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Abstract

Monitoring and estimating drought impact on plant physiological processes over large 
regions remains a major challenge for remote sensing and land surface modeling, with 
important implications for understanding plant mortality mechanisms and predict-
ing the climate change impact on terrestrial carbon and water cycles. The Orbiting 
Carbon Observatory 3 (OCO- 3), with its unique diurnal observing capability, offers 
a new opportunity to track drought stress on plant physiology. Using radiative trans-

fer and machine learning modeling, we derive a metric of afternoon photosynthetic 
depression from OCO- 3 solar- induced chlorophyll fluorescence (SIF) as an indicator 
of plant physiological drought stress. This unique diurnal signal enables a spatially 
explicit mapping of plants' physiological response to drought. Using OCO- 3 observa-

tions, we detect a widespread increasing drought stress during the 2020 southwest 
US drought. Although the physiological drought stress is largely related to the vapor 
pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as 
the drought intensifies and VPD sensitivity develops differently for shrublands and 
grasslands. Our findings highlight the potential of using diurnal satellite SIF obser-
vations to advance the mechanistic understanding of drought impact on terrestrial 
ecosystems and to improve land surface modeling.
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1  |  INTRODUC TION

Drought frequency and severity are projected to increase with global 
warming, leading to worldwide forest mortality and significant re-

duction in terrestrial carbon uptake (Allen et al., 2010; Anderegg 
et al., 2013; Ciais et al., 2005; Dai, 2012). Large uncertainties still 
exist in modeling the impact of droughts on ecosystem function, lim-

iting the accurate projections of the terrestrial biogeochemical and 
biophysical feedbacks in the future (McDowell et al., 2022; Trugman 

et al., 2018). Decades of satellite observations have provided valu-

able information on drought- induced canopy structural changes (Liu 
et al., 2020; Zhang et al., 2021). However, the impact of drought 
stress on plant physiology is not well characterized by traditional op-

tical remote sensing (Zhang et al., 2016). Such information would not 
only support drought early warning systems, for example, to identify 
the so- called “point of no return”, which is a drought phase when 
physiological drought stress accumulates and causes irreversible 
damage to an organ or the entire plant (McDowell et al., 2022), but it 
could also help improve the modeling of photosynthesis and evapo-

transpiration at large scale (Martens et al., 2017; Stocker et al., 2019).
The successful retrieval of solar- induced chlorophyll fluores-

cence (SIF) from satellite provides new opportunities to monitor 
physiological drought stress across large spatial scale (Frankenberg 
et al., 2011). SIF is the relatively small amount of energy emitted 
from the excited chlorophyll- a molecules during the light reaction of 
the photosynthesis process (Baker, 2008; Porcar- Castell et al., 2014). 
Like photosynthesis, SIF is affected not only by canopy structure and 
vegetation greenness, which determine vegetation light absorption, 
but also by physiological processes, which regulate the light har-
vest and electron transport chain (Adams & Demmig- Adams, 2004; 

Porcar- Castell et al., 2021). The fluorescence efficiency describes 
the efficiency at which photosystems convert the energy absorption 
to SIF emissions, a process strongly regulated by the physiological 
stress and has little canopy structural information. It is still challeng-

ing to derive such physiological information from satellite- retrieved 
SIF due to the large uncertainty in each individual SIF sounding (Sun 
et al., 2018), the complex radiative transfer that links leaf- level SIF 
emission and top of the atmosphere satellite observation (Yang & 
van der Tol, 2018), and the strong coupling between plant physiolog-

ical and structural changes at weekly or monthly timescales at which 
most satellite SIF observations are obtained (Zhang et al., 2016).

The strong coupling between structural and physiological 
changes breaks down within a diurnal cycle because plants' sto-

mata and metabolism respond more rapidly to drought stress than 
canopy structure (Xiao et al., 2021). Plant stomata operate nearly 
instantaneously in an effort to optimize carbon gains per unit water 
loss (Cowan & Farquhar, 1977; Lin et al., 2015; Zhou et al., 2014). 
This suggests that at diurnal time scale when soil water is limiting, 
stomatal conductance, leaf water potential and CO2 metabolism will 
decrease with vapor pressure deficit (VPD), causing a strong decline 
of plant photosynthesis in the afternoon, a phenomenon known 
as afternoon depression (Franco & Lüttge, 2002). This decoupling 
between structural and physiological changes enables the use of 

sub- daily observations of gas exchanges to understand the physio-

logical response to dryness at eddy covariance (EC) flux tower sites 
(Novick, Ficklin, et al., 2016). However, such sub- daily information 
on vegetation physiological drought stress cannot be readily ob-

tained contiguously at a global scale.
The Orbiting Carbon Observatory- 3 (OCO- 3), NASA's new instru-

ment onboard the international space station (ISS), provides a unique 
opportunity to obtain the diurnal variation of SIF (Taylor et al., 2020). 
OCO- 3 is launched in May 2019. Similar to OCO- 2, it is designed to 
measure the column concentration of trace gases in the atmosphere 
(Eldering et al., 2019). OCO- 3 has ultra- high spectral resolutions at 
atmospheric absorption bands, allowing the SIF retrieval based on the 
Fraunhofer line filling mechanism. Previous spaceborne SIF observing 
platforms are all on sun- synchronous orbits, with limited capability to 
measure SIF at a fixed time of the day. Although their near- fixed local 
observing time allows for a direct comparison from day to day, it can-

not provide dynamic information within a diurnal cycle, a time scale at 
which SIF and its physiological components all change considerably in 
response to stress. OCO- 3 is on a low- inclination precessing orbit so 
that the overpass time for a given latitude changes through time, al-
lowing it to sample all times of the day from dawn to dusk, with an illu-

mination cycle of around 66 days. The diurnal changes of fluorescence 
efficiency can therefore be regarded as a good indicator of plant phys-

