

1 Research paper

2 Sustainable Connectivity in a Community Repository

3 Ted Habermann

4 Metadata Game Changers, 4524 14th St. Unit 7H Boulder,

5 Boulder, Colorado 80304, USA)

6 Corresponding author: Ted Habermann (E-mail:

7 ted@metadatagamechangers.com; ORCID: 0000-0003-3585-6733)

8 Citation: Habermann, T. Sustainable connectivity in a

9 community repository. *Data Intelligence*. 2024. DOI: TBD

10 Keywords: Metadata Curation, Re-Curation, Connectivity, FAIR Data,

11 Persistent Identifiers

12

13

14 Abstract

15 Persistent identifiers for research objects, researchers, organizations, and funders are the key to
16 creating unambiguous and persistent connections across the global research infrastructure (GRI).

17 Many repositories are implementing mechanisms to collect and integrate these identifiers into
18 their submission and record curation processes. This bodes well for a well-connected future, but
19 metadata for existing resources submitted in the past are missing these identifiers, thus missing
20 the connections required for inclusion in the connected infrastructure. Re-curation of these
21 metadata is required to make these connections. This paper introduces the global research
22 infrastructure and demonstrates how repositories, and their user communities, can contribute to
23 and benefit from connections to the global research infrastructure.

24 The Dryad Data Repository has existed since 2008 and has successfully re-curated the
25 repository metadata several times, adding identifiers for research organizations, funders, and
26 researchers. Understanding and quantifying these successes depends on measuring repository
27 and identifier connectivity. Metrics are described and applied to the entire repository here.

28 Identifiers (Digital Object Identifiers, DOIs) for papers connected to datasets in Dryad have
29 long been a critical part of the Dryad metadata creation and curation processes. Since 2019, the
30 portion of datasets with connected papers has decreased from 100% to less than 40%. This
31 decrease has significant ramifications for the re-curation efforts described above as connected
32 papers have been an important source of metadata. In addition, missing connections to papers
33 make understanding and re-using datasets more difficult.

34 Connections between datasets and papers can be difficult to make because of time lags
35 between submission and publication, lack of clear mechanisms for citing datasets and other
36 research objects from papers, changing focus of researchers, and other obstacles. The Dryad
37 community of members, i.e. users, research institutions, publishers, and funders have vested
38 interests in identifying these connections and critical roles in the curation and re-curation efforts.

39 Their engagement will be critical in building on the successes Dryad has already achieved and
40 ensuring sustainable connectivity in the future.

41 1. Introduction

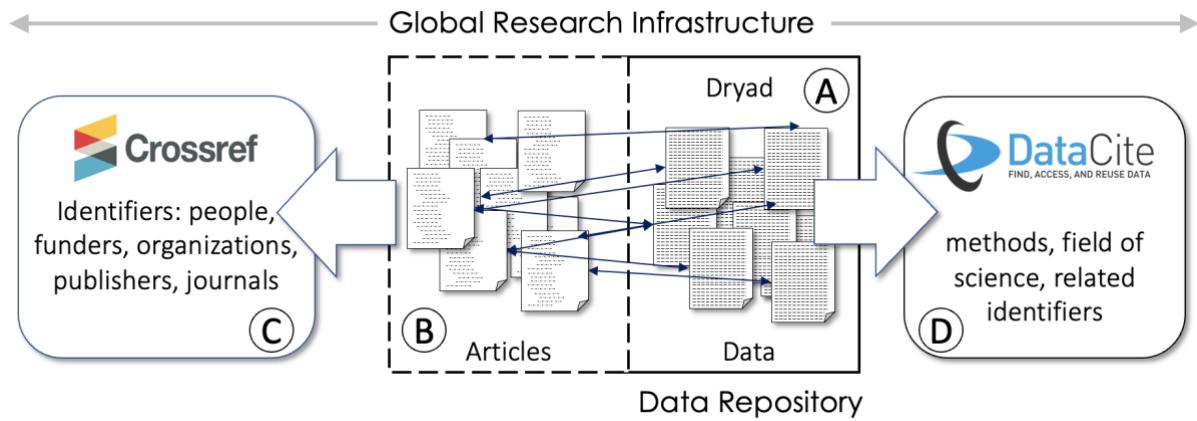
42 Dryad [1] is a community of academic and research institutions, research funders, scholarly
43 societies and publishers that are committed to leading in best practices for open data sharing and
44 reuse and to the open availability and routine re-use of all research data. Connections across the
45 Dryad community and between Dryad and the broader global research community are critical for
46 supporting these goals. Managing connections across these communities requires consistent
47 monitoring and on-going activity. The repository team and all community members have roles in
48 creating and sustaining those connections through the entire data life cycle.

49 Persistent identifiers of many kinds are included in research object metadata as related
50 identifiers to realize unambiguous and persistent connections. These include DOI's for articles,
51 datasets, software and other research objects [2], Open Researcher and Contributor IDs
52 (ORCIDs) for researchers, Research Organization Registry identifiers (RORs) for organizations,
53 Funder Ids (either Crossref Funder Ids or RORs) for funders, and (funder) award numbers or
54 DOIs for funded projects. In addition to making connections, these identifiers are critical for
55 ensuring that appropriate credit for a wide variety of contributions is given to community
56 members. These identifiers also serve as persistent “primary keys” in repository systems.
57 Together with metrics like those described below, these primary keys can be used for tracking
58 evolution of repositories through time. Creating data-driven, quantitative baselines and
59 measuring through time are key to on-going tracking processes.

60 Together these identifiers and the research objects they identify are referred to here as the
61 *global research infrastructure*. This infrastructure is global [3] and is made up of organizations
62 that provide identifiers with repositories of related metadata and on-going identification,
63 connection, and discovery services on top of those repositories. While many organizations from
64 all over the world makeup this infrastructure, here I focus on Crossref, DataCite, ORCID, and
65 ROR, which together form a coherent network with broadly available and well-documented
66 services.

67 1.2 Dryad History

68 Understanding repository context and how it evolves over time provides important
69 background for long-term tracking. The context of Dryad has changed significantly over the last
70 several years. It was conceived during 2007 and went live during 2008 [1]. The first data
71 submission instructions read: “To deposit data, simply mail it to submit@datadryad.org. Please
72 include a title and short description for each file, as well as a reference to the relevant
73 publication” [4]. This emphasis on connections between datasets and papers has persisted since
74 the beginning of Dryad and is a critical link in re-curation efforts described here.

