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H I G H L I G H T S  

• Estimation of fuel consumption and emissions is closer to the real values than other methods. 
• Reconstructing second-by-second vehicle trajectories based on macroscopic traffic data. 
• Introduces CAVs trajectory data as a reference in the process of estimating the road spatio-temporal speed evolution. 
• Proposes a spatio-temporal consistency validation framework by using macro and micro data. 
• Experimental tests the effect of cell size and probe vehicle penetration on reconstruction accuracy.  
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A B S T R A C T   

Traffic energy consumption estimation is significant for the sustainable transportation. However, it is difficult to 
directly employ macro traffic flow data to accurately estimate the traffic energy consumption due to many traffic 
energy consumption models need second-by-second vehicle trajectory. To solve this problem, this paper proposes 
a traffic energy consumption model based on the macro-micro data, which the macro data derived from the 
fixed-location sensors and sparse micro data derived from the Connected and Automated Vehicles (CAVs). The 
completed vehicle trajectories are constructed by the nonparametric kernel smoothing algorithm and variational 
theory. To test the performance of the proposed method, the Next Generation Simulation micro (NGSIM) dataset 
and Caltrans Performance Measurement System macro dataset obtained from the same road and time are used. 
The results indicate that the proposed method not only can reflect the characteristics of traffic kinematic waves 
caused by traffic congestion, but also minimize the errors generated by the macro-micro transformation. In 
addition, it can significantly improve the accuracy of energy consumption estimation.   

1. Introduction 

Climate warming is a well-recognized global problem. With the rapid 
growth of the world economy, the massive use of fossil energy sources, 
such as coal, oil and natural gas, has resulted in excessive greenhouse 
gas emissions that is one of the main catalysts of global warming [1–4]. 
According to the U.S. Energy Information Administration (EIA), the 
transportation sector accounts for approximately 27% of total energy 
consumption and is thus one of the key contributors to greenhouse gas 

emissions [5]. In recent years, the energy consumption and air quality 
degradation caused by road traffic have been become major issues of 
concern [6,7], and thus traffic management agencies are increasingly 
interested in the ability to estimate traffic energy consumption and 
greenhouse gas (GHG) emissions [8]. Typically, classical emissions 
models are used for such estimation, whether on a regional or road 
section basis. In this quantification process, the traffic/vehicle state data 
obtained from Connected and Automated Vehicles (CAVs), usually by 
means of inductive loop detectors [9,10] or vehicle global positioning 
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systems (GPS) [11,12], is fed into relevant macro/micro energy con
sumption and GHG emission models. 

Misra evaluated the peak CO and NOx emissions from the downtown 
Toronto using the microscopic traffic simulation model PARAMICS and 
the CMEM microscopic emission model [13]. Zhao et al. used SUMO to 
obtain vehicle trajectory, and used the VT-Micro model to calculate the 
instantaneous fuel consumption and traffic emissions for mixed traffic 
flows [14]. While previous studies have been able to calculate accurate 
energy consumption and GHG emissions data by combining micro fuel 
consumption and emission models [15,16], differences in sensor cost 
and sampling frequency have made it difficult to obtain second-by- 
second speed trajectories on a large scale. 

Inductive loop detectors are widely deployed in cities and highways, 
and are able to collect the macro traffic data that can reflect the traffic 
state within a certain period of time, such as the average speed, flow 
density, and traffic volume. This traffic data can be combined with en
ergy consumption and GHG emission models to calculate traffic fuel 
consumption and emissions at a macro level [17,18]. Hao developed a 
traffic-related air pollution assessment framework with PeMS data and 
the macro-emissions model EMFAC to accurately assess the environ
mental impact of traffic congestion in real time [19]. With the MOBILE 
model, Choil and Frey estimated the pollutant emission inventories of 
motor vehicles at different speeds [20]. The average traffic speed does 
not take into account vehicular and traffic dynamics, however, and is 
therefore not suitable for accurately estimating energy consumption and 
GHG emissions in many scenarios. 

In order to solve the problems of low accuracy of macroscopic energy 
consumption and emission models and the difficulty of obtaining 
microscopic traffic data, some scholars try to couple macroscopic traffic 
models with microscopic vehicle energy consumption and emission 
models to obtain microscopic traffic energy consumption and emission. 
Turkensteen used CMEM to calculate fuel consumption and carbon 
emissions of vehicles at a given speed and load, assuming that the 
vehicle is driven at a fixed speed [21]. Zegeye approximated macro
scopic traffic as microscopic traffic variables by making The macro
scopic traffic flow model METANET and the microscopic energy 
consumption and emission model VT-Micro are combined to achieve 
shorter simulation times and accurate estimation of fuel consumption 
[22]. Wang et al. reproduce traffic states and vehicle queue trajectories 
from macroscopic traffic data obtained from detection stations, derived 
accelerations from the reconstructed vehicle trajectories, and estimated 
accelerations as inputs to VT-Micro to calculate fuel consumption and 
emissions [23]. Chen et al. used the field speed data recorded by de
tectors to estimate second-by-second velocity and acceleration data of 
all passing vehicles and used CMEM to calculate the corresponding fuel 
consumption and emissions [24]. 

However, to couple macro and micro traffic data of different gran
ularity with vehicle energy consumption and emission models to esti
mate energy consumption and emissions of roads, the problem that 
traffic data cannot be used as input to energy consumption and emission 
models must be solved. To couple macroscopic traffic data with micro
scopic energy consumption and emission models, microscopic traffic 
information is usually obtained from macroscopic traffic data using 
vehicle trajectory reconstruction methods. Therefore, the focus of this 
paper is to obtain second-by-second trajectory information of vehicle 
trips estimated from real-time traffic information (e.g., average traffic 
speed). Although a considerable number of studies have been conducted 
to reconstruct speed trajectories using traffic data collected from various 
surveillance systems, these can be divided into three main categories: in 
terms of methods, spatio-temporal interpolation, filtering, and multi- 
source data fusion.  

1) The spatio-temporal interpolation method: This mainly relies on the 
spatio-temporal autocorrelation property of fixed detector data. It 
first calculates weights based on the distance between data points, 
and then fills in each point of the spatio-temporal region using the 

weighted average of the measurements of each data point. Instan
taneous [25], time-slice [26], dynamic time-slice [27], and linear 
models [28] can all be used to estimate the spatio-temporal speed 
distribution between fixed detectors within the observation range 
using the speed recursion method. Since all these models use an 
averaging approach for data collection and trajectory reconstruction, 
however, they are not very accurate in congested conditions, thus 
causing some high and low values to be discarded and resulting in 
reconstructed trajectories that do not reflect individual vehicles’ 
different behaviors. Ni and Wang first offered a two-dimensional 
estimate of road speed based on fixed speed measurements ob
tained from an intelligent traffic system, and then reconstructed the 
vehicle trajectory based on its time of entry into the network [29]. 
Wu added random velocities to the velocities obtained using 
quadratic smoothing to generate a comprehensive speed trajectory 
for a trip, considering a priori knowledge of real-time traffic infor
mation on the travel route provided by intelligent transportation 
system (ITS) techniques [30]. Krol proposed the reconstruction of the 
vehicle trajectory using interpolation techniques to describe the 
density in the considered spatio-temporal framework. The density of 
each point was interpolated according to the density of the four 
corners of the spatio-temporal region, and then a triangular shaped 
fundamental diagram was used to construct the trajectory of each 
vehicle [31]. Since densities were collected in an aggregated manner, 
however, the density of each point in the block would be the same if 
the densities of the four corners were the same, implying that vehi
cles should travel at a constant speed. Coifman [32] proposed a 
method for estimating vehicle trajectories on highway sections using 
traffic data from a single dual-loop detector, using traffic flow theory 
to infer local traffic conditions. The drawback of the method, how
ever, is that it cannot be applied during the transition period from 
uncongested to congested traffic conditions, thus limiting its prac
tical application.  

2) The filtering method: This is a spatio-temporal traffic state estimation 
method capable of considering the propagation of traffic congestion. 
It uses a nonlinear low-pass filter to interpolate the traffic state be
tween fixed detectors. Examples of this method include Treiber and 
Helbing’s [33] adaptive smoothing approach, where they used a 
nonlinear spatio-temporal low-pass filter for fixed detector data so 
that, in congested traffic, the perturbation moved upstream at a near- 
constant rate, whereas in free traffic, the information propagated 
downstream. Van Lint and Hoogendoorn [34], meanwhile, obtained 
reliable traffic state estimates by improving the adaptive smoothing 
method so that it could fuse data from individual traffic detectors. 
Wang proposed a generalized stochastic macroscopic traffic flow 
model and extended Kalman filtering based on a highway section or 
road network traffic state [23]. Chen established a trajectory esti
mation algorithm based on an extended vehicle tracking model for 
the undetected part of each trajectory [35]. Based on that, a particle 
filter-based trajectory fusion algorithm was proposed to fuse the 
estimated trajectories for minimization. Chen proposed a hybrid 
method to reconstruct the complete vehicle trajectories at signal 
intersections. This used variational networks and Kalman filtering to 
reproduce stochastic features of the reconstructed queue boundary 
curves [36]. Wei et al. used a particle filtering-based method to 
reconstruct the trajectories along the main missing trajectories be
tween successive updates of detected vehicles at multiple in
tersections [37]. Feng et al. used a particle filtering approach that 
considered five spatio-temporal trajectory correction factors and 
reconstructed vehicle trajectories in a large-scale network based on 
data collected by automatic vehicle recognition and conventional 
detectors [38]. Xu et al. also estimated the trajectories of signal 
intersection arterials by integrating different data sources through 
particle filters [39].  

3) Multi-source data fusion method: This approach aims to combine data 
from fixed and mobile detectors to compensate for the shortcomings 
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of fixed detector data and sparse data from mobile sensors. Mehran 
et al. [40] proposed a new data fusion framework based on the three- 
dimensional (3D) kinematic wave model and variational theory 
[41,42] to reconstruct vehicle trajectories on urban arterials by 
fusing cab and cross section data. Sun et al. [43] reconstructed 
vehicle trajectories by fusing probe vehicle and signal timing data 
based on variational theory, and validated the method using vehicle 
trajectory data measured at intersections. The results showed that 
while the method was robust to changes in probe vehicle penetra
tion, the variational theory-based model ignored the random-wave 
properties of speed. Tsanakas [44] proposed a two-stage approach 
to reconstruct multi-vehicle trajectories by first calculating the speed 
of each cell through filtered smoothing, and then calculating the 
position at each time step using bicubic interpolation. Chen et al. 
[45] used the hybrid property to develop a macro-micro integration 
framework to reconstruct vehicle trajectories on highways, where 
data fusion provided a critical speed baseline for reconstructing the 
trajectory. Additionally, the car-following and inverse car-following 
models were used to produce candidate trajectories and determine 
the optimal trajectory with the minimum speed baseline difference 
based on dynamic programming. 

These aforementioned studies, however, have certain limitations in 
regard to reconstructing vehicle trajectories. Given the low deployment 
rate of fixed detectors on highways and the long aggregation time, most 
studies attempted to replace fixed detector data by counting the speed 
aggregation values of microscopic vehicle trajectories at fixed positions 
in a short period of time (usually 30 s), rather than using real fixed 
detector data to reconstruct vehicle trajectories. Further, most of the 
studies were more readily applicable to free traffic flow conditions, and 
therefore do not reflect the stop-and-go behavior of vehicles under 
congested traffic flow conditions. Moreover, some methods were un
dertaken from the perspective of estimating travel time without 
considering the vehicle kinematic characteristics, resulting in abnormal 
vehicle speed and acceleration results. 

This paper, therefore, proposes an energy consumption estimation 
method of regional traffic based on macro-micro modelling with sparse 
data from CAVs. There are three main contributions. First, the speed 
observed from fixed detectors is utilized to reconstruct second-by- 
second vehicle trajectories. Second, a small number of CAV trajectory 
data is introduced as a reference in the process of estimating cell speed, 
allowing a more accurate description of the evolution of road spatio- 
temporal speed and thus ultimately a more accurately reconstructed 
trajectory. Last, a spatio-temporal consistency validation framework is 
developed using Next Generation Simulation (NGSIM) data and Caltrans 
Performance Measurement System (PeMS) data. The framework com
pares the traffic energy consumption and emissions under the different 
aggregation approaches for macro and micro models. It addresses the 
lack of accuracy caused by the errors embedded when converting be
tween macro and micro modelling during the process of estimating 
traffic energy emissions. 

2. Energy consumption estimation based on the micro-trajectory 
reconstruction method 

This section introduces how to utilize the micro-trajectory recon
struction method to estimate the energy consumption of regional road 
traffic. The vehicle speed trajectory is synthesized in the following three 
steps. 

2.1. Spatio-temporal speed estimation of road sections based on 
nonparametric kernel smoothing  

(1) Traffic fundamental diagram estimation 

The macroscopic Fundamental Diagram (FD) is a model describing 
the relationship between traffic density and traffic flow on a road sec
tion. It can visually characterize road traffic flow characteristics and is 
important in both road area control and macroscopic modelling. The 
most common triangular shaped FD uses two straight lines to fit the non- 
congested and congested areas, where the slope of the non-congested 
area is the free-flow speed and the slope of the congested area is the 
congestion propagation speed. 

In this study, we extracted the historical macro data (aggregated 5- 
min flow/density values) of fixed detectors in our case study for one 
month from June 1st to June 30th, 2005, from 7:50 to 8:35. Then, we 
fitted the triangular-shaped FD so as to estimate key parameters quickly. 
These parameters were: free-flow speed vfree, capacity qmax, and critical 
density kjam, which are expressed as: 

vfree = min
(

130, max
(

Vi
j

) )
(1)  

qmax = max
(

Qi
j

)
(2)  

kjam = max
(
max

(
Ki,j

)
, 150

)
(3)  

where Vi
j , Qi

j, and Ki,j are the speed, traffic flow, and density, respec
tively, obtained from the output of loop detector j at moment i. The free- 
flow speed and capacity are the data of cross-sectional detector; the 
minimum value was set to 150 because the blockage phenomenon of the 
road section is difficult to detect, and the critical density is the maximum 
density of the entire network. The free-flow speed was limited to a 
maximum of 130 km/h owing to the speed limit of the case study road.  

(2) Nonparametric kernel smoothing-based cell speed estimation 

Because the data collected by loop detectors was discrete, it did not 
reflect the dynamic changes of traffic in time and space. The approach 
reported in this section, therefore, improves the roadway speed esti
mation accuracy by fusing the fixed loop detector data and probe vehicle 
data, thus compensating for the deficiencies of the individual data 
sources on their own. 

Spatio-temporal speed contours (where the x-axis is time, the y-axis 
is space, and the inner color (or z-axis) represents speed) are the basis of 
various traffic studies and applications. They are typically used to divide 
a spatio-temporal network into different cells, before applying one of 
various methods to estimate the traffic speed of all cells. He [46] 
demonstrated that using non-rectangular parallelogram cells to slice the 
spatio-temporal network further was better able to take into account the 
backward waves compared to the traditional rectangular parallelogram 
cells, reducing the errors in microscopic vehicle trajectory and travel 
time estimation in the presence of traffic congestion. For this purpose, 
we sliced the spatio-temporal network using the congestion wave speeds 
estimated in Section 3.1, sliced the spatio-temporal network into mul
tiple non-rectangular parallelogram cells based on the time and spatial 
intervals, and used the speed at the center of the cell as the average 
speed of the whole cell. 

Treiber-Helbingr [33] proposed a nonparametric method called the 
Generalized Treiber-Helbing Filter (GTF) to achieve spatio-temporal 
interpolation of fixed detector velocities. Van Lint and Hoogendoorn 
[34] extended the GTF by fusing data from multiple sources (EGTF). As 
shown in Fig. 1, for each parallelogram cell, the range of data points (t, 
x) that have an effect on the speed of the cell center (t, x) is customized. 
According to the description in the literature [44], this range is defined 
in this paper as a circular region with the cell center(t, x) as the center 
and a radius r (shown as a red circle in the Fig. 1), which is related to the 
distance between the two fixed detectors. The speed of the cell center is 
estimated from the distances of the different source data points con
tained in this range from the cell center point (t, x), and from the speed 
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measurements of these data points. 
To capture traffic disturbances, two auxiliary speed surfaces were 

established, one for free-flow and the other for congestion conditions. 
For each data source, the two auxiliary speed surfaces were estimated as 
follows: 

vfree(t, x) =

∑

s∈S
βfree

s (t, x)Vs

∑

s∈S
βfree

s (t, x)
(4)  

vcon(t, x) =

∑

s∈S
βfcon

s (t, x)Vs

∑

s∈S
βcon

s (t, x)
(5)  

where Vs is the speed measurement at data point s; S is the set of speed 
counts in the range A(t,x); βfree

S and βcon
S are given by the following 

equations: 

βfree
S (t, x) = ∅O

(

t − tS −
x − xs

cfree
, x − xS

)

(6)  

βcon
S (t, x) = ∅O

(

t − tS −
x − xs

ccon
, x − xS

)

(7)  

where ∅O is a kernel function that assigns a weight to each speed 
count Vs, defined as follows: 

∅O = exp
(

−
(|t|

τ +
|x|

σ

) )
(8)  

and where τ and σ are the temporal and spatial smoothing widths, 
respectively. 

By combining data from different data sources, the EGTF speed field 
is expressed as: 

vEGTF(t,x)=

∑
m∈Mαm

∑
s∈Am(t,x)

[
wm(x,t)βcon

s,m (x,t)+(1−wm(x,t))βfree
s,m (x,t)

)]
Vs,m

∑
m∈Mαm

∑
s∈Am(t,x)

[
wm(x,t)βcon

s,m (x,t)+(1−wm(x,t))βfree
s,m (x,t)

)]

(9)  

where Vs,m is the speed value measured by the data source m at point (ts, 
xs), M is the set of data sources, m ∈ M, αm is the data source-specific 
weight for each source m reliability, Am(t,x) is the set of speed counts 
located within the user predefined region (t, x) and A(t, x), and wm(x, t)
is the weight of the influence of the two auxiliary speed surfaces of data 
source m on this metric. This is therefore an adaptive weighted s-type 
function that depends on the congestion level at point (t, x) expressed as: 

wm(x, t) =
1
2

[

1 + tanh
(

v̂ − min
(
vfree

m (x, t) , vcon
m (x, t)

)

Δv

) ]

(10)  

where v̂ is the speed threshold between the free-flow and congestion 
conditions, which indicates the transition width in the surroundings. 

2.2. Microscopic vehicle trajectory reconstruction based on 3D kinematic 
wave theory 

2.2.1. Discretization of cell lattices 
3D kinematic wave theory is a traffic flow model combining kine

matic wave theory and the accumulation curve principle to provide an 
accurate estimate of the traffic shock wave caused by traffic congestion 
in the opposite direction of vehicle travel, assuming that vehicles follow 
the first-in-first-out principle in a closed area. This is illustrated in 
Fig. 2a, where a third coordinate (z-axis) is added to the spatio-temporal 
axis of the two-dimensional kinematic wave to represent the cumulative 
vehicle numbers. The red curve in the figure, meanwhile, is the refer
ence probe vehicle trajectory of CAVs, the green dashed line represents 
the forward wave, and the black dots on the time axis are the entry and 
exit times of the vehicles. Daganzo [41] proposed a traffic flow calcu
lation model for road networks based on 3D kinematic wave theory with 
variational theory and comparative capacity constraints. As shown in 
Fig. 2b, their approach divides the spatio-temporal network according to 
the forward and backward wave speed. The i-coordinate of the coordi
nate system of the divided variational network is aligned with the 
backward wave, and the j-coordinate is aligned with the forward wave; 
each grid node has a value representing the cumulative number of ve
hicles at that spatio-temporal location. The cumulative number of ve
hicles passing through an unknown node is obtained in a discrete spatio- 
temporal space based on the boundary state. The application of varia
tional theory based on 3D kinematic waves is therefore here based on a 
discretized spatio-temporal network. 

Because the forward and backward arc slopes of the spatio-temporal 
network are deterministic, the dynamic changes in the traffic state are 
not fully considered. Thus, the free-flow speed of the small grid point is 
set as the average speed of the cell where it is located. The basic pa
rameters of the initial variational network—i.e., time, and space steps of 
the backward wave—are determined as follows: 

w =
qmax

kjam −
qmax

u
(11)  

tstep = 1s (12)  

sstep =
u × w × tstep

u + w
(13)  

where w is the backward arc slope, and u is the forward arc slope (i.e., 
the average speed of the traffic in the cell where point (x,t) is located); 
tstep is the time step, which is a predetermined value, and sstep is the 
space step. 

2.2.2. Multi-vehicle trajectory reconstruction based on 3D kinematic wave 
theory 

After completing the network division as above, the initial cumula
tive vehicle number of the first column nodes in the initial variational 
network is set to one. The reference probe vehicle trajectory can be 
regarded as a path connected by nodes with the same cumulative vehicle 
number on the variational network whose starting and ending points 
correspond, respectively, to the cumulative vehicle numbers of the up
stream and downstream nodes, as recorded by the fixed detector. 
Considering that it is difficult to match the probe vehicle trajectory 
exactly with the spatio-temporal network, however, the probe vehicle 
trajectory must be gridded as a constraint to calculate the cumulative 
number of vehicles at subsequent nodes. For the cumulative number of 
vehicles at each time point at the upper and lower boundaries of the 
initial variational network, it is necessary to determine when vehicles 
enter and leave the network based on other external conditions. 

Fig. 1. Multi-source data fusion for cell speed estimation.  
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In the triangular-shaped FD, the increase in the number of vehicles at 
the unknown nodes (i, j) in the network takes only two values, i.e., the 
increment of the forward wave is zero, which means that there is no 
change in the cumulative number of vehicles along the forward wave, 
and the increment of the backward wave is kjam • sstep, which is the 
maximum change allowed in the cumulative number of vehicles. Ac
cording to the literature [41,42], the solution of the kinematic wave 
problem based on variational theory is a set of spatio-temporally 
continuous shortest paths. Since the traffic flow cannot be reversed in 
space and time, it can only be searched from the node with a low cu
mulative number of vehicles to the node with a high or equal number of 
vehicles. Therefore, for the acyclic variational network in this paper, it is 
simple and efficient to use Dijkstra shortest path algorithm for search
ing. Under the constraint of detecting the vehicle trajectory as well as 
the spatio-temporal network boundary, the cumulative number of ve
hicles for each unknown number of nodes in the network can be 
determined according to the shortest path algorithm, expressed as 
follows: 

N(i, j) = Min
{

N(i, j − 1) , N(i − 1, j) + kjam • sstep
}

(14)  

where N(i, j) denotes the cumulative number of vehicles at node (i, j), 
and kjam⋅sstep represents the amount of variation in the cumulative 
number of vehicles that may occur at node (i, j). Finally, nodes with the 
same cumulative number of vehicles are connected in order to output 
the vehicle trajectory. 

2.3. Estimation of energy emission based on the MOVES model 

In this study, the vehicle specific power (VSP) method is adopted to 
estimate the energy consumption of road traffic on the basis that VSP 
can better characterize the behavior of motor vehicles on real-world 
roads [47]. The MOVES model uses the VSP method to characterize 
the driving characteristics of a motor vehicle in addition to its speed, 
with VSP representing the tractive power of the vehicle expressed as 
follows: 

VSPi =
Avi + Bv2

i + Cv3
i + mviai

m
(15)  

where v is the speed (m/s), a is the acceleration (m/s2), m is the weight 
of the vehicle (t), and, A、B、C are the vehicle road load factors. The 
MOVES emission model clusters the VSP values into different VSP bins at 
1 kW/t intervals and combines them with instantaneous speed intervals 
to obtain the vehicle operating mode. The emissions of a vehicle oper
ating on the road are basically estimated by multiplying the emission 
rate with the VSP distribution, as shown in Eq. (16): 

emission = running time ×
∑

VSP bin
emission rate × VSP distribution (16) 

The emission rates for different VSP bins represent vehicle emissions 
at different power demands. The VSP distribution (or operating mode 
distribution in the MOVES model) is the fraction of time spent in each 
VSP bin. The emission rate is fixed for a specific type of vehicle; so the 
distribution of VSP in a fleet can determine the emissions in a traffic 
network. 

3. Case study 

To investigate the impact of macro and micro data conversion 
methods on regional traffic fuel consumption emission results, this study 
constructs a data validation framework with spatiotemporal consis
tency. As shown in Fig. 3, the Performance Measurement System (PeMS) 
macro data (low-density scatter data) and Next Generation Simulation 
(NGSIM) micro data (vehicle trajectory data) in the US101 freeway in 
the US State of California State are selected for comparison and analysis. 
The PeMS data are obtained from the inspection stations 717,488 and 
717,489 of the California Highway 101, which are located on the same 
roadway as the NGSIM US 101 trajectory data (shown in Fig. 3). The 
PeMS data are extracted from June 1st to June 30th, 2005; while the 
NGSIM US 101 trajectory data corresponded to the time interval be
tween 7:50 and 8:35 on June 15th, 2005. The NGSIM data set has 
become the microscopic real data standard, underlying the vast majority 
of empirically based advances of the past decade. However, the data of 
CAV is unknown in the scenario of this article, so a certain proportion of 
CAVs trajectories can be used as observed CAVs data. 

As shown in Fig. 4, we first estimate the spatio-temporal speed 
evolution of road segments by fusing the observed speed values from 
different fixed detectors and probe vehicles, using a nonparametric 
kernel smoothing method to compensate for the shortcomings of using a 
single data source to characterize the basic state of road segments. 
Second, to consider the complex and variable road traffic environment 
and better reflect the congestion transmission of the actual road, a se
lection of the vehicle trajectories in the NGSIM dataset are chosen to be 
the virtual probe vehicles, which are used to constrain and reconstruct 
the microscopic vehicle trajectory based on the variational theory of 3D 
kinematic waves. Finally, the energy emission consumption of the 
reconstructed trajectory is estimated based on the MOVES model. 

To verify the effectiveness of the proposed model, we conduct a 
comparative analysis using a four-step experiment. First, the NGSIM 
data are filtered to reduce errors in the baseline data. Second, the 
reconstruction accuracy of the proposed under different parameter 
combinations is compared using root mean square error (RMSE) and 
mean absolute error (MAE) metrics. Again, the trajectory conversion 

Fig. 2. Schematic diagram of variational theory based on 3D kinematic waves.  
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accuracies of the three methods are compared using the RMSE and MAE 
metrics, and the trajectory reconstruction accuracy of the three methods 
are compared under free flow and congested flow conditions. Finally, to 
verify the effects of macro data on the micro-trajectory method on traffic 
energy consumption and emissions, the California motor vehicle emis
sion models—i.e., Emissions Factors (EMFAC) and MOVES—are 
selected, and traffic data of different granularities are input into the 
corresponding energy consumption and emission models. We compared 
the fuel consumption and emission of macro data with the macro energy 
consumption model, macro data after micro disaggregation and micro 
energy consumption model, and verified the environmental character
ization effect under the combination of traffic and energy consumption 
models at different levels. 

4. Results and discussion 

We conducted experiments to compare the performance of the pro
posed 3D kinematic wave trajectory reconstruction method based on 
Nonparametric Kernel Smoothing and Variational Theory (NKSVT-TR) 
with trajectory reconstruction based on four-corner interpolation (FI- 
TR), and trajectory reconstruction based on variational theory (VT-TR). 
The pre-processed NGSIM US101 Lane 1 7:50–8:05 vehicle trajectory 
data are used as the observation data, while the overtaking and lane- 
changing behaviors of vehicles are not considered. For these three tra
jectory reconstruction methods, it is assumed that the total number of 
trajectories and the entry and exit times of the reconstructed vehicles are 
known and could be measured using road loop detectors. 

Fig. 3. Micro and macro data with spatiotemporal consistency.  

Fig. 4. Flow Chart of the Proposed Method.  
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4.1. Data pre-processing 

In reality, the NGSIM data have a number of outliers and observation 
errors that can have a big impact when used directly in the calculation of 
microscopic vehicle behavior. Furthermore, when the observed trajec
tory data are used to calculate vehicle speed and acceleration by first- 
order and second-order derivatives, such observation errors are multi
plied. Pre-processing of the data is therefore necessary before the veri
fication experiment. 

We used Montanino and Punzo’s [48] four-step method to correct the 
NGSIM trajectory data, which was divided into the following four steps: 
(1) the very large and very small outliers of acceleration were removed; 
(2) trajectory data corresponding to the speed values of high and me
dium frequencies were filtered using a low-pass filter (frequency of 1.25 
Hz); (3) trajectory data corresponding to acceleration values that did not 
conform to physical characteristics were eliminated; and (4) the low- 
pass filter in step (2) was used to filter and denoise the trajectory 
data. The vehicle acceleration and speed of NGSIM US101 after step-by- 
step processing are shown in Fig. 5; the vehicle acceleration, speed, and 
position profiles before and after processing are shown in Fig. 6. 

4.2. Sensitivity analysis of model parameters 

The experiments used randomly sampled NGSIM data as the virtual 
probe detector vehicle trajectory as well as VT-TR, including the vehicle 
position at a fixed time interval (0.1 s) and the speed information. Fixed 
detector data was obtained from the loop detector data from the PeMS 
US101 section and included the average speed data at a fixed position. 
Since the cell size and penetration rate of the probe vehicle are very 
important to the results of this study the values of their parameters had 
to be determined in advance. In this regard, limitations in computational 
power meant that, when calculating the spatio-temporal speed contour 
of the road section, the road has to be discretized into a cell, with the 
central speed of that cell calculated separately to represent the entire 

speed field. Tsanakas [44] and He [49] applied parallelogram cells to 
estimate the spatio-temporal speed network, considering cell sizes of 
(10 × 50), (30 × 50), (30 × 100), (60 × 50), and (60 × 100) (in sec × m). 
In this study, therefore, the cell sizes of (30 × 50), (30 × 100), and (60 ×
100) spatio-temporal grids are considered to verify the accuracy of the 
cell time and spatial intervals for spatio-temporal speed network esti
mation. Meanwhile, the number of probe vehicles is an important factor 
affecting the spatio-temporal speed estimation; thus, for each cell size, 
three probe vehicle penetration rates are set: 5%, 10%, and 15% [44], 
respectively. As listed in Table 1, nine sets of experimental combinations 
are used. 

The RMSE and MAE metrics have been widely used to test recon
struction accuracy [44,45]. Our experiments therefore compare the er
rors between the instantaneous position, speed, and acceleration of the 
reconstructed trajectories and reference (actual) values. The RMSE and 
MAE of the vehicles are calculated as follows: 

RMSE =

∑N
n=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑In
i=1

(zn(ti)−zn(ti) )2

In

√

N
(17)  

MAE =

∑N
n=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑In
i=1

(zn(ti)−zn(ti) )
2

In

√

N
(18)  

where zn(ti) is the estimated value of the variable (position, speed, ac
celeration) at time step i, i = 1,2, …,In, zn(ti) that corresponds to the 
reference value; N is the total number of vehicles. 

Table 1 lists the average RMSE and MAE of the vehicles for the 
proposed method at the different combinations of cell size and probe 
vehicle penetration. It can be seen that the RMSE is generally larger than 
the MAE, indicating that the errors are not uniformly distributed in the 
reconstructed area. The estimated trajectories are more accurate at the 
entrance and exit of the road, with errors typically increasing near the 
middle of the road. This happens because fixed sensors were deployed at 

Fig. 5. Comparison of acceleration and speed profiles of vehicle No. 356 after step-by-step processing.  
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both ends of the road, thus can’t capture the vehicle condition between 
the detector. As expected, higher probe vehicle penetration and smaller 
cells significantly improved the overall performance of the method. This 
happens because a higher probe vehicle penetration provides more ob
servations and thus more accurate input. In respect to the different cell 
sizes (e.g., scenes 1, 2, and 3; scenes 4, 5, and 6; and scenes 7, 8, and 9), it 
can be seen both that more speed information is obtained as the probe 
vehicle penetration increases, and that the speed estimates for the 
spatio-temporal grid are more accurate with the lowest RMSE and MAE 
for the position. Higher penetration rates, however, produce slightly 
larger speed and dithering errors compared to medium penetration rates 
(e.g., speed errors for scenes 2 and 3, scenes 5 and 6, and scenes 8 and 9) 
because dense data points interfere more frequently with speed conti
nuity. It is also notable that for the same probe vehicle penetration, a 
larger cell improves acceleration and dithering performance compared 
to a smaller cell since the short spatio-temporal interpolation width 
serves to establish fast local speed transitions. The combined position, 
speed, and acceleration error analysis results showed that the recon
struction accuracy of the third cell combination is higher; thus, the third 
cell combination (i.e., cell size of 30 × 50 and probe vehicle penetration 
of 15%) is chosen as the initial model parameter for all subsequent 
experiments. 

4.3. Model accuracy comparison 

4.3.1. Multi-vehicle trajectory reconfiguration 
Vehicles on a road can be divided by state into driving, stopping, and 

stop-and-go, which correspond, respectively, to free flow, stopping 
waves, and congestion sections in the vehicle trajectory spatio-temporal 
diagram. To better simulate the multiple states of vehicles in the driving 
process, therefore, as well as to better reflect the influence of sur
rounding vehicles on the state of self-vehicles, it is necessary to analyze 
the spatio-temporal consistency of the reconstructed multi-vehicle and 
reference trajectories in a certain time period. Fig. 7 shows a comparison 
of the reconstructed vehicle trajectories obtained using the three 

methods with the corrected NGSIM data in the first 15 min. For all three 
reconstruction methods, the entry time of the reconstructed vehicles and 
average speed observed by the fixed detector are used as model inputs; 
the NKSVT-TR and VT-TR methods added the probe vehicle trajectories 
with a penetration rate of 15% (48 vehicles) as the reference trajectory. 
The spatio-temporal network of multi-vehicle trajectories for the three 
methods in free-flow and congested flow states are presented in Figs. 8 
and 11 in order to analyze the trajectory reconstruction effects in more 
detail. 

As shown in Fig. 7, in comparison with the vehicle trajectory 
reconstructed using the FI-TR method shown in Fig. 7d, the two 3D ki
nematic wave methods based on variational theory (Fig. 7b and Fig. 7c) 
better reflect the stop-and-go behavior of vehicles in a congested envi
ronment. This is due to the fact that the variational theory based on 3D 
kinematic waves considers the trajectory curve of the probe vehicle and 
therefore generates shape constraints on the curve of the reconstructed 
trajectory. Meanwhile, the vehicle trajectories reconstructed by the FI- 
TR method are close to a straight line, although the combination of 
the vehicle travel period adds a random value to the vehicle speed. This 
happens because the FI-TR method assumes that the vehicle is in a 
closed and empty roadway during the reconstruction process, and not 
affected by the surrounding environment and vehicles. In addition, the 
nonparametric kernel smoothing method in Fig. 7b improves the esti
mation performance because the NKSVT-TR method results in fewer 
trajectory gaps and crossings than the VT-TR method. Thus, NKSVT-TR 
captures the speed disturbances of cells more effectively, independently 
of the variational theory approach used in the second stage. 

Figs. 8 and Figs. 9 show the performance of the three reconstruction 
methods under different traffic states, where the orange curve represents 
the trajectories of the probe vehicles and the gray curve represents the 
reconstructed trajectories of each vehicle. Figs. 8a~8c show the per
formances of the three methods under free-flow conditions. As shown in 
the figures, the vehicle is closer to a free-flow state downstream of the 
road. The reconstructed multi-vehicle trajectories in Fig. 8a are closer to 
the trajectories of the probe vehicles at both ends compared with Fig. 8b 

Fig. 6. Comparison of acceleration, speed, and position profiles before and after treatment of vehicle No. 356.  

Table 1 
Errors under different combinations of parameters.  

Serial number Cell size Probe Vehicle 
Penetration (%) 

Position Speed Acceleration 

RMSE MAE RMSE MAE RMSE MAE 

1 
30s × 50 m 

5 77.5968 65.0811 4.7823 3.8522 1.4874 1.0299 
2 10 72.1628 62.9308 4.5860 3.7160 1.4783 1.0359 
3 15 66.7624 57.8796 4.582 3.7862 1.4289 1.0011 
4 

30s × 100 m 
5 78.3946 65.9687 4.8361 3.8865 1.5038 1.0294 

5 10 70.9197 61.8651 4.5667 3.6965 1.4941 1.0470 
6 15 68.7614 59.8540 4.7245 3.8973 1.4577 1.0208 
7 

60s × 100 m 
5 79.0716 66.5784 4.7947 3.8825 1.4612 1.0170 

8 10 72.0659 62.9452 4.5320 3.6734 1.4786 1.0421 
9 15 68.4411 59.3672 4.5489 3.7447 1.4396 1.0069  
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and Fig. 8c, and the reconstructed effect is better. The reconstructed 
vehicle trajectories in Fig. 8b cause some vehicle trajectories to cross due 
to not having a brother accurate estimate of the basic road conditions. 
The reconstructed vehicle trajectories in Fig. 8c at the free flow state is 
smoother and neater, but the trajectory similarity is higher and more 
desirable without affecting the vehicle trajectories downstream because 
of the stop-and-go behavior of the vehicle in the middle of the road. 

Figs. 9a~9c show the performances of the three methods under 
congested flow conditions. Among the two methods based on 3D 

kinematic wave theory, Fig. 9a better reflects the stop-and-go behavior 
under congested traffic conditions compared with Fig. 9b. And because 
the local speed under congested conditions is not clearly reflected, the 
trajectory estimated in Fig. 9b conflicts with the trajectory of the probe 
vehicle. As shown in Fig. 9c, meanwhile, the FI-TR method of recon
struction shows the same ideal trajectory in congested flow conditions as 
in free-flow conditions;, an outcome that can be attributed mainly to the 
fact that this approach does not consider the influence of other vehicles 
in the road. 

Fig. 7. Comparison of reconstructed trajectories.  

Fig. 8. Comparison of reconstructed trajectories of the three methods under free-flow conditions.  
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4.3.2. Comparison of the accuracy of the various reconstructed trajectories 
To verify the effectiveness of the method in this study, the errors 

under the microscopic and reference variables of the reconstructed 
trajectories were calculated for all three methods. The convergence 
profiles of the average RMSE of the vehicles as the cumulative number of 
vehicles increase are shown in Figs. 10a – 10c. In comparison with the 
other two methods, the method proposed in this study has a lower 
overall position error. In contrast, the vehicle trajectories reconstructed 
by VT-TR exhibit a large error owing to the neglect of the random wave 
error in speed, while the FI-TR method ignores the constraints of other 
vehicles in the network on the road, thus making the resulting trajectory 
too idealized; a feature that again causes a larger trajectory error. The 
speed error in Fig. 10b and acceleration error in Fig. 10c exhibit a similar 
pattern to the position error in Fig. 10a. In comparison with the other 
two reconstruction methods, therefore, the NKSVT-TR method is supe
rior for estimating the local speed surface. 

Figs. 10d - 10(f) show the RMSE violin plots of the three micro- 
variables of the reconstructed vehicle trajectories compared with the 
reference NGSIM data, where the thick black line in the rectangular box 
is the median of the data; the range of the black box is from the lower to 
the upper quartile, and the width of the graph indicates the probability 
density falling at the corresponding value. The results show that all the 
proposed methods in this paper have better estimation effect than the 
other two methods. Specifically, the median of the RMSE of the pro
posed method is 57.68%, 25.92% and75.73% lower in position, speed, 
and acceleration, respectively, than that derived from the VT-TR 
method. Further, the median RMSE of the proposed method is, respec
tively, 71.16%,31.10% and 69.63% lower for the same three micro- 
variables than that of the FI-TR method. In addition, by comparing the 
graph widths of the three methods for position, speed, and acceleration, 
it can be seen that NKSVT-TR is more robust. 

Fig. 9. Comparison of reconstructed trajectories of the three methods under congested flow conditions.  

Fig. 10. Comparison of the accuracy of the three reconstruction methods.  
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4.3.3. Energy emission analysis of road segments 
To further analyze the effects of errors in the micro traffic data, 

macro traffic data, and different macro and micro conversion methods 
on traffic energy emission calculations, this section compares the results 
of four different combinations of traffic models and energy consumption 
and emission models. We used MOVES, i.e., a microscopic energy con
sumption and emission model from the United States, and EMFAC, i.e., a 
macroscopic energy consumption and emission model from California, 
USA, for the energy consumption and emission calculations. The MOVES 
model calculates the microscopic emissions of vehicles by meticulously 
portraying the activity characteristics of vehicles at the microscopic 
level. The EMFAC model, meanwhile, as a macroscopic fuel consump
tion emission model, can calculate rich motor vehicle pollutants, such as 
HC, CO, NOx, PM, CO2, N2O, and CH4. Because microscopic data have 
higher vehicle driving detail characterization and thus relatively high 
accuracy in this experiment, the combined results of the microscopic 
NGSIM data and microscopic energy consumption emission MOVES 
model are used as the baseline data for this experiment. 

The experimental framework is illustrated in Fig. 11. First, the 
combination of macro PeMS data and the macro fuel consumption 
emission model EMFAC (PeMS & EMFAC) is used as a reference result 
representative of the macro calculation results. Second, the macro PeMS 
data are disaggregated into micro data using three reconstruction 
methods (NKSVT-TR, VT-TR, and FI-TR) and then input to the MOVES 
model to calculate the energy consumption emission results, i.e., the 
combinations of NKSVT-TR & MOVES, VT-TR & MOVES, and FI-TR & 
MOVES. Finally, NGSIM & MOVES are used as the benchmark for the 
calculation of energy consumption emissions in the experimental 
section. 

In general, this study analyzes the results of different emission esti
mation methods by comparing Mean Absolute Percentage Error (MAPE) 
values in the interval of [−20,20] kW/t. When performing emission 
calculations, the MOVES model requires an input of 1 Hz trajectory data, 
and thus the experiments downsampled the NGSIM data to meet the 
model input requirements. 

The VSP distributions of the three reconstruction methods with the 
reference data are shown in Fig. 12. In comparison with Fig. 12a, the 
MAPEs of the VSP distributions of the three methods with reference data 
were 10.57%, 16.18%, and 23.74%, respectively. This result indicates 
that the VKS–VT method in this study can more accurately reflect the 
microscopic characteristics of vehicles for better calculation of vehicle 
emissions. Frey [47] indicates that VSP and speed can jointly determine 
the vehicle operation mode to reflect the instantaneous speed and ac
celeration level of the vehicle. From Fig. 12b, it can be seen that the VSP 
generated by the method in this paper is distributed in the interval of 
[−20, 20] kW/t, and the value of VSP = 0 has the largest proportion, 
which is consistent with the performance of Fig. 12a. Meanwhile, 

Fig. 12c has VSP < 0, implying that the vehicle state is mostly in the 
deceleration and braking states. This is because the VT-TR method only 
connects the grid point connections as vehicle trajectories without 
proper smoothing of the trajectories, resulting in vehicles prone to ac
celeration outliers at the connection points and overlapping recon
structed and detected vehicle trajectories owing to the lack of accurate 
estimation of the road traffic state (as shown in Fig. 9b). Fig. 12d has the 
largest proportion in the VSP > 0 part, indicating that the vehicle is 
mostly in coasting as well as acceleration states. This is because the 
method determines the driving speed of the vehicle and thus the influ
ence of the surrounding vehicles based only on the speed values of the 
upstream and downstream fixed detectors, while the speed values of the 
downstream detectors are generally larger than the values of the up
stream detectors. The reconstruction process therefore assumes that the 
vehicle is in a process of slow acceleration. 

Figs. 13a and Fig. 13b show the calculated total vehicle fuel con
sumption and pollutant emissions (CO2, CO, and NOx) for each of the 
five combinations. 

As shown in Fig. 13a, the accuracy of the fuel consumption calcu
lation results for the micro-combination NGSIM & MOVES is improved 
by 26.64% compared with the macro-combination PeMS & EMFAC. The 
accuracy of the microscopic fuel consumption results reconstructed by 
the three reconstruction methods NKSVT-TR, VT-TR, and FI-TR is 
improved by 31.55%, 41.09%, and 10.02%, respectively. By comparing 
the fuel consumption results of the reconstructed trajectories of the three 
reconstruction methods with those of NGSIM, it is found that the relative 
error between the fuel consumption calculated by NKSVT-TR, VT-TR, 
and FI-TR and the fuel consumption emissions calculated by the micro- 
combination NGSIM & MOVES is 3.88%, 10.46% and 11.95%, respec
tively. This shows that the proposed method is able to calculate a rela
tively more accurate level of fuel consumption. As shown in Figs. 13b - 
13d, by comparing the emission results of PeMS & EMFAC and NGSIM & 
MOVES, it is found that the results of the micro-combination NGSIM & 
MOVES are 9.17%, 33.68%, and 45.26% more accurate, respectively, 
while NKSVT-TR & MOVES, VT-TR & MOVES, and FI-TR & MOVES are 
more accurate than the PeMS & EMFAC macro combination by, 
respectively, 8.75%, 14.83%, and 3.03% for CO2, 53.03%, 54.46%, and 
8.41% for CO, and 83.75%, 111.20%, and 19.97% for NOx. After 
comparing the pollutant emission results between the reconstructed and 
reference NGSIM trajectories obtained using the three reconstruction 
methