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ARTICLE INFO ABSTRACT

Edited by Jing M. Chen Solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in modeling global terrestrial gross
primary production (GPP). Canopy total SIF emissions (SIF,) are mechanistically linked to the plant photo-
synthesis, and can be estimated from satellite observed SIF (SIFps) through radiative transfer modeling. How-

SIF ever, the current satellite SIF,ps and thus SIF., are available only at coarse spatial resolutions from several

Keywords:

I(—;Il'nph tial i kilometers to tens of kilometers, inhibiting the application at fine spatial scales. Here, we proposed an algorithm
F;:gjtpi?;t 1al resolution to generate both global high-resolution SIFota (HSIFota1) and high-resolution SIF,ps (HSIFp) at 1 km from low-

resolution SIFyps (LSIFops) from the TROPOspheric Monitoring Instrument (TROPOMI), which has a spatial
resolution at nadir of 3.5 km by 5.6-7 km. Our statistical method is based on the law of energy conservation and
uses satellite derived fraction of absorbed photosynthetically active radiation, fluorescence efficiency, and the
escape probability of fluorescence. We evaluated the accuracy of our HSIFy, using the Orbiting Carbon
Observatory-2 SIF (R? = 0.78). We found that the spatial resolution had clear effects on the relationship between
HSIFota1 and GPP. We also compared HSIF4, to 8-day averaged tower GPP from 135 flux sites and found that
they were better correlated when HSIFy, was averaged over a 1-km radius around the tower than when
averaged over a larger radius. Our study provided a unique high-resolution HSIF, product, which will advance
the estimation of GPP by extrapolating site-level relationships to the global scale.

Spatial mismatch

1. Introduction

Satellite solar-induced chlorophyll fluorescence (SIF) can be a proxy
of terrestrial gross primary productivity (GPP) from regional to global
scales at coarser spatiotemporal scales (Frankenberg et al., 2011; Joiner
et al., 2011; Guanter et al., 2012; Doughty et al., 2019; Magney et al.,
2020; Porcar-Castell et al., 2021). In recent decades, SIF has been suc-
cessfully retrieved from multiple satellite sensors, including the Green-
house Gases Observing SATellite (GOSAT) (Frankenberg et al., 2011),
Global Ozone Monitoring Experiment-2 (GOME-2) (Joiner et al., 2011),
Orbiting Carbon Observatory-2 (OCO-2) (Sun et al., 2018), TROPO-
spheric Monitoring Instrument (TROPOMI) (Kohler et al., 2018; Kohler
et al., 2020), the Chinese Carbon Dioxide Observation Satellite Mission
(TanSat) (Du et al., 2018), and Orbiting Carbon Observatory-3 (OCO-3)

(Taylor et al., 2020; Doughty et al., 2022). These platforms have opened
new avenues for mapping SIF and modeling GPP globally.

Satellite SIF has been used to estimate GPP using linear SIF-GPP
relationship at the site scale, which is commonly calibrated with satel-
lite SIF and flux tower GPP (Li and Xiao, 2019b; Zhang et al., 2020a).
However, satellite SIF retrievals usually have coarse footprints (e.g.,
GOME-2 is 40 km and GOSAT is 10.5 km diameter), which are sub-
stantially larger than eddy flux tower footprint (~0.3 km to 1 km
depending on site characteristics and environmental conditions) (Chu
etal., 2021). Although OCO-2/3 SIF provides a finer footprint (1.3 km x
2.25 km) that is more comparable to the eddy covariance (EC) tower
footprint, spatial aggregation is needed to reduce the uncertainty of
single SIF retrievals before it can be compared with the EC measure-
ments (Sun et al., 2018; Yu et al., 2019; Doughty et al., 2022).
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When building SIF-GPP relationships, researchers have tried multi-
ple radii that ranged from 2 km to 225 km around the flux sites (Verma
et al., 2017; Wood et al., 2017; Li et al., 2018). This approach is feasible
for flux sites with large footprints and/or with homogeneous vegetation
cover. However, most EC flux measurements are representative of only a
relatively small area with a footprint of approximately 0.5 km - 1 km
(Duveiller and Cescatti, 2016), and Chu et al. (2021) reported that only a
few eddy-covariance sites are in a truly homogeneous landscape.
Therefore, the spatial mismatch between eddy tower GPP and satellite
SIF could lead to biases in SIF-GPP relationships, which propagate into
the GPP estimates.

The mismatch issue could be partially addressed by using down-
scaled SIF products with higher spatial resolutions, such as SIF*
(Duveiller and Cescatti, 2016; Duveiller et al., 2020), CSIF (Zhang et al.,
2018a), RSIF (Gentine and Alemohammad, 2018), GOSIF (Li and Xiao,
2019a), SIFoco2 005 (Yu et al., 2019), SIFgos (Wen et al., 2020), DSIF (Ma
et al., 2022), SDSIF (Hu et al., 2022), and SIF,e; (Gensheimer et al.,
2022), most of which predict SIF at finer spatial resolution using Mod-
erate Resolution Imaging Spectroradiometer (MODIS) surface reflec-
tance, auxiliary data, and empirical or semiempirical statistical models.
However, except for SIFy, these products are generated at a spatial
resolution of 0.05°, which is still much larger than EC footprints. In
addition, these products may miss information of fluorescence efficiency
(i.e., the fraction of absorbed radiation photons that are reemitted as SIF
photons). The to-be-launched Fluorescence Explorer (FLEX) satellite
from the European Space Agency will provide SIF at ~300 m spatial
resolution (Drusch et al., 2016), which is comparable to the footprint of
flux sites, but it will have a long revisit cycle of 27 days.

The varying escape probability of SIF from different canopy struc-
tures (Liu et al., 2020; Zhang et al., 2020a) and sun-target-view geom-
etries (Zhang et al., 2018b; Zhang et al., 2020b) also affect retrieved SIF
values and hinders the accurate estimation of GPP using SIF observed by
sensors (SIFqps). For this reason, several researchers have proposed
estimating the total canopy SIF emission (SIF,) at the leaf level (Zeng
etal., 2019; Zhang et al., 2019; Zhang et al., 2020a) or photosystem level
(Liu et al., 2019; Liu et al., 2020; Zhang et al., 2021) to reduce the
angular and canopy structural effects on SIFyps. Many researchers have
reported that SIF., showed better relationships with GPP than SIFg
(Zhang et al., 2019; Lu et al., 2020; Liu et al., 2022). Moreover, after
mitigating the effects of the escape probability on SIF,,s by calculating
SIFotal, it is possible to establish a nearly universal model for SIFo, and
GPP across biomes, at least for C3 plants (Zhang et al., 2020a).

Since the high-resolution (such as 1 km) satellite SIFota) (HSIFtotal) is
not currently available, a new algorithm is needed to downscale the
current low-resolution satellite SIF,g (LSIFops) to HSIF o Once HSIF-
total 1S estimated, the effects of spatial mismatch in the footprint between
SIF and GPP can be investigated by comparing in situ GPP and HSIF
averaged from different radii around the flux site and then analyzing the
effects of the search radius (or spatial mismatch in footprint) on the
relationship between GPP and HSIF;,. Therefore, the main objective of
this study was to fill the knowledge gap in understanding the SIF-GPP
relationship by mitigating the effects due to spatial mismatch, canopy
structure, and directionality of SIF.

2. Materials and methods
2.1. TROPOMI and OCO-2 SIF data

Two spaceborne (TROPOMI and OCO-2) SIF products were used in
this study. TROPOMI is an imaging spectrometer onboard the Sentinel-5
Precursor satellite launched on 13 October 2017, co-funded by ESA and
the Netherlands. TROPOMI provides spectral measurements with a
swath of approximately 2600 km and a spatial resolution at nadir of 3.5
km x 7 km before August 6th, 2019, and 5.6 km x 3.5 km after August
6th, 2019. TROPOMI SIF is retrieved at the spectral ranges of 735-758
nm and 743-758 nm (Guanter et al., 2021). All SIF products were
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normalized to 740 nm using a reference fluorescence spectrum. TRO-
POMI SIF using the spectral range of 743-758 nm was used in this study.
The OCO-2 SIF Lite product (v11r) provides a nominal spatial resolution
of 1.3 km x 2.25 km (denoted as footprint) at nadir, with eight cross-
track footprints together covering a maximum ~10 km-wide full
swath (Frankenberg et al., 2014; Sun et al., 2018; Doughty et al., 2022).
OCO-2 SIF is originally retrieved at 757 nm and 771 nm, but the OCO-2
SIF products also provide the SIF normalized at 740 nm, which we used.
For TROPOMI SIF, observations with cloud fractions <0.2 were used
(Zhang et al., 2019). For OCO-2 SIF, observations with quality flags of
0 (best quality) and 1 (good quality) were used.

2.2. Spatial downscaling framework for HSIF;q

The overall strategy of downscaling area-based SIF is based on the
law of energy conservation, describing that the observed SIF at a low
spatial resolution (LSIF,;) is the arithmetic mean of high-resolution
SIF.ps for each 0.0083° x 0.0083° (denoted as 1 km x 1 km after-
wards) subpixel i (HSIF.,,):

LSIF, =Y " HSIF), / n )

where n is the number of HSIF} in a footprint of LSIFps. Note that the
superscript i represents the 1 km x 1 km subpixel in a single footprint of
LSIF,ps or a 0.2° grid throughout the manuscript. The application of the
law of energy conservation in this way is justified because SIF is energy
that reaches the sensor. Using this concept, LSIF,s can be partitioned
into several HSIFyps 1 km grid cells. As shown in Fig. 1A, a single
TROPOMI LSIFps footprint covers several 1 km x 1 km subpixels
(shown as the smallest boxes). Due to the high atmospheric trans-
mittance in the SIF retrieval window of 743-758 nm (Guanter et al.,
2021), the atmospheric effects (including absorption and scattering)
under clear-sky conditions was negligible. Therefore, the law of energy
conservation is still applicable between top-of-canopy emission and
observation at the satellite sensor.

To better explain the downscaling process, we first introduce the
light use efficiency model for SIF (Guanter et al., 2014):

SIF s = PAR X FPAR ; X ®p (2)
SIF ops = SIF torar ><f[’C (3)

where PAR is the flux of photosynthetically active radiation, FPARy; is
the fraction of incident PAR irradiance absorbed by chlorophyll, @ is
the fluorescence efficiency (i.e., the fraction of absorbed PAR photons
that are reemitted as SIF photons), and fpc is the escape probability of
SIF photons from photosystem to canopy. Based on Eq. (3), the different
magnitudes between SIF,ps and SIFi., were reasonable. Applying the
light use efficiency model for SIF to the subpixel, we can obtain:

HSIF', PAR' x FPAR!,, x @',

n i i = n i i i i (4)
SSLAHSIF, % foc/n 3L, (PAR" X FPARy, x ®p x fic) /n

Assuming PAR' has negligible spatial variation at a single pixel (e.g.,
5.6 x 3.5 kmz) or a small region (e.g., 0.2° x 0.2° grid) at the overpass
time of the satellite on clear-sky days, PAR' in the right term of Eq. (4)
can cancel out. Therefore, HSIFiDml is obtained by combining Egs. (1)-(4)
as follows:

; FPAR!,, x @,
HSIF,, = LSIF o % R Tavw
YL (FPAR, x @) X fic) /n
Note that individual SIF soundings are shown in Fig. 1B and thus the
spatial pattern is noisy. To reduce the noise of a single LSIF, retrieval,
several LSIF,ps should be averaged over space and/or time (Sun et al.,
2018; Yu et al., 2019; Guanter et al., 2021; Doughty et al., 2022). We
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(A) Single footprint of LSIFObs
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Fig. 1. A schematic of the downscaling framework: (A) a single TROPOMI LSIF s footprint, (B) raw TROPOMI LSIF,}, in a 0.2° grid, and (C) the spatially downscaled
high resolution SIFipa (HSIFio) in a 0.2° grid using Eq. (5). (D) Land cover from MCD12Q1. The smallest boxes represent the 1-km grid cells. The mismatch in

magnitudes of SIF,ps and SIF., was attributed to their different definitions.

aggregated at least six TROPOMI LSIF s into a 0.2° grid for each day (e.
g., 12 pixels in Fig. 1B), and then the averaged LSIF in each 0.2° grid
was used in the right term of Eq. (5) to obtain the 1 km subpixel HSIF
(Fig. 1C). The spatial pattern of HSIFy, was consistent with the land
cover, with high values for crops (Fig. 1D). The value of six as the
threshold was consistent with previous studies (Zhang et al., 2018a; Li
and Xiao, 2019a). The calculations of FPARy;, fpc, and ®f are presented
in Section 2.3. Similarly, HSIFps can be also estimated as the product of
HSIFota) and fpc.

2.3. Calculations of FPAR.p, fpc, and ®p

Several satellite FPAR products are available (such as MODIS FPAR
and MISR FPAR), but most of them represent the fraction of absorbed
PAR by the whole canopy rather than chlorophyll alone. Following a
recent study (Zhang et al., 2020d), we adopted Sentinel-3 OLCI FPAR
data as FPARy,. More details about OLCI FPAR can refer to Gobron et al.
(2022).