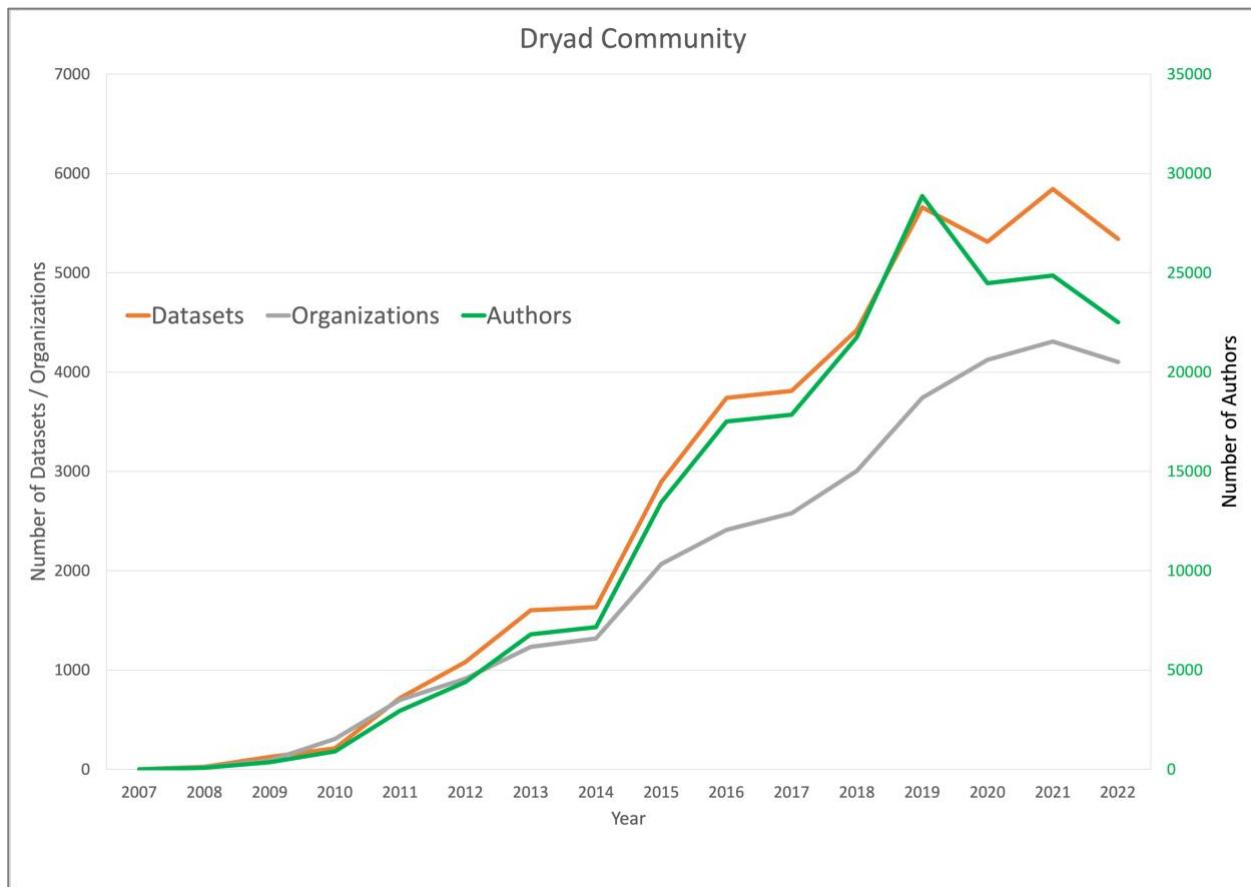

75 Several significant changes have occurred during Dryad’s history, most important the
76 development of a partnership with California Digital Library during 2018 [5] and the subsequent
77 launch of the “New Dryad” during 2019 [6]. Associated changes included migration to a new
78 metadata model based on the DataCite Schema [7], strengthening the links to the global research
79 infrastructure (GRI) and the pioneering introduction of identifiers for organizations (RORs, [8])

80 and people (ORCIDs). Finally, Dryad began migration to a membership-based business model
81 with direct financial support from publishers and research institutions in the community.

82 1.3 Dryad Connections

83 The original Dryad metadata model [9] focused on connecting multiple data files into
84 packages and administering the preservation of those data packages. It relied on connected
85 articles as critical contributors to the documentation required to discover, understand, and re-use
86 datasets. Even typical discovery metadata such as author names and affiliations were not
87 included in the Dryad metadata as they were available in the related papers.

88 During 2019 Dryad adopted the DataCite Metadata schema which brought important
89 changes to the metadata model. Part of this evolution included addition of DOIs for the articles
90 related to Dryad datasets, which enabled a richer set of connections to other types of resources
91 (articles, software, preprints, etc.). This evolution is illustrated by the addition of Crossref (C)
92 and DataCite (D) to the Dryad infrastructure shown in Figure 1.


93

94 Figure 1. Evolution of Dryad from an isolated data repository (A) to a connected virtual repository with data and related
95 articles (B) and then to a connected element of the global research infrastructure with article metadata in Crossref (and other
96 repositories) (C) and dataset metadata in DataCite (D).

97 The adoption of the DataCite metadata model had an important effect on the relationship
98 between Dryad and the GRI. It means that all Dryad metadata are shared with the GRI through
99 DataCite, not just the six mandatory DataCite fields required to get a DOI.

100 1.4 The Dryad Community

101 Figure 2 shows the number of unique datasets, organizations, and authors for Dryad datasets
102 associated with journals. The size of the community has increased over time with an average of
103 over 5500 unique datasets, 4000 unique organizations, and over 25,000 unique authors per year
104 since the introduction of the new Dryad during 2019. These numbers do not include Dryad
105 datasets that are not associated with journals which add ~4% to the total.

106

107 Figure 2. Number of datasets (orange), authors (green), and organizations (grey) associated with journals in the Dryad
108 repository between 2007 and 2022.

109 2. Repository Guidelines and Identifiers

110 Many organizations and initiatives have developed and espoused sets of guidelines and
111 practices for repositories of many kinds. These guidelines are generally high-level, can cover
112 many aspects of repository practice, and can be addressed in many ways. In this work we are
113 focused on identifiers, so identifier guidelines and identifier practices are most relevant.

114 Perhaps the most referenced set of data management principles is the FAIR Data Principles
115 [10] which provide high level guidance for findability, access, interoperability, and re-use of

116 data. These principles include identifiers for data and metadata and recommend including
117 identifiers for datasets in the metadata that describes them. They do not include guidelines for
118 other kinds of identifiers.

119 The Generalist Repository Ecosystem Initiative [11], supported by the National Institutes of
120 Health (NIH), was created to support data sharing and reuse by NIH-funded researchers. Dryad
121 is one of six repositories supported by this initiative. Best practice recommendations proposed
122 [12] for sharing data in generalist repositories included leveraging PIDs (RORs, ORCIDs,
123 DataCite DOIs) across the repositories to avoid broken links and create interoperability between
124 infrastructures that include these identifiers. Using the DataCite metadata schema which supports
125 these identifiers was also recommended, along with providing annual updates on data
126 management and sharing activities.

127 The Confederation of Open Access Repositories (COAR) is an international association with
128 156 members and partners from 50 countries, representing libraries, universities, research
129 institutions, government funders and others. The COAR Community Framework for Good
130 Practices in Repositories [13] describes essential and desired repository characteristics, including
131 a recommendation to use DOIs that point to landing pages, but nothing about identifiers other
132 than DOIs, or about measurement/reporting.

133 The U.S. Federal government released several important sets of guidelines during 2022.
134 First, the Subcommittee on Open Science of the National Science and Technology Council
135 released high-level guidance for repositories for federally funded research [14]. Second, the U.S.
136 Office of Science, Technology and Policy (OSTP) released a memorandum during August 2022
137 [15] recommending that repositories include identifiers for authors, organizations, funders, and

138 research objects in publicly available metadata. This memo thus provided explicit guidance
139 related to the interconnected global research infrastructure (GRI) envisioned in this work, at least
140 in the context of distributed repositories.

141 There are several important practices that are not discussed in any of these
142 recommendations. First, the concept of sharing complete repository metadata with the global
143 research infrastructure. Dryad demonstrates benefits of this recommendation by using the
144 DataCite metadata schema, which includes all relevant identifiers and, sharing all their metadata
145 in DataCite. In addition, Dryad adds improved metadata to DataCite on a regular basis,
146 facilitating an improved and more useful GRI. Second, the concept of measuring compliance
147 with any set of recommendations is also missing. The importance of measurement is well known
148 in the federal [16] and private [17] sectors.

149 This paper presents some ideas and examples of measurements of connectivity with the goal
150 of helping communities understand, improve, and sustain repository connectivity.

151 3. Connectivity

152 Whether research objects get discovered depends on their *connectivity*, i.e., *the state or*
153 *extent of being connected or interconnected*. Can connectivity in a repository be measured? A
154 connectivity metric has been defined [18] as the number of existing identifiers divided by the
155 total number of possible identifiers, expressed as a %. This metric can be measured and applied
156 across any interesting collection of research objects. For example, a typical dataset in Dryad has
157 several funders and authors, each of which can have an identifier or an affiliation. Each dataset
158 therefore has connectivity, i.e. the number of identifiers / the number of possible identifiers. The

159 connectivity can also be calculated for the entire repository or for any subset of the repository,
160 e.g. for all datasets associated with an author, a journal, or a research organization. This finer
161 granularity is important, as these are the organizational units that can take action to improve
162 connectivity for resources they create and manage.

163 Connectivity can also be calculated for different types of identifiers. For example, dataset
164 connectivity can be calculated for funder identifiers, for ORCIDs, or for RORs, and any kind of
165 connectivity can be calculated over time to track changes at any granularity.

166 4. Curation and Re-Curation

167 The definition of curation varies significantly across the spectrum of repositories in the U.S.
168 and around the world. The Data Curation Network [19] is made up of curation and digital
169 curation experts from many research institutions. Together, they have proposed and promulgated
170 a model of digital curation which includes seven steps (CURATED): Check files and code,
171 Understand the data, Request missing information, Augment metadata, Transform formats,
172 Evaluate for FAIRness, and Document all activities that are designed to be carried out as a
173 dataset is submitted to and accepted into a repository. This curation process, referred to here as
174 *Record Curation*, clearly results in improved quality of data in many institutional repositories.

