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Despite recent calls to make geographical analyses more reproducible, formal attempts to
reproduce or replicate published work remain largely absent from the geographic literature.
The reproductions of geographic research that do exist typically focus on computational
reproducibility — whether results can be recreated using data and code provided by the
authors — rather than on evaluating the conclusion and internal validity and evidential
value of the original analysis. However, knowing if a study is computationally reproducible
is insufficient if the goal of a reproduction is to identify and correct errors in our knowledge.
We argue that reproductions of geographic work should focus on assessing whether the
findings and claims made in existing empirical studies are well supported by the evidence
presented. We aim to facilitate this transition by introducing a model framework for conduct-
ing reproduction studies, demonstrating its use, and reporting the findings of three exemplar
studies. We present three model reproductions of geographical analyses of COVID-19 based
on a common, open access template. Each reproduction attempt is published as an open
access repository, complete with pre-analysis plan, data, code, and final report. We find
each study to be partially reproducible, but moving past computational reproducibility, our
assessments reveal conceptual and methodological concerns that raise questions about the
predictive value and the magnitude of the associations presented in each study. Collec-
tively, these reproductions and our template materials offer a practical framework others
can use to reproduce and replicate empirical spatial analyses and ultimately facilitate the
identification and correction of errors in the geographic literature.
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Geographical Analysis

Introduction

The geographic literature is quickly becoming crowded with calls to make geographical
research more reproducible (see Brunsdon 2016; Muenchow, Schifer, and Kriiger 2019; Yin
et al. 2019; Brunsdon and Comber 2021; Goodchild et al. 2021; Kedron et al. 2021a, b). In
principle, reproducible research publicly discloses the evidence base for claims from prior work
not only to improve the transparency of scientific communication but also to facilitate the
independent verification of those claims (Schmidt 2009; Nosek, Spies, and Motyl 2012; Earp
and Trafimow 2015). Reproducibility is therefore tied to at least two questions about the results
and claims of prior work (National Academies of Sciences, Engineering, and Medicine 2019).
First, are the data and methods used in a prior study shared clearly enough to allow for the results
to be recreated? Second, once an attempt to recreate the results of a prior study has been made,
do the data, analysis, and results in fact support the claim(s) made by the study? Research that
addresses either question can help make geographic research more reproducible and facilitate
the verification and accumulation of geographic knowledge.

To date, geographers have largely focused their efforts on the first of these two questions by
working to assess and address whether the data, code, and methods needed to reproduce research
are available. Researchers have catalogued the availability of data and code in subsets of the
geographic literature (Konkol, Kray, and Pfeiffer, 2019; Ostermann and Granell 2017), identified
actions geographers can take to better share their data and methods (Tullis and Kar 2021; Kedron
et al. 2021b), offered guidelines for how to do so (Hofer et al. 2019; Niist and Pebesma 2021;
Wilson et al. 2021), and created infrastructure to host researcher materials and recreate analyses
(Wang 2016; Niist and Hinz 2019; Yin et al. 2019). These activities set the stage for reproduction
studies that assess the claims made in the existing geographic literature but do not themselves
assess those claims.

Formal attempts to reproduce published studies and assess whether the claims presented in
those studies are well-supported remain largely absent from the geographic science literature. The
few recently published reproduction studies that exist in the field focus on assessing whether stud-
ies can be computational reproduced (i.e., whether the computational results of a prior study can
be recreated using the same data and code). These studies are similar to traditional manuscript
reviews, but additionally attempt to execute available code, numerically compare outputs to
results reported in the manuscript, and report (and sometimes correct) errors in code compilation
or execution. While these studies do attempt to reproduce prior results, they do not take the addi-
tional step of explicitly assessing whether the evidence presented does, in fact, support the claims
being made. Narrowly focusing reproduction attempts on recreating the results and correcting the
coding errors of prior studies reduces reproduction to a form of quality audit that provides limited
information about the conclusion validity and internal validity of prior work. This approach is
understandable, as the reproducibility crisis across the sciences is often linked to the ubiquitous
use of expanding computing resources to perform complex analyses of complicated problems
(Stodden, Leisch, and Peng 2014; Stodden et al. 2016; National Academies of Sciences, Engi-
neering, and Medicine 2019). Unfortunately, ending the evaluation of a study at an assessment
of its computational reproducibility may hinder scientific progress if the recreation of results is
misconstrued as affirmation that questionable decisions leading to those results were valid.

We advocate that geographers move beyond checks of computational reproducibility and
begin to develop a body of reproduction studies focused on the assessment of the claims of
prior work. The objective of this article is to facilitate this transition by introducing a model
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KEDRON et al. Moving Beyond Computational Reproducibility

framework for conducting reproduction studies, demonstrating its use, and reporting the findings
of three exemplar studies. First, we introduce a model workflow for conducting reproduction
studies aimed at assessing the claims of published research. Second, to demonstrate the use of
our approach and materials, we report the findings of our attempts to reproduce and assess the
claims of three published geographical analyses of COVID-19 in the United States. Third, we
review the reproduction process and use the information gathered during our attempts to identify
how we might systematically use reproduction studies to assess and enhance future geographical
research. Through these contributions, we position geographers to build on recent efforts to
make reproducibility more achievable and shift their focus to the evaluation of research through
rigorous recreation and reanalysis. Our work therefore reorients the field toward the second
question posed by the NASEM, which has been under-discussed in the geographic literature.

The remainder of this article is organized into six sections. The following section provides
background on reproduction studies in the geographical sciences. We highlight the current focus
on computational reproduction and argue for a more comprehensive approach to reproduction in
which the reproducing authors document, catalog, and evaluate research decisions and claims.
In the third section, we present our approach to reproduction in the form of a model workflow
and a set of open template materials, and we discuss how to implement our approach. In the
fourth section, we introduce our three reproduction studies. We establish the need to reproduce
studies of COVID-19 and outline our selection of candidate studies. We then describe how
we conducted these reproductions in the fifth section. In the sixth section, we present results
from each reproduction study, selected from our published reports and organized to illustrate
how reproductions studies can be used to identify and address issues in the conceptualization,
measurement, analysis, and communication of research. Those findings inform a concluding
section that outlines how we might continue to use reproduction and replication to advance
geographical analysis.

The reproduction of geographic research

Numerous geographers have made calls to strengthen geographical analysis by improving
the reproducibility of geographic research and making reproduction studies part of normal
disciplinary practice (Brunsdon 2016; Brunsdon and Comber 2021; Goodchild et al. 2021;
Goodchild and Li 2021; Kedron et al. 2021a, b). In a reproduction study, independent researchers
evaluate prior research by attempting to recreate the results of a study using the data and
procedures of the original work (NASEM 2019). Researchers conducting a reproduction may
focus on different goals. It is helpful to distinguish which of the two questions raised by
NASEM (2019) a researcher wishes to answer: (1) whether it is possible to simply recreate the
specific results of the original study or (2) whether the data, analysis, and results in fact support
the conclusions and claims drawn from the original study.

When narrowly focused on simply identifying if results can be recreated, a reproduction
study acts as a check of how a study was executed and shared. The NASEM (2019) categorizes
this type of reproduction study as an enriched form of literature review. Simply recreating the
result of a study does not establish the validity of the claims made by the researchers that
conducted the original study. It merely guarantees that information about the data and methods
required to assess those claims is shared with sufficient openness and detail for someone else
to recreate the results. Such reproduction studies are therefore simply audits of prior research
for the quality of reproducibility. In the era of sophisticated methods and reproducibility crises,
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Geographical Analysis

such quality audits may restore some degree of trustworthiness to research but contribute limited
information about the quality of the research design or validity of the claims being made.

When a researcher attempts to reproduce a study, they either must have access to or must
attempt to identify the decisions and materials that were used to create the prior result. As the
reproducing researcher gathers this information and uses it to recreate the earlier work, they also
have the opportunity to evaluate the claims of the original researchers in light of their decisions
and to evaluate and test each decision against alternative options (Clemens 2017; Christensen,
Freese, and Miguel 2019). If the reproducing researcher possesses the requisite knowledge and
chooses to take these opportunities, they may gain information about how the prior study was
conceptualized, designed, and executed. They can then use this information to make qualified
statements about whether the conclusions are reasonable (conclusion validity) and whether
those relationships may be attributable to other factors (internal validity). Statements about the
conclusion or internal validity of a study must be qualified, because any assessment remains
contingent upon numerous additional factors such as the design of the original study and the
expertise of the reproducing researchers. While reproductions never provide conclusive evidence
for or against a finding, they can provide insight into whether a study has a flawed research design
or whether errors may have been made during its execution (Earp and Trafimow 2015; Nichols
et al. 2021). Building from the insights of a reproduction attempt, studies can be redesigned
and errors can be corrected. In this way, reproduction studies help progressively improve our
understanding of phenomena by reducing the number of errors made and decreasing uncertainty.

A flurry of recent activity has begun creating environments to support reproduction studies
in the the geographical sciences. Workshops and conference sessions (see Niist et al. 2018;
SPARC 2019; Kmoch, Nust, and Uuemma 2020) have formed a research community around
the subject, while review articles (Brunsdon 2016; Kedron et al. 2021b) and a special forum
in the Annals of the American Association of Geographers (Goodchild et al. 2021) have raised
awareness. Several publications have also laid crucial foundations by connecting reproduction
to the discipline’s traditions (Wainwright 2021; Wolf et al. 2021), methodological approaches
(Brunsdon and Singleton 2015; Singleton, Spielman, and Brunsdon 2016; Kedron et al. 2021a),
educational priorities (Muenchow, Schifer, and Kriiger 2019; Kedron et al., 2021c), and
theoretical debates (Goodchild and Li 2021; Sui and Kedron 2021; Kedron and Holler 2022a).
The development of computational and institutional infrastructure (see Wang 2016; Niist and
Hinz 2019; Konkol, Niist, and Goulier 2020; Niist and Pebesma 2021; Wilson et al. 2021) has
also reduced the barriers to conducting reproductions. Despite these developments though, few
formal reproductions have been published in the geographic literature.

The reproductions that do exist typically focus on establishing whether it is possible
to recreate the outcomes of a prior study by cataloging study components that can affect
reproducibility or by verifying specific computational results. For example, Ostermann and
Granell (2017) use a literature review of volunteered geographic information research publications
to assess computational reproducibility based on availability of original data, metadata, source
code, or pseudocode. Researchers taking part in an ongoing reproducible research initiative of
the Association of Geographic Information Laboratories (AGILE) in Europe have reviewed the
computational reproducibility of 31 research papers submitted to the annual conference for the
past three years (Niist et al. 2020, 2021, 2022) and 75 papers from the GIScience conference series
(Ostermann et al. 2021). In addition to assessing the availability of data, methods (code), and
results, the researchers also attempted to independently re-execute the analyses and share their
findings as short reproducibility reports. Konkol, Kray, and Pfeiffer (2019) similarly attempted
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computational reproductions of the coded analyses of 41 open-access research papers applying
spatial statistical methods and found that most were difficult to computationally reproduce. While
this research usefully summarizes technical barriers to computational reproducibility, all of these
studies limit their discussion to coding errors and differences in figures and maps. Their central
focus is on determining whether an independent researcher can re-execute a study’s analytical
code and create identical outputs, and their broader impact is to derive guidelines for publishing
computationally reproducible research.

In contrast, if the primary goal of a reproduction study is to assess whether the data,
analysis, and results of a study in fact support the claims made by a researcher, then it is
insufficient to only determine whether the code can succeed at exactly recreating the original
results and figures. In the geographical sciences, it is particularly critical for a researcher
seeking to evaluate a work by attempting to reproduce it to attend to threats to validity involving
geographic space (Schmitt 1978). Reproductions lend themselves to evaluations of the conclusion
or internal validity of a study. A study with a flawed research design may still be computationally
reproducible. Even when a study is well-designed and properly executed, reproducing the results
without critically reflecting on the design and execution of the study will do little to advance
knowledge. To understand whether a result is credible or reliable, a researcher conducting a
reproduction study must also examine how the original researchers conceptualized, designed,
and implemented their study (Kedron et al. 2021a). If research findings depend on decisions
that are not justified, then the findings themselves are not justified (Christensen, Freese, and
Miguel 2019).

