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A B S T R A C T   

Solar-induced chlorophyll 昀氀uorescence (SIF) is a rapidly advancing front in modeling global terrestrial gross 
primary production (GPP). Canopy total SIF emissions (SIFtotal) are mechanistically linked to the plant photo-
synthesis, and can be estimated from satellite observed SIF (SIFobs) through radiative transfer modeling. How-
ever, the current satellite SIFobs and thus SIFtotal are available only at coarse spatial resolutions from several 
kilometers to tens of kilometers, inhibiting the application at 昀椀ne spatial scales. Here, we proposed an algorithm 
to generate both global high-resolution SIFtotal (HSIFtotal) and high-resolution SIFobs (HSIFobs) at 1 km from low- 
resolution SIFobs (LSIFobs) from the TROPOspheric Monitoring Instrument (TROPOMI), which has a spatial 
resolution at nadir of 3.5 km by 5.6–7 km. Our statistical method is based on the law of energy conservation and 
uses satellite derived fraction of absorbed photosynthetically active radiation, 昀氀uorescence ef昀椀ciency, and the 
escape probability of 昀氀uorescence. We evaluated the accuracy of our HSIFtotal using the Orbiting Carbon 
Observatory-2 SIF (R2 = 0.78). We found that the spatial resolution had clear effects on the relationship between 
HSIFtotal and GPP. We also compared HSIFtotal to 8-day averaged tower GPP from 135 昀氀ux sites and found that 
they were better correlated when HSIFtotal was averaged over a 1-km radius around the tower than when 
averaged over a larger radius. Our study provided a unique high-resolution HSIFtotal product, which will advance 
the estimation of GPP by extrapolating site-level relationships to the global scale.   

1. Introduction 

Satellite solar-induced chlorophyll 昀氀uorescence (SIF) can be a proxy 
of terrestrial gross primary productivity (GPP) from regional to global 
scales at coarser spatiotemporal scales (Frankenberg et al., 2011; Joiner 
et al., 2011; Guanter et al., 2012; Doughty et al., 2019; Magney et al., 
2020; Porcar-Castell et al., 2021). In recent decades, SIF has been suc-
cessfully retrieved from multiple satellite sensors, including the Green-
house Gases Observing SATellite (GOSAT) (Frankenberg et al., 2011), 
Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et al., 2011), 
Orbiting Carbon Observatory-2 (OCO-2) (Sun et al., 2018), TROPO-
spheric Monitoring Instrument (TROPOMI) (Köhler et al., 2018; Köhler 
et al., 2020), the Chinese Carbon Dioxide Observation Satellite Mission 
(TanSat) (Du et al., 2018), and Orbiting Carbon Observatory-3 (OCO-3) 

(Taylor et al., 2020; Doughty et al., 2022). These platforms have opened 
new avenues for mapping SIF and modeling GPP globally. 

Satellite SIF has been used to estimate GPP using linear SIF-GPP 
relationship at the site scale, which is commonly calibrated with satel-
lite SIF and 昀氀ux tower GPP (Li and Xiao, 2019b; Zhang et al., 2020a). 
However, satellite SIF retrievals usually have coarse footprints (e.g., 
GOME-2 is 40 km and GOSAT is 10.5 km diameter), which are sub-
stantially larger than eddy 昀氀ux tower footprint (~0.3 km to 1 km 
depending on site characteristics and environmental conditions) (Chu 
et al., 2021). Although OCO-2/3 SIF provides a 昀椀ner footprint (1.3 km ×
2.25 km) that is more comparable to the eddy covariance (EC) tower 
footprint, spatial aggregation is needed to reduce the uncertainty of 
single SIF retrievals before it can be compared with the EC measure-
ments (Sun et al., 2018; Yu et al., 2019; Doughty et al., 2022). 
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When building SIF-GPP relationships, researchers have tried multi-
ple radii that ranged from 2 km to 225 km around the 昀氀ux sites (Verma 
et al., 2017; Wood et al., 2017; Li et al., 2018). This approach is feasible 
for 昀氀ux sites with large footprints and/or with homogeneous vegetation 
cover. However, most EC 昀氀ux measurements are representative of only a 
relatively small area with a footprint of approximately 0.5 km - 1 km 
(Duveiller and Cescatti, 2016), and Chu et al. (2021) reported that only a 
few eddy-covariance sites are in a truly homogeneous landscape. 
Therefore, the spatial mismatch between eddy tower GPP and satellite 
SIF could lead to biases in SIF-GPP relationships, which propagate into 
the GPP estimates. 

The mismatch issue could be partially addressed by using down-
scaled SIF products with higher spatial resolutions, such as SIF* 
(Duveiller and Cescatti, 2016; Duveiller et al., 2020), CSIF (Zhang et al., 
2018a), RSIF (Gentine and Alemohammad, 2018), GOSIF (Li and Xiao, 
2019a), SIFoco2_005 (Yu et al., 2019), SIF005 (Wen et al., 2020), DSIF (Ma 
et al., 2022), SDSIF (Hu et al., 2022), and SIFnet (Gensheimer et al., 
2022), most of which predict SIF at 昀椀ner spatial resolution using Mod-
erate Resolution Imaging Spectroradiometer (MODIS) surface re昀氀ec-
tance, auxiliary data, and empirical or semiempirical statistical models. 
However, except for SIFnet, these products are generated at a spatial 
resolution of 0.05ç, which is still much larger than EC footprints. In 
addition, these products may miss information of 昀氀uorescence ef昀椀ciency 
(i.e., the fraction of absorbed radiation photons that are reemitted as SIF 
photons). The to-be-launched Fluorescence Explorer (FLEX) satellite 
from the European Space Agency will provide SIF at ~300 m spatial 
resolution (Drusch et al., 2016), which is comparable to the footprint of 
昀氀ux sites, but it will have a long revisit cycle of 27 days. 

The varying escape probability of SIF from different canopy struc-
tures (Liu et al., 2020; Zhang et al., 2020a) and sun-target-view geom-
etries (Zhang et al., 2018b; Zhang et al., 2020b) also affect retrieved SIF 
values and hinders the accurate estimation of GPP using SIF observed by 
sensors (SIFobs). For this reason, several researchers have proposed 
estimating the total canopy SIF emission (SIFtotal) at the leaf level (Zeng 
et al., 2019; Zhang et al., 2019; Zhang et al., 2020a) or photosystem level 
(Liu et al., 2019; Liu et al., 2020; Zhang et al., 2021) to reduce the 
angular and canopy structural effects on SIFobs. Many researchers have 
reported that SIFtotal showed better relationships with GPP than SIFobs 
(Zhang et al., 2019; Lu et al., 2020; Liu et al., 2022). Moreover, after 
mitigating the effects of the escape probability on SIFobs by calculating 
SIFtotal, it is possible to establish a nearly universal model for SIFtotal and 
GPP across biomes, at least for C3 plants (Zhang et al., 2020a). 