Many studies have established a link between reflectance and escape
probability of fluorescence (Yang and van der Tol, 2018; Liu et al., 2019;
Zeng et al., 2019; Liu et al., 2020; Zhang et al., 2020a; Zhang et al.,
2020Db). Here, the escape probability of fluorescence (fpc) was calculated
as follows:

_ NIR
T axiyx K,

Jec (6)

where NIRy is the near infrared reflectance of vegetation (Badgley et al.,
2017; Badgley et al., 2019), which is calculated with the reflectance at
near-infrared (NIR) and red (R) bands:

NIR — R

NIRy = (———
v (NIR+R

) X NIR )

An identical sun-view geometry between SIF and reflectance is a
mandatory condition for calculating fpc (Yang and van der Tol, 2018).
Therefore, NIR and R at a 1 km grid were simulated with the RossThick-
LiSparseR (RTLSR) BRDF model (Lucht et al., 2000) at the same sun-
target-viewing geometry as TROPOMI SIF. The parameters used to
drive the RTLSR model are provided by the MCD19A3 BRDF/albedo
product with a spatial resolution of 0.0083° x 0.0083° (close to 1 x 1
km?) (Lyapustin et al., 2018). The canopy interception (iy) was esti-
mated with the G-function, leaf area index (LAI), clumping index (CI),
and solar zenith angle (SZA) as below:

io = 1 —exp(— G(SZA) x LAI x CI/cos(SZA) ) ®)

G(SZA) = ¢, + ¢, x cos(SZA) )]
¢, =0.5-0.663y, —0.33y,” (10)
¢, = 0.877(1 —2¢,) an

where the G-function is dependent on SZA and y;, which represents the
departure of leaf angles from a random distribution. LAI data were ob-
tained from MCD15A2H products (Myneni et al., 2015). CI data were
obtained from (He et al., 2012). K, is the ratio of leaf albedo to the
escape probability of fluorescence from the photosystem to the leaf
surface. Following Zhang et al. (2021), y, is assigned biome-specific
values (Table Al in the appendix), and K; is set as 1.2 for far-red SIF.
The uncertainty analysis on SIFiy, can be found in a previous study
(Zhang et al., 2021). Far-red SIFy, showed the improved relationship
with GPP compared to SIF,,s when uncertainty levels for iy and NIRy
were <20% (Zhang et al., 2021). For example, the uncertainty level of iy
derived from MODIS LAI was ~17% (Zhang et al., 2021).

The fluorescence correction vegetation index (FCVI) proposed by
Yang et al. (2020) was used to calculate @ as follows:

x FCVI
FCVI = NIR — VIS a3)
VIS = 0.331R + 0.424B + 0.246G (14)

where VIS is the broadband visible reflectance over the 400-700 nm
range, which was calculated as the weighted sum of reflectance at red
(R), green (G), and blue (B) bands. The weights for these three bands
were obtained from Liang (2001). Like NIR and R, the reflectance at the
blue and green bands was also simulated with the RTLSR BRDF model to
maintain identical sun-view geometry between SIF and FCVI. PAR was
obtained from the solar shortwave radiation provided by ERA5 hourly
data, using a conversion factor of 0.46 (Ryu et al., 2018). Following
Yang et al. (2020), we did not consider grid cells with a FCVI <0.18.
When estimating HSIF using Eq. (5), high-resolution ®F was
required. We first obtained the monthly-averaged @ at the spatial res-
olution of 0.2° and then averaged all 0.2° @y for each vegetation type in
a 10° x 10° moving window. Finally, the vegetation-specific ®r was
used to obtain @ at 1 km spatial resolution within the 10° x 10° moving
window. The vegetation type data were from MCD12Q1 vegetation type
data under the International Geosphere-Biosphere Programme (IGBP)
classification system. Following Frankenberg et al. (2011), some vege-
tation types were combined: evergreen needleleaf forest and deciduous
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needleleaf forest as needleleaf forest (NF); open and closed shrubland as
shrubland (SHR), woody savannas and savannas (SAV) as SAV; crop-
lands (CRO) and cropland/natural vegetation mosaics as CRO. The
feasibility of the downscaling framework was first evaluated using a
synthetic data based on the TROPOMI SIF (see Text Al in the Appendix).
The use of vegetation type-adjusted ®r had a small reduction in the
accuracy of HSIF a1

2.4. Evaluation of HSIFyq

Global HSIFy,) at 1 km was derived from TROPOMI SIFp,s and the
estimate of the true HSIF, was evaluated using OCO-2 SIF due to the
high spatial resolution of OCO-2. Although the footprint of OCO-2 SIF is
~1.25 km x 2.25 km, several adjacent retrievals should be averaged to
reduce the retrieval uncertainty (Frankenberg et al., 2014; Sun et al.,
2018; Doughty et al., 2022), thus reducing the spatial resolution.
Therefore, both HSIF 4, and OCO-2 SIF;y, were aggregated to 0.05°
grid cells and then compared to each other. The 0.05° grid cells with at
least six OCO-2 observations were used for comparison. OCO-2 SIFy1
was calculated from OCO-2 SIF ;s as follows:

SIF pp5

SIF o1 = |7
PC

(15)

where fpc was derived using Eq. (5), but the sun-view geometry infor-
mation was from OCO-2 SIF itself. SIF is sensitive to the sun-target-
viewing geometry, so comparisons of SIF from OCO-2 and TROPOMI
are most appropriate when the sun-sensor geometries are most similar
(Kohler et al., 2018; Zhang et al., 2018b; Zhang and Zhang, 2023).
Considering that both OCO-2 SIFy, and HSIF,y, were expected to be
insensitive to the angular effects of SIF (Liu et al., 2020; Zhang et al.,
2020b), they can be directly compared with each other by converting
the instantaneous fluorescence to daily averages following the method
of Frankenberg et al. (2011). Using this method can reduce the incon-
sistency of the local overpass time (or solar irradiance) between OCO-2
SIF and TROPOMI SIF. Following Zhang et al. (2018b), we compared the
angular dependence of OCO-2 SIFyps and SIFi in the target mode
around the FI-Hyy site. The angular dependence of SIF, was clearly
smaller than that of SIF,,s as indicated by the smaller coefficient of
variation (CV = 0.08 vs 0.2, Fig. 2).