175 The introduction of identifiers as critical metadata elements changes the landscape
176 considerably, adding work to the “Augment metadata” step in record curation processes.
177 Identifiers can be found or created and added to the metadata going forward, but existing
178 records, i.e., those for datasets curated in the past, remain without these identifiers. Bringing

179 these existing records up to current standards requires *repository re-curation*, in this case,
180 curating existing records again by augmenting their metadata to include new identifiers.

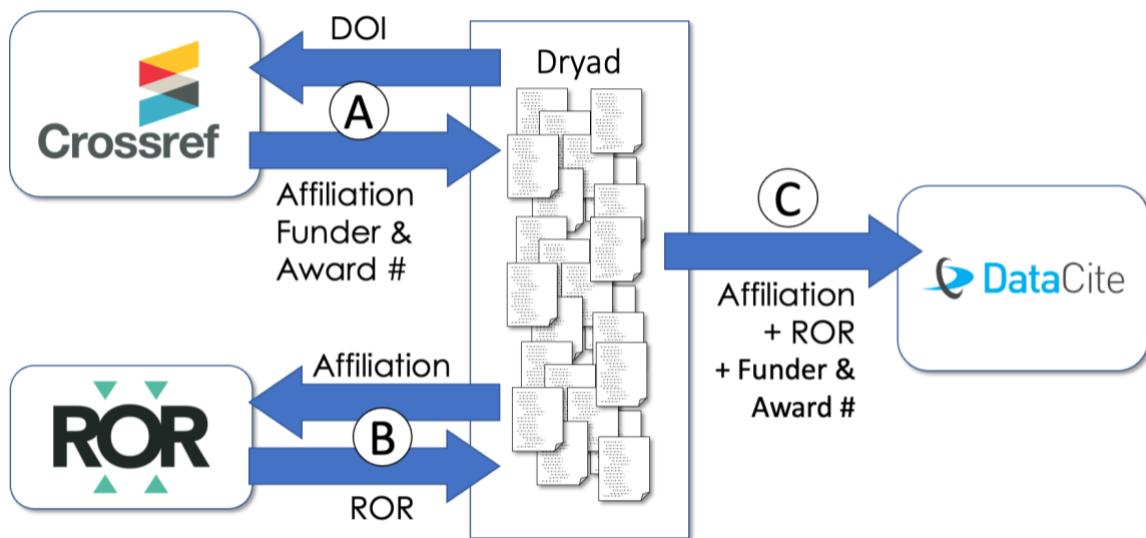
181 Repository re-curation is different from record curation in several ways. First, it involves
182 connections to a wide variety of metadata sources in a variety of metadata dialects (DataCite,
183 Crossref, ORCID, ROR, OpenAlex, Scholix, etc.) as well as tools for making those connections
184 and retrieving relevant metadata. Second, re-curation is an on-going process as the landscape
185 continues to evolve with new kinds of objects getting identifiers (e.g. samples, instruments,
186 projects), communities using identifiers in new ways, and identifiers migrating between types
187 (e.g. IGSNs becoming DOIs). In many cases, these differences mean that new tools are required
188 for facilitating this work.

189 In addition, re-curation can account for important connections that develop over time, i.e.,
190 the article publication process is slower than dataset curation and datasets are contributed before
191 articles are reviewed, revised, and published. Re-curation is needed to find these connections
192 when they occur and add them to the dataset metadata. This is an area where community
193 members, i.e. researchers, funders, and organizations play critical roles.

194 **5. Dryad Re-Curation**

195 As the Dryad community and repository has grown, identifiers have emerged, and metadata
196 dialects have evolved. Dryad has taken an active role in evolving their metadata model and
197 adding new content. As these additions have taken place after the resources are in the repository,
198 they are re-curation projects. Dryad re-curation projects for organizations, individuals, funders,
199 and research objects are described in this section.

200 5.1 Affiliations and RORs

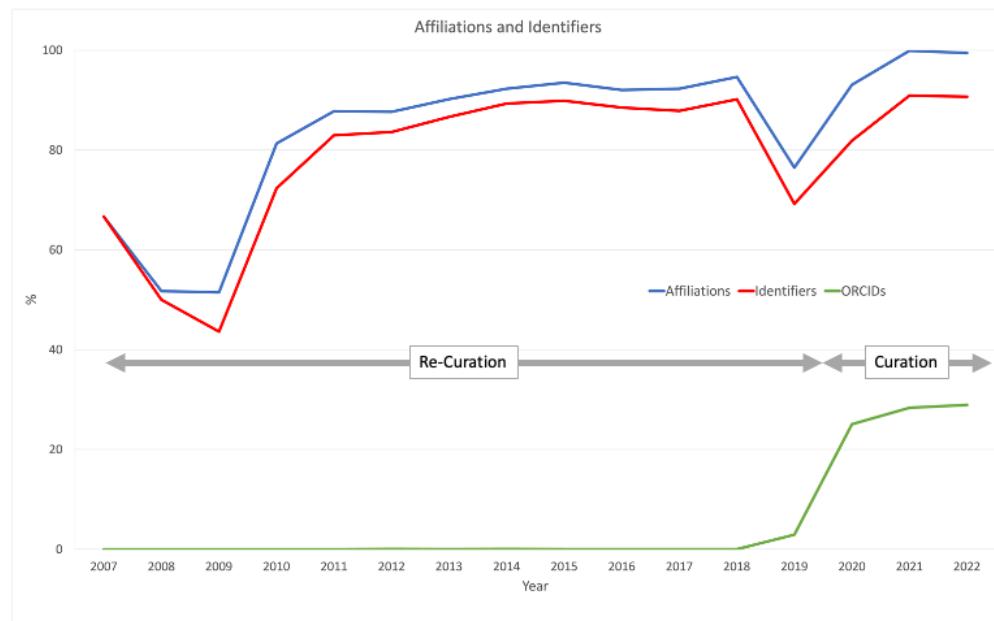

201 During 2019 a new community-driven identifier for organizations [20] was being developed
202 and Dryad decided to add this new identifier for nearly 100,000 organizations in over 20,000
203 dataset metadata records [8].

204 Given the pre-2019 Dryad metadata model, re-curating the metadata to add identifiers for
205 organizations required two steps: 1) finding author affiliations and 2) using those affiliations to
206 find RORs. Fortunately, the Dryad metadata included connections to Crossref, a source for
207 author affiliations in a standard form that could be retrieved using DOIs included in Dryad
208 metadata (A in Figure 3). This resulted in a long list of “noisy” affiliations with considerable
209 ambiguity and complexity.

210 This was early in the days of ROR, so approaches to searching these affiliations to convert
211 them to RORs (B in Figure 3) were developed and implemented. This search resulted in nearly
212 90% of the Dryad datasets having RORs for at least one organization. The New Dryad was using
213 DataCite to mint DOIs and using the DataCite metadata model which includes authors,
214 affiliations, and affiliation identifiers, so the new metadata content could be added to DataCite to
215 become available to the global research infrastructure through the standard DataCite API (C in
216 Figure 3).

217 This process illustrates using automated tools to augment human curators in re-curation
218 workflows. Affiliation strings were retrieved automatically from Crossref for thousands of DOIs
219 and authors, and algorithms [21, 22] were used to search those strings for organization names
220 and search the ROR registry for the actual RORs. The algorithms work well and save
221 considerable time, but noise in the affiliation strings and other realities such as authors with

222 multiple affiliations or acronyms [23], requires that the results be manually curated to identify
223 problems and validate final selections.



224

225 *Figure 3. Two Dryad re-curations projects to increase completeness of connected papers and funder information using*
226 *Crossref as a data source.*

227 Figure 4 shows the % of authors in Dryad journal-related¹ datasets that have affiliations as a
228 function of time (blue) which has been above 80% since 2010 except for a small dip during the
229 transition to the New Dryad during 2019. Since then, affiliation information has been entered by
230 authors during the submission process (indicated by “Curation” in Figure 4).

¹ Dryad “journal-related” datasets are datasets 1) already related to specific articles in a journal or 2) where authors identify the journal they expect the related paper to be published in when they submit the dataset. These data sets can be retrieved by searching Dryad for the International Standard Serial Number (ISSN) associated with the journal. See section 5.5 for discussion of datasets submitted without journals.