iological responses to environmental stresses. Compared to other SIF 
satellites with wide swath and global coverage (such as GOME- 2 or 
TROPOMI), the swath width for OCO- 3 is only around 10 km, with a 
single sounding footprint size of 1.6 km × 2.2 km. However, OCO- 3 has 
a much higher spectral resolution and signal- to- noise ratio compare to 
other sensors, both of which are essential for obtaining high quality 
SIF signals (Taylor et al., 2020). These characteristics give us a unique 
opportunity to investigate the diurnal changes of the physiological re-

sponses of vegetation to environmental drivers.
In this study, we focus on the wide- spread, severe summer 

drought that happened in 2020 across the Southwestern US 
(“Southwest”), characterized by record- low precipitation and record- 
high air temperature and VPD (Dannenberg et al., 2022). Using ra-

diative transfer and machine learning modeling, we demonstrate for 
the first time how OCO- 3 SIF can be used to monitor the diurnal 
physiological stress across large spatial scales. This spatially ex-

plicit physiological information further reveals a biome- dependent 
drought stress development in 2020 Southwest drought.

2  |  MATERIAL S

We used SIF data from both satellite platforms (OCO- 3, TROPOMI) 
and an in- situ observation site (US- Wkg) in this study. To derive and 
validate the physiological signals, we also used EC observations from 
nine sites located in southwest US, spectral reflectance measure-

ments from both Moderate resolution Imaging Spectroradiometer 
(MODIS) and in- situ observations, landcover datasets, drought 
stress indicator from US drought monitor (USDM). Detailed infor-
mation is described below.
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2.1  |  Satellite SIF dataset

We used OCO- 3 SIF vEarly dataset provided by JPL (Taylor 
et al., 2020). OCO- 3 has four observation modes on land, that is, 
the nadir mode, glint mode, target mode and snapshot area map-

ping mode (SAM; Figure S1). The SAM mode is unique for OCO- 3, 
which allows for fine- scale spatial sampling over large area (around 
85 × 85 km). However, previous studies have demonstrated that SIF 
is strongly affected by the solar and viewing geometry (Zhang & 
Zhang, 2023; Zhang, Zhang, et al., 2018), which will complicate the 
interpretation of the diurnal variation of the SIF signal. Therefore, 
in this study, we only used the observations from the nadir mode to 
minimize the effect of viewing geometry.

One unique feature for OCO- 3 is that SIF is observed at differ-
ent time of the day, however, due to the characteristics of the ISS 
orbit, there is a large difference in the data acquisition timing for 
each month (Figure S2; Taylor et al., 2020). Even months (February, 
April, etc.) have much more observations which are evenly distrib-

uted throughout the day. Observations for odd months are much 
less and are mostly acquired in the early morning or late afternoon. 
Considering at a diurnal timescale, physiological stress is strongest in 
the early afternoon (Xiao et al., 2021). To increase the robustness of 
the results, we only used even months for the analysis.

We also used SIF retrievals from TROPOMI onboard the 
Sentinel- 5P satellite (Köhler et al., 2018). TROPOMI SIF provides high 
spatial resolution (7 × 3.5 km), spatially contiguous observations of 
the Earth surface since November, 2017. TROPOMI SIF is directly ob-

served by the satellite, and should be able to capture the physiolog-

ical drought stress. However, TROPOMI observations are obtained 
around 13:30 local time and do not provide diurnal SIF variation. We 
used TROPOMI SIF to demonstrate that the observed afternoon de-

pression is not caused by spatial sampling biases of OCO- 3.

2.2  |  EC flux dataset

We used nine EC sites located in, or close to, our study area (Table S1). 
These sites were selected due to the data availability: each site must 
have observations for the entire year of 2020. These sites cover a 
large variety of biome types, including three evergreen needleleaf for-
est sites, two grassland sites, two woody savanna sites, one savanna 
site, and one open shrubland site. Here, we grouped the latter three 
biome types in a single class named shrublands. Considering that 
grassland and shrubland dominate the study area, these sites can gen-

erally represent the evolution of drought stress for the entire region.
We followed the standard protocol and used the R package 

“REddyProc” to process the EC data (Wutzler et al., 2018). We 
first checked the data quality for each month during 2016– 2020. 
For each site- year, at least 10 out of 12 months must have at least 
50% valid net ecosystem exchange (NEE) measurement. We also ex-

tracted hourly “surface_solar_radiation_downwards” and “soil_tem-

perature_level_2 (7– 28 cm)” from the ERA5 Land Hourly reanalysis 
dataset. The reanalysis dataset showed very good agreement with 

the site level measurements, with mean correlation coefficients of 
0.90 and 0.94 based on available radiation and soil temperature data, 
respectively. For those sites that have missing solar radiation or soil 
temperature observations, we filled 饿的 the gaps with ERA5.

The net ecosystem exchange (NEE) was first calculated as the flux 
of CO2 and storage whenever possible. The gaps in NEE were then 
filled with the marginal distribution sampling method (Reichstein 
et al., 2005). We used both nighttime (Reichstein et al., 2005) and 
daytime (Lasslop et al., 2010) partitioning method to obtain the gross 
primary production (GPP) and ecosystem respiration. The difference 
between the two methods was generally small for the months with 
enough valid (not gap- filled) observations. But the nighttime method 
exhibited larger fluctuation in the afternoon especially when the 
ecosystem is under drought stress. To better demonstrate the di-
urnal variation of GPP and the afternoon depression, we used the 
estimates from daytime partitioning method throughout the study 
as suggested by a previous study (Martini et al., 2022).