When an independent researcher makes an argument that there is a better way to analyze
the original data than was reported in a study, reproduction can be a platform for introducing
procedural differences that may affect the result of the original study. By introducing those
changes, it is possible to begin to determine whether the approach adopted by the original
researchers was somehow inadequate or erroneous. Davies (1968) provides an early example of
this approach to reproduction in geography. By examining the predictions of central place theory,
Davies reanalyzes the data of two studies using slightly different techniques to draw conclusions
about the validity of the original analysis and offer possible extensions for future work. A few
reproductions by Kedron et al. (2022a, b) have brought this approach into the present, but formal,
published reproductions and replications that systematically examine the entire research process
remain rare in the geographic literature.

A practical approach to the reproduction of geographic research

The present dearth of reproductions evaluating the entire research process is likely due, at
least in part, to the current absence of a model approach that researchers can use to guide
their reproduction attempts. Here we introduce such an approach with a workflow and template
materials to facilitate implementation by others. Building on prior workflow models of the
computational reproduction process, we developed a three-stage workflow (Fig. 1) to guide the
reproduction of geographic research. Our workflow model presents a high-level organization
of key tasks common across reproduction attempts. Almost every component within the model
could be further expanded into a significant submodel and customized for different subfields in
geography. However, we restrict our presentation here to the higher level because our goal is to
instigate a shift in how we pursue reproduction across a variety of research areas. Below, we
outline the Planning, Implementation, and Evaluation steps of our approach.
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Geographical Analysis

1. Planning 2. Implementation 3. Evaluation

Published Study/Result Data & Code Available?

l yes no Reproduction Report
Deconstruct study 4

on Hedisi Access Collect data Evaluate claims
Catalog decisions data/code create code T
| Document results «——
Draft Workflow
; s
Pre-analysis Plan (PAP) ——» Implement PAP Match Pubished Results? "]
Document deviations Able to Implement PAP? — > Reproduction Results
yes
no
|
ssues Introduce variations
Catalog
Categorize to framework Evaluate Issues

Figure 1. A researcher attempting to reproduce a prior study will first deconstruct the existing
work and plan their attempt. When implementing that plan the research may encounter unexpected
issues that should be cataloged, leading to plan amendments. Once the attempt is completed, the
researcher will then complete and share a report of the reproduction attempt.

To facilitate adoption, we have paired our model with a template repository designed to help
organize the reproduction process. The repository contains document templates and suggestions
on how to use and modify the repository structure. The template repository is available online
as a Git repository under a BSD 3Clause License through (Kedron and Holler 2022b). We used
these materials to conduct the reproductions presented in this article.

Planning

Before beginning any data analysis, researchers attempting a reproduction should first carefully
deconstruct the design and implementation of the prior analysis and create a workflow model for
their own analyses. It is essential for researchers to clearly articulate the aspects of the prior study
they intend to reproduce. For example, in the case of hypotheses-driven research, the reproducing
researcher should communicate which research questions and hypotheses will be the focus of
their reproduction and how they intend to gather data, execute their analyses, and compare their
results. While this step may appear trivial, many studies do not formally state the hypotheses
and provide only a partial description of the analytical plans. Researchers also often test a large
number of hypotheses during the course of their study but highlight only a handful of those
results. This situation leaves the reproducing researcher with a choice as to which hypotheses to
retest and the need to explain why some hypotheses were omitted.

In our approach, researchers are prompted to formally record and present their reproduction
workflow as part of a pre-analysis plan that details the data collection, processing, and analysis
that will be undertaken as part of their reproduction attempt. The workflow should be built on
the most complete and precise understanding of procedures including supplemental information
and code. If complete procedural detail cannot be reconstructed, the plan should include the
reproducing researchers’ best approximation of the procedures for data processing and analysis.
The pre-analysis plan should also include the criteria the reproducing researcher will use to
compare their results to those of the original study. Ideally, this plan is publicly registered before
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KEDRON et al. Moving Beyond Computational Reproducibility

any reproduction attempt begins. Pre-analysis plans can be shared via platforms such as GitHub,
or more formally registered through services like the Open Science Framework.'

In the exemplar reproductions presented below, we first created initial workflow models and
drafted pre-analysis plans. Iterative revisions of the plans were vital to identifying ambiguity and
error in the original research design. Researchers should catalog such issues as they arise during
any reproduction attempt.

Implementation

Once pre-analysis planning is completed, reproduction attempts move to data collection, prepa-
ration, and analysis. A common practical barrier is whether or not the data, as well as the
procedures and protocols used to gather those data, are available. If data are not included with
the publication, they can sometimes be accessed from an original source (e.g., U.S. Census). In
instances where the data need to be processed prior to analysis, it is recommended to use the
original code. When the original code is unavailable, processing steps should be recorded, and
any deviations from the original procedural plan should be documented.

Pre-analysis plans are dynamic communication tools that are designed to track unanticipated
changes that may occur throughout the reproduction process. As these plans are implemented, any
ambiguities encountered should be cataloged and evaluated (Kedron et al. 2021a). Any decisions
made to resolve these ambiguities should be included as amendments to the pre-analysis plan.
Researchers can also introduce differences into their reproduction attempts to test the sensitivity
of the original analysis to alternative conceptualizations or research designs. However, as these
variations are introduced, they should be tracked along with a justification for each change.

Evaluation

The results of a reproduction attempt should be compared to those of the original study as they
are created. If discrepancies arise early in the analysis (e.g., differences in descriptive statistics),
the procedures should be revised and these unplanned deviations from the original workflow
should be documented in the pre-analysis plan before proceeding to subsequent analyses. There
is no universally agreed upon criteria to assess whether the results of an original study have
been reproduced, and most literature focuses on replication (Verhagen and Wagenmakers 2014;
Open Science Collaboration 2015; Simonsohn 2015; Lakens 2017). In prior reproductions
of geographic research, evaluation has been based on exactly matching numerical results or
producing similar figures and maps. At a minimum, the direction, magnitude, and uncertainty
associated with both sets of results should be compared. Observed differences between results
will often motivate the introduction of further variations in research design and analysis. When
new variations are introduced, they should be tracked.

The documentation and comparison of the results of a reproduction attempt and an original
study is only one part of the evaluation process. To evaluate the claims made in a study, the
reproducing authors should also evaluate the complete set of decisions made by the authors of
the original study. Careful documentation of the decisions and changes a reproducing researcher
makes during a reproduction attempt provides the foundation for the evaluation of research claims.