231
232 *Figure 4. The % of journal related datasets in Dryad that include author affiliations (blue), affiliation identifiers (red), and*
233 *author identifiers (green) over time. Periods of re-curation and curation are shown.*

234 The red line in Figure 4 shows the % of authors with RORs, which is generally within 5% of
235 the % with affiliations. This gap reflects affiliations for organizations that do not yet have RORs
236 or RORs missed during the curation and re-curation. Even with these gaps, comparing the results
237 of the curation and re-curation periods in Figure 4 shows that the success of the re-curation
238 process is very close to the ongoing curation process. The average % for the re-curation between
239 2010 and 2018 is 86% compared with 89% during the curation period between 2020 and 2022.

240 5.2 People

241 Figure 4 shows the history of occurrences of identifiers for people (ORCIDs) in Dryad
242 metadata between 2007 and 2022 (green). The % in this case is the percentage of authors that

243 have identifiers rather than the % of DOIs. These identifiers began being included during 2019,
244 when they started being used for users logging into the New Dryad, and that completeness has
245 grown to between 25 and 30% of the authors having ORCIDs.

246 The increased ORCID occurrence since 2019 reflects the Dryad practice of using ORCIDs
247 as logins. This ensures that each dataset submitted to Dryad includes an ORCID for at least the
248 author that submits the dataset to ORCID. The % between 25 and 30% reflects the fact that many
249 times there is only one ORCID associated with a dataset even if there is more than one author.

250 Three approaches can be used to increase the completeness of ORCIDs in the repository.

251 The first is the same as that used in the ROR case – searching Crossref or other sources for
252 author ORCIDs. This approach is limited by incompleteness of ORCIDs in Crossref and other
253 journal article metadata which is related to the common practice of requiring ORCIDs only for
254 corresponding authors. This practice is becoming less common with growing acceptance and
255 understanding of the benefits of ORCIDs, but ORCIDs remain much less common in journal
256 metadata than affiliations.

257 The second approach to increasing ORCID completeness, termed ‘spreading’ [18], works in
258 situations where authors make multiple contributions to a repository, but only include their
259 ORCID for some of them. This situation is demonstrated in Table 1 which shows twelve Dryad
260 datasets for Dr. Todd Vision, a co-founder and long-time user of Dryad. These datasets illustrate
261 the need for and some of the problems with spreading.

Publication Date	DOI	Name	Identifier
2008-06-18	doi:10.5061/dryad.162	Todd J. Vision	
2010-10-18	doi:10.5061/dryad.7881	Todd J. Vision	

2011-04-28	doi:10.5061/dryad.j1fd7	Todd J. Vision	
2013-10-01	doi:10.5061/dryad.781pv	Todd J. Vision	
2014-12-12	doi:10.5061/dryad.41dq8	Todd J. Vision	
2015-12-15	doi:10.5061/dryad.51vs3	Todd J. Vision	
2016-07-15	doi:10.5061/dryad.239sm	Todd J. Vision	
2016-10-31	doi:10.5061/dryad.8q931	Todd J. Vision	
2019-10-11	doi:10.5061/dryad.0373j7r	Todd Vision	
2020-04-08	doi:10.5061/dryad.3xsj3txbz	Todd Vision	0000-0002-6133-2581
2022	doi:10.5061/dryad.59zw3r27c	Todd Vision	
2022	doi:10.5061/dryad.vdncjsxwt	Todd Vision	

262 *Table 1. Dryad datasets for Dr. Todd Vision*

263 First, these twelve datasets have two different versions of the author's name: Todd J. Vision
264 and Todd Vision. Small differences like this are easy to identify manually, but, with over
265 166,000 unique author names in the Dryad repository, they introduce disambiguation
266 complexities. In this case, the ORCID record (<https://orcid.org/0000-0002-6133-2581>) confirms
267 the middle initial J., but similar checks for all cases inevitably introduce manual work and related
268 challenges.

269 Once a decision is made that all authors are the same person, the ORCIDs can be focused
270 on. Only one of the twelve datasets include Dr. Vision's ORCID, so spreading in this case can
271 gain ORCIDs for eleven new datasets. This is a very common situation in the Dryad repository.
272 **Error! Reference source not found.** shows nine community members with 50 or more datasets
273 in Dryad. Together these nine contributors with known ORCIDs add up to over 450 missing
274 ORCIDs in the repository.

275 Table 2. Common contributors to Dryad with number of datasets and number of ORCIDs. The difference is an opportunity for
276 spreading ORCIDs to records that are currently missing them.

277

Name	Dataset Count	ORCIDs
Louis Bernatchez	91	2
Richard Shine	63	18
Bart Kempenaers	58	8
Leigh W. Simmons	54	3
Ole Seehausen	52	6
Juha Merilä	52	1
Yang Liu	51	13
Pierre Taberlet	50	1
Axel Meyer	50	2

278 A second example that includes searching and spreading is provided by one of the recent
279 DOIs in Table 1 (doi:10.5061/dryad.vdncjsxwt). In Dryad this dataset includes the ORCID for
280 one of seven authors (Diego Porto, without * in Table 3) and affiliations for all authors. The
281 dataset does not include a related article in Dryad, but searching for the name of the dataset using
282 Google finds the related article in the journal Systematic Biology with the DOI:
283 <https://doi.org/10.1093/sysbio/syac022> [24]. Retrieving metadata for the article DOI from
284 Crossref yields two more ORCIDs indicated by * in Table 3 and spreading ORCIDs from other
285 Dryad datasets finds two more ORCIDs indicated by ** in Table 3. Combining these two

286 techniques (searching and spreading) increases completeness of ORCIDs for this dataset from
287 14% to 86%.

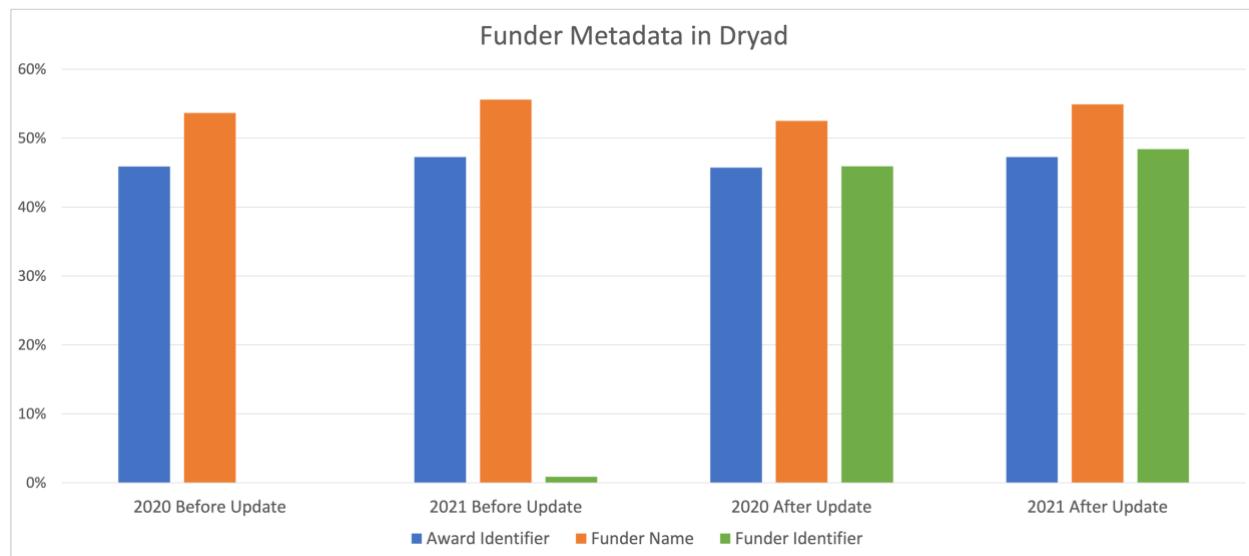
Name	ORCID	Affiliation
Diego Porto	0000-0002-1657-9606	Virginia Tech
Wasila Dahdul	0000-0003-3162-7490**	University of California, Irvine
Hilmar Lapp	0000-0001-9107-0714*	Duke University
James Balhoff	0000-0002-8688-6599*	Renaissance Computing Institute
Todd Vision	0000-0002-6133-2581**	University of North Carolina at Chapel Hill
Paula Mabee	0000-0002-8455-3213***	National Ecological Observatory Network
Josef Uyeda	0000-0003-4624-9680**	Virginia Tech

288 *Table 3. Authors, Identifiers, and Affiliations for <https://doi.org/10.1093/sysbio/svab022>. * show ORCIDs found by searching*
289 *Crossref for this DOI, ** show ORCIDs found by spreading from other Dryad datasets, *** orcid.com lookup.*

290 Finally, names can be searched for ORCIDs directly on the orcid.org website. In cases like
291 the one remaining name here, Paula Mabee, only one occurrence of the name is found and Dr.
292 Mabee has chosen to make her ORCID profile public, so we can add the last ORCID for this
293 dataset manually.

294 This example demonstrates the sometimes-circuitous path to re-curating ORCIDs in Dryad
295 and other repositories. It is more difficult than re-curating affiliations because of the relative
296 paucity of ORCIDs in the literature, identical or similar names for multiple people, ORCID
297 profiles that are not open to the public, and inconsistency in the names that individuals use in
298 dataset and journal article submission processes. Considerable work has been done in name
299 disambiguation [25, 26] that can help further improve accuracy of these approaches.

300 Community members can be important contributors to increasing the completeness of
301 ORCIDs in repositories of journal articles and datasets but individual vigilance and monitoring is


302 required for existing resources. Using ORCIDs in the login process can facilitate on-going
303 collection of ORCIDs for community members.

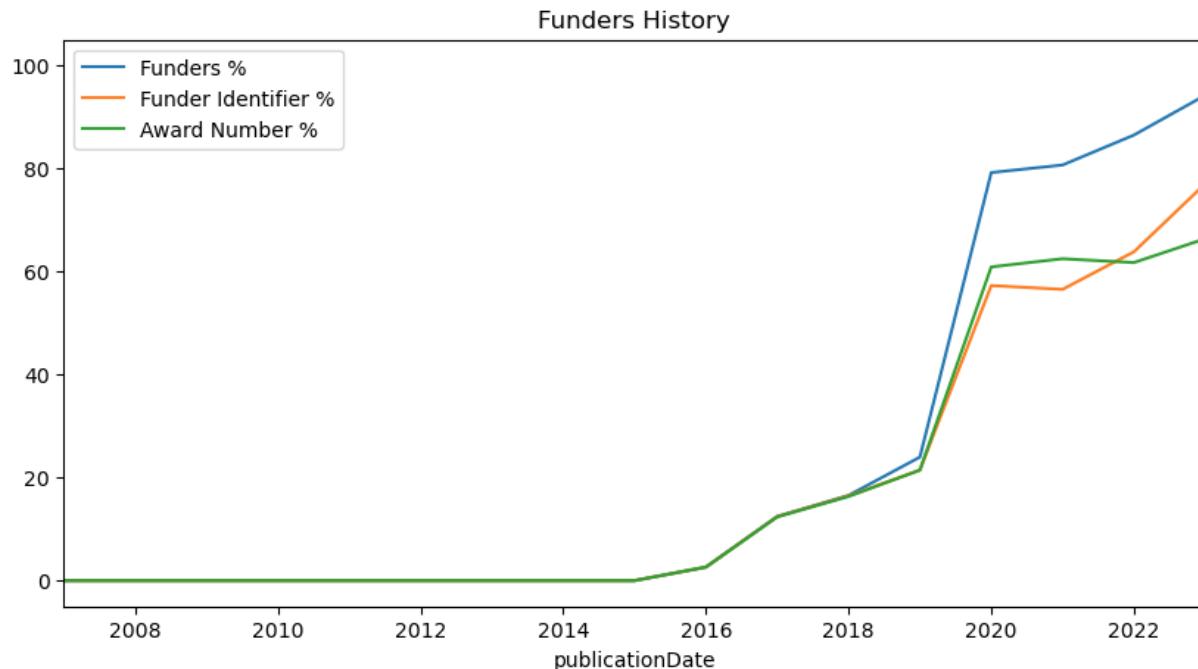
304 5.3 Funder Identifiers

305 Organizations that provide funding for scientific research face the same identification
306 problems described above for research organizations and authors and similar re-curation
307 approaches can be used to add funder metadata into repositories. In this case the most common
308 identifiers are Crossref Funder Identifiers [27] although use of RORs for funders is increasing
309 [28].

310 During late 2021 Dryad undertook a multi-faceted re-curation project aimed at improving
311 completeness of funder identifiers. It included normalization of funder names in the repository
312 and searches for funder identifiers in Crossref (A in Figure 3).

313 The results of this effort are shown in Figure 5. The two histograms on the left show the %
314 of funder names (orange), award numbers (blue), and funder identifiers (green) in all Dryad
315 metadata during 2020 and 2021 before the re-curation. Note that funder identifiers were
316 essentially absent from the repository prior to the re-curation. The histograms on the right show
317 the same data after the re-curation project. The green bars show that funder identifiers were
318 found for ~47% of the Dryad datasets and for ~88% of the funder names.

319


320 *Figure 5. Results of a pilot project to increase the completeness of funder identifiers in Dryad. The % of records with award*
321 *identifiers (blue), funder names (orange), and funder identifiers (green) during 2020 and 2021 are shown before and after the re-*
322 *curation project.*

323 Figure 6 shows the time history of the % of authors with funder metadata between 2008 and
324 2022. The increase in these numbers after 2019 reflects increased attention to identifying funders
325 and awards during this time as well as the focused effort described above.

326 The shape of the curves in Figure 6 are like the ORCID curve in Figure 4 (green) and we
327 showed above how spreading could be used to increase ORCID completeness earlier in the
328 history of the repository. Spreading can also be used with funder identifiers but only after funder
329 name disambiguation and grouping is done on data prior to 2019.

330

331

332

333 *Figure 6. The % of authors with funder names (blue), funder identifiers (orange), and award numbers (green) in Dryad*
334 *journal related records.*

335 The identification of funder identifiers from name strings brings many of the same
336 challenges as identification of organization names in affiliation strings. In particular, the use of
337 acronyms in funder names can make reliable recognition of identifiers difficult or impossible
338 [23]. As an example, a set of over 45,000 funder names and identifiers from Dryad was checked
339 for consistency. Table 4 shows the identifiers associated with the funder name “NSF”, typically
340 an acronym used for the U.S. National Science Foundation. The last three, which occur 60/89
341 times are apparently incorrect interpretations of the acronym and emphasize the need for a
342 combination of automated and manual tools in all re-curation processes.

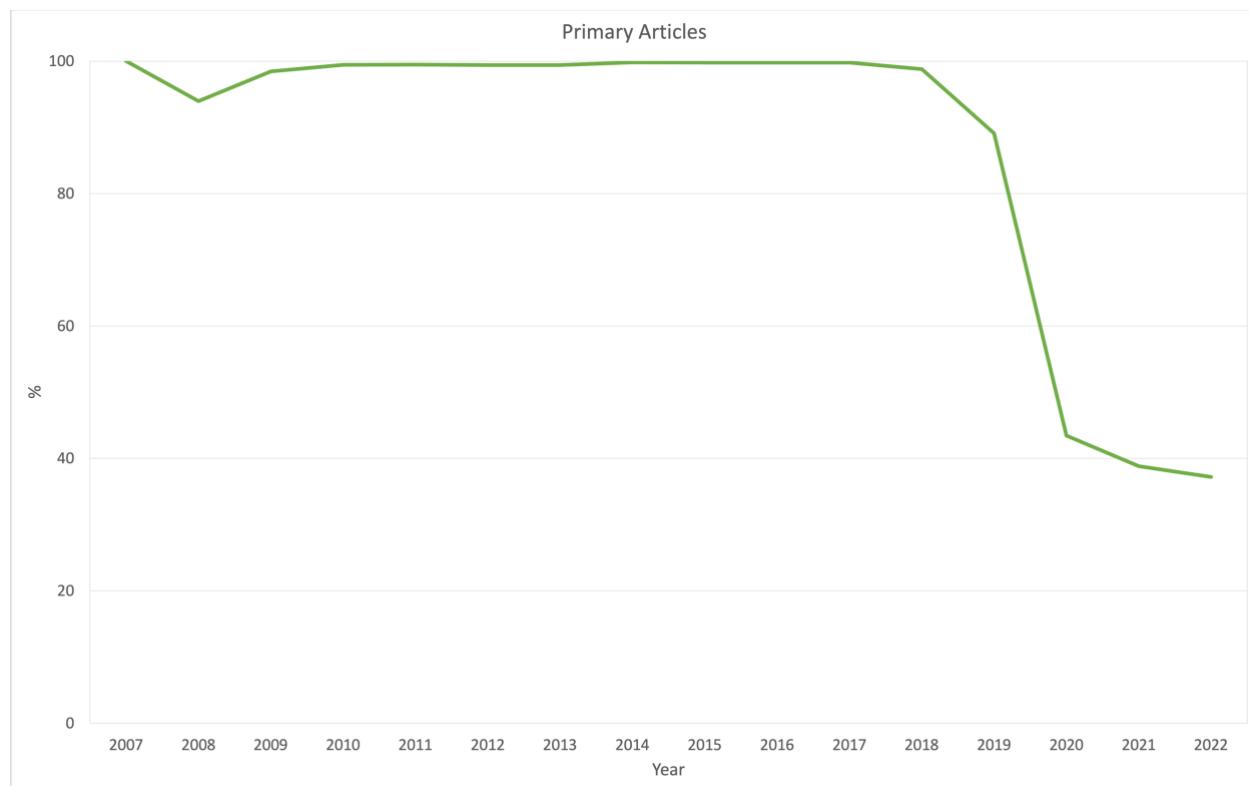
Funder Identifier	Funder Name	Count
http://dx.doi.org/10.13039/100000001	National Science Foundation	28

http://dx.doi.org/10.13039/100000155	Division of Environmental Biology	1
http://dx.doi.org/10.13039/100016620	Nick Simons Foundation	31
http://dx.doi.org/10.13039/501100008982	National Science Foundation of Sri Lanka	21
http://dx.doi.org/10.13039/501100020414	Neurosciences Foundation	8

343 *Table 4. Funder identifiers associated with the acronym NSF in Dryad.*

344 Increasing the accuracy and completeness of funder metadata in repositories also depends
345 critically on community members. Many repository metadata schemas, including the DataCite
346 schema used by Dryad, now include specific elements for funder metadata. Using these
347 elements, in addition to providing funder acknowledgements in free text, can ensure funders are
348 identified and acknowledged correctly and that connections between researchers, funders, and
349 specific awards can be made automatically and unambiguously.

350


5.3 Connecting Datasets to Papers

351 The examples given above, and the workflow shown in Figure 3, emphasize the importance
352 of the global research infrastructure as a source for identifiers that can be re-curated into the
353 Dryad repository to improve identifier completeness and dataset connectivity. This is particularly
354 true prior to 2019, before the Dryad submission process focused more attention on collecting
355 identifiers for RORs during initial curation and using ORCIDs for logins.

356 Connecting datasets and papers has been at the core of Dryad since its inception during 2008
357 [4]. Connections between datasets and papers in Dryad are made using related identifiers [2]
358 with the “primary_article” relation type. Figure 7 shows the % of Dryad journal-related datasets
359 that have these connections. The steep drop in the % of connections that occurs after 2019
360 coincides with the number of datasets submitted to Dryad increasing above 5000 / year (Figure

361 2). This decrease reflects the difficulty of finding these connections in a rapidly growing
362 repository and challenges in record curation processes at Dryad.

363 A principal component of the challenge is the period between submission of a dataset and
364 publication of a related article with the DOI for making the link. This delay automatically puts
365 finding links and adding them into the Dryad repository outside of the typical curation timeframe
366 and into the re-curation timeframe. The general approach described above, i.e. searching
367 Crossref for metadata and adding that metadata to the record cannot be used because the
368 connection to the article does not exist. Other possibilities include ScholéXplorer [29] and
369 several title search strategies like the Google search used above to find the article associated with
370 an existing Dryad dataset.

371

372 *Figure 7. % of journal-related datasets with primary articles identified.*

373 The Framework for Scholarly Link Exchange (Scholix, [30]) is a service aimed at
374 establishing guidelines for exchanging metadata about links between scholarly literature and
375 scientific data and a high-level framework for accessing those metadata. The guidelines have
376 been created by the Research Data Alliance (RDA) and the World Data System (WDS) Scholarly
377 Link Exchange Working group [31] and the framework is operational based on the Scholix
378 Metadata Schema [32] and API. Searching this framework for Dryad DOIs should surface links
379 to those DOIs created by Crossref or by journals when articles referencing the datasets are
380 published.

381 The second option, searching for related papers using Dryad dataset titles is made easier by
382 the common practice of naming Dryad datasets using the expected name of the published paper.
383 For example, the dataset “Data from: Wildfire catalyzes upward range expansion of trembling
384 aspen in southern Rocky Mountain beetle-killed forests” published in Dryad [33] during
385 January, 2022, is likely data used in a paper titled “Wildfire catalyzes upward range expansion of
386 trembling aspen in southern Rocky Mountain beetle-killed forests” [34]. Searching Google for
387 this title yields two links to the article, one on a journal page and one in the U.S. Forest Service
388 library. The journal page contains two machine-readable meta tags that give the DOI: <meta
389 name="citation_doi" content="10.1111/jbi.14302"/> and <meta name="dc.identifier"
390 content="10.1111/jbi.14302"/> which can then be searched for article metadata. In this case, the
391 Crossref search yields no new affiliations or ORCIDs, but it does include two funders.

392 This example clearly depicts how these title searches can happen in a perfect world, but
393 automating google searches and matching titles across thousands of datasets in the real-world is a

394 more complicated task. Dryad is currently exploring this option with the goal of integrating it
395 into the standard processing.

396 **5.4 Preprint Datasets**

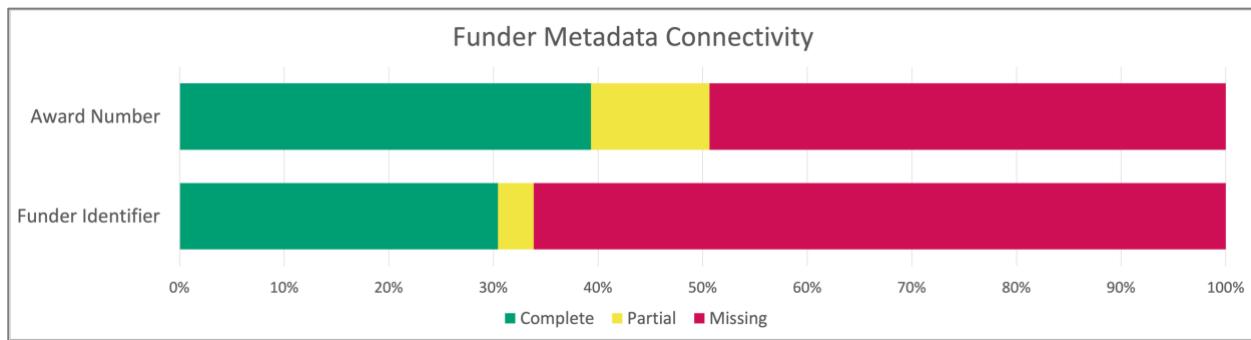
397 Preprint datasets are a special category of datasets without primary_articles because
398 preprints typically have DOIs that will be connected to the DOI of the associated peer-reviewed
399 paper when it is published. This time delay is like that discussed above for all Dryad datasets,
400 but, in the preprint case, the preprint repositories and journals are enlisted in the dataset-paper
401 linking process.

402 Despite this community involvement, considerable problems linking preprints to papers still
403 exist. Cabanac et al. [35] discussed these problems in detail and described a technique for finding
404 links using Crossref metadata and criteria that combined titles, publication dates, and first author
405 names. Eckmann and Bandrowski [36] described a preprint-publication linker that uses broader
406 measures of similarity including the abstracts.

407 The number of preprints in Dryad is relatively small (~1000) but they do contribute to the
408 datasets without primary articles shown in Figure 7. Most preprints with datasets in Dryad are in
409 the BioRxiv repository [37] which provides community supported links to published papers for
410 some of these preprints. Keeping the caveat of incomplete coverage in mind, the BioRxiv API
411 [38] was used to find published DOIs for these preprints. In a sample of 721 preprints, 389
412 published articles were found (54%). This approach could also be integrated into standard Dryad
413 processing to improve recognition of peer-reviewed articles related to preprints.

414 5.5 Datasets submitted without papers

415 Dryad has recently begun accepting independent datasets without expectations of connected
416 papers. Examining 44,486 Dryad datasets associated with organizations showed that 1,727 of
417 those (4%) do not have a related ISSN identifying an associated journal. This percentage may
418 grow in the future, but these datasets only make a small contribution to the missing connections
419 identified in Figure 7.


420 6. Funder / Journal / Organization / Connectivity

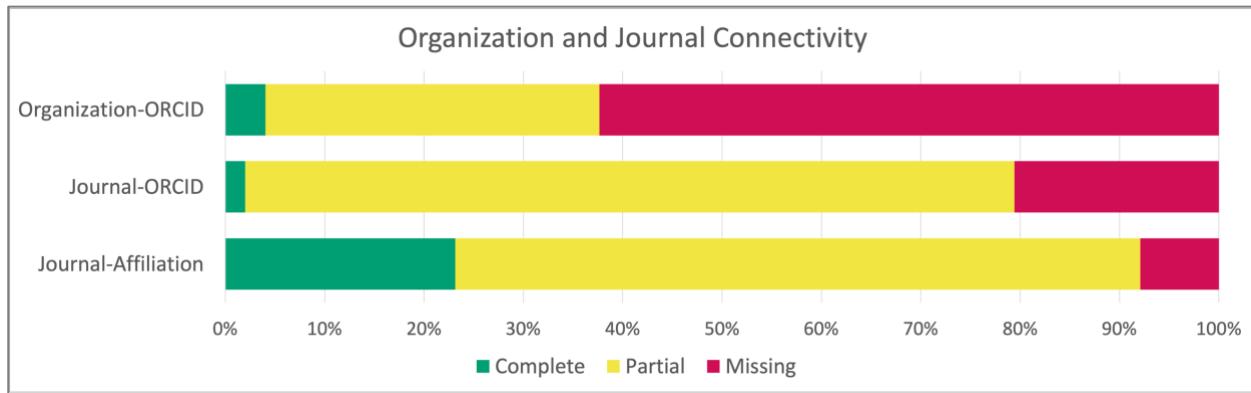
421 The results reported above are examples of *repository connectivity* – calculated over entire
422 repositories, Dryad in this case. Connectivity can also be calculated across repository subsets, for
423 example all datasets associated with a funder, a journal, or an organization, to determine whether
424 the available identifiers are in place. High-level summaries of those observations are shown here
425 using connectivity visualizations described by Habermann, 2023 [18].

426 6.1 Funder Connectivity

427 Funder connectivity depends on funder and award identifiers, and each has independent
428 connectivity. Funders with complete connectivity (lower band in Figure 8, green) include funder
429 identifiers in the metadata for all the datasets they are associated with. That is, 30% of the
430 funders in the dataset (3538) always have an associated identifier. Those identified as Missing
431 (red) have no identifiers. Funders with some identifiers (yellow) have identifiers in some cases.

432

433


434 *Figure 8. Connectivity for funder and award identifiers.*

435 The data in Figure 6 shows that most of the Dryad funder metadata is for datasets published
436 during the last several years. The funders identified as partial in Figure 8 are, therefore,
437 opportunities for spreading funder identifiers to earlier datasets as described above for ORCIDs.

438 The upper band in Figure 8 shows the same data for award identifiers. The award identifier
439 data are complete for more funders than the funder identifier (39%) and fewer funders are
440 missing all award information (49%). This suggests that funder identifiers are more difficult for
441 researchers to locate than award numbers for awards they have received.

442 6.2 Journal and Organization Connectivity

443 Journal connectivity depends on organizational and individual identifiers. The data in Figure
444 4 show that the number of organizational identifiers (RORs) in Dryad is much larger than
445 individual identifiers (ORCIDs) and the journal connectivity shown in Figure 9 conforms with
446 the expectations based on that data.

447

448 *Figure 9. Journal and Organization ORCID and Affiliation Connectivity*

449 The bottom band in Figure 9, labeled Journal-Affiliation, shows that many journals have
450 organizational identifiers for all their organizations (23%, green) and only 8% of the journals are
451 missing all organization identifiers (red). The rest (69%, yellow) have identifiers for some
452 organizations.

453 The second band (Journal-ORCID) shows that only 2% of the journals have identifiers for
454 all authors (green) while 21% have no individual identifiers (red), and 77% have some identifiers
455 (yellow).

456 The Dryad repository includes datasets from many research organizations (mostly colleges
457 and universities). These data were retrieved by organization to determine ORCID connectivity
458 for each organization. These data (top band in Figure 9) show a pattern like the journals but with
459 twice as many complete organizations and more missing (62%).

460 **7. Conclusion**

461 Identifiers of many kinds are the key to creating unambiguous and persistent connections
462 between research objects and other items in the global research infrastructure. Many repositories

463 include research objects that were submitted and curated before these identifiers were created or
464 implemented, making it difficult to connect those research objects into the big picture.
465 Repository re-curation can be used to ameliorate this problem by finding identifiers and
466 augmenting existing metadata. This approach has been used in the Dryad Data Repository to
467 increase identifier completeness for organizations, people, funders, and related papers.

468 The first re-curation effort was undertaken during 2018-2019 as part of the migration of the
469 Dryad repository to the California Digital Library. This work took advantage of DOIs for papers
470 connected to Dryad datasets, searched metadata for those DOIs to find affiliations and searched
471 the Research Organization Registry (ROR) for identifiers for those affiliations. Figure 4 shows
472 that the results of that effort come very close to the results of collecting RORs during the
473 submission process since 2020.

474 The second re-curation effort focused on Funder identifiers for datasets in Dryad since 2020.
475 This effort introduced identifiers for ~88% of the funders for datasets in the Dryad repository
476 since that time (Figure 3). Improving these results and extending their temporal coverage
477 depends on consistent funder names and award numbers as datasets are submitted to the
478 repository.

479 Re-curating identifiers for people into the Dryad repository remains as a significant
480 challenge even though ORCIDs have been used as Dryad logins since 2019. The % of author
481 occurrences with ORCIDs remains close to 30%. The approach used for organizations and
482 funders, i.e., searching DOIs for related papers for identifiers, does not work well because of the
483 paucity of ORCIDs in journal metadata. Spreading known ORCIDs through the repository and

484 searching orcid.org for authors can both help improve individual connectivity, but both
485 approaches have significant challenges.

486 All these re-curation efforts depend critically on connections between Dryad datasets and
487 journal articles produced using those datasets. These connections have been a critical part of the
488 Dryad mission since its formation during 2008. As the Dryad community has grown to include
489 over 5,000 unique datasets from over 20,000 unique authors and over 4,000 unique organizations
490 per year (Figure 2), the % of datasets with connections to journal articles has dropped
491 significantly (Figure 7) to <40%.

492 This unexpected decrease in Dryad connectivity raises important questions about continuing
493 the long-term Dryad commitment to connecting data with journal articles in the face of the five-
494 fold increase in repository submissions. All members that make up the growing Dryad
495 community shown in Figure 2 have a stake in finding more a sustainable approach to finding and
496 recording these connections. Increased utilization of automated tools for finding these
497 connections may be part of the solution, but current automated efforts [36] have not been
498 successful. Increased engagement of the journals and research organizations that support Dryad
499 is also important and the community needs find mechanisms for working together to sustain
500 these connections. The techniques described here can provide metrics for quantitatively
501 demonstrating future progress.

502 The complete global research infrastructure includes many repositories: institutional,
503 generalist, commercial, and non-profit. Like Dryad, these repositories are faced with challenges
504 related to getting connected and staying connected in an ever-changing landscape. Dryad has
505 taken an active approach to addressing these challenges reflected in the re-curation efforts and

506 results described here. Measuring connectivity and the results of re-curation work are important
507 for identifying opportunities, defining baselines for measuring future improvements, and for
508 demonstrating successes and impacts and the techniques described here can be useful across
509 many repositories.

510 **8. Acknowledgements**

511 This work was funded by the U.S. National Science Foundation (Crossref Funder ID:
512 100000001, ROR: <https://ror.org/021nxhr62>) Award 2134956. Current and past Dryad staff,
513 particularly Daniella Lowenberg and Ryan Sherle, were very helpful in initiating this work and
514 in understanding technical aspects of the Dryad Repository. John Chodacki was very helpful
515 with Dryad history.

516 **9. Data Availability**

517 The data used in this work are available in the Dryad Data Repository (DOI:
518 [10.5061/dryad.nzs7h44xr](https://doi.org/10.5061/dryad.nzs7h44xr))

519 **10. References**

520 1. Dryad: Who We Are. Available at: <https://datadryad.org/stash/about>, Accessed June 7, 2023.
521 2. DataCite, (2023), Connecting to Works. Available at:
522 <https://support.datacite.org/docs/connecting-to-works>, Accessed January 12, 2024.

523 3. Hendricks, G. and Buys, M.: Working for Global Equity through Digital Object Identifiers.
524 Available at: <https://upstream.force11.org/working-for-global-equity-through-digital-object-identifiers/> (2023). <https://doi.org/10.54900/6sz4q-47185>, Accessed October 12, 2023.