2.3  |  In- situ SIF observation

We used the SIF observations at Walnut Gulch Kendall grassland site 
(US- Wkg, 31.74° N, 109.94° W). This is a grassland site with warm win-

ter and dry summer. The mean annual temperature is 15.64°C and the 
mean annual precipitation is 407 mm. The dominant species is Lehmann 
lovergrass (Eragrostis lehmanniana Nees), with small fraction of mesquite 
and shrub (Scott et al., 2010). The SIF was measured using a FluoSpec2 
system mounted on a tower roughly 7- m above the surface (Yang, Shi, 
et al., 2018). The FluoSpec2 system used two optical fibers connect-
ing to an ultra- high spectral resolution spectrometer (QE- Pro, Ocean 
Optics, Inc). These two optical fibers faced upwards and downwards to 
measure the irradiance and radiance, respectively. Both fibers were at-
tached to a cosine corrector to get a nearly 170° field of view. The other 
end of optical fibers was attached to an inline shutter, which allowed 
the spectrometer to measure the irradiance or radiance once at a time.

Radiometric and wavelength calibrations were performed at the 
begin and one time during the field campaign using a radiometric cal-
ibration light source (LS- 1- CAL, OceanOptics, Inc.) and a wavelength 
calibration light source (HG- 1, OceanOptics, Inc.). The derived radio-

metric and wavelength calibration factors were used to convert the 
raw digital number data collected by the spectrometer to irradiance and 
radiance between 680 nm and 775 nm. The system continuously mea-

sured irradiance and radiance during the daytime, from which SIF was 
retrieved at a half- hour timestep using the spectral fitting method at 
760 nm (Meroni et al., 2010). We filtered all SIF retrievals during cloudy 
conditions when PAR observed was <75% of top- of- atmosphere PAR 
(based on solar zenith angle), and when SIF <0 mW m−2 nm−1 sr−1 due to 

a change in the light environment during the upward and downward 
facing measurements. We additionally filtered SIF retrievals during 
periods of low solar zenith angle before 8:30 and after 16:00 local 
time. Surface reflectance was also measured at the site using Spectral 
Reflectance Sensors (SRS, Decagon Devices) installed at the same lo-

cation and height as FluoSpec2, from which Normalized Difference 
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Vegetation Index (NDVI) was calculated. The sensor retrieved NDVI 
showed good seasonal dynamics very consistent with MODIS NDVI 
but with an offset. We used MODIS NDVI to correct this bias to derive 
a consistent diurnal NDVI signal at the site.

2.4  |  Other datasets

We used 500 m daily MODIS Nadir BRDF- adjusted reflectance data-

set (NBAR, MCD43A4) band 1– 4 (red, near infrared, blue, green) to 
derive the physiological drought stress based on a deep learning ap-

proach (Schaaf & Wang, 2015). For each SIF retrieval (sounding), we 
generated a polygon for its footprint (1.6 × 2.25 km) using the corner 
coordinates and retrieve the average reflectance for each of the four 
NBAR band. In total, we retrieved NBAR reflectance for 4.17 million 
OCO- 3 SIF soundings using the Google Earth Engine. We also calcu-

lated the NDVI from the NBAR reflectance.
United States drought monitor (USDM) is a knowledge- based 

drought classification system that provides weekly drought inten-

sity monitoring for the entire US. Drought is classified into four 
categories (moderate, severe, extreme, and exceptional) based on 
a suite of drought indices (including Palmer Drought Severity Index, 
Standardized Precipitation Index, etc.) and experts and a network 
of observers across the country. It is a comprehensive and inte-

grated drought assessment. We used the spatial maps and the areal 
summary of this dataset as an indicator of drought stress. We also 
used MODIS land surface temperature from MYD11C1 as an indi-
rect indicator of drought stress and MODIS land cover dataset from 
MCD12C1 to classify the SIF soundings into different biome types.

3  |  METHODS

We used both a radiative transfer modeling method and a deep 
learning model to derive the afternoon depression signal from the 
satellite SIF observations. For the radiative modeling method, we 
derived and compared the ratio between afternoon and morning 
fluorescence efficiency as afternoon depression. For the deep 
learning model, we trained a residual network to predict a potential 
non- drought SIF mostly based on the canopy structure informa-

tion. The physiological stress would be expressed as the difference 
between observed SIF and this potential non- drought SIF.

3.1  |  Estimating fluorescence yield using radiative 
transfer modeling

Satellite SIF observations can be expressed as the product of inci-
dent photosynthetic active radiation (PAR), fraction of PAR absorbed 
by chlorophyll pigments (fPAR), fluorescence efficiency (�f) and the  
escape probability (fesc) from leaf level to the top of canopy:

Following (Zeng et al., 2019), the escape probability can be cal-
culated as:

where �NIR is the reflectance at the near- infrared (NIR) band and a
is a factor to account for the soil background. We set a to 0.1 in this 
study, as shown by a comparison between SIF and NDVI. Combining 
Equation (1) and Equation (2)

where

LNIR is surface radiance at NIR band can be directly obtained 
from concurrent OCO- 3 observations as the continuum radiance at 
740 nm. Since SIF and LNIR have the same unit, and SIFrelative and �f 

calculated here are unitless, the absolute value of �f is not directly 
comparable with other studies which uses PAR and �NIR. The advan-

tage is that, our approach does not need to consider the complex 
radiative transfer in the canopy, and the varying PAR conditions at 
the satellite overpass. It should be noted that �f is also affected by 
PAR, however, this effect is not considered in our study since the 
effect size is mostly small when PAR is large (van der Tol et al., 2014).

�f can be directly calculated using Equation (3). However, in prac-

tice, we used the regression slope between SIFrelative and NDVI − a as 
�f. This can reduce the large uncertainties when NDVI − a is close to 
zero. LNIR is usually large and very accurately measured, therefore, 
the uncertainties in SIFrelative mostly come from SIF retrievals and are 
not affected by the calculation using Equation (4).