Empirical context, and the selection of studies for reproduction

Empirical context
To demonstrate the approach outlined above and move beyond computational reproductions, we
attempted to reproduce three geographical analyses of COVID-19. The COVID-19 pandemic
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Geographical Analysis

has highlighted the importance of making reproductions and replications a standard part of the
geographic research process. The rate of research publication during the pandemic has led to
concerns over the quality of peer review and the rate of retractions (Yeo-Teh and Tang 2020). Well
into the COVID-19 pandemic, researchers continue to produce studies intended to advance our
understanding of the spatial patterns of this disease (e.g., Sun et al. 2020; Chakraborty 2021; Sugg
et al. 2021) and the spatial processes that may be responsible for the spread of the SAR-CoV-2
virus (e.g., Andersen et al. 2021; Lee and Ramirez 2022). Many of these geographical analyses
have been undertaken by researchers with expertise outside of geography and published at
an accelerated pace due to the urgency and scale of the pandemic. Medical professionals,
government officials, and policymakers continue to use this stream of research to inform their
pandemic response. To ensure those groups have access to the best possible research for decision
making, the reliability and the credibility those results must be known so that findings can be
appropriately assessed. Understanding the validity of these studies is also important because they
are already becoming the foundation for future research.

Many authors (e.g. Gustot 2020; Sumner et al. 2020; Collins and Alexander 2022) have
emphasized the importance of reproducing COVID-19 research and have begun to catalog the
availability of code and data within the literature. Geographers have produced similar catalogs
of geographical analyses of COVID-19 but have limited their reviews to listing and categorizing
the literature by topical focus and methodological approach (Agbehadji et al. 2020; Ahasan
et al. 2020; Franch-Pardo et al. 2020, 2021). Very few formal reproductions of geographical
analyses of COVID-19 are available in the literature (Paez 2022; Kedron et al. 2022a). Conducting
reproductions of COVID-19 research facilitates the assessment of the internal validity of selected
studies and demonstrates the value of reproductions.

Selection of candidate studies for reproduction

To identify candidate studies for reproduction, we conducted an electronic search for
peer-reviewed spatial analyses of COVID-19 published in English language journals between
January 1, 2020 and March 15, 2021. To enhance the impact of our work, we sought to identify
studies that relied on the most commonly used sources of COVID-19 data and were based on
methods frequently used in spatial epidemiology. Candidate studies were identified by searching
Elsevier’s Scopus database using the search query:

(“COVID-19” OR “SarS-CoV-2” OR “2019-nCoV” OR “2019 coronavirus” OR
“2019 novel coronavirus” OR “novel coronavirus”) AND (“GIS” OR “Spatial
Analysis” OR “Geospatial Analysis” OR “ArcGIS” OR “Geographic Information
System” OR “Geographic Mapping”)

We designed this query to mirror the search criteria of Ahasan et al. (2020)’s review of
geographical analyses of COVID-19. We also independently searched the Google Scholar
database using the same search terms to identify additional studies. The first Scopus search was
run February 9, 2021, and the Google Scholar search was conducted February 18, 2021. A limited
updated literature search was performed between March 15, 2021 and March 30, 2021. These
searches yielded 540 unique articles. We collected abstracts and full texts for each of these articles.

Article abstracts were further filtered according to whether the study occurred in the United
States, which was done in order to better ensure access to data. This criteria narrowed the set
to 60 articles. We then reviewed the full articles to determine if the statistical method used was
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Table 1. Characteristics of the geographical analyses of COVID-19 selected for reproduction
Mollalo et al. (2020)  Saffary et al. (2020)  Vijayan et al. (2020)

Data available Yes No No

Code available No No No

Processing environment ~ Not specified Not specified Not specified

Spatial extent United States United States LA County

Spatial support County County 10-km Hexagons

Temporal extent January—April 2020  February—-May 2020  February-June 2020

Hypothesis tests 1000s 1000s 1000s

Methods SEM, SLM, GWR, Moran’s I, Bivariate ~ Moran’s I, SLM
MGWR Moran’s I

common in spatial epidemiology (e.g., spatial regression, cluster analysis). This review narrowed
our list to 15 candidate articles. Based on the completeness of their publication details, study
objectives, data sources, data and code availability, and spatial methodology, we selected three
articles — Mollalo, Vahedi, and Rivera (2020), Saffary et al. (2020), and Vijayan et al. (2020).
These articles use spatial statistical methods common in both spatial epidemiology and the
broader geographic literature and appeared feasible to reproduce Table 1.

Implementation of the reproduction attempts

We followed the three-stage process of planning, implementation, and evaluation outlined by
the model approach (Fig. 1). The entire reproduction process for each study is documented
in a research compendium that includes our reproduction plans, reports, data, and code. Each
compendium is available online as a Git repository under a BSD 3-Clause License to allow other
researchers to examine our approach and use our work as a model for future reproductions. The
details of each reproduction can be accessed through Kedron, Bardin, and Holler (2023) — https://
osf.io/wxyf5/, and the template repository used to create each reproduction is available through
Kedron and Holler (2022b) — https://osf.io/w29mq.

During the planning stage of each reproduction attempt, we focused on developing a
model workflow and pre-analysis plan. We used an iterative process to create the reproduction
workflow. Each author developed their own model workflow, which they then presented to the
other authors. We then collectively identified the chain of researcher decisions and points of
uncertainty that needed to be addressed, resulting in a single common workflow. The workflow
for each reproduction attempt then became the foundation of the pre-analysis plans, which also
identified the key hypotheses we sought to retest and any deviation we anticipated due to a lack
of information provided in the original study.

Whenever possible, we used the data provided by the authors and followed the procedures
described in the original article when attempting each reproduction. When data were not
available, we acquired the data from public sources or contacted the corresponding author to
request inaccessible data. When we encountered missing data sources or procedures, we attempted
the reproduction using alternative data sources and procedural decisions. We attempted to use
the processing environment described in the original study but also translated the workflow into
R code.
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Geographical Analysis

Following the approach described above, our evaluation of each reproduction attempt
consisted of two parts: (1) an assessment of result similarity and computational reproducibility,
and (2) an evaluation of the execution and claims of the original study. To assess reproducibility,
we used the simple criteria of whether the results of the reproduction and original analysis were
numerically or graphically identical. However, for analyses that relied on conditional permutation
of the data to estimate parameters and make statistical inferences, we relaxed the criteria of
identical reproduction and instead focused our evaluation on the comparison of parameter
estimates, related uncertainty estimates, and statistical (P-values)?. These criteria mirror those
presented by the NASEM (2019) and those used by Open Science Collaboration (2015). We
were able to partially verify the original findings of each of the three studies, albeit not without
challenges (section 6.1).

Our meticulous deconstruction of each study and efforts to achieve computational repro-
duction revealed points of concerns in each study. Those questions motivated our further
investigation through a reanalysis of each study. Moving beyond an assessment of computational
reproducibility, we evaluated each study using the framework presented by Kedron et al. (2021a)
and linked points of concern that arose during each reproduction attempt to different stages of
the research cycle. We also compared those issues across the studies to identify common points
of strength or weakness (section 6.2).

After completing the reproduction attempts, we created reproduction reports by updating
the original pre-analysis plans to include a record of any unplanned deviations, the results of the
reproduction including comparison to the original study, and a discussion of the results. Final
reports were posted within each reproduction compendium.

Lessons from the three reproductions

The three studies selected for reproduction use spatial regression techniques and local spatial
statistics to make associational inferences about COVID-19 (Table 1). Mollalo, Vahedi, and
Rivera (2020) specified a series of spatial regression models to evaluate variation in county-level
COVID-19 incidence using a set of socioeconomic and demographic characteristics as predictor
variables. The authors present five regression models including an ordinary least squares (OLS)
model, spatial lag model (SLM), spatial error model (SEM), geographically weighted regression
(GWR), and a multiscale GWR (MGWR). Neither the data nor the code used for the original
analysis was made available by the authors. Saffary et al. (2020) use bivariate Moran’s I to
examine whether socio-demographics and health care resources are correlated in space with
COVID-19 cases and deaths across the contiguous United States. The authors do share the
county-scale data used in their analyses. Vijayan et al. (2020) examine whether spatial patterns
existed in SARS-CoV-2 age-adjusted testing rates, age-adjusted diagnosis rates, and crude
positivity rates in Los Angeles County (LAC), and use a spatial regression model to explore
associations between crude positivity rates and a series of predictor variables. Although the
original study data was not publicly available, we were able to obtain it by request from the
corresponding author. The analysis code was not made available, nor was information about the
computational environment used.

Computational reproductions
We were able to partially reproduce the analyses and results of each of the three studies we
investigated (Table 2). The extent to which we were able to reproduce the results of each
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KEDRON et al. Moving Beyond Computational Reproducibility

Table 2. Computational reproducibility of the select geographical analyses of COVID-19

Mollalo Saffary Vijayan

et al. (2020) et al. (2020) et al. (2020)
Descriptive statistics Not specified Fully Fully
Direction of regression coefficients Fully Fully Partially
Magnitude of regression coefficients Partially Fully Fully
Statistical significance Fully Fully Partially
Maps Partially Partially Partially

study was directly related to the availability of original data and the detail of the procedural
description provided. We were able to create exact reproductions of nearly all the tables and
maps presented by Saffary et al. (2020) in part because these authors provided their data file.
Conversely, Mollalo, Vahedi, and Rivera (2020) did not provide their data and offered limited
descriptions of their data sources, which hindered our reproduction attempt and produced the
least consistent results. We were similarly unable to reproduce the results of Vijayan et al. (2020)
on our initial attempt, because we could not reconstruct the hexagonal tessellation, or access
identical neighborhood-level COVID data. Once the authors provided these data, we were able to
create an exact reproduction of their descriptive statistics and obtain consistent spatial regression
estimates.

To partially reproduce the computational results each study, we had to make unplanned
deviations from our initial plans. For example, while Saffary et al. (2020) published their data,
that file did not include one of the key independent variables, requiring us to gather this missing
variable from public sources. While we were able to collect the necessary data, some locations
in the file had missing values. The authors provided no information as to how to handle those
missing values, which we ultimately determined were simply omitted from analysis. While we
were able to obtain consistent regression estimates when reproducing Vijayan et al. (2020),
we had to adjust our original plans when reproducing the authors’ LISA analyses. We found
low-high and high-low clusters that were not reported by the original authors. If these clusters
were purposefully omitted, this decision represents a cartographic form of observed selective
inference. We similarly found inconsistencies in how Mollalo, Vahedi, and Rivera (2020) pre-
sented the variables in their paper and how they appear to have been processed in their analyses.
For instance, the authors did not mention standardizing their variables prior to analysis, yet
the magnitude of the reported coefficients suggest that they had been standardized. The authors
also reported using the percentage of nurse practitioners as one of their independent variables,
but their description of the variable calculation suggests that the count of nurse practitioners
was used.

Beyond computational reproductions

Our attempts to reproduce the computational result of the three selected studies raised concerns
about the internal and conclusion validity of each study. Following our model approach (see
section 3), we cataloged those concerns, linked them to the stages of the research cycle (Table 3),
and introduced procedural changes that allowed us to test the affect alternative decisions had on
each analysis. To demonstrate the value of this form of reproduction, we discuss the issues we
encountered in relation to phases of the research process.
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Geographical Analysis

Table 3. Points of concern identified during replication attempts

Point of concern Mollalo Saffary Vijayan
Conceptualization ~ Consideration of epistemic uncertainty X X X
and design
Consideration of scale X X X
Justification of variable selection X X
Measurement and ~ Details of data processing X X X
processing
Description of missing data procedures X X
Analysis and Presentation of research hypotheses X X X
inference
Atomistic fallacy and MAUP X X X
Model specification and test execution X X X
Adjustment for multiple hypothesis testing X
Communication Lack of provenance information X X X
Selective inference X X X

Conceptualization and design

Many of the issues we encountered when designing our reproduction attempts and interpreting
their results stemmed from the conceptualization and design of the original studies. We found
four overarching issues of concern. First, the authors of our target studies did not address the
epistemic uncertainties potentially impacting their analyses. For example, in each study the
primary response variable was the count of COVID-19 cases or deaths early in the pandemic.
In principle, we could have known these counts. However in practice, testing capacity was
limited and geographically variable during the study periods, and asymptomatic cases often
went undetected. These factors likely contributed to a spatially varying undercount of disease
prevalence. Acknowledging this systematic uncertainty in case and death counts (Halpern
et al. 2021) is important because geographic variation in count reliability can impact parameter
estimation. To be clear, we would not expect the authors to resolve these issues with the data
available. However, understanding and explaining how uncertain critical measurements are is
fundamental to placing inferences and claims in a proper context. While reproducing these
studies allowed us to identify this concern, our results and inferences are similarly impacted by
this issue.

Second, we believe these studies would benefit from deeper consideration of how the spatial
and temporal supports of their data impact analysis. Two of the studies use counties as their spatial
support, while the third constructs a hexagonal grid. This selection seems to be largely a matter
of data availability and convenience and is mismatched with our knowledge of the transmission
dynamics of COVID-19 (Wali and Frank 2021). For example, while Vijayan et al. (2020) use
a hexagonal grid as their spatial support, variable construction within that grid ignored variation
in the geography of the administrative units of the original data. Moreover, the Census data used
as predictors of COVID-19 incidence was collected before the pandemic raising questions about
the spatial support of each study. While we expect some degree of temporal consistency in the
sociodemographic profiles of these units, the pandemic also created migration patterns (Haslag
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KEDRON et al. Moving Beyond Computational Reproducibility

and Weagley 2021; Coven, Gupta, and Yao 2023) that may make measures from several years
before the pandemic a poor match to the actual populations present in those location during the
pandemic. Addressing these mismatches is difficult given data availability and the rapidity of the
pandemic, but acknowledging and discussing the potential impact of measurement issues would
help readers better understand the implications and reliability of each study. Moreover, recent
studies in different geographic contexts (Gonzélez-Leonardo et al. 2022; Rowe et al. 2022)
point to alternative measures of population migration that could be now used to reassess these
issues.

Third, our reproduction attempts led us to question how the original authors incorporated the
current understanding of the epidemiology of COVID-19 into their operationalization of spatial
relationships and their selections of the spatial scale of their analyses. Two of the three studies
reproduced sought to identify ecological predictors of COVID-19, and were conducted using
counties as the spatial support for all analyses. However, epidemiological research suggests that
counties are not a meaningful unit of analysis for COVID-19 transmission, which happens at
a much finer spatial scale (Wali and Frank 2021). Even when counties are used as proxies to
measure ecological relationships, it is critical to adjust for other factors that would influence
transmission within and between counties, such as population density or the presence of a
large urban center. These factors were not included in the original analyses, which may have
led to erroneous inferences. For example, it is not clear that these studies provide evidence
of a predictive link between racial minority status and COVID-19 case counts when adjusting
for urban-rural differences that were not included in the analyses. How the authors treated
spatial scale also appears to have led to instances of the atomistic fallacy, which we discuss in
section 6.2.3.

Fourth, when interpreting the results of our reproduction attempts, we found it difficult to
identify why the authors included some ecological factors in their models but excluded others.
We were unable to assess how reliable identified associations were when potentially important
confounding factors were omitted from the analyses. Without understanding why the authors
believed a factor would affect aggregated COVID-19 case or death counts at a particular scale,
we could not assess how the patterns presented provided information about the processes that
might be responsible for them.

Measurement and processing

While recreating and processing the data used in each study, we discovered concerns related
to variable construction and construct validity. It was unclear how Saffary et al. (2020)
handled counties missing primary care physician information. We investigated three alternative
procedures when attempting to resolve this ambiguity — filtering, zero imputation, and mean
imputation. Our findings suggest the authors omitted missing values. Authors were also unclear
about when and how their data was standardized. Saffary et al. (2020) chose to analyze the raw
count of intensive care beds in each county without adjusting for county population. The strong
positive correlation between the number of such beds and county population nearly makes this
unadjusted variable a measure of county population. Vijayan et al. (2020) indicate standardizing
variables prior to spatial regression modeling, but are not clear about which variables were
standardized and provide limited information about the specification of their spatial regressions.
The authors report and discuss their coefficient estimates without referencing the fact that these
results are based on standardized variables and that the model intercept was omitted from their
analysis.
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Geographical Analysis

Our reproduction attempts also uncovered questions about how authors created the spatial
support for their analyses. This concern is best illustrated by Vijayan et al. (2020) who based their
statistical analyses on a 10-km hexagonal grid that they superimposed onto Los Angeles County,
CA. The authors did not (1) present a clear justification as to why this grid was an appropriate unit
of analysis, (2) provide the information needed to reconstruct the grid, or (3) include a discussion
of how their data aggregation procedures might impact their analyses. We ultimately determined
that the authors aggregated data originally linked to different areal units (e.g., Census tracts,
municipalities) to their hexagonal grid based on the overlap between that grid and the centroids
of the areal units of the data. This approach ignores the proportion of geographic overlap between
the hexagonal grid and the source data and could lead to nonrepresentative measurements.
Moreover, the age-adjusted response variables used in these analyses are problematic. Given
that the age-adjustment was not based on the population within the hexagonal units but the mix
of areas whose centroids fell within a given hexagon, these response variables are no longer
accurately age-adjusted. Selecting a single unit of analysis and aggregating data in this way
introduces unknown amounts of measurement error into any subsequent analysis and creates the
possibility for inferential errors.

Analysis and inference

The reproduction attempts provide cautionary lessons about the implementation and interpretation
of spatial statistical tests of COVID 19. First, as is commonly the case, the authors of all three
studies did not clearly present the complete discrete set of hypotheses to be tested prior to their
analyses. Authors made statements about expected associations between COVID-19 incidence
and some key independent variables, but did not formalize these hypotheses. In some cases,
the authors also tested other unstated hypotheses or tested the stated hypotheses multiple times.
Without formal hypothesis statements, these studies are best viewed as exploratory analyses of
possible spatial associations between aggregated measures.

Second, the reproductions highlight the need to carefully consider, and explain in text,
the reasoning supporting the conceptualization of scale and spatial relationships implemented
during spatial statistical tests. In these three studies, the reasoning behind the implementation
of the statistical tests seems to be subject to the atomistic fallacy. In each study, the authors
root their variable selection and model specification decisions in knowledge and reasoning about
the individual-level dynamics of COVID-19 transmission. However, a geographic area is used
as the spatial support for analysis in each study and the variables used in each statistical test
are aggregated to those units. These choices implicitly scale the individual-level reasoning for
variable selection to the group level at these geographic scales. This scaling may be fallacious.
For example, Saffary et al. (2020)’s use of the Bivariate Moran’s I to measure associations
across space extends assumptions about individual-level disease dynamics to the group-level
and inter-county-scale. It is not clear, for example, that the evidence and reasoning supporting
the belief that an individual person of color might be at a higher risk of contracting COVID
would extend to all people of color in a county, or to all people of color in counties surrounding
a county with COVID cases. This type of epidemiological study which is based on aggregate
social data should be interpreted with caution as exploratory and should be supported by further
individual-level or multiscale research.

We have no information about how sensitive each study may be to the modifiable areal unit
problem because each study only reported a single spatial support and spatial extent. It may well
be the case that studying these relationships at a different spatial scale would change these results.
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KEDRON et al. Moving Beyond Computational Reproducibility

As one example, selection of a grid size different from the 10-km hexagons adopted by Vijayan
et al. (2020) could produce different association estimates. These results may be particularly
sensitive to variation across spatial supports given that the centroid-based aggregation of data
will produce different levels of measurement error for each hexagonal grid size. This form of
uncertainty can be be better understood by testing result sensitivity to alternative spatial supports
and utilizing alternative methods of spatial reaggregation based on overlap of tract areas or
residential buildings.

Third, the reproductions suggest spatial statistical analyses of COVID-19 may be sub-
ject to model specification and interpretation problems. For example, Mollalo, Vahedi, and
Rivera (2020) considered 34 variables for inclusion in their regression analyses, but relied on
a stepwise forward selection procedure to reduce this set to a final total of four variables. This
data-driven approach to variable selection positions their final model as a general, exploratory
analysis. With only four variables in the final model it is likely that the model does not properly
control for important confounding factors that may influence both the predictor and response
variables, and thus, the model coefficients are likely to be biased. These issues are compounded
by reliance on fit statistics to guide model selection and to measure explanatory power. Based
solely on the higher R?> and lower AICc of their MGWR model, the authors recommend the
continued monitoring of these factors to understand spread of the disease. However, this recom-
mendation ignores both the poor model fit of the OLS specification and the maps of the local R?
from both the GWR and MGWR models which show large numbers of counties with negative
R? values. Combined, these indicators suggest model underspecification while the substantial
difference in the goodness of fit between the local and global models is indicative of overfitting
in the local models. There is a need to balance these types of data-driven exploratory analyses
with more deductive theory-based approaches to examine theorized mechanisms with inferential
power.

Similarly, the reproduction of Saffary et al. (2020) revealed inconsistencies in the imple-
mentation and interpretation of the Bi-variate Local Moran’s I statistic. When interpreting this
statistic, the authors discuss COVID-19 rates as a measure of correlation. However, the statistic
was implemented using each focal county’s rate of COVID-19 incidence and the spatial lag
of adjacent counties’ health and demographic compositions. Contrary to the interpretations
presented, this implementation suggests that the COVID-19 rates in a county are the product
of variable concentrations in surrounding counties. For example, COVID-19 rates in an urban
county may be influenced by the rates of minority residents in surrounding counties exclusive of
the urban minority rate.

Fourth, two of the reproductions revealed that geographical analyses of COVID-19 may
suffer from the problem of uncorrected multiple hypothesis testing. Saffary et al. (2020) search
for spatial clustering provides the clearest example of this issue. In their study, the authors
executed thousands of local univariate and bivariate tests, but included no adjustment for the
number of tests in their main manuscript. As reported, the results are an example of observed
selective inference, which occurs when researchers implement many statistical tests, fail to
account for the effects of multiple testing, and then emphasize only a subset of their results.
Making appropriate adjustments for the large amount of multiple testing done during this analysis
is key to making reliable inferences. Using a P = 0.05 significance threshold, we would expect
156 “significant” results in a set of 3,105 tests even when no spatial pattern exists. Curiously,
Saffary et al. did include Bonferroni and False Discovery Rate adjustments for multiple testing
as a supplement to their analysis, but did not interpret these result in their main manuscript.
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Geographical Analysis

After applying these adjustments, nearly all of the spatial patterns highlighted in the manuscript
disappear.

Communication

The reproduction results reinforce the importance of clearly tracking and communicating the
provenance of research before, during, and after a geographical analysis. Many of the problems
we encountered when reproducing these studies could have been avoided had the authors
documented and shared information about the sources, quality, and uncertainty of their data and
the justifications for their analytical decisions. This lack of transparency indirectly led us to
more carefully deconstruct each study, which in turn led us to a deeper understanding of how the
authors designed and executed their research. Indeed, many of the problems we identified were
not apparent when reading the publications, and were further obscured through the lack of data,
code, and sufficiently detailed procedural description.

An additional communication problem uncovered through our reproductions is the potential
presence of selective inference in these geographical analyses of COVID-19. Selective inference
occurs when statistical inference is focused on a finding only after observing the data (Benjamini,
Heller, and Yekutieli 2009). The reproductions show the many possible avenues through which
unobserved selections could occur. For example, in each study the authors selected a queens
contiguity matrix at the county/hexagon scale to represent the spatial relationships underlying
patterns of association with COVID-19. While a reasonable starting point, statistical results are
sensitive to weights selection, and there is no reason to believe this form of contiguity was the
only form tested or the form that appropriately captures the dynamics of the pandemic. Similarly,
we demonstrate above how our reanalyses explored alternative missing data procedures, spatial
data supports, and model specification decisions.

As published, we cannot know whether selective inferences occurred during these studies,
and have no evidence to suggest the authors intentionally or unintentionally made any selective
inferences. The important point is that in many instances we do not know what the authors did,
but we do have clear evidence that it is very easy to make unintentional selective inferences
in any geographical analysis. To provide evidence that selection did not occur, the complete
provenance of the research needs to be recorded and shared. This sharing should include any
sensitivity analyses or specification check the authors preformed as they focus inference on some
models rather than others. Ideally, authors would also preregister or share their hypotheses and
analytical plans before they observe their data, thus creating a need to justify any deviations from
those plans. Conducting these type of sensitivity analyses and communicating their outcomes
frames research decisions and lends credibility to claims.

Conclusion

In this article, we present a model workflow and corresponding materials to help geographic
researchers move beyond using reproduction to simply answer whether the computational results
of a study can be recreated to assessing whether the data, analysis, and results presented in a study
in fact support the claim(s) made by the study authors. We demonstrate how reproduction studies
can act as the foundation for testing alternative research designs, problem conceptualizations, and
analytical pathways, which can lead to improvements in the quality of geographic research and
knowledge production in the discipline. Over the course of this article, we make three principle
contributions.
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KEDRON et al. Moving Beyond Computational Reproducibility

First, we introduce a model workflow for conducting reproduction studies aimed at assessing
the claims of published research. The conceptual foundation of our approach is Kedron
et al. (2021a)’s representation of the research process as a series of decisions researchers make
in the face of uncertainty. We adopt the authors’ four part segmentation of the research process,
and their discussion of some of the challenges particular to reproducing geographical analyses,
as a means of tracking and categorizing decisions made by both the original authors and the
researchers attempting to reproduce their work. This approach provides a means of linking the
existing literature on challenges and uncertainties in geographical analyses to aspects of the
reproduction process. This approach also matches an understanding of research as a continuous
process aimed at refining degrees of confidence in our understanding of phenomena, rather than
establishing complete certainty.

Second, to demonstrate the use of our approach and materials, we report the findings
of our attempts to reproduce and assess the claims of three published geographical analyses
of COVID-19 in the United States. We were able to partially reproduce each study, and the
reproduction process led us to identify a number of conceptual and methodological concerns that
raise questions about the predictive value and the magnitude of the associations presented in each
study. Overall, while already highly cited, we believe the studies we reproduced and reanalyzed
are best viewed as exploratory analyses of spatial patterns of COVID-19 early in the pandemic.
In our view, they provide limited reliable evidence of meaningful associations of substantial
magnitude.

In each reproduction study, we go beyond reviewing the availability of data and methods
and executing code. Rather, we attempt to recreate all aspects of the procedures of each study
regardless of an absence of, or errors in, data and code. By retracing each study’s procedure,
we scrutinize the work, including details and decisions not communicated in the published
manuscript. We highlight questions about the spatial reasoning used when designing these
studies and problems in the application of spatial statistical techniques used regularly in the
geographic literature. As we encounter shortcomings in the research design and discrepancies
between the manuscript, the procedures, and the reported results, we reanalyze the study and
correct errors. Identified errors and uncertainties are presented and discussed in reports. Each
of the three reproduction studies is published with open-source licensing as a reproducible
research compendium composed of data, code, pre-analysis plans and detailed reports of our
results (Kedron et al. 2022c, d, e). We thereby improve the computational reproducibility of
these published studies, provide an enriched assessment of their claims, and facilitate any future
research attempting to replicate or extend these studies.

Third, we review the reproduction process and use the information gathered during our
attempts to identify how we might systematically use reproduction studies to assess and enhance
future geographical research. We identify threats to conclusion and internal validity involving
geographic space and connect those threats to de cision points in the research process. The
concerns highlighted in this article can serve as a guide for others seeking to implement original
research with these techniques in a principled manner. We similarly believe our work can be
incorporated into coursework when training future geographic analysts, as these analyses were
conducted under the supervision of the lead authors in collaboration with graduate students early
in their respective programs. To our knowledge, this article is one of the first attempts to push
reproduction attempts beyond computation in the geographical sciences.

Despite the questions revealed by our reproductions, these papers all passed through
peer-review and, in some cases, are garnering significant positions in the literature. As of
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Geographical Analysis

September 7, 2022, Mollalo, Vahedi, and Rivera (2020) has received 300 citations on Scopus
and 472 citations on Google Scholar. Our work therefore raises questions about the peer-review
process, while demonstrating the potential value of incorporating reproductions into that process.
We believe that had reviewers reproduced these studies or had access to fully reproducible
research compendia complete with data and code, they would have found at least some of the
issues we raise. We hope that further revisions would have addressed some of our identified
concerns. However, simply re-executing the code and data used in these studies would not have
identified many of the issues raised in this article.

The discussion and practice of reproducibility in geography should not be limited to matters
of sharing research artifacts and recomputing results. This insight has implications that extend
beyond the reproduction of a single study to the institutional changes we might pursue to improve
the creation and accumulation of geographic knowledge. For one, our findings support a case
for geographic journals considering not just requiring the submission of research materials but
also incentivizing comprehensive reproduction studies. For example, editors could commission
reproduction studies of selected articles, pair publications of reproductions and original author
response, or create recurrent special issues of reproductions or replications in their given field.
These institutional changes can help to identify, communicate, and improve recurrent issues with
geographic analyses in geography and adjacent disciplines.

We might similarly incorporate comprehensive reproduction studies into our graduate
coursework. Conducting rigorous reproduction is a time-consuming endeavor that is currently
not incentivized by academic review process. As such it seems likely that many academics do
not conduct formal reproductions, or if they do conduct them do not pursue the publication of
those results, creating the present shortage. We have demonstrated that graduate students can
conduct high-quality reproductions using our practical framework to structure their approach.
Although we did not formally document their experiences, we found graduate students interested
to engage in the reproduction studies as they provided an opportunity to both learn techniques
and contribute formally to the geographic literature. To this end, folding reproductions into
coursework may produce the dual benefit of introducing more reproductions into the literature
while preparing the next generation of geographic researchers to work in a reproducible manner.
Our hope is that this work will start a culture or reproduction and replication in geography, and
the open sharing of any such efforts.
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Note
1 See Christensen, Freese, and Miguel (2019) and Olken (2015) for a discussion of the pros and cons of
preregistration.

2 Gelman and Stern (2006) present the challenge of comparing statistical significance across studies and
caution against basing conclusions on changes in significance alone. We incorporated this thinking into
our analyses but retained comparisons of significance levels, because as reproductions our work uses
the same data and methods, which should lead to the same or very similar significance levels.
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