24 144 48 960

120 þ  48 þ  180 −  1152 þ

− 36 þ  45 þ

48 þ  72 −  5040 þ   − 120

−  315 þ  720 þ

720 þ  240 þ  480 þ

TABLE IV.

β1

β2

β3

β4

β5

β6

β0

β0

β9

β10

β11

β12

β13

β14

β15

β16

β17

βr as linear combinations of βðλ;μÞ.

βð0;0Þ þ  2βð6;0Þ

βð1;0Þ þ  βð5;0Þ þ  βð5;1Þ

β0

βð1;1Þ þ  2βð4;1Þ þ  βð3;3Þ þ  2βð6;0Þ

βð2;0Þ þ  βð4;0Þ þ  2βð4;2Þ þ  βð5;1Þ

β5

βð2;1Þ þ  βð3;1Þ þ  2βð3;2Þ þ  βð5;0Þ þ  2βð4;2Þ þ  2βð5;1Þ

β7

2βð3;0Þ þ  2βð4;1Þ þ  2βð3;3Þ

βð2;2Þ þ  βð3;3Þ þ  2βð6;0Þ

β10

βð2;2Þ þ  2βð4;1Þ þ  βð3;3Þ

βð2;2Þ þ  2βð4;1Þ þ  2βð3;3Þ þ  2βð6;0Þ

βð3;1Þ þ  βð4;0Þ þ  βð3;2Þ þ  2βð4;2Þ þ  βð5;1Þ

β14

βð3;2Þ þ  βð5;0Þ

β16
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Z  ¼  
X X Z  

Dϵβðλ;μÞχðλ;μÞðϵuÞ;
u�V ðλ;μÞ

¼ βðλ;μÞFðVðλ;μÞ; χðλ;μÞðuÞÞ; ð7Þ
u�V ðλ;μÞ

where

Z
Dϵχðλ;μÞðϵuÞ ¼ FðVðλ;μÞ;χðλ;μÞðuÞÞ¼FðVr;χrðuÞÞ: ð8Þ

TABLE V.     γ i computed in terms of β to Oðβ5Þ with repar-
ametrization invariance.

γ1 − 18 β
2 −  0.00308642β4

γ2
1 β þ  0.00925926β3 þ  0.00174683β5

γ3 γ2

γ4 − 18 β
2 −  0.00308642β4 −  0.000364369β5

γ5 −0.000257202β4

γ6 γ5

γ7 0.00925926β3 −  0.000257202β4 þ  0.00524049β5

We have schematically applied relations in Tables I or II
at the second equality in Eq. (8), and Vðλ;μÞ ¼
 

ðλ;μÞ       Ω DϵReχðλ;μÞðϵÞ, where dðλ;μÞ     is the dimension of

the character χðλ;μÞ     as defined in [64]. The function
FðVðλ;μÞ; χðλ;μÞÞ, which is linear in χðλ;μÞ, is obtainable
through systematic albeit tedious algebraic manipulations
as explicitly demonstrated in [22]. At higher orders,
however, it is more advantageous to derive the χ0 ðuÞ
dependence of FðVr; χrðuÞÞ numerically by solving a
system of 17 linear equations, generated by u � V from 17
different conjugacy classes. The domain of Eq. (7) hence
reduces to V leading to

17

χðλ;μÞ ¼ cð
λ;μÞχ

0 : ð9Þ
r¼1

With the determined values of βi, we can now reexpo-
nentiate to obtain the effective action SðuÞ in Eq. (6).
Rewriting the effective action SðuÞ as an expansion in
terms of χ r , we obtain the following matching formula
from which the coefficients γ are fixed to the targeted
order2 in β,

17 17

expð−SðuÞÞ ¼  exp − γ iχ i ¼ βiχ i ; ð10Þ
i¼1                           i¼1

which implies

17 17

− γiχ0 ¼  log 1 þ β0χ0 −  1 ≡  log ð1 þ  zÞ: ð11Þ
i¼1                                                i¼1

Coefficients γ i are then extracted by expanding the rhs
with respect to z and matching onto the lhs in terms of
the 17 characters, the completeness of χ0 as a character
representation of V validates

17

χ0χ0 ¼ cijkχ0 ; ð12Þ
k¼1

2Both β0 and γ i are β dependent.

γ8 γ7

γ9 −0.000728738β5

γ10 −0.00308642β4

γ11 γ10

γ12 −0.00308642β4 −  0.000364369β5

γ13 γ12

γ14 −0.000257202β4 þ  0.00174683β5

γ15 γ14

γ16 0.00174683β5

γ17 γ16

with cijk being integers easily calculable from Table II by
solving a system of 17 linear equations with 17 unknowns.

Substituting Eq. (12) into Eq. (11) then yields all the
coefficients γ i as polynomials of the strong coupling β.
Explicit expressions with parametrization invariance, a
general principle for constructing effective actions which
we explain below, are summarized in Table V.

Finally, it is important to notice that the original
Wilson action SðUÞ is invariant under reparametrization
fβ; Ug ↦ fβ=c; cUg with c ≠  0 being an arbitrary con-
stant. This property, which we call reparametrization
invariance, is no longer present when the character
expansion is truncated at finite orders. We explicitly
reintroduce it to remove finite order terms in the effective
action SðuÞ that are destined to sum up to zero. This not
only gives us a much simpler expression for the effective
action but also helps reduce the computational cost in
lattice simulations and should improve agreement with
the SUð3Þ action.

The effective action we have derived from the character
expansion in terms of the γ i in Table V can be compared to
the group decimated action, SGD , defined by the couplings
in Table III of [22]. SG D  was only calculated to Oðβ3Þ and
thus the scaling behavior for certain χ r are unknown. In
contrast, using the character expansion we can determine
the leading power of β for all χ0 .