525 4. Dryad: Depositing Data to Dryad. Available at
526 <https://web.archive.org/web/20080602032626/http://datadryad.org/depositing.html>. Accessed
527 May 29, 2023.

528 5. Dryad: Dryad partnering with CDL to accelerate data publishing. Available at:
529 <https://blog.datadryad.org/2018/05/30/dryad-partnering-with-cdl-to-accelerate-data-publishing/> (2018). Accessed March 22, 2023.

530 6. Dryad: New Dryad is Here. Available at: <https://blog.datadryad.org/2019/09/24/new-dryad-is-here/> (2019). Accessed March 22, 2023.

531 7. DataCite, (2021). DataCite Metadata Schema. Available at: <https://schema.datacite.org/>,
532 Accessed May 29, 2023.

533 8. Gould, M., and Lowenberg, D., (2019). ROR-ing Together: Implementing Organization IDs
534 in Dryad. Available at: <https://ror.org/blog/2019-07-10-ror-ing-together-with-dryad/>,
535 Accessed March 22, 2023.

536 9. Habermann, T., (2019). Dryad Data Packages and Files. Available at:
537 <https://metadatagamechangers.com/blog/2019/2/11/dryad-data-packages-and-files-1>,
538 Accessed March 22, 2023.

539 10. Wilkinson, M., Dumontier, M., Aalbersberg, I. et al.: The FAIR Guiding Principles for
540 scientific data management and stewardship. *Scientific Data* 3, 160018 (2016).
541
542 <https://doi.org/10.1038/sdata.2016.18>

545 11. GREI, (2022), The Generalist Repository Ecosystem Initiative. Available at:
546 <https://datascience.nih.gov/data-ecosystem/generalist-repository-ecosystem-initiative>,
547 Accessed March 22, 2023.

548 12. GREI, (2022), Best practices for sharing data in a generalist repository. Available at:
549 <https://osf.io/h59ge>, Accessed March 22, 2023.

550 13. COAR, (2022), COAR Community Framework for Good Practices in Repositories.
551 Available at: <https://www.coar-repositories.org/coar-community-framework-for-good-practices-in-repositories/>, Accessed May 29, 2023.

553 14. The National Science and Technology Council, Desirable Characteristics of Data
554 Repositories for Federally Funded Research, 2022. Available at:
555 <https://doi.org/10.5479/10088/113528>

556 15. OSTP, (2022), Public Access Memo. Available at: <https://www.whitehouse.gov/wp-content/uploads/2022/08/08-2022-OSTP-Public-Access-Memo.pdf>, Accessed March 22, 557
558 2023.

559 16. OPM, (2023), Good Measurement Makes a Difference in Organizational Performance.
560 Available at: <https://www.opm.gov/policy-data-oversight/management/measuring/good-measurement-makes-a-difference-in-organizational-performance/>, Accessed March 22, 561
562 2023.

563 17. Voehl, F. and Harrington, H.J.: Change Management: Manage the Change or It Will Manage
564 You, CRC Press, Boca Raton, FL. (2016),

565 18. Habermann, T. (2023). Improving Domain Repository Connectivity. Data Intelligence, 5(1),
566 6–26 (2023). https://doi.org/10.1162/dint_a_00120.

567 19. Johnston, L. R., Carlson, J., Hudson-Vitale, C., Imker, H., Kozlowski, W., Olendorf, R.,
568 Stewart, C., Blake, M., Herndon, J., McGeary, T. M., & Hull, E. (2018). Data Curation
569 Network: A Cross-Institutional Staffing Model for Curating Research Data. In International
570 Journal of Digital Curation (Vol. 13, Issue 1, pp. 125–140). Edinburgh University Library.
571 <https://doi.org/10.2218/ijdc.v13i1.616>

572 20. ROR, (2023) . Available at: About, <https://ror.org/about/>, Accessed March 22, 2023.

573 21. ROR, (2023), Match organization names to ROR IDs. Available at:
574 <https://ror.readme.io/docs/match-organization-names-to-ror-ids>, Accessed January 12, 2024.

575 22. Habermann, T., (2022), Need help searching for RORs? Try RORRetriever!. Available at:
576 <https://metadatagamechangers.com/blog/2022/6/30/rorretriever>, Accessed January 12, 2024.

577 23. Habermann, T., (2021). Acronyms Are Definitely Not Enough. Available at:
578 <https://metadatagamechangers.com/blog/2021/7/16/acronyms-are-definitely-not-enough>,
579 Accessed March 22, 2023.

580 24. Diego S Porto, Wasila M Dahdul, Hilmar Lapp, James P Balhoff, Todd J Vision, Paula M
581 Mabee, Josef Uyeda, Assessing Bayesian Phylogenetic Information Content of
582 Morphological Data Using Knowledge From Anatomy Ontologies, Systematic Biology,
583 Volume 71, Issue 6, November 2022, Pages 1290–
584 1306, <https://doi.org/10.1093/sysbio/syac022>.

585 25. Anderson A. Ferreira, Marcos André Gonçalves, and Alberto H.F. Laender. 2012. A brief
586 survey of automatic methods for author name disambiguation. SIGMOD Rec. 41, 2 (June
587 2012), 15–26. <https://doi.org/10.1145/2350036.2350040>.

588 26. Sanyal, D. K., Bhowmick, P. K., & Das, P. P. (2021). A review of author name
589 disambiguation techniques for the PubMed bibliographic database. *Journal of Information*
590 *Science*, 47(2), 227–254. <https://doi.org/10.1177/0165551519888605>

591 27. Crossref, (2023), Funder Registry. Available at: <https://www.crossref.org/services/funder-registry/>, Accessed May 29, 2023.

593 28. French, A. and Buttrick, A., (2023) How ROR and the Open Funder Registry Overlap: A
594 Closer Look at the Data. Available at: <https://ror.org/blog/2023-10-12-ror-funder-registry-overlap/>, Accessed November 8, 2023.

596 29. ScholeXplorer, (2023) . Available at: <https://scholexplorer.openaire.eu/#/>, Accessed January
597 12, 2024.

598 30. Cousijn, H., Feeney, P., Lowenberg, D., Presani, E. and Simons, N., 2019. Bringing Citations
599 and Usage Metrics Together to Make Data Count. *Data Science Journal*, 18(1), p.9. DOI:
600 <http://doi.org/10.5334/dsj-2019-009>

601 31. RDA, (2019), RDA/WDS Scholarly Link Exchange (Scholix) WG, Accessed March 22,
602 2023.

603 32. La Bruzzo, Sandro and Manghi, Paolo. (2022). The Scholix Metadata JSON Schema (4.0).
604 Zenodo. <https://doi.org/10.5281/zenodo.6351557>, Accessed March 22, 2023.

605 33. Nigro, Katherine et al. (2022). Data from: Wildfire catalyzes upward range expansion of
606 trembling aspen in southern Rocky Mountain beetle-killed forests [Dataset]. Dryad.
607 <https://doi.org/10.5061/dryad.crjdfn348>

608 34. Nigro, K. M., Rocca, M. E., Battaglia, M. A., Coop, J. D., & Redmond, M.
609 D. (2022). Wildfire catalyzes upward range expansion of trembling aspen in southern Rocky

610 Mountain beetle-killed forests. *Journal of*
611 *Biogeography*, 49, 201– 214. <https://doi.org/10.1111/jbi.14302>

612 35. Cabanac, G., Oikonomidi, T. & Boutron, I., (2021), Day-to-day discovery of preprint-
613 publication links. *Scientometrics* **126**, 5285–5304, <https://doi.org/10.1007/s11192-021-03900-7>.

614 36. Eckmann P, Bandrowski A (2023) PreprintMatch: A tool for preprint to publication detection
615 shows global inequities in scientific publication. *PLoS ONE* 18(3): e0281659.
616
617 <https://doi.org/10.1371/journal.pone.0281659>.

618 37. BioRxiv, (2023), BioRxiv, The Preprint Server for Biology. Available at:
619 <https://www.biorxiv.org/>, Accessed January 12, 2024.

620 38. BioRxiv, (2023), Machine access and text/data mining resources. Available at:
621 <https://www.biorxiv.org/tdm>, Accessed January 12, 2024.

622 39. Dryad, (2017). Improvements in data-article linking. Available at:
623 <https://blog.datadryad.org/2017/12/18/improvements-in-data-article-linking/>, Accessed May
624 29, 2023.