2.5. Flux tower GPP
Eddy covariance sites provide a direct measurement of the net

ecosystem exchange of carbon dioxide (NEE) at half-hourly or hourly
time steps, which is further partitioned into GPP and total ecosystem
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respiration based on the assumptions of the temperature dependence of
respiration (Reichstein et al., 2005). The resulting half-hour GPP data
were aggregated into 8-day GPP, which was compared to 8-day aver-
aged HSIFy. Half-hour GPP was not used because the instantaneous
GPP was affected by measurement noise (Bodesheim et al., 2018). Since
C4 crops have higher light use efficiency than C3 crops, the relationships
between SIF and GPP were different from C3 and C4 crops. Therefore, we
did not consider sites covered by Cy4 crops.

In total, we used 135 sites from AmeriFlux, OzFlux, and European
Flux after checking the data availability during 2018-2020. Site infor-
mation is listed in Table A2 in the Appendix. We assessed the spatial
mismatch effects on SIF-GPP relationships by comparing the relation-
ships between tower GPP and HSIFy, averaged over a different radius
(from 1 km to 20 km with the interval of 1 km) around the tower. Linear
models with or without an intercept have been used to link GPP and SIF
(Sun et al., 2017; Zhang et al., 2020a). Therefore, these two types of
linear models were used to link GPP and HSIF, in this study.

3. Results

In this section, we first showed the spatial and temporal patterns of
®p, which were related to the plant physiology. By considering the
spatiotemporal variations in @, we generated the global HSIF, with a
high resolution of 1 km and evaluated its accuracy using OCO-2 SIF.
Next, we compared the relationships of tower GPP with HSIFy and
LSIFps.

3.1. Spatial and temporal patterns of ®p

The spatial distribution of the ®p averaged over 2018 to 2020 and
their seasonal variation (featured by the coefficient of variation, CV) is
presented in Fig. 3. Clear spatial variations were shown across the globe,
with high values being commonly observed for forest and crop and low
values for shrub and grass. The white regions over land area indicated
low vegetation cover in the arid and semiarid areas, where @y cannot be
well estimated with the FCVI-based approach (Yang et al., 2020). The
seasonality of @ also exhibited clear spatial variations. For example, the
low-latitude tropical forest showed a weak seasonality, while northern
Europe has a strong seasonality (Fig. 3B). Fig. 4 shows the seasonal
variations of @y for eight vegetation types in the Northern Hemisphere.
SHR, SAV, GRA and CRO exhibited larger standard deviations of the ®g
compared to forests (NF, EBF, DBF, and MF). These results indicated that
there are stronger spatial heterogeneities in ®p for non-forests than
forests. In addition, the seasonal variations of ®r were generally higher
for DBF, MF, and GRA than for other vegetation types. The peak ®g
commonly occurred during the peak growing season for DBF, MF and

(B? S'mef Ccv= 0708
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e

(mW/m?*/nm)
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o
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Fig. 2. The angular dependence of (A) SIF,s and (B) SIF, at the FI-Hyy site. Negative and positive viewing zenith angles respond to backward and forward
directions, respectively. The data were obtained from OCO-2 SIF in the target mode on 1st July 2017. CV = coefficient of variation.
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0.5 ,,
CV(@,) .

Fig. 3. The spatial distribution of fluorescence efficiency (®5) at a spatial resolution of 0.2° averaged over 2018-2020 using Eq. (11) and their seasonal variations
featured by the coefficient of variation (CV). The white region over land area indicated low vegetation cover in the arid and semiarid areas, where ®y cannot be well
estimated with the FCVI-based approach.
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Fig. 4. Seasonal variations in fluorescence efficiency (®r) for eight vegetation types in the Northern Hemisphere. The shaded region represents + one standard

deviation. CRO = cropland, SHR = shrubland, DBF = deciduous broadleaf forest, EBF = evergreen broadleaf forest, NF = needleleaf forest, GRA = grass, MF = mixed
forest, OSH = open shrubland, and SAV = savanna.
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GRA.

3.2. Evaluation of HSIFyq

The reliability of the global HSIFy, was evaluated using OCO-2 SIF.
The coefficient of determination (R%) for OCO-2 SIFota and HSIF;a Was
0.78, and the root mean squared error (RMSE) was 1.33 mW,/m?%/nm
(Fig. 5A). We further compared R? and RMSE across different vegetation
types and found that our HSIF,, exhibited R? > 0.6 for most vegetation
types (Fig. 5B). The R? between OCO-2 SIFo and HSIFm was the
highest for DBF (R? > 0.8), followed by MF and CRO. The lowest R? was
observed for EBF, mainly arising from its low seasonality in photosyn-
thesis and more clouds in tropics that reduced the SIF quality. The RMSE
was <1.87 mW/m?/nm for all vegetation types (Fig. 5C). Although R?
was clearly lower for EBF than for MF, EBF showed comparable RMSE
with MF. Overall, these comparisons between HSIFy; and OCO-2 SIF-
total indicate that our HSIF,, was accurate for EBF and other vegetation

types.
3.3. The relationships between tower GPP and HSIF,y

We presented the global spatial patterns of fpc, LSIFops and HSIFota)
averaged over the days 200-230 of 2018 in Fig. 6. Clearly, the fp¢ varied
in space and higher values were observed in crops (such as the Corn Belt,
a black box) and the southern boundary of Sahara Desert. In the Corn
Belt, the fpc was higher for crops than other surrounding vegetation
types, such as DBF and SAV (Fig. A2). The high fpc may partly determine
the high SIF,s for crops in the Corn Belt (Fig. 6B). Compared to the 0.2°
LSIFops, the 1 km HSIF 4, showed more detailed spatial information. For
example, river pixels with low SIFy, values were observed and can be
well separated from surrounding vegetation pixels (Fig. 6C). In addition,
crops showed comparable or even slightly lower SIF, than DBF and
SAV after correcting fpc effects. When comparing the spatial distribution
of LSIF,ps, lower values were observed in the European region (such as
the red box) than in the Corn Belt (the black box) (Fig. 6B). This dif-
ference could be partly caused by the low fpc for needleleaf forest
(Fig. 6A). For HSIF oy correcting the fpc effect, comparable values were
obtained between the European region and the Corn Belt (Fig. 6C).

We further compared the HSIFy, with the tower GPP and evaluated
the effect of spatial mismatch on their relationships. For comparison,
both linear models with and without intercept were used. The slope and
R? for the relationships between GPP and HSIFy, extracted within a
varying buffer (search radii from 1 km to 20 km surrounding individual
towers) are shown in Fig. 7A-B. The slopes for GPP and HSIFga
increased with the search radius regardless of the model with or without
intercepts (Fig. 7A), which indicated that applying the slope at a 20 km
search radius to upscale SIF to GPP could lead to higher GPP estimation
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than applying the slope at a 1 km search radius. Importantly, R? for GPP
and HSIF, decreased with the search radius (Fig. 7B), which indicated
that the larger mismatch in the footprint between GPP and SIF led to the
weakened performance of the GPP ~ HSIFy; model. In contrast, HSI-
Fops cannot reveal the spatial mismatch effects on GPP ~ SIF relation-
ships (Fig. A3), which could be masked by the compound canopy
structural and angular effects on SIFyps. HSIFoa at the smallest search
radius (1 km) centered with EC towers had the most comparable foot-
print size with GPP. Thus, the R? (0.70) for GPP and HSIF;4, peaked at a
1 km searching radius (scattering density plot is shown in Fig. 7C). The
R? was expected to rapidly increase as the radius decreased (Fig. 7B)
because most non-forest sites have smaller flux footprints due to low
tower heights <10 m (Table A2). In comparison, the relationship for
GPP and LSIF,}s averaged over a 10 km radius around the tower ®R?=
0.64, Fig. 7D) was clearly poorer than that for GPP and HSIFiyy
(Fig. 7C). These results indicated that a higher R? was promising under
higher resolutions of SIF, such as FLEX SIF with a 300 m spatial reso-
lution and after the correction for canopy structure effects.

We also explored the slope variations of regression models with and
without intercepts among all individual sites. Regardless of whether the
regression models had an intercept, the coefficient of variation (CV) was
smaller for GPP ~ HSIFyqa (Fig. 8A&D) than for GPP ~ LSIFps
(Fig. 8B&E) and GPP ~ HSIFps (Fig. 8C&F). In addition, the difference
between the average R? for individual sites and the R? for lumped ob-
servations was rather small for GPP ~ HSIF g (Fig. A4), further sup-
porting the consistent GPP-HSIF 4, relationship across sites.

We also evaluated the model performance of different SIF datasets in
predicting GPP (R2(GPP ~ HSIF;oar), R%(GPP ~ LSIFp,) and R%(GPP ~
HSIFps)) for individual sites. We found that more than half of sites had
higher R? for GPP ~ HSIF ya than for GPP ~ LSIF,p (Fig. 9A). RA(GPP
~ HSIFtq)) was also slightly higher than R%(GPP ~ HSIFps), especially
for these sites with low R*(GPP ~ HSIFops) (Fig. 9B). These results
indicated a more consistent GPP-HSIF, relationship across space,
which was important for extrapolating site-level relationships to the
global scale.

4. Discussion
4.1. Advantages and disadvantages of the HSIF,yq data

Many approaches have been proposed to downscale low-resolution
SIF to high-resolution SIF, but most of these approaches are based on
empirical models (Gentine and Alemohammad, 2018; Zhang et al.,
2018a; Li and Xiao, 2019a; Yu et al., 2019; Wen et al., 2020; Hu et al.,
2022; Ma et al., 2022). Downscaled SIF products have used MODIS
surface reflectance, MODIS vegetation indices, and/or auxiliary data
(such as PAR and air temperature), and the physiological information
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Fig. 6. The maps of averaged (A) escape probability of fluorescence (fpc), (B) LSIFps (mW/m?/nm/sr) and (C) HSIF a1 (mW/m?%/nm) over the days 200-230 of
2018. A subregion (95°W-85°W, 35°N-45°N) is presented on the right for visualization. The magnitude mismatch between SIF,,s and SIF., was attributed to their

different definitions and the escape probability effect.

may not be well retained. Also, previous approaches still generate
directional SIFps, which are thought to be affected by canopy structure
(Guanter et al., 2012; Damm et al., 2015) and sun-target-viewing ge-
ometry (Zhang et al., 2018b).

Our straightforward physically based algorithm does not require any
statistical assumptions and can avoid the fitting error of the empirical
model. Based on spectral invariant theory (Knyazikhin et al., 2013; Yang
and van der Tol, 2018), we can derive SIF, by considering the escape
probability of fluorescence into the downscale framework, as shown in
Eq. (5). Meanwhile, the coarse-resolution physiological information
from LSIFqps still exists in HSIF;ota due to the use of LSIFys in this
downscaling framework.

Due to this unique feature, our HSIFy,) can be generated only during
the period when LSIFp is available. In other words, our downscaled
framework cannot reconstruct a long-term historic SIF. It should also be
pointed out that the uncertainties in the input parameters for the
calculation of the escape probability could affect the accuracy of HSIF-
total- FOr example, the MODIS LAI product could suffer from saturation at
dense canopies (Myneni et al., 2002), causing uncertainties in the
calculation of ip. The uncertainty in the MCD19A3 BRDF product could
also cause uncertainty in the simulated NIRy. All these aspects could
affect the accuracy of the escape probability and hence HSIFia. A
SCOPE model-based study systematically evaluated the effects of

uncertainties in NIRy and ip on the GPP-SIF, relationships and found
that SIFo improved the relationship with GPP than SIF,s only when
the uncertainties in NIRy and iy were <20% (Zhang et al., 2021).
Fortunately, current satellite LAI and BRDF products can improve the
relationship between GPP and SIF,ps, supporting the reliability of our
HSIFota1- In addition, the HSIF ) evaluated with ground SIF measure-
ments and OCO-2 SIF also confirmed its good accuracy (Figs. 4-5).

4.2. Advantage of GPP estimation from HSIFyq

The increasing number of eddy covariance towers over the past 30
years provides direct measurements as the gold standard of carbon fluxes
and greatly improves the research of land-atmosphere interactions
(Baldocchi, 2014). A large number of studies have established the re-
lationships between ground GPP and satellite SIF, which are then used to
scale SIF to GPP (Li and Xiao, 2019b; Zhang et al., 2020a; Zhang et al.,
2020c). Limited by the coarse spatial resolution of satellite SIF products,
satellite SIF is commonly averaged over a large radius around the tower,
such as 25 km used in Verma et al. (2017), 2-25 km in Li et al. (2018),
10 km in Zhang et al. (2019), and 30 km in Zhang et al. (2020a).
Recently, the footprint concept and the mismatch in footprints between
in situ GPP and satellite observations have been recognized by several
studies (Zhang et al., 2018a; Kong et al., 2022). For example, Zhang
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search radius for each site.

et al. (2018a) checked the homogeneity of NDVI as the growth condition
around the flux sites and found that only 40 out of 166 sites were
representative of a 5 km by 5 km area. To avoid the spatial mismatch or
land heterogeneity effects on the SIF-GPP relationship, a previous
screening of flux tower sites based on the homogeneity of MODIS land
cover was also adopted by Zhang et al. (2020a).

If ignoring the spatial mismatch in the footprint between flux tower
GPP and SIF, SIF-GPP relationships could be affected by the search
radius or spatial mismatch between SIF and GPP due to land heteroge-
neity. Considering the potential of SIF for terrestrial GPP estimation and
the global carbon cycle (Frankenberg et al., 2011; Sun et al., 2017), it is
necessary to quantify the uncertainty in SIF-GPP models due to the
spatial mismatch between tower GPP and satellite SIF. We demonstrate
that the slope at the 1 km resolution is significantly (p < 0.05) different
from that obtained at other search radii (Fig. 7A). The slope at the 1 km
resolution could be closest to the “true slope” for the GPP and HSIF )
models, which is also shown by the highest R? at the 1 km resolution
(Fig. 7B). The increasing slope with the search radius is consistent with
previous study (Fig. S4 in Li et al. (2018)), which indicated that GPP
could be overestimated if using the slope established at a large search
radius (> 1 km). We demonstrated the adverse effects of the spatial
mismatch in the footprint between GPP and SIF on their relationships,
which can be partially mitigated by our derived 1 km HSIF;q.

In addition to the high spatial resolution of HSIF ), its insensitivity
to canopy structure and sun-target-viewing geometry also contributed to
its better relationship with GPP than LSIF,ps. For example, HSIF;qy still
performed better than HSIF,s at the same search radius (Fig. 7B vs
Fig. A3). Our results are supported by previous studies that reported that
SIF;ota] performed better relationships with GPP than SIF s (Zhang et al.,
2019; Lu et al., 2020; Liu et al., 2022). This is reasonable because the
relationships between SIF,,s and GPP are affected by the varying escape
probability of SIF across multiple biomes with distinct canopy structures
(Zhang et al., 2018b; Liu et al., 2022). Using HSIFyy, it is possible to
establish a nearly universal model for GPP estimation across biomes at
least for C3 plants, as suggested by Zhang et al. (2020a). This is further
demonstrated by our results based on all individual sites (Fig. 8).
However, the CV of slopes for GPP ~ HSIFy is higher across sites in
this study than across biomes in Zhang et al. (2020a). This is consistent
with the study by Zhang et al. (2018a) who also reported a larger cross-
site variation of the GPP ~ SIF relationship than the cross-biome vari-
ation. These variations may lead to our moderate relationships between
GPP ~ HSIFy for lumped observations (Fig. 7). More accurate esti-
mation of SIFyy, (Zhang et al., 2021) and the incorporations other

physiological information (such as photochemical reflectance index)
(Wang et al., 2020b) and environmental information (such as CO5
concentration) (Qiu et al., 2020) could further improve the GPP
estimation.

4.3. Potential applications of HSIFyq

The straightforward relationship between GPP and SIF has promoted
the application of SIF in crop yield and productivity estimations
(Guanter et al., 2014; Guan et al., 2016; Cai et al., 2019; Gao et al., 2020;
Peng et al., 2020). However, a recent study pointed out that the coarse-
resolution GOME-2 SIF does not perform significantly better than
MODIS NDVI in predicting crop productivity (Sloat et al., 2021). This
could be mainly caused by the contaminations from other mixed vege-
tation signals. Attributed to its higher resolution, HSIFy could
outperform the original TROPOMI LSIF,},s in estimating crop yield,
which deserves further investigation. In addition, some researchers also
assessed the European heatwave and drought on ecosystem productivity
(Bastos et al., 2020; Wang et al., 2020a). The spatial resolution is not a
limiting factor in these studies because climate anomalies commonly
occur at large scales (>100 km). However, since HSIFy, accounted for
the canopy structural and angular effects in SIFs, it seems that “salt-
and-pepper” noise would be less of a concern (Fig. A5). These results
implied that HSIF 4, might outperform LSIFps in monitoring heatwave
and drought, which also deserves further investigation.

5. Conclusions

We proposed an approach to downscale low spatial resolution LSIF yps
to high spatial resolution HSIFy, and HSIF s at 1 km spatial resolution
using the law of energy conservation and spectral invariant theory.
Compared to LSIFps, HSIF ) not only captured more detailed spatial
information but also mitigated the canopy structural and directional
effects in SIFyps. The reliability of our downscaled framework was well
evaluated by independent OCO-2 SIF data. Using a comprehensive
dataset from 135 flux towers, our results revealed that the spatial
mismatch in the footprint between GPP and HSIF, affected their re-
lationships. The slope for the HSIFy, and GPP relationship decreased
with the decreasing search radius (or conceptual footprint) of HSIF 1.
The best HSIF;-GPP model was obtained when HSIF ., was averaged
over a 1-km radius around the tower compared to other radii (>1 km). In
addition, compared with LSIF,,s and HSIF s, HSIF o, showed a more
consistent slope with GPP across all individual sites. HSIFo, not only
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improved our understanding of spatial mismatch effects on the SIF-GPP
relationships but also would advance SIF applications, such as crop yield
estimation and stress monitoring.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

AmeriFlux data was downloaded from http://ameriflux.ornl.gov/

European Flux was downloaded from http://www.europe-fluxdata.
eu/

MODIS-related products were downloaded from https://search.
earthdata.nasa.gov/search

OCO-2 SIF was downloaded from https://disc.gsfc.nasa.gov/

Appendix A. Appendix

Table Al
Values of biome-specific y; .

Remote Sensing of Environment 295 (2023) 113699

OzFlux was downloaded from http://www.ozflux.org.au/
Sentinel-3 OLCI FPAR was downloaded from TROPOMI SIF was
downloaded from https://s5p-troposif.noveltis.fr/

Acknowledgments

This research was supported by the National Key Research and
Development Program of China (2022YFF1301900), the National Nat-
ural Science Foundation of China (NSFC) (42125105, 42101320,
42071388), and the Fundamental Research Funds for the Central Uni-
versities (0209-14380115). The authors are thankful to the science team
members who produced and managed the flux data (AmeriFlux, OzFlux,
and European Flux) and remote sensing products used in this study.
Funding for AmeriFlux data resources was provided by the U.S.
Department of Energy’s Office of Science. The tower height was pro-
vided by the principal investment of each flux tower site. We greatly
appreciate the anonymous reviewers for their insightful and construc-
tive comments that helped us to improve our manuscript.