Since the high-resolution (such as 1 km) satellite SIFtotal (HSIFtotal) is 
not currently available, a new algorithm is needed to downscale the 
current low-resolution satellite SIFobs (LSIFobs) to HSIFtotal. Once HSIF-
total is estimated, the effects of spatial mismatch in the footprint between 
SIF and GPP can be investigated by comparing in situ GPP and HSIFtotal 
averaged from different radii around the 昀氀ux site and then analyzing the 
effects of the search radius (or spatial mismatch in footprint) on the 
relationship between GPP and HSIFtotal. Therefore, the main objective of 
this study was to 昀椀ll the knowledge gap in understanding the SIF-GPP 
relationship by mitigating the effects due to spatial mismatch, canopy 
structure, and directionality of SIF. 

2. Materials and methods 

2.1. TROPOMI and OCO-2 SIF data 

Two spaceborne (TROPOMI and OCO-2) SIF products were used in 
this study. TROPOMI is an imaging spectrometer onboard the Sentinel-5 
Precursor satellite launched on 13 October 2017, co-funded by ESA and 
the Netherlands. TROPOMI provides spectral measurements with a 
swath of approximately 2600 km and a spatial resolution at nadir of 3.5 
km × 7 km before August 6th, 2019, and 5.6 km × 3.5 km after August 
6th, 2019. TROPOMI SIF is retrieved at the spectral ranges of 735–758 
nm and 743–758 nm (Guanter et al., 2021). All SIF products were 

normalized to 740 nm using a reference 昀氀uorescence spectrum. TRO-
POMI SIF using the spectral range of 743–758 nm was used in this study. 
The OCO-2 SIF Lite product (v11r) provides a nominal spatial resolution 
of 1.3 km × 2.25 km (denoted as footprint) at nadir, with eight cross- 
track footprints together covering a maximum ~10 km-wide full 
swath (Frankenberg et al., 2014; Sun et al., 2018; Doughty et al., 2022). 
OCO-2 SIF is originally retrieved at 757 nm and 771 nm, but the OCO-2 
SIF products also provide the SIF normalized at 740 nm, which we used. 
For TROPOMI SIF, observations with cloud fractions <0.2 were used 
(Zhang et al., 2019). For OCO-2 SIF, observations with quality 昀氀ags of 
0 (best quality) and 1 (good quality) were used. 

2.2. Spatial downscaling framework for HSIFtotal 

The overall strategy of downscaling area-based SIF is based on the 
law of energy conservation, describing that the observed SIF at a low 
spatial resolution (LSIFobs) is the arithmetic mean of high-resolution 
SIFobs for each 0.0083ç × 0.0083ç (denoted as 1 km × 1 km after-
wards) subpixel i (HSIFi

obs): 

LSIFobs =
3n

i=1
HSIFi

obs

/

n (1)  

where n is the number of HSIFobs in a footprint of LSIFobs. Note that the 
superscript i represents the 1 km × 1 km subpixel in a single footprint of 
LSIFobs or a 0.2ç grid throughout the manuscript. The application of the 
law of energy conservation in this way is justi昀椀ed because SIF is energy 
that reaches the sensor. Using this concept, LSIFobs can be partitioned 
into several HSIFobs 1 km grid cells. As shown in Fig. 1A, a single 
TROPOMI LSIFobs footprint covers several 1 km × 1 km subpixels 
(shown as the smallest boxes). Due to the high atmospheric trans-
mittance in the SIF retrieval window of 743–758 nm (Guanter et al., 
2021), the atmospheric effects (including absorption and scattering) 
under clear-sky conditions was negligible. Therefore, the law of energy 
conservation is still applicable between top-of-canopy emission and 
observation at the satellite sensor. 

To better explain the downscaling process, we 昀椀rst introduce the 
light use ef昀椀ciency model for SIF (Guanter et al., 2014): 
SIFtotal = PAR×FPARchl ×ΦF (2)  

SIFobs = SIFtotal × fPC (3)  

where PAR is the 昀氀ux of photosynthetically active radiation, FPARchl is 
the fraction of incident PAR irradiance absorbed by chlorophyll, ΦF is 
the 昀氀uorescence ef昀椀ciency (i.e., the fraction of absorbed PAR photons 
that are reemitted as SIF photons), and fPC is the escape probability of 
SIF photons from photosystem to canopy. Based on Eq. (3), the different 
magnitudes between SIFobs and SIFtotal were reasonable. Applying the 
light use ef昀椀ciency model for SIF to the subpixel, we can obtain: 

HSIFi
total

3n

i=1
HSIFi

total × f i
PC

/

n
=

PARi × FPARi
chl × Φ

i
F

3n

i=1

(

PARi × FPARi
chl × Φ

i
F × f i

PC

)/

n
(4) 

Assuming PARi has negligible spatial variation at a single pixel (e.g., 
5.6 × 3.5 km2) or a small region (e.g., 0.2ç × 0.2ç grid) at the overpass 
time of the satellite on clear-sky days, PARi in the right term of Eq. (4) 
can cancel out. Therefore, HSIFi

total is obtained by combining Eqs. (1)–(4) 
as follows: 

HSIFi
total = LSIFobs ×

FPARi
chl × Φ

i
F

3n

i=1

(

FPARi
chl × Φ

i
F × f i

PC

)/

n
(5) 

Note that individual SIF soundings are shown in Fig. 1B and thus the 
spatial pattern is noisy. To reduce the noise of a single LSIFobs retrieval, 
several LSIFobs should be averaged over space and/or time (Sun et al., 
2018; Yu et al., 2019; Guanter et al., 2021; Doughty et al., 2022). We 
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aggregated at least six TROPOMI LSIFobs into a 0.2ç grid for each day (e. 
g., 12 pixels in Fig. 1B), and then the averaged LSIFobs in each 0.2ç grid 
was used in the right term of Eq. (5) to obtain the 1 km subpixel HSIFtotal 
(Fig. 1C). The spatial pattern of HSIFtotal was consistent with the land 
cover, with high values for crops (Fig. 1D). The value of six as the 
threshold was consistent with previous studies (Zhang et al., 2018a; Li 
and Xiao, 2019a). The calculations of FPARchl, fPC, and ΦF are presented 
in Section 2.3. Similarly, HSIFobs can be also estimated as the product of 
HSIFtotal and fPC. 

2.3. Calculations of FPARchl, fPC, and ΦF 

Several satellite FPAR products are available (such as MODIS FPAR 
and MISR FPAR), but most of them represent the fraction of absorbed 
PAR by the whole canopy rather than chlorophyll alone. Following a 
recent study (Zhang et al., 2020d), we adopted Sentinel-3 OLCI FPAR 
data as FPARchl. More details about OLCI FPAR can refer to Gobron et al. 
(2022). 