Between the two schemes, there are different β depend-
ences. In particular, χ0 in the character expansion contains
only odd powers of β while SG D  generates all new terms at
all orders. When comparing the two ad hoc modified V
actions which individually added χ0 [65] and χ0 [20,62],
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the group decimation procedure suggested no preference—
they both are generated at Oðβ2Þ. Within the character
expansion, only χ0      appears at Oðβ2Þ. χ0      only arises
at Oðβ4Þ.

IV. NUMERICAL RESULTS

In order to gauge the effectiveness of our approxima-
tions, the effective V action induced by character expansion
was simulated at each order in β. For these computations
102 configurations separated by 102 sweeps were collected
on a 44 lattice. The average energy per plaquette hE i
versus β is plotted in Fig. 1.

If the effective action behaved as the continuous group
action, hE i  would be observed to be monotonic in β and be
gapless. Note that with the truncation in βn and imposing
the reparametrization invariance condition, the connection
between the Wilson action β and the β used in the V
simulations is not linear. For all orders in the character
expansion, we find that a gap—corresponding to entering
the frozen phase—exists. This is in contrast to the group
decimation approximations of [22] where higher orders
never entered the frozen phase. We observe though that,
when including Oðβ2Þ or higher terms, instead of just
entering the frozen phase as in the trajectories of a, b, c in
Fig. 2, these trajectories appear to experience a large drop
in hE0i and then rise again and asymptote to a fixed value.
We interpret this as the character expansion approximation
producing trajectories of the form d in Fig. 2. At suffi-
ciently high order, or with resummation, the trajectory
should change to follow e, but clearly a fifth order is
insufficient for this. The convergence to the continuous
group results is slow and alternating with βn. Despite this,
higher-order effective action seems to correspond to a wider
range of hE0i being accessible. We take hE0i ¼  hE0ðaÞi to
be a simplistic proxy for the obtainable lattice spacing in a

FIG. 1.     Average energy per plaquette, hE0 i ¼  1 −  RehTrupi=3,
vs β on a 44 lattice for V action with corrections of: (Brown
square) Oðβ1Þ, (Blue circle) Oðβ2Þ, (Yellow triangle) Oðβ3Þ,
(Green inverted triangle) Oðβ4Þ, and Pink rhombus Oðβ5Þ. The
black line is the SUð3Þ result.

FIG. 2. Pictorial examples of possible trajectories that could
manifest in simulation in a 2D plane labeled with some
projected couplings fβ0; β1g. In the unfrozen phase, the lines
of constant lattice spacing are represented by the 45° gray lines
and the color gradient. (a) crosses into the frozen phase at larger
lattice spacing compared to (b) which is the Oðβ1Þ result which
replaces SUð3Þ by V. (c) also enters the frozen phase, but at a
smaller a—thus improving the approximation; (d) describes the
behavior observed in Fig. 1 where the trajectory enters and
leaves the frozen phase. The curve (e) remains in the unfrozen
phase forever, and asymptotes to a finite a, e.g. the ad hoc
trajectory of [20]. The final trajectory (f ) where the trajectory
diverges from the frozen phase has been observed in the group
space decimation method [22].

discrete group action. While this is not a definitive scale
setting, it serves as a first test that without success no
further ones should be made. If interpreted this way,
hE0i ¼  0 corresponds to the frozen phase and should be
avoided. We observe that while all actions are bounded by
hE0i � ½0;1, the values within this range that are unob-
tainable shrink as higher βn are included. For the Oðβ5Þ
action, it was found to be possible to obtain 0.1 ≤
hE0i ≤  0.5. These results are promising in that they naively
suggest that the action might allow for smaller lattice
spacing than the unmodified one—including physics
within the scaling regime although scale setting and other
observables would be necessary to prove this.

It should be noted that the behavior observed by this
expansion is qualitatively different from that of the group
decimation procedure of [22]. In that work, the effective
actions obtained at various orders of β were found to lack
the first-order phase-transition behavior of a discrete group,
but the range of hE i  was limited to much larger values of
0.5–1 in the small β region.

V. CONCLUSION

In this work, we used the character expansion to develop
a systematic method for improving lattice actions that
replace continuous gauge group SUð3Þ by its discrete
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subgroup V . Moreover, this method can be generalized to
any continuous gauge group SUðNÞ. We also spell out a
new principle called reparametrization invariance as a
guideline for constructing effective actions, allowing to
reduce the cost of computation and match the original
action more closely at the same time. This is the ongoing
effort toward developing efficient digitization schemes on
quantum computers.

We computed to Oðβ5Þ for the single-plaquette V action
as an approximation of the Wilson action of SUð3Þ. These
higher-order terms suggest a different scaling with β
compared to previous expansions based on group decima-
tion [22] which leads to qualitatively different behavior
along the trajectories predicted. While neither method is
sufficient to give a monotonic trajectory into the scaling
regime, new insight into the relative contribution of new
representations into the action have been gained. The
higher-order [Oðβ2Þ] result in this work does not take into
account the contribution of quantum fluctuations around V
elements. So as expected it deviates from the SUð3Þ result
with a hard truncation in the character expansion. It would
be beneficial to include the quantum fluctuation through
Table I in future work to achieve better approximations.

Moreover, while the group decimation procedure was
observed to suggest the necessity of introducing two
characters at Oðβ2Þ, the character expansion only requires
the adjoint character to be present.

The most immediate next steps are to compute more
Euclidean observables (i.e. Wilson flow parameter and
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