Vegetation ID Description 1
NF Needleleaf forest 0.01
EBF Evergreen broadleaf forest 0.1
DBF Deciduous broadleaf forest 0.25
MF Mixed forest 0.25
SHR Shrub 0.25
SAV Savanna 0.25
GRA Grass -0.3
CRO Crop -0.3

A.1. Text Al. Evaluation of the downscaling approach using a synthetic data

We used TROPOMI SIF s at 0.2° as the high-resolution data and aggregated this TROPOMI SIFs to 1°. Then, we applied the downscaling process
to the 1° TROPOMI SIF,},s and obtained the 0.2° SIF;q,). First, the true ®g at 0.2° was used in the downscaling process for comparison. The downscaled
SIFotal and true SIF;oe at 0.2° showed high consistency with the R2 of 0.98 (Fig. A1). Next, we also used the @ adjusted using vegetation types in the
downscaling process and obtained the downscaled SIF, which still had a high consistency with the true SIF (R? = 0.93, Fig. A1B). We agree that the use
of vegetation type-adjusted ®r slightly decreased the performance of this downscaling method (R? from 0.98 to 0.93). However, the R? was still high
using the vegetation type-adjusted ®r, indicating that the downscaling framework using Eq. (5) is feasible.
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Fig. Al. (A) Density plots between TROPOMI SIF, and downscaled SIFo, using the true ®p based on a synthetic data. (B) Similar to (A) but using the ®g adjusted

using vegetation types.
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Table A2
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Fig. A2. MODIS land cover in the Corn belt (95°W-85°W, 35°N-45°N).
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Water

Flux sites used in this study during 2018-2020. CRO = cropland, CSH = close shrubland, DBF = deciduous broadleaf forest, EBF = evergreen broadleaf forest, ENF =
evergreen needleleaf forest, GRA = grass, MF = mixed forest, OSH = open shrubland, SAV = savanna, WET = wetland, and WSA = wood savanna.

Site ID Latitude (°) Longitude (°) IGBP Tower height (m) References

AU-ASM —22.2828 133.2493 ENF 13.7 (Cleverly et al., 2013)
AU-Cpr —34.0027 140.5877 SAV 20.0 (Meyer et al., 2015)
AU-Cum —33.6152 150.7236 EBF 30.0 (Beringer et al., 2016)
AU-Das —14.1592 131.3881 SAV 23.0 (Hutley et al., 2011)
AU-Dry —15.2588 132.3706 SAV 15.0 (Cernusak et al., 2011)
AU-Gin —31.3764 115.7139 WSA 15.0 -

AU-GWW —30.1913 120.6541 SAV 36.0 (Prober et al., 2012)
AU-How —12.4952 131.1501 WSA 23.0 (Beringer et al., 2007)
AU-Lit —13.1790 130.7945 SAV 30.0 (Beringer et al., 2016)
AU-Lon —23.5233 144.3104 GRA 2.5 -

AU-Rgf —32.5061 116.9668 CRO 10.0 -

AU-Stp —17.1507 133.3502 GRA 5.0 -

AU-TUM —35.6566 148.1517 EBF 70.0 (Leuning et al., 2005)
AU-Ync —34.9893 146.2907 GRA 20.0 (Yee et al., 2015)
BE-Bra 51.3076 4.5198 MF 33.0 (Janssens et al., 2001)
BE-Lon 50.5516 4.7461 CRO 2.1 (Moureaux et al., 2006)
BE-Vie 50.3050 5.9981 MF 51.0 (Aubinet et al., 2001)
CA-ER1 43.6405 —80.4123 CRO 2.3 -

CH-Cha 47.2102 8.4104 GRA 2.4 -

CH-Dav 46.8153 9.8559 ENF 35.0 (Zielis et al., 2014)
CH-Fru 47.1158 8.5378 GRA 2.5 (Imer et al., 2013)
CH-Lae 47.4781 8.3650 MF 47.0 (Etzold et al., 2011)
CZ-BK1 49.5021 18.5369 ENF 25.0 (Acosta et al., 2013)
DE-Geb 51.1001 10.9143 CRO 3.0 (Anthoni et al., 2004)
DE-Gri 50.9500 13.5126 GRA 3.0 (Hussain et al., 2011)
DE-Hai 51.0792 10.4530 DBF 45.0 (Knohl et al., 2003)
DE-Kli 50.8931 13.5224 CRO 3.5 -

DE-Obe 50.7867 13.7213 ENF 30.0 -

DE-RuR 50.6219 6.3041 GRA - (Post et al., 2015)
DE-Tha 50.9626 13.5652 ENF 42.0 (Gruenwald and Bernhofer, 2007)
DK-Sor 55.4859 11.6446 DBF 43.0 (Pilegaard and Ibrom, 2020)
ES-Abr 38.7018 —6.7859 SAV 15.0 (Luo et al., 2018)
ES-LM1 39.9427 —5.7787 SAV 15.0 (El-Madany et al., 2018)
ES-LM2 39.9346 —5.7759 SAV 15.0 (El-Madany et al., 2018)
FI-Hyy 61.8474 24.2948 ENF 27.0 (Ilvesniemi et al., 2009)
FI-Var 67.7549 29.6100 ENF 16.6 -

FR-Fon 48.4764 2.7801 DBF 37.0 (Delpierre et al., 2016)
FR-Hes 48.6741 7.0647 DBF 27.0 -

FR-LGt 47.3229 2.2838 WET 2.4 -

FR-Pue 43.7413 3.5957 EBF 12.0 (Rambal et al., 2004)
IL-Yat 31.3450 35.0520 ENF 19.0 -

IT-SR2 43.7320 10.2910 ENF 24.3 (Hoshika et al., 2017)
IT-Tor 45.8444 7.5781 GRA 2.5 (Galvagno et al., 2013)

11

(continued on next page)



Z. Zhang et al. Remote Sensing of Environment 295 (2023) 113699

Table A2 (continued)

Site ID Latitude (°) Longitude (°) IGBP Tower height (m) References

RU-Fy2 56.4476 32.9019 ENF 44.0 (Kurbatova et al., 2008)
RU-Fyo 56.4615 32.9221 ENF 31.0 (Milyukova et al., 2002)
SE-Nor 60.0865 17.4795 ENF 33.0 -

US-ALQ 46.0308 —89.6067 WET 2.4 -

US-ARM 36.6058 —97.4888 CRO 4.6 (Fischer et al., 2007)
US-BRG 39.2167 —86.5406 GRA 3.0 -

US-CS1 44.1031 —89.5379 CRO 2.5 -

US-Cs2 44.1467 —89.5002 ENF 32.0 -

US-CS3 44.1394 —89.5727 CRO 2.5 -

US-Cs4 44.1597 —89.5475 CRO 2.5 -

US-DFC 43.3448 —89.7117 CRO 30.0 -

US-GLE 41.3665 —106.2399 ENF 22.7 (Frank et al., 2014)
US-Hal 42.5378 —-72.1715 DBF 29.0 (Urbanski et al., 2007)
US-Ha2 42.5393 —72.1779 ENF 29.0 -