Many studies have established a link between re昀氀ectance and escape 
probability of 昀氀uorescence (Yang and van der Tol, 2018; Liu et al., 2019; 
Zeng et al., 2019; Liu et al., 2020; Zhang et al., 2020a; Zhang et al., 
2020b). Here, the escape probability of 昀氀uorescence (fPC) was calculated 
as follows: 

fPC =
NIRV

π × i0 × Kλ

(6)  

where NIRV is the near infrared re昀氀ectance of vegetation (Badgley et al., 
2017; Badgley et al., 2019), which is calculated with the re昀氀ectance at 
near-infrared (NIR) and red (R) bands: 

NIRV =

(

NIR − R

NIR + R

)

×NIR (7) 

An identical sun-view geometry between SIF and re昀氀ectance is a 
mandatory condition for calculating fPC (Yang and van der Tol, 2018). 
Therefore, NIR and R at a 1 km grid were simulated with the RossThick- 
LiSparseR (RTLSR) BRDF model (Lucht et al., 2000) at the same sun- 
target-viewing geometry as TROPOMI SIF. The parameters used to 
drive the RTLSR model are provided by the MCD19A3 BRDF/albedo 
product with a spatial resolution of 0.0083ç × 0.0083ç (close to 1 × 1 
km2) (Lyapustin et al., 2018). The canopy interception (i0) was esti-
mated with the G-function, leaf area index (LAI), clumping index (CI), 
and solar zenith angle (SZA) as below: 
i0 = 1− exp(−G(SZA)× LAI ×CI/cos(SZA) ) (8)  

G(SZA) = ϕ1 +ϕ2 × cos(SZA) (9)  

ϕ1 = 0.5− 0.663χL − 0.33χL
2 (10)  

ϕ2 = 0.877(1− 2ϕ1) (11)  

where the G-function is dependent on SZA and χL, which represents the 
departure of leaf angles from a random distribution. LAI data were ob-
tained from MCD15A2H products (Myneni et al., 2015). CI data were 
obtained from (He et al., 2012). Kλ is the ratio of leaf albedo to the 
escape probability of 昀氀uorescence from the photosystem to the leaf 
surface. Following Zhang et al. (2021), χL is assigned biome-speci昀椀c 
values (Table A1 in the appendix), and Kλ is set as 1.2 for far-red SIF. 
The uncertainty analysis on SIFtotal can be found in a previous study 
(Zhang et al., 2021). Far-red SIFtotal showed the improved relationship 
with GPP compared to SIFobs when uncertainty levels for i0 and NIRV 
were <20% (Zhang et al., 2021). For example, the uncertainty level of i0 
derived from MODIS LAI was ~17% (Zhang et al., 2021). 

The 昀氀uorescence correction vegetation index (FCVI) proposed by 
Yang et al. (2020) was used to calculate ΦF as follows: 

ΦF =
π × SIFobs

PAR × FCVI
(12)  

FCVI = NIR−VIS (13)  

VIS = 0.331R+ 0.424B+ 0.246G (14)  

where VIS is the broadband visible re昀氀ectance over the 400–700 nm 
range, which was calculated as the weighted sum of re昀氀ectance at red 
(R), green (G), and blue (B) bands. The weights for these three bands 
were obtained from Liang (2001). Like NIR and R, the re昀氀ectance at the 
blue and green bands was also simulated with the RTLSR BRDF model to 
maintain identical sun-view geometry between SIF and FCVI. PAR was 
obtained from the solar shortwave radiation provided by ERA5 hourly 
data, using a conversion factor of 0.46 (Ryu et al., 2018). Following 
Yang et al. (2020), we did not consider grid cells with a FCVI <0.18. 
When estimating HSIFtotal using Eq. (5), high-resolution ΦF was 
required. We 昀椀rst obtained the monthly-averaged ΦF at the spatial res-
olution of 0.2ç and then averaged all 0.2ç ΦF for each vegetation type in 
a 10ç × 10ç moving window. Finally, the vegetation-speci昀椀c ΦF was 
used to obtain ΦF at 1 km spatial resolution within the 10ç × 10ç moving 
window. The vegetation type data were from MCD12Q1 vegetation type 
data under the International Geosphere-Biosphere Programme (IGBP) 
classi昀椀cation system. Following Frankenberg et al. (2011), some vege-
tation types were combined: evergreen needleleaf forest and deciduous 

Fig. 1. A schematic of the downscaling framework: (A) a single TROPOMI LSIFobs footprint, (B) raw TROPOMI LSIFobs in a 0.2ç grid, and (C) the spatially downscaled 
high resolution SIFtotal (HSIFtotal) in a 0.2ç grid using Eq. (5). (D) Land cover from MCD12Q1. The smallest boxes represent the 1-km grid cells. The mismatch in 
magnitudes of SIFobs and SIFtotal was attributed to their different de昀椀nitions. 
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needleleaf forest as needleleaf forest (NF); open and closed shrubland as 
shrubland (SHR), woody savannas and savannas (SAV) as SAV; crop-
lands (CRO) and cropland/natural vegetation mosaics as CRO. The 
feasibility of the downscaling framework was 昀椀rst evaluated using a 
synthetic data based on the TROPOMI SIF (see Text A1 in the Appendix). 
The use of vegetation type-adjusted ΦF had a small reduction in the 
accuracy of HSIFtotal. 

2.4. Evaluation of HSIFtotal 

Global HSIFtotal at 1 km was derived from TROPOMI SIFobs and the 
estimate of the true HSIFtotal was evaluated using OCO-2 SIF due to the 
high spatial resolution of OCO-2. Although the footprint of OCO-2 SIF is 
~1.25 km × 2.25 km, several adjacent retrievals should be averaged to 
reduce the retrieval uncertainty (Frankenberg et al., 2014; Sun et al., 
2018; Doughty et al., 2022), thus reducing the spatial resolution. 
Therefore, both HSIFtotal and OCO-2 SIFtotal were aggregated to 0.05ç

grid cells and then compared to each other. The 0.05ç grid cells with at 
least six OCO-2 observations were used for comparison. OCO-2 SIFtotal 
was calculated from OCO-2 SIFobs as follows: 

SIFtotal =
SIFobs

fPC

(15)  

where fPC was derived using Eq. (5), but the sun-view geometry infor-
mation was from OCO-2 SIF itself. SIFobs is sensitive to the sun-target- 
viewing geometry, so comparisons of SIF from OCO-2 and TROPOMI 
are most appropriate when the sun-sensor geometries are most similar 
(Köhler et al., 2018; Zhang et al., 2018b; Zhang and Zhang, 2023). 
Considering that both OCO-2 SIFtotal and HSIFtotal were expected to be 
insensitive to the angular effects of SIF (Liu et al., 2020; Zhang et al., 
2020b), they can be directly compared with each other by converting 
the instantaneous 昀氀uorescence to daily averages following the method 
of Frankenberg et al. (2011). Using this method can reduce the incon-
sistency of the local overpass time (or solar irradiance) between OCO-2 
SIF and TROPOMI SIF. Following Zhang et al. (2018b), we compared the 
angular dependence of OCO-2 SIFobs and SIFtotal in the target mode 
around the FI-Hyy site. The angular dependence of SIFtotal was clearly 
smaller than that of SIFobs as indicated by the smaller coef昀椀cient of 
variation (CV = 0.08 vs 0.2, Fig. 2). 