Similarly, vegetation photosynthesis can also be expressed as a 
function of PAR, fPAR and photochemistry efficiency (�p):

�p can be derived as the regression slope between GPP and 
PAR × fPAR:

To avoid the uncertainties introduced by the estimates of fPAR 
for each EC flux site, we calculated �p × fPAR which only relies on 
tower measured GPP and PAR. Unlike photochemistry efficiency 
(�p) that shows a strong light saturation at a diurnal time scale, �f 

have limited variation under varying light conditions (Yang, Ryu, 
et al., 2018). However, with increasing drought stress, both �p and 

�f will decrease while extra energy will dissipate as heat (Porcar- 
Castell et al., 2014). To capture the diurnal variation of the �f and 

make it comparable with the �p in response to drought stress, we (1)SIF = PAR × fPAR × �f × fesc

(2)fesc =
NIRV

fPAR
=

(NDVI − a) × �NIR

fPAR

(3)�f =
SIF

PAR × (NDVI − a) × �NIR
≈

SIFrelative

NDVI − a

(4)SIFrelative =
SIF

LNIR

(5)GPP = PAR × fPAR × �p .

(6)�p =
GPP

PAR
×

1

fPAR
.
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calculated the regression slope between SIFrelative and NDVI − a for 
morning (before 11:30 local time) and afternoon (after 13:30 local 
time) separately. Considering the symmetric shape of radiation for 
the two periods, the regression slopes should be equal for morning 
and afternoon if no stress presents. Similarly, �p × fPAR can also be 
calculated for morning and afternoon separately. Within a diurnal 
cycle, the variations in fPAR are relatively small and symmetric for 
morning and afternoon. Therefore, the comparison between morn-

ing and afternoon �p can also be approximated by the morning and 
afternoon �p × fPAR, that is, the regression slopes between GPP and 
PAR. We estimated the regression slope and the 95% confidence in-

tervals using the ordinary least square method. We did not consider 
the uncertainty in each individual SIF sounding since it can be greatly 
reduced after averaging over multiple observations. When drought 
stress presents and afternoon depression becomes stronger, both 
regression slopes for GPP and PAR, and SIFrelative and NDVI − a will 

be smaller in the afternoon than in the morning. This difference in 
regression slopes can be regarded as an indicator of afternoon de-

pression and the strength of physiological drought stress.
We did not directly compare the fluorescence efficiency for the 

early morning or late afternoon with that for the midday. Although 
this comparison may exhibit stronger afternoon depression signals, 
it also suffers from issues such as reduced numbers of samples for 
the regression and large differences in the solar zenith angle and 
canopy radiative transfer (Chang et al., 2021), which could bias the 
calculation of the �f and �p. Zeng's method for calculating the es-

cape probability (fesc) depends on an assumption of dark soil, that is, 
radiation that passes through the canopy will be fully absorbed by 
the soil. This is highly unlikely for our study area where vegetation is 
sparse and the soil background is bright. Our approach of comparing 
the regression slopes between morning and afternoon can eliminate 
this effect through normalization.

3.2  |  Deep learning predictions

The physiological drought stress will down- regulate SIF from its ex-

pected value when drought is not present. We used a deep learning ap-

proach (residual network, ResNet) to predict this expected non- drought 
SIF (SIFpred) value, and calculated the difference between the OCO- 3 
observed SIF and SIFpred (ΔSIF) as an indicator of physiological drought 
stress (Figure S3). We assume the ResNet can capture the sun- sensor 
geometry effect, allowing us investigate the diurnal changes of ΔSIF. 

ResNet is a type of deep neural network which helps solve the degra-

dation problem through shortcut connections, that is, the output of a 
shallower layer is directly added to the output of a deeper layer before 
applying the activation function. We built a ResNet with five shortcut 
blocks, with each block having two layers and 30 nodes for each layer. 
We used 14 variables as the input for the ResNet, including five related 
to the vegetation optical properties, that is, nadir BRDF- adjusted reflec-

tance band 1– 4 (corresponding to red, near infrared, blue, green band), 
and NDVI; four related to the local climate and environment (relative 
humidity, air temperature, downward shortwave radiation, altitude); 

four related to sun- sensor geometry (sun zenith angle, sun azimuth 
angle, view zenith angle, view azimuth angle), and one observation time 
(time since solar noon). The training samples were selected from open 
shrubland and grassland worldwide. We used a soil moisture thresh-

old (θ > 0.3) to exclude the SIF soundings that are potentially affected 
by drought, and a NDVI threshold of 0.2 to exclude the non- vegetated 
surface. We did not consider using atmospheric dryness (VPD) as an ad-

ditional criterion for drought identification since its component (relative 
humidity and temperature) were used as input variables for the ResNet. 
Theoretically, plants response to VPD under non- drought conditions 
(abundant soil moisture) should be captured by the ResNet. In total, we 
obtained 2.35 million samples (1.46 and 0.89 million for grassland and 
shrubland, respectively), which we further divided them into training, 
validation and testing sets (80%, 4%, 16%, respectively). We trained two 
ResNet models for grasslands and shrublands separately.

We used a batch size of 512, learning rate of 0.002 and number 
of epochs of 200 to train the ResNet, we also used early stopping as 
the regularization to reduce overfitting. The ResNet shows accept-
able performance, considering the large uncertainty in the individ-

ual SIF retrieval (Figures S4– S6). We also designed an experiment to 
demonstrate that the ResNet performance is similar to the “optimal 
model” given the low signal- to- noise ratio (see details in Data S1 and 

Figure S7). Since this ResNet was trained on non- drought SIF observa-

tions, it should be able to capture the general relationship between SIF 
and vegetation status, climate, and observation time but not the water 
stress impact. Comparing this predicted reference SIF to the actual 
OCO- 3 SIF data would thus undercover the stress dependence.

Using these two trained ResNet, we predicted the SIF values for the 
Southwest during 2020, and this predicted SIF should be considered as 
non- drought stressed SIF. The difference between the OCO- 3 observed 
SIF and predicted ones (ΔSIF) should be interpreted as the drought in-

duced SIF declines across different time of the day. Considering the 
large uncertainty in each individual SIF retrieval, we used the average of 
ΔSIF within the 0.05- degree radius to reduce the noise.