US-HB1 33.3455 —79.1957 WET 3.9 -

US-HB2 33.3242 —79.2440 ENF 29.9 -

US-HB3 33.3482 —79.2322 ENF 4.1 -

US-HBK 43.9397 —71.7181 DBF 32.0 -

US-Hn2 46.6889 —119.4641 GRA 2.5 (Missik et al., 2019)
US-Hn3 46.6878 —119.4614 OSH 2.5 (Missik et al., 2019)
US-Hol 45.2041 —68.7402 ENF 31.0 -

US-ICs 68.6058 —149.3110 WET 2.2 -

US-KFS 39.0561 —95.1907 GRA 3.0 -

US-Kon 39.0824 —96.5603 GRA 3.0 -

US-KS3 28.7084 —80.7427 WET 2.9 -

US-Los 46.0827 —89.9792 WET 10.2 (Sulman et al., 2009)
US-Me2 44.4523 —121.5574 ENF 33.0 (Irvine et al., 2008)
US-Me6 44.3233 —121.6078 ENF 12.0 (Ruehr et al., 2012)
US-MMS 39.3232 —86.4131 DBF 46.0 (Dragoni et al., 2011)
US-Mpj 34.4384 —106.2377 OSH 9.3 -

US-MtB 32.4167 —110.7255 ENF 30.0 -

US-NC2 35.8030 —76.6685 ENF 23.0 -

US-NC3 35.7990 —76.6560 ENF 10.0 -

US-NGC 64.8614 —163.7008 GRA - -

US-NR1 40.0329 —105.5464 ENF 21.5 (Monson et al., 2002)
US-ONA 27.3836 —81.9509 GRA 2.7 -

US-Rls 43.1439 —116.7356 CSH 2.1 (Flerchinger et al., 2019)
US-Rms 43.0645 —116.7486 CSH 2.1 (Flerchinger et al., 2019)
US-Ro4 44.6781 —93.0723 GRA 2.6 -

US-Ro5 44.6910 —93.0576 CRO 2.5 -

US-Ro6 44.6946 —93.0578 CRO 2.3 -

US-Rwf 43.1207 —116.7231 CSH 3.5 (Flerchinger et al., 2019)
US-Rws 43.1675 —-116.7132 OSH 2.1 (Flerchinger et al., 2019)
US-Seg 34.3623 —106.7019 GRA 3.1 -

US-Ses 34.3349 —106.7442 OSH 3.1 -

US-Sne 38.0369 —121.7547 GRA 5.4 -

US-Snf 38.0402 —121.7272 GRA 3.5 -

US-SRG 31.7894 —110.8277 GRA 3.3 (Scott et al., 2015)
US-SRM 31.8214 —110.8661 WSA 7.8 (Scott et al., 2009)
US-SRS 31.8173 —110.8508 WSA 7.0 (Pierini et al., 2014)
US-Syv 46.2420 —89.3477 MF 36.0 (Sulman et al., 2009)
US-Ton 38.4309 —120.9660 WSA 23.5 (Ma et al., 2007)
US-Uaf 64.8663 —147.8555 ENF 6.0 (Ueyama et al., 2014)
Us-UMd 45.5625 —84.6975 DBF 32.0 -

US-Var 38.4133 —120.9508 GRA 2.0 (Ma et al., 2007)
US-Vem 35.8884 —106.5321 ENF 23.6 -

US-Vep 35.8624 —106.5974 ENF 23.8 -

US-WCr 45.8059 —90.0799 DBF 29.6 (Sulman et al., 2009)
US-Whs 31.7438 —110.0522 OSH 6.5 (Scott et al., 2015)
US-Wjs 34.4255 —105.8615 SAV 8.0 -

US-Wkg 31.7365 —109.9419 GRA 6.4 (Scott et al., 2010)
US-xAB 45.7624 —122.3303 ENF 19.0 -

US-XAE 35.4106 —99.0588 GRA 8.0 -

US-xBL 39.0603 —78.0716 DBF 8.0 -

US-xBN 65.1540 —147.5026 ENF 19.0 -

US-xBR 44.0639 —71.2873 DBF 35.0 -

US-xCL 33.4012 —97.5700 GRA 22.0 -

US-xDC 47.1617 —99.1066 GRA 8.0 -

US-xDL 32.5417 —87.8039 MF 42.0 -

US-xDS 28.1250 —81.4362 CVM 8.0 -

US-xGR 35.6890 —83.5019 DBF 45.0 -

US-xHA 42.5369 -72.1727 DBF 39.0 -

US-xHE 63.8757 —149.2133 OSH 9.0 -

US-xJE 31.1948 —84.4686 ENF 42.0 -

(continued on next page)
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Site ID Latitude (°) Longitude (°) IGBP Tower height (m) References
US-xJR 32.5907 —106.8425 OSH 8.0 -
US-xKA 39.1104 —96.6129 GRA 8.0 -
US-xKZ 39.1008 —96.5631 GRA 8.0 -
US-xML 37.3783 —80.5248 DBF 29.0 -
US-xNG 46.7697 —100.9154 GRA 8.0 -
US-xNQ 40.1776 —112.4524 OSH 8.0 -
US-xRM 40.2759 —105.5459 ENF 25.0 -
US-xRN 35.9641 —84.2826 DBF 39.0 -
US-xSE 38.8901 —76.5600 DBF 62.0 -
US-xSL 40.4619 —103.0293 CRO 8.0 -
US-xST 45.5089 —89.5864 DBF 22.0 -
US-xTA 32.9505 —87.3933 ENF 35.0 -
US-xTL 68.6611 —149.3705 WET 9.0 -
US-xTR 45.4937 —89.5857 DBF 36.0 -
US-xUK 39.0404 —95.1921 DBF 35.0 -
US-xUN 46.2339 —89.5373 MF 39.0 -
US-xWD 47.1282 —99.2414 GRA 8.0 -
US-xWR 45.8205 —121.9519 ENF 74.0 -
US-xYE 44.9535 —110.5391 ENF 18.0 -
2
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Fig. A3. Coefficient of determination (R?) of relationships between daily 8-day GPP and HSIF s averaged from different search radii. Both models with (y = kx + b)

and without (y = kx) intercepts were used.
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Fig. A4. Similar to Fig. 8 but for R2.
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Fig. A5. Anomaly of (A) LSIF,p,s and (B) HSIFo,) over parts of Europe during the 2018 summer heatwave (June, July, August). The anomaly was calculated as the
relative difference (%) between the values in 2018 and the averaged values from 2019 to 2021.
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