2.5. Flux tower GPP 

Eddy covariance sites provide a direct measurement of the net 
ecosystem exchange of carbon dioxide (NEE) at half-hourly or hourly 
time steps, which is further partitioned into GPP and total ecosystem 

respiration based on the assumptions of the temperature dependence of 
respiration (Reichstein et al., 2005). The resulting half-hour GPP data 
were aggregated into 8-day GPP, which was compared to 8-day aver-
aged HSIFtotal. Half-hour GPP was not used because the instantaneous 
GPP was affected by measurement noise (Bodesheim et al., 2018). Since 
C4 crops have higher light use ef昀椀ciency than C3 crops, the relationships 
between SIF and GPP were different from C3 and C4 crops. Therefore, we 
did not consider sites covered by C4 crops. 

In total, we used 135 sites from AmeriFlux, OzFlux, and European 
Flux after checking the data availability during 2018–2020. Site infor-
mation is listed in Table A2 in the Appendix. We assessed the spatial 
mismatch effects on SIF-GPP relationships by comparing the relation-
ships between tower GPP and HSIFtotal averaged over a different radius 
(from 1 km to 20 km with the interval of 1 km) around the tower. Linear 
models with or without an intercept have been used to link GPP and SIF 
(Sun et al., 2017; Zhang et al., 2020a). Therefore, these two types of 
linear models were used to link GPP and HSIFtotal in this study. 

3. Results 

In this section, we 昀椀rst showed the spatial and temporal patterns of 
ΦF, which were related to the plant physiology. By considering the 
spatiotemporal variations in ΦF, we generated the global HSIFtotal with a 
high resolution of 1 km and evaluated its accuracy using OCO-2 SIF. 
Next, we compared the relationships of tower GPP with HSIFtotal and 
LSIFobs. 

3.1. Spatial and temporal patterns of ΦF 

The spatial distribution of the ΦF averaged over 2018 to 2020 and 
their seasonal variation (featured by the coef昀椀cient of variation, CV) is 
presented in Fig. 3. Clear spatial variations were shown across the globe, 
with high values being commonly observed for forest and crop and low 
values for shrub and grass. The white regions over land area indicated 
low vegetation cover in the arid and semiarid areas, where ΦF cannot be 
well estimated with the FCVI-based approach (Yang et al., 2020). The 
seasonality of ΦF also exhibited clear spatial variations. For example, the 
low-latitude tropical forest showed a weak seasonality, while northern 
Europe has a strong seasonality (Fig. 3B). Fig. 4 shows the seasonal 
variations of ΦF for eight vegetation types in the Northern Hemisphere. 
SHR, SAV, GRA and CRO exhibited larger standard deviations of the ΦF 
compared to forests (NF, EBF, DBF, and MF). These results indicated that 
there are stronger spatial heterogeneities in ΦF for non-forests than 
forests. In addition, the seasonal variations of ΦF were generally higher 
for DBF, MF, and GRA than for other vegetation types. The peak ΦF 
commonly occurred during the peak growing season for DBF, MF and 

Fig. 2. The angular dependence of (A) SIFobs and (B) SIFtotal at the FI-Hyy site. Negative and positive viewing zenith angles respond to backward and forward 
directions, respectively. The data were obtained from OCO-2 SIF in the target mode on 1st July 2017. CV = coef昀椀cient of variation. 
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Fig. 3. The spatial distribution of 昀氀uorescence ef昀椀ciency (ΦF) at a spatial resolution of 0.2ç averaged over 2018–2020 using Eq. (11) and their seasonal variations 
featured by the coef昀椀cient of variation (CV). The white region over land area indicated low vegetation cover in the arid and semiarid areas, where ΦF cannot be well 
estimated with the FCVI-based approach. 

Fig. 4. Seasonal variations in 昀氀uorescence ef昀椀ciency (ΦF) for eight vegetation types in the Northern Hemisphere. The shaded region represents ± one standard 
deviation. CRO = cropland, SHR = shrubland, DBF = deciduous broadleaf forest, EBF = evergreen broadleaf forest, NF = needleleaf forest, GRA = grass, MF = mixed 
forest, OSH = open shrubland, and SAV = savanna. 
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GRA. 

3.2. Evaluation of HSIFtotal 

The reliability of the global HSIFtotal was evaluated using OCO-2 SIF. 
The coef昀椀cient of determination (R2) for OCO-2 SIFtotal and HSIFtotal was 
0.78, and the root mean squared error (RMSE) was 1.33 mW/m2/nm 
(Fig. 5A). We further compared R2 and RMSE across different vegetation 
types and found that our HSIFtotal exhibited R2 > 0.6 for most vegetation 
types (Fig. 5B). The R2 between OCO-2 SIFtotal and HSIFtotal was the 
highest for DBF (R2 > 0.8), followed by MF and CRO. The lowest R2 was 
observed for EBF, mainly arising from its low seasonality in photosyn-
thesis and more clouds in tropics that reduced the SIF quality. The RMSE 
was <1.87 mW/m2/nm for all vegetation types (Fig. 5C). Although R2 

was clearly lower for EBF than for MF, EBF showed comparable RMSE 
with MF. Overall, these comparisons between HSIFtotal and OCO-2 SIF-
total indicate that our HSIFtotal was accurate for EBF and other vegetation 
types. 

3.3. The relationships between tower GPP and HSIFtotal 

We presented the global spatial patterns of fPC, LSIFobs and HSIFtotal 
averaged over the days 200–230 of 2018 in Fig. 6. Clearly, the fPC varied 
in space and higher values were observed in crops (such as the Corn Belt, 
a black box) and the southern boundary of Sahara Desert. In the Corn 
Belt, the fPC was higher for crops than other surrounding vegetation 
types, such as DBF and SAV (Fig. A2). The high fPC may partly determine 
the high SIFobs for crops in the Corn Belt (Fig. 6B). Compared to the 0.2ç

LSIFobs, the 1 km HSIFtotal showed more detailed spatial information. For 
example, river pixels with low SIFtotal values were observed and can be 
well separated from surrounding vegetation pixels (Fig. 6C). In addition, 
crops showed comparable or even slightly lower SIFtotal than DBF and 
SAV after correcting fPC effects. When comparing the spatial distribution 
of LSIFobs, lower values were observed in the European region (such as 
the red box) than in the Corn Belt (the black box) (Fig. 6B). This dif-
ference could be partly caused by the low fPC for needleleaf forest 
(Fig. 6A). For HSIFtotal correcting the fPC effect, comparable values were 
obtained between the European region and the Corn Belt (Fig. 6C). 

We further compared the HSIFtotal with the tower GPP and evaluated 
the effect of spatial mismatch on their relationships. For comparison, 
both linear models with and without intercept were used. The slope and 
R2 for the relationships between GPP and HSIFtotal extracted within a 
varying buffer (search radii from 1 km to 20 km surrounding individual 
towers) are shown in Fig. 7A-B. The slopes for GPP and HSIFtotal 
increased with the search radius regardless of the model with or without 
intercepts (Fig. 7A), which indicated that applying the slope at a 20 km 
search radius to upscale SIF to GPP could lead to higher GPP estimation 

than applying the slope at a 1 km search radius. Importantly, R2 for GPP 
and HSIFtotal decreased with the search radius (Fig. 7B), which indicated 
that the larger mismatch in the footprint between GPP and SIF led to the 
weakened performance of the GPP ~ HSIFtotal model. In contrast, HSI-
Fobs cannot reveal the spatial mismatch effects on GPP ~ SIF relation-
ships (Fig. A3), which could be masked by the compound canopy 
structural and angular effects on SIFobs. HSIFtotal at the smallest search 
radius (1 km) centered with EC towers had the most comparable foot-
print size with GPP. Thus, the R2 (0.70) for GPP and HSIFtotal peaked at a 
1 km searching radius (scattering density plot is shown in Fig. 7C). The 
R2 was expected to rapidly increase as the radius decreased (Fig. 7B) 
because most non-forest sites have smaller 昀氀ux footprints due to low 
tower heights <10 m (Table A2). In comparison, the relationship for 
GPP and LSIFobs averaged over a 10 km radius around the tower (R2 =
0.64, Fig. 7D) was clearly poorer than that for GPP and HSIFtotal 
(Fig. 7C). These results indicated that a higher R2 was promising under 
higher resolutions of SIF, such as FLEX SIF with a 300 m spatial reso-
lution and after the correction for canopy structure effects. 

We also explored the slope variations of regression models with and 
without intercepts among all individual sites. Regardless of whether the 
regression models had an intercept, the coef昀椀cient of variation (CV) was 
smaller for GPP ~ HSIFtotal (Fig. 8A&D) than for GPP ~ LSIFobs 
(Fig. 8B&E) and GPP ~ HSIFobs (Fig. 8C&F). In addition, the difference 
between the average R2 for individual sites and the R2 for lumped ob-
servations was rather small for GPP ~ HSIFtotal (Fig. A4), further sup-
porting the consistent GPP-HSIFtotal relationship across sites. 

We also evaluated the model performance of different SIF datasets in 
predicting GPP (R2(GPP ~ HSIFtotal), R2(GPP ~ LSIFobs) and R2(GPP ~ 
HSIFobs)) for individual sites. We found that more than half of sites had 
higher R2 for GPP ~ HSIFtotal than for GPP ~ LSIFobs (Fig. 9A). R2(GPP 
~ HSIFtotal) was also slightly higher than R2(GPP ~ HSIFobs), especially 
for these sites with low R2(GPP ~ HSIFobs) (Fig. 9B). These results 
indicated a more consistent GPP-HSIFtotal relationship across space, 
which was important for extrapolating site-level relationships to the 
global scale. 

4. Discussion 

4.1. Advantages and disadvantages of the HSIFtotal data 

Many approaches have been proposed to downscale low-resolution 
SIF to high-resolution SIF, but most of these approaches are based on 
empirical models (Gentine and Alemohammad, 2018; Zhang et al., 
2018a; Li and Xiao, 2019a; Yu et al., 2019; Wen et al., 2020; Hu et al., 
2022; Ma et al., 2022). Downscaled SIF products have used MODIS 
surface re昀氀ectance, MODIS vegetation indices, and/or auxiliary data 
(such as PAR and air temperature), and the physiological information 

Fig. 5. (A) Density plots between OCO-2 SIFtotal and HSIFtotal. R2 and RMSE represent the determination coef昀椀cient and root mean square error, respectively. (B) R2 

and (C) RMSE for OCO-2 SIFtotal and HSIFtotal for each vegetation type. CRO = cropland, SHR = shrubland, DBF = deciduous broadleaf forest, EBF = evergreen 
broadleaf forest, NF = needleleaf forest, GRA = grass, MF = mixed forest, OSH = open shrubland, and SAV = savanna. 
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may not be well retained. Also, previous approaches still generate 
directional SIFobs, which are thought to be affected by canopy structure 
(Guanter et al., 2012; Damm et al., 2015) and sun-target-viewing ge-
ometry (Zhang et al., 2018b). 

Our straightforward physically based algorithm does not require any 
statistical assumptions and can avoid the 昀椀tting error of the empirical 
model. Based on spectral invariant theory (Knyazikhin et al., 2013; Yang 
and van der Tol, 2018), we can derive SIFtotal by considering the escape 
probability of 昀氀uorescence into the downscale framework, as shown in 
Eq. (5). Meanwhile, the coarse-resolution physiological information 
from LSIFobs still exists in HSIFtotal due to the use of LSIFobs in this 
downscaling framework. 

Due to this unique feature, our HSIFtotal can be generated only during 
the period when LSIFobs is available. In other words, our downscaled 
framework cannot reconstruct a long-term historic SIF. It should also be 
pointed out that the uncertainties in the input parameters for the 
calculation of the escape probability could affect the accuracy of HSIF-
total. For example, the MODIS LAI product could suffer from saturation at 
dense canopies (Myneni et al., 2002), causing uncertainties in the 
calculation of i0. The uncertainty in the MCD19A3 BRDF product could 
also cause uncertainty in the simulated NIRV. All these aspects could 
affect the accuracy of the escape probability and hence HSIFtotal. A 
SCOPE model-based study systematically evaluated the effects of 

uncertainties in NIRV and i0 on the GPP-SIFtotal relationships and found 
that SIFtotal improved the relationship with GPP than SIFobs only when 
the uncertainties in NIRV and i0 were <20% (Zhang et al., 2021). 
Fortunately, current satellite LAI and BRDF products can improve the 
relationship between GPP and SIFobs, supporting the reliability of our 
HSIFtotal. In addition, the HSIFtotal evaluated with ground SIF measure-
ments and OCO-2 SIF also con昀椀rmed its good accuracy (Figs. 4-5). 

4.2. Advantage of GPP estimation from HSIFtotal 

The increasing number of eddy covariance towers over the past 30 
years provides direct measurements as the gold standard of carbon 昀氀uxes 
and greatly improves the research of land–atmosphere interactions 
(Baldocchi, 2014). A large number of studies have established the re-
lationships between ground GPP and satellite SIF, which are then used to 
scale SIF to GPP (Li and Xiao, 2019b; Zhang et al., 2020a; Zhang et al., 
2020c). Limited by the coarse spatial resolution of satellite SIF products, 
satellite SIF is commonly averaged over a large radius around the tower, 
such as 25 km used in Verma et al. (2017), 2–25 km in Li et al. (2018), 
10 km in Zhang et al. (2019), and 30 km in Zhang et al. (2020a). 
Recently, the footprint concept and the mismatch in footprints between 
in situ GPP and satellite observations have been recognized by several 
studies (Zhang et al., 2018a; Kong et al., 2022). For example, Zhang 

Fig. 6. The maps of averaged (A) escape probability of 昀氀uorescence (fPC), (B) LSIFobs (mW/m2/nm/sr) and (C) HSIFtotal (mW/m2/nm) over the days 200–230 of 
2018. A subregion (95çW-85çW, 35çN-45çN) is presented on the right for visualization. The magnitude mismatch between SIFobs and SIFtotal was attributed to their 
different de昀椀nitions and the escape probability effect. 
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Fig. 7. (A) Slopes and (B) coef昀椀cient of 
determination (R2) of relationships be-
tween 8-day GPP and HSIFtotal averaged 
from different search radii from all the 
sites. Both models with (y = kx + b) and 
without (y = kx) intercepts were used. 
(C) Scatter plot of GPP and HSIFtotal 
averaged from a 1 km search radius. (D) 
Scatter plot of GPP and TROPOMI LSIFobs 
averaged from a 10 km search radius. 
The error bar of slope represents the 
standard error, which was provided by 
the “昀椀tlm” function in MATLAB. For each 
search radius, only one R2 was reported, 
and the uncertainty of R2 was not 
provided.   

Fig. 8. Distributions of slopes of regression models with intercepts for GPP and (A) HSIFtotal at the 1 km search radius, (B) LSIFobs at the 10 km search radius, and (C) 
HSIFobs at the 1 km search radius. (D–F) is like (A-C) but for the regression model without intercepts. CV is the coef昀椀cient of variation. Red lines indicate the slope 
for lumped observations and blue lines indicate the average slope for all individual sites. (For interpretation of the references to colour in this 昀椀gure legend, the 
reader is referred to the web version of this article.) 
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et al. (2018a) checked the homogeneity of NDVI as the growth condition 
around the 昀氀ux sites and found that only 40 out of 166 sites were 
representative of a 5 km by 5 km area. To avoid the spatial mismatch or 
land heterogeneity effects on the SIF-GPP relationship, a previous 
screening of 昀氀ux tower sites based on the homogeneity of MODIS land 
cover was also adopted by Zhang et al. (2020a). 

If ignoring the spatial mismatch in the footprint between 昀氀ux tower 
GPP and SIF, SIF-GPP relationships could be affected by the search 
radius or spatial mismatch between SIF and GPP due to land heteroge-
neity. Considering the potential of SIF for terrestrial GPP estimation and 
the global carbon cycle (Frankenberg et al., 2011; Sun et al., 2017), it is 
necessary to quantify the uncertainty in SIF-GPP models due to the 
spatial mismatch between tower GPP and satellite SIF. We demonstrate 
that the slope at the 1 km resolution is signi昀椀cantly (p < 0.05) different 
from that obtained at other search radii (Fig. 7A). The slope at the 1 km 
resolution could be closest to the “true slope” for the GPP and HSIFtotal 
models, which is also shown by the highest R2 at the 1 km resolution 
(Fig. 7B). The increasing slope with the search radius is consistent with 
previous study (Fig. S4 in Li et al. (2018)), which indicated that GPP 
could be overestimated if using the slope established at a large search 
radius (> 1 km). We demonstrated the adverse effects of the spatial 
mismatch in the footprint between GPP and SIF on their relationships, 
which can be partially mitigated by our derived 1 km HSIFtotal. 

In addition to the high spatial resolution of HSIFtotal, its insensitivity 
to canopy structure and sun-target-viewing geometry also contributed to 
its better relationship with GPP than LSIFobs. For example, HSIFtotal still 
performed better than HSIFobs at the same search radius (Fig. 7B vs 
Fig. A3). Our results are supported by previous studies that reported that 
SIFtotal performed better relationships with GPP than SIFobs (Zhang et al., 
2019; Lu et al., 2020; Liu et al., 2022). This is reasonable because the 
relationships between SIFobs and GPP are affected by the varying escape 
probability of SIF across multiple biomes with distinct canopy structures 
(Zhang et al., 2018b; Liu et al., 2022). Using HSIFtotal, it is possible to 
establish a nearly universal model for GPP estimation across biomes at 
least for C3 plants, as suggested by Zhang et al. (2020a). This is further 
demonstrated by our results based on all individual sites (Fig. 8). 
However, the CV of slopes for GPP ~ HSIFtotal is higher across sites in 
this study than across biomes in Zhang et al. (2020a). This is consistent 
with the study by Zhang et al. (2018a) who also reported a larger cross- 
site variation of the GPP ~ SIF relationship than the cross-biome vari-
ation. These variations may lead to our moderate relationships between 
GPP ~ HSIFtotal for lumped observations (Fig. 7). More accurate esti-
mation of SIFtotal (Zhang et al., 2021) and the incorporations other 

physiological information (such as photochemical re昀氀ectance index) 
(Wang et al., 2020b) and environmental information (such as CO2 
concentration) (Qiu et al., 2020) could further improve the GPP 
estimation. 

4.3. Potential applications of HSIFtotal 

The straightforward relationship between GPP and SIF has promoted 
the application of SIF in crop yield and productivity estimations 
(Guanter et al., 2014; Guan et al., 2016; Cai et al., 2019; Gao et al., 2020; 
Peng et al., 2020). However, a recent study pointed out that the coarse- 
resolution GOME-2 SIF does not perform signi昀椀cantly better than 
MODIS NDVI in predicting crop productivity (Sloat et al., 2021). This 
could be mainly caused by the contaminations from other mixed vege-
tation signals. Attributed to its higher resolution, HSIFtotal could 
outperform the original TROPOMI LSIFobs in estimating crop yield, 
which deserves further investigation. In addition, some researchers also 
assessed the European heatwave and drought on ecosystem productivity 
(Bastos et al., 2020; Wang et al., 2020a). The spatial resolution is not a 
limiting factor in these studies because climate anomalies commonly 
occur at large scales (>100 km). However, since HSIFtotal accounted for 
the canopy structural and angular effects in SIFobs, it seems that “salt- 
and-pepper” noise would be less of a concern (Fig. A5). These results 
implied that HSIFtotal might outperform LSIFobs in monitoring heatwave 
and drought, which also deserves further investigation. 

5. Conclusions 

We proposed an approach to downscale low spatial resolution LSIFobs 
to high spatial resolution HSIFtotal and HSIFobs at 1 km spatial resolution 
using the law of energy conservation and spectral invariant theory. 
Compared to LSIFobs, HSIFtotal not only captured more detailed spatial 
information but also mitigated the canopy structural and directional 
effects in SIFobs. The reliability of our downscaled framework was well 
evaluated by independent OCO-2 SIF data. Using a comprehensive 
dataset from 135 昀氀ux towers, our results revealed that the spatial 
mismatch in the footprint between GPP and HSIFtotal affected their re-
lationships. The slope for the HSIFtotal and GPP relationship decreased 
with the decreasing search radius (or conceptual footprint) of HSIFtotal. 
The best HSIFtotal-GPP model was obtained when HSIFtotal was averaged 
over a 1-km radius around the tower compared to other radii (>1 km). In 
addition, compared with LSIFobs and HSIFobs, HSIFtotal showed a more 
consistent slope with GPP across all individual sites. HSIFtotal not only 

Fig. 9. Comparison of R2(GPP ~ HSIFtotal) at the 1 km search radius with (A) R2(GPP ~ LSIFobs) at the 10 km search radius and (B) R2(GPP ~ HSIF) at the 1 km 
search radius for each site. 
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improved our understanding of spatial mismatch effects on the SIF-GPP 
relationships but also would advance SIF applications, such as crop yield 
estimation and stress monitoring. 
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Appendix A. Appendix  
Table A1 
Values of biome-speci昀椀c χL.  

Vegetation ID Description χL 

NF Needleleaf forest 0.01 
EBF Evergreen broadleaf forest 0.1 
DBF Deciduous broadleaf forest 0.25 
MF Mixed forest 0.25 
SHR Shrub 0.25 
SAV Savanna 0.25 
GRA Grass −0.3 
CRO Crop −0.3   

A.1. Text A1. Evaluation of the downscaling approach using a synthetic data 

We used TROPOMI SIFobs at 0.2ç as the high-resolution data and aggregated this TROPOMI SIFobs to 1ç. Then, we applied the downscaling process 
to the 1ç TROPOMI SIFobs and obtained the 0.2ç SIFtotal. First, the true ΦF at 0.2ç was used in the downscaling process for comparison. The downscaled 
SIFtotal and true SIFtotal at 0.2ç showed high consistency with the R2 of 0.98 (Fig. A1). Next, we also used the ΦF adjusted using vegetation types in the 
downscaling process and obtained the downscaled SIF, which still had a high consistency with the true SIF (R2 = 0.93, Fig. A1B). We agree that the use 
of vegetation type-adjusted ΦF slightly decreased the performance of this downscaling method (R2 from 0.98 to 0.93). However, the R2 was still high 
using the vegetation type-adjusted ΦF, indicating that the downscaling framework using Eq. (5) is feasible.

Fig. A1. (A) Density plots between TROPOMI SIFtotal and downscaled SIFtotal using the true ΦF based on a synthetic data. (B) Similar to (A) but using the ΦF adjusted 
using vegetation types.  
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Fig. A2. MODIS land cover in the Corn belt (95çW-85çW, 35çN-45çN).   

Table A2 
Flux sites used in this study during 2018–2020. CRO = cropland, CSH = close shrubland, DBF = deciduous broadleaf forest, EBF = evergreen broadleaf forest, ENF =
evergreen needleleaf forest, GRA = grass, MF = mixed forest, OSH = open shrubland, SAV = savanna, WET = wetland, and WSA = wood savanna.  

Site ID Latitude (ç) Longitude (ç) IGBP Tower height (m) References 
AU-ASM −22.2828 133.2493 ENF 13.7 (Cleverly et al., 2013) 
AU-Cpr −34.0027 140.5877 SAV 20.0 (Meyer et al., 2015) 
AU-Cum −33.6152 150.7236 EBF 30.0 (Beringer et al., 2016) 
AU-Das −14.1592 131.3881 SAV 23.0 (Hutley et al., 2011) 
AU-Dry −15.2588 132.3706 SAV 15.0 (Cernusak et al., 2011) 
AU-Gin −31.3764 115.7139 WSA 15.0 – 

AU-GWW −30.1913 120.6541 SAV 36.0 (Prober et al., 2012) 
AU-How −12.4952 131.1501 WSA 23.0 (Beringer et al., 2007) 
AU-Lit −13.1790 130.7945 SAV 30.0 (Beringer et al., 2016) 
AU-Lon −23.5233 144.3104 GRA 2.5 – 

AU-Rgf −32.5061 116.9668 CRO 10.0 – 

AU-Stp −17.1507 133.3502 GRA 5.0 – 

AU-TUM −35.6566 148.1517 EBF 70.0 (Leuning et al., 2005) 
AU-Ync −34.9893 146.2907 GRA 20.0 (Yee et al., 2015) 
BE-Bra 51.3076 4.5198 MF 33.0 (Janssens et al., 2001) 
BE-Lon 50.5516 4.7461 CRO 2.1 (Moureaux et al., 2006) 
BE-Vie 50.3050 5.9981 MF 51.0 (Aubinet et al., 2001) 
CA-ER1 43.6405 −80.4123 CRO 2.3 – 

CH-Cha 47.2102 8.4104 GRA 2.4 – 

CH-Dav 46.8153 9.8559 ENF 35.0 (Zielis et al., 2014) 
CH-Fru 47.1158 8.5378 GRA 2.5 (Imer et al., 2013) 
CH-Lae 47.4781 8.3650 MF 47.0 (Etzold et al., 2011) 
CZ-BK1 49.5021 18.5369 ENF 25.0 (Acosta et al., 2013) 
DE-Geb 51.1001 10.9143 CRO 3.0 (Anthoni et al., 2004) 
DE-Gri 50.9500 13.5126 GRA 3.0 (Hussain et al., 2011) 
DE-Hai 51.0792 10.4530 DBF 45.0 (Knohl et al., 2003) 
DE-Kli 50.8931 13.5224 CRO 3.5 – 

DE-Obe 50.7867 13.7213 ENF 30.0 – 

DE-RuR 50.6219 6.3041 GRA – (Post et al., 2015) 
DE-Tha 50.9626 13.5652 ENF 42.0 (Gruenwald and Bernhofer, 2007) 
DK-Sor 55.4859 11.6446 DBF 43.0 (Pilegaard and Ibrom, 2020) 
ES-Abr 38.7018 −6.7859 SAV 15.0 (Luo et al., 2018) 
ES-LM1 39.9427 −5.7787 SAV 15.0 (El-Madany et al., 2018) 
ES-LM2 39.9346 −5.7759 SAV 15.0 (El-Madany et al., 2018) 
FI-Hyy 61.8474 24.2948 ENF 27.0 (Ilvesniemi et al., 2009) 
FI-Var 67.7549 29.6100 ENF 16.6 – 

FR-Fon 48.4764 2.7801 DBF 37.0 (Delpierre et al., 2016) 
FR-Hes 48.6741 7.0647 DBF 27.0 – 

FR-LGt 47.3229 2.2838 WET 2.4 – 

FR-Pue 43.7413 3.5957 EBF 12.0 (Rambal et al., 2004) 
IL-Yat 31.3450 35.0520 ENF 19.0 – 

IT-SR2 43.7320 10.2910 ENF 24.3 (Hoshika et al., 2017) 
IT-Tor 45.8444 7.5781 GRA 2.5 (Galvagno et al., 2013) 

(continued on next page) 
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Table A2 (continued ) 
Site ID Latitude (ç) Longitude (ç) IGBP Tower height (m) References 
RU-Fy2 56.4476 32.9019 ENF 44.0 (Kurbatova et al., 2008) 
RU-Fyo 56.4615 32.9221 ENF 31.0 (Milyukova et al., 2002) 
SE-Nor 60.0865 17.4795 ENF 33.0 – 

US-ALQ 46.0308 −89.6067 WET 2.4 – 

US-ARM 36.6058 −97.4888 CRO 4.6 (Fischer et al., 2007) 
US-BRG 39.2167 −86.5406 GRA 3.0 – 

US-CS1 44.1031 −89.5379 CRO 2.5 – 

US-CS2 44.1467 −89.5002 ENF 32.0 – 

US-CS3 44.1394 −89.5727 CRO 2.5 – 

US-CS4 44.1597 −89.5475 CRO 2.5 – 

US-DFC 43.3448 −89.7117 CRO 30.0 – 

US-GLE 41.3665 −106.2399 ENF 22.7 (Frank et al., 2014) 
US-Ha1 42.5378 −72.1715 DBF 29.0 (Urbanski et al., 2007) 
US-Ha2 42.5393 −72.1779 ENF 29.0 – 

US-HB1 33.3455 −79.1957 WET 3.9 – 

US-HB2 33.3242 −79.2440 ENF 29.9 – 

US-HB3 33.3482 −79.2322 ENF 4.1 – 

US-HBK 43.9397 −71.7181 DBF 32.0 – 

US-Hn2 46.6889 −119.4641 GRA 2.5 (Missik et al., 2019) 
US-Hn3 46.6878 −119.4614 OSH 2.5 (Missik et al., 2019) 
US-Ho1 45.2041 −68.7402 ENF 31.0 – 

US-ICs 68.6058 −149.3110 WET 2.2 – 

US-KFS 39.0561 −95.1907 GRA 3.0 – 

US-Kon 39.0824 −96.5603 GRA 3.0 – 

US-KS3 28.7084 −80.7427 WET 2.9 – 

US-Los 46.0827 −89.9792 WET 10.2 (Sulman et al., 2009) 
US-Me2 44.4523 −121.5574 ENF 33.0 (Irvine et al., 2008) 
US-Me6 44.3233 −121.6078 ENF 12.0 (Ruehr et al., 2012) 
US-MMS 39.3232 −86.4131 DBF 46.0 (Dragoni et al., 2011) 
US-Mpj 34.4384 −106.2377 OSH 9.3 – 

US-MtB 32.4167 −110.7255 ENF 30.0 – 

US-NC2 35.8030 −76.6685 ENF 23.0 – 

US-NC3 35.7990 −76.6560 ENF 10.0 – 

US-NGC 64.8614 −163.7008 GRA – – 

US-NR1 40.0329 −105.5464 ENF 21.5 (Monson et al., 2002) 
US-ONA 27.3836 −81.9509 GRA 2.7 – 

US-Rls 43.1439 −116.7356 CSH 2.1 (Flerchinger et al., 2019) 
US-Rms 43.0645 −116.7486 CSH 2.1 (Flerchinger et al., 2019) 
US-Ro4 44.6781 −93.0723 GRA 2.6 – 

US-Ro5 44.6910 −93.0576 CRO 2.5 – 

US-Ro6 44.6946 −93.0578 CRO 2.3 – 

US-Rwf 43.1207 −116.7231 CSH 3.5 (Flerchinger et al., 2019) 
US-Rws 43.1675 −116.7132 OSH 2.1 (Flerchinger et al., 2019) 
US-Seg 34.3623 −106.7019 GRA 3.1 – 

US-Ses 34.3349 −106.7442 OSH 3.1 – 

US-Sne 38.0369 −121.7547 GRA 5.4 – 

US-Snf 38.0402 −121.7272 GRA 3.5 – 

US-SRG 31.7894 −110.8277 GRA 3.3 (Scott et al., 2015) 
US-SRM 31.8214 −110.8661 WSA 7.8 (Scott et al., 2009) 
US-SRS 31.8173 −110.8508 WSA 7.0 (Pierini et al., 2014) 
US-Syv 46.2420 −89.3477 MF 36.0 (Sulman et al., 2009) 
US-Ton 38.4309 −120.9660 WSA 23.5 (Ma et al., 2007) 
US-Uaf 64.8663 −147.8555 ENF 6.0 (Ueyama et al., 2014) 
US-UMd 45.5625 −84.6975 DBF 32.0 – 

US-Var 38.4133 −120.9508 GRA 2.0 (Ma et al., 2007) 
US-Vcm 35.8884 −106.5321 ENF 23.6 – 

US-Vcp 35.8624 −106.5974 ENF 23.8 – 

US-WCr 45.8059 −90.0799 DBF 29.6 (Sulman et al., 2009) 
US-Whs 31.7438 −110.0522 OSH 6.5 (Scott et al., 2015) 
US-Wjs 34.4255 −105.8615 SAV 8.0 – 

US-Wkg 31.7365 −109.9419 GRA 6.4 (Scott et al., 2010) 
US-xAB 45.7624 −122.3303 ENF 19.0 – 

US-xAE 35.4106 −99.0588 GRA 8.0 – 

US-xBL 39.0603 −78.0716 DBF 8.0 – 

US-xBN 65.1540 −147.5026 ENF 19.0 – 

US-xBR 44.0639 −71.2873 DBF 35.0 – 

US-xCL 33.4012 −97.5700 GRA 22.0 – 

US-xDC 47.1617 −99.1066 GRA 8.0 – 

US-xDL 32.5417 −87.8039 MF 42.0 – 

US-xDS 28.1250 −81.4362 CVM 8.0 – 

US-xGR 35.6890 −83.5019 DBF 45.0 – 

US-xHA 42.5369 −72.1727 DBF 39.0 – 

US-xHE 63.8757 −149.2133 OSH 9.0 – 

US-xJE 31.1948 −84.4686 ENF 42.0 – 

(continued on next page) 
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Table A2 (continued ) 
Site ID Latitude (ç) Longitude (ç) IGBP Tower height (m) References 
US-xJR 32.5907 −106.8425 OSH 8.0 – 

US-xKA 39.1104 −96.6129 GRA 8.0 – 

US-xKZ 39.1008 −96.5631 GRA 8.0 – 

US-xML 37.3783 −80.5248 DBF 29.0 – 

US-xNG 46.7697 −100.9154 GRA 8.0 – 

US-xNQ 40.1776 −112.4524 OSH 8.0 – 

US-xRM 40.2759 −105.5459 ENF 25.0 – 

US-xRN 35.9641 −84.2826 DBF 39.0 – 

US-xSE 38.8901 −76.5600 DBF 62.0 – 

US-xSL 40.4619 −103.0293 CRO 8.0 – 

US-xST 45.5089 −89.5864 DBF 22.0 – 

US-xTA 32.9505 −87.3933 ENF 35.0 – 

US-xTL 68.6611 −149.3705 WET 9.0 – 

US-xTR 45.4937 −89.5857 DBF 36.0 – 

US-xUK 39.0404 −95.1921 DBF 35.0 – 

US-xUN 46.2339 −89.5373 MF 39.0 – 

US-xWD 47.1282 −99.2414 GRA 8.0 – 

US-xWR 45.8205 −121.9519 ENF 74.0 – 

US-xYE 44.9535 −110.5391 ENF 18.0 –                

Fig. A3. Coef昀椀cient of determination (R2) of relationships between daily 8-day GPP and HSIFobs averaged from different search radii. Both models with (y = kx + b) 
and without (y = kx) intercepts were used.  
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Fig. A4. Similar to Fig. 8 but for R2.  

Fig. A5. Anomaly of (A) LSIFobs and (B) HSIFtotal over parts of Europe during the 2018 summer heatwave (June, July, August). The anomaly was calculated as the 
relative difference (%) between the values in 2018 and the averaged values from 2019 to 2021. 
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