4  |  RESULTS

4.1  |  Impact of 2020 Southwest drought on 
terrestrial ecosystem

Starting in the summer of 2020, the Southwest has experienced a 
record- breaking extreme drought event (Dannenberg et al., 2022). 
According to the US Drought Monitor, the drought started in Utah 
and Colorado in May and June and rapidly expands through August 
and September, affecting the entire Southwest (Figure 1a; Figure S8). 
During this period, our study area, which is dominated by grass-

land and open shrubland (41.4% and 34.0%, respectively based on 
MODIS land cover map), exhibits strong positive land surface tem-

perature anomalies in the early afternoon (circa 13:30, 5.4 ± 1.8°C) 
compared to normal years based on observations from MODIS 
(Figure 1b,c) and EC flux towers (Figure S9). Both OCO- 3 SIF and 
MODIS NDVI show lower values in the center of our study region 

 1
3
6
5
2
4
8
6
, 2

0
2
3
, 1

2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/g

cb
.1

6
6
8
3
 b

y
 U

n
iv

ersity
 O

f N
ew

 M
ex

ico
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

9
/0

5
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



3400  |    ZHANG et al.

(Figure 1d,e). With radiative transfer modeling, we delineated the 
physiological information embedded in the SIF signal, represented 
by the fluorescence efficiency (Figure 1f). The spatial patterns of the 
fluorescence efficiency generally match the drought intensity and 
land surface temperature anomalies (Pearson's r = −.37 and −.24, 
p < .01), with the lowest values in the central part of the study re-

gion (Figure 1b,f; Figure S10). This spatial pattern from OCO- 3 is also 
similar with that calculated from TROPOMI SIF (Figure S11), demon-

strating the potential of using satellite datasets to understand plant 
physiological changes in response to drought. But such a spatial 
pattern may have large uncertainty due to the inaccurate charac-

terization of structural information using vegetation indices. A more 

robust estimate of the physiological signal should be acquired at di-
urnal time scales when structural and physiological processes de-

couple (Martini et al., 2022).

4.2  |  Afternoon depression as an indicator for 
physiological drought stress

Using in- situ Ameriflux EC observations from nine sites in the 
Southwest (Figure 1c), we examine the monthly average diurnal 
variations of gross primary production (GPP) during the middle of 
the drought in August, 2020. In the absence of water limitation, we 

F I G U R E  1  2020 Drought in US Southwest. (a) Drought categories from US Drought Monitor for the week of August 25, 2020. The 
blue rectangle shows the study area. (b) Midday land surface temperature (LST) anomaly for August. The anomaly is calculated using 
LST for 2020 minus multi- year average during 2010– 2019. (c) Land cover map from MODIS for year 2019. The black cross signs indicate 
the eddy covariance (EC) flux tower sites used in this study. Red square indicates the EC site where site- level solar- induced chlorophyll 
fluorescence (SIF) observation is available. (d) Midday Orbiting Carbon Observatory 3 (OCO- 3) SIF at 757 nm in 2020 August. The unit is 
mW m−2 nm−1 sr−1. To reduce the uncertainty in SIF retrievals, the average value within a small neighboring area (0.1° × 0.1°) is used for each 
sounding. (e) The MODIS NDVI for the corresponding OCO- 3 soundings. (f) Midday fluorescence efficiency calculated from OCO- 3 and 
MODIS as the regression slope between relative SIF and NDVI. The individual OCO- 3 soundings are aggregated to 1° × 1° gridcells. [Colour 
figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2  Afternoon depression at eddy covariance flux towers and with OCO- 3 SIF. (a) The diurnal course of monthly mean gross 
primary production (GPP) at 6 grassland and shrubland flux tower sites in the study region for August, 2020. The locations of the sites 
are shown in Figure 1(c). Yellow shades indicate the period with strongest afternoon depression. (b) The relationship between GPP and 
solar radiation using the monthly average GPP and radiation for each time of the day. Regressions are conducted for the morning and 
afternoon observations, respectively. We use a scaling factor on GPP for each site each month so that the morning regression slope always 
equal to 1/1000, allowing the morning afternoon differences to be directly comparable across sites. Dotted lines in (a) and (b) indicate 
the observations from the Walnut Gulch Kendall grassland (US- Wkg) where SIF observations are available. (c) Diurnal variations of SIF 
and relative SIF at the US- Wkg site during August and September in 2020. (d) Fluorescence efficiency calculated at the US- Wkg site. (e) 
Diurnal course of the radiation and vapor pressure deficit for August for both 2020 and the reference period during 2010– 2019 for the 
entire study region from ERA5. Shades indicate the 1 SD of the variation. (f) Fluorescence efficiency calculated from OCO- 3 for grasslands 
and shrublands. Solid and dashed lines indicate the regressions for morning and afternoon soundings, respectively. Average fluorescence 
efficiency is calculated for each NDVI bin, with the error bar indicate the standard error of the mean. Regression slopes with 95% confidence 
intervals are shown in the top- left corner for both biome types. NDVI’ is the NDVI adjusted for the soil background. [Colour figure can be 
viewed at wileyonlinelibrary.com]

 1
3
6
5
2
4
8
6
, 2

0
2
3
, 1

2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/g

cb
.1

6
6
8
3
 b

y
 U

n
iv

ersity
 O

f N
ew

 M
ex

ico
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

9
/0

5
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



    |  3401ZHANG et al.

6 8 10 12 14 16 18 20

0

2

4

6

8

G
P

P
 (
�

 m
o

l 
C

O
2
 m

�
2
 s
�
1
)

Time (hours)

(a)
Shrubland

Grassland

US−Wkg

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

G
P

P
 (

n
o

rm
la

iz
e

d
)

Radiation (W m
�2

)

(b)
Shrubland

Grassland

US−Wkg

o

x
Morning

Afternoon

6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
o
w

e
r 

S
IF

 (
m

W
 m

�
2
n

m
�
1
s
r�

1
)

T
o
w

e
r 

S
IF

re
la

ti
v
e
 (

%
)

Time (hours)

(c)

SIF
SIFrelative

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

T
o
w

e
r 

S
IF

re
la

ti
v
e
 (

%
)

NDVI'

(d)

Morning

Afternoon

6 8 10 12 14 16 18 20

0

2

4

6

8

0

300

600

900

1200

V
P

D
 (

k
P

a
)

R
a

d
ia

ti
o

n
 (

W
 m

�
2
)

Time (hours)

(e)

Radiation

VPD

Reference

2020

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0
(f)

O
C

O
−

3
 S

IF
re

la
ti
v
e
 (

%
)

NDVI'

1.479
1.317

1.642

0.948
0.784

1.111

1.366
1.232

1.499

0.895
0.718

1.072

morning

afternoon

Shrubland

Grassland

Morning

Afternoon

 1
3
6
5
2
4
8
6
, 2

0
2
3
, 1

2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/g

cb
.1

6
6
8
3
 b

y
 U

n
iv

ersity
 O

f N
ew

 M
ex

ico
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

9
/0

5
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



3402  |    ZHANG et al.

expect that GPP would follow the incoming solar radiation and ex-

hibit a nearly symmetrical diurnal pattern (Matthews et al., 2017). 
However, we observe large GPP declines in the afternoon, com-

pared to the morning for most sites (Figure 2a). This corresponds to 
a decrease in light use efficiency (LUE, GPP divided by solar radia-

tion) in the afternoon as the stomata partially close to prevent water 
losses, with average afternoon LUE reducing to only 67.3% and 
61.7% of its morning values for grasslands and shrublands, respec-

tively (Figure 2b). Forests exhibit little changes since they are mostly 
located in more mountainous regions with higher water availability 
(Figure S12), lower temperature and VPD, and are less affected by 
the drought (Knowles et al., 2020).

Using the in- situ SIF observations from the Walnut Gulch Kendall 
grassland site, we find the fluorescence efficiency also shows an evi-
dent depression in the afternoon (Figure 2c,d). The magnitude of the 
decline for fluorescence efficiency (35.5%) is close to the decline for 
LUE (37.8%). Both are much stronger than their counterpart in the 
same month but in a non- drought year (Figure S13). The morning- 
afternoon difference in both SIF and GPP can be used to indicate 
diurnal changes of vegetation physiological stress. But can we derive 

such a diurnal physiological signal from satellite observations so that 
the stress can be monitored at large scale?

Although OCO- 3 observes the Earth's surface at different time 
of the day, it is not possible to obtain both morning and afternoon 
SIF at the exact same locations due to the sparse swath- based 
sampling strategy (Figures S1 and S2). The diurnal variation of sun- 
sensor geometry also affects the radiation absorption, making the 
fluorescence efficiency calculated at different times of the day not 
directly comparable (Chang et al., 2021). We therefore divide the 
observations into morning and afternoon considering the symmet-
rical solar zenith angle and the large differences in VPD between 
these two periods (Figure 2e). We find with this approach that the 
fluorescence efficiency is 35.9% and 34.5% lower in the afternoon 
than morning for grassland and shrubland, respectively (Figure 2f). 
This OCO- 3 SIF derived afternoon depression, similar to the depres-

sion observed at the EC sites, provides robust evidence that OCO- 3 
captures the diurnal physiological drought stress.

4.3  |  Temporal development of physiological 
drought stress

With this analysis framework, we evaluated the diurnal physiological 
stress changes during the entire drought period. Due to the limited 
observations of OCO- 3 SIF in odd numbered months (Figure S2), we 
only retrieved morning and afternoon fluorescence efficiency for 
the five even months from February to October. Both grasslands 
and shrublands show similar seasonal patterns, with fluorescence 
efficiency slightly increasing from February to June (Figure 3a; 

Figures S14 and S15). Grasslands, compared to shrublands, show 
stronger increases, possibly due to a greater relief of cold stress as 

F I G U R E  3  Drought development and changes in afternoon 
depression. (a) Changes in morning and afternoon fluorescence 
efficiency for grassland and shrubland, with the error bars showing 
the 95% confidence interval. February afternoon estimates for 
grassland exhibit large uncertainty due to limited observations 
and are not shown here (Figure 2). (b) The afternoon depression 
of light use efficiency from eddy covariance (EC) towers and of 
fluorescence efficiency from OCO- 3. The depression is calculated 
as the ratio of efficiencies between afternoon and morning for 
each month. The shades show the range of the depression from 
individual sites within each biome type. The inset shows the 
comparison of the depression derived from OCO- 3 and EC. (c) 
The seasonal variation of enhanced vegetation index (EVI) for the 
grassland and shrubland in the study region. The shades show 
the standard deviation of the spatial variations. The inset show 
the comparison between the afternoon depression derived from 
OCO- 3 and EVI. (d) The evolution of vapor pressure deficit for 
OCO- 3 soundings (grassland and shrubland) and the drought 
classification for the entire study area using US drought monitor. D0 
to D4 indicate abnormally dry, moderate drought, severe drought, 
extreme drought, exceptional drought, respectively. The inset 
shows the comparison between the afternoon depression estimated 
from OCO- 3 and the vapor pressure deficit for the 5 months. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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they are mostly distributed in the northern part of the study area. 
Since June, fluorescence efficiency for both grasslands and shrub-

lands started to decrease, with a large reduction in October, consist-
ent with a rapid expansion of the extreme drought area (Figure 3d; 

Figure S8). Fluorescence efficiency is always lower in the afternoon 
than morning, and this difference increases as the drought develops.

We further quantify the strength of afternoon depression from 
both EC calculated LUE and OCO- 3 derived fluorescence efficiency. 
The afternoon depression, calculated using either method, decline 
as the drought progresses since April, with a similar trend for both 
shrublands and grasslands (Figure 3b; Figure S12). In comparison, the 
absolute values of fluorescence efficiency mostly increase during 
this period. This suggests that changes of fluorescence efficiency 
may not be a robust signal for physiological drought stress detec-

tion, possibly due to variations of other environmental stresses or 
inaccurate characterization of the fluorescence efficiency. Although 
the EC sites are not evenly distributed across the study area, they 
represent the impact of drought on plant physiology for major biome 
types of the region. OCO- 3 derived afternoon depression is strongly 
correlated with the depression of LUE calculated from EC (Pearson's 
r = .92, p < .001). Interestingly, we observe a weak relationship be-

tween the afternoon depression and the enhanced vegetation index 
(EVI, r = −.39, p = .69 for grassland, r = .22, p = .73 for shrubland), sug-

gesting that the physiological stress development is decoupled from 
the vegetation greenness changes during this period. The OCO- 3 
SIF derived afternoon depressions occur earlier than the vegetation 
greenness declines, especially for grasslands, making this indicator 
a potential early warning signal for drought stress. VPD is expected 
to strongly affect the strength of the afternoon depression, and 
this is supported by a concurrent increase of the depression and 
VPD during February to August (Figure 3d). However, the relation-

ship breaks down in the later period of the drought, likely due to a 

continuous decline of soil moisture that exacerbates stomatal sensi-
tivity to VPD (Novick, Ficklin, et al., 2016). These results indicate that 
the OCO- 3 observed afternoon depression of photosynthesis well 
captures the plant responses to the integrated physiological drought 
stress, which is independent from canopy greenness changes and 
cannot be represented by VPD, temperature or soil moisture alone.

To test if this satellite derived afternoon depression might be 
an artifact caused by differences in the sample locations, that is, 
whether the fluorescence efficiency happens to be higher for the 
OCO- 3 morning sounding locations, and lower for the afternoon 
sounding locations, we calculated the fluorescence efficiency using 
the TROPOMI SIF for the corresponding sounding locations of 
OCO- 3 SIF (SIFTROPOMI- OCO3). These SIFTROPOMI- OCO3 observations 
can be categorized into morning and afternoon observations based 
on the corresponding OCO- 3 overpass time. Since TROPOMI SIF ob-

servations are obtained around 13:30 local time and do not provide 
diurnal stress information, thus the fluorescence efficiency calcu-

lated from SIFTROPOMI- OCO3 should not exhibit a difference between 
the OCO- 3's morning sounding locations and afternoon sounding lo-

cations. Our analysis confirms this hypothesis by demonstrating that 
the calculated fluorescence efficiency is not systematically lower for 
afternoon (paired one- sided t- test, p = .57, Figure 4).

4.4  |  Spatial mapping of plants physiological 
drought stress

The diurnal changes of physiological stress provide important informa-

tion on how ecosystems respond to drought. To derive a spatially explicit 
map of diurnal physiological drought stress, we trained deep learning 
models based on OCO- 3 SIF observations under non- drought conditions 
at different time of the day for grasslands and shrublands separately, and 

F I G U R E  4  Comparison between 
fluorescence yield calculated using 
morning and afternoon sample 
locations from OCO- 3 and TROPOMI. 
Blue and red colors represent 
fluorescence yield for morning and 
afternoon, respectively. Solid and 
hatched bars represent results for 
OCO- 3 and TROPOMI, respectively. 
Error bars show the 95% confidence 
intervals of the fluorescence yield 
estimates. For OCO- 3, the samples 
are collected at different time of the 
day, while for TROPOMI, the samples 
are obtained from the same sounding 
locations as the OCO- 3, with fixed 
observation time around 13:30. Only 
4 months with enough samples are 
shown. (a) All grassland samples within 
each month. (b) All shrubland samples. 
[Colour figure can be viewed at 
wileyonlinelibrary.com]
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use these models to predict a reference SIF during the drought period 
(Figure S3). The difference between observed SIF and predicted refer-
ence SIF (ΔSIF) can be interpreted as the physiological stress induced 
SIF reduction (Zhang, Joiner, et al., 2018). This approach also allows us to 
characterize the spatial patterns of the diurnal drought stress.

In April 2020 before the drought starts, ΔSIF is on average close 
to zero for the afternoon (Figure 5a). There is no obvious sign of af-
ternoon depression when compared with morning and noon values 
(Figure 5d; Figure S16). As the drought stress develops, we observe a 
widespread signal of negative ΔSIF, corresponding to a strong after-
noon depression for June and August. With the swath- based satellite 

observations, we can assess the physiological drought stress spatially 
at ecosystem scale. For example, we find much weaker drought stress 
as indicated by a slight positive ΔSIF near the California- Arizona bor-
der (especially in June and August), where Colorado River can provide 
enough water for the local environment. Drought stress is also weaker 
in cooler mountainous regions in southern Colorado and western New 
Mexico (Figure 5b,c). These large diurnal variations of ΔSIF are not 

likely due to the model bias since we did not find such diurnal biases in 
the independent test and validation datasets (Figure S7).

Interestingly, satellite observations reveal different trajectories of 
physiological drought stress development between shrublands and 
grasslands. In April before the drought begins, afternoon depression 
signals are weak for both biomes (Figure 5d). The stress signals diverge 
as shrublands exhibit more negative afternoon ΔSIF in early drought 
period (June) while the depression is still relatively weak for grasslands 
(Figure 5e). Such a difference in emergence time of the stress signals 
may be partly attributed to a greater increase of VPD in shrublands 
(Figure 3c), but also to a stronger plants' sensitivity to VPD due to 
a lower soil moisture (Figure 6a; Novick, Ficklin, et al., 2016; Sperry 
et al., 2016). Declining soil water potential reduces plant hydraulic con-

ductivity and xylem water transport, leading to a reduced transpiration 
and an increased stomatal sensitivity to VPD (Sperry et al., 2016). This 
biome- dependent depression- VPD relationship derived from satellite 
observations is also supported by independent EC measurements with 
high consistency (Pearson's r = .87, p < .001, Figure 6b). These analyses 
demonstrate that OCO- 3, combined with other satellite observations, 
can spatially explicit map plants drought stress, which provide a valu-

able dataset to understand the mechanism of drought impact on plant 
physiology at large scale.

5  |  DISCUSSION

In this study, we use two independent methods to demonstrate that 
the diurnal SIF observations from OCO- 3 can be used to derive a ro-

bust signal of physiological drought stress. The observed afternoon 
depression of fluorescence efficiency and light use efficiency is likely 
caused by the high VPD- induced stomatal closure, which inhibit the 
light independent reaction of photosynthesis and feedback to the en-

ergy portioning of the light reaction (Porcar- Castell et al., 2014). Soil 
moisture and plant hydraulic traits also affect the water transport and 
regulate the stomatal sensitivity to VPD, further enhances the after-
noon depressions as drought develops (Novick, Miniat, & Vose, 2016; 

Tuzet et al., 2003). Recent studies also suggest that chloroplast move-

ments and leaf inclination in response to light and water stress can 
also partly explain the afternoon depression (Maai, 2020; Pastenes 
et al., 2005). These processes directly affect the plant water and car-
bon exchange at both diurnal and seasonal scales, but their effects 
are difficult to simulate at large scale using state- of- the- art DGVMs 
due to the limited observations for parameterizing the complex plant 
hydraulic module at large scale (Kennedy et al., 2019). The satellite- 
observed afternoon depression can be used as an observational 
benchmark for both model parameterization and validation.

F I G U R E  5  Spatial patterns of the afternoon depression. (a– c) 
Difference between observed SIF and machine learning predicted 
SIF (ΔSIF) in the afternoon (13:00 to 15:00) during the drought 
period. To reduce the noise of each SIF sounding, we calculate the 
average ΔSIF within the 0.1° × 0.1° window for each sounding. (d– f) 
Boxplot of normalized ΔSIF for shrubland and grassland within 
the study area at different time of the day. ΔSIF is normalized by 
the regional mean of the predicted SIF for the study area (blue 
boundary) to account for the diurnal variation of radiation. Yellow 
shades indicate the period with strongest afternoon depression. 
Different letters indicate significant difference (p < .001) between 
groups. [Colour figure can be viewed at wileyonlinelibrary.com]
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In addition to SIF, a number of recently proposed vegeta-

tion indices have been shown to be robust proxies of terrestrial 
photosynthesis, for example, NIRv and its derivatives (Badgley 
et al., 2017; Dechant et al., 2022), kNDVI (Camps- Valls et al., 2021), 
but they largely represent canopy structural dynamics and do not 
provide information of drought stress on plant physiology (Magney 
et al., 2019; Martini et al., 2022). These indicators nevertheless 
show very strong spatiotemporal co- variation with SIF since fluo-

rescence efficiency remains relatively stable during the non- stress 
period of the growing season (Dechant et al., 2020; Yang, Ryu, 
et al., 2018). Fluorescence efficiency becomes important when 
drought, heat or cold stress inhibit plant physiological processes 
(Kimm et al., 2021; Magney et al., 2019; Zeng et al., 2022). For 
example, fluorescence efficiency derived from in- situ SIF mea-

surements at a temperature control experiment revealed a strong 
relationship with physiological stress (Kimm, Guan, Burroughs, 
et al., 2021). Recent studies indicate that satellite derived SIF 
has stronger sensitivity than conventional vegetation indices in 
response to drought (Smith et al., 2018), yet it remains unclear 
whether this advantage is contributed by the changes in plant 
physiology. By combining OCO- 3 SIF and other satellite observa-

tions using radiative transfer modeling and machine learning, we 
are able to successfully derive the diurnal changes of fluorescence 
efficiency at the regional scale. This provides the first satellite- 
based evidence that SIF contains unique physiological informa-

tion, especially at the diurnal time scale to track drought stress.
Although afternoon depression observed by satellite exhib-

its similar magnitude as that from EC, a linear photosynthesis- SIF 
relationship during drought is not warranted since the magni-
tude of average daily LUE decline may be different than that of 
fluorescence efficiency (Wieneke et al., 2018). In fact, recent 
studies based on site- level observations suggest that the strong 

photosynthesis- SIF relationship breaks down during drought pe-

riod (Martini et al., 2022). However, this satellite- retrieved signal 
can still play an important role in land surface modeling either serv-

ing as an empirical drought scalar or through model data fusion (Liu 
et al., 2020; Stocker et al., 2018). More importantly, this global ob-

servation provides new possibility in understanding how different 
ecosystems respond to drought physiologically. Due to the limited 
spatial coverage of the swath- based observations, OCO- 3 cannot 
estimate drought stress contiguously across space. Geostationary 
Carbon Observatory (GEOCarb), NASA's new geostationary satel-
lite set to launch in 2024, will provide hourly wall- to- wall mapping 
of SIF for North and South America (Somkuti et al., 2021), further 
enhancing our capability to monitor diurnal changes of physiological 
drought stress.
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F I G U R E  6  The vapor pressure deficit (VPD) effect on afternoon depression. (a) Effect size of afternoon depression along the VPD 
during the drought period. Lines indicate the average response of normalized afternoon depression of SIF (ΔSIF) within each VPD bin, 
with different line types indicate observations from different months. Points indicate afternoon depression of GPP (relative decrease of 
afternoon GPP to morning GPP) from EC observations. (b) Comparison between afternoon depression from OCO- 3 (y- axis) and from EC  
(x- axis). Colors of the points indicate the monthly average VPD in the afternoon (13:00 to 15:00). [Colour figure can be viewed at 
wileyonlinelibrary.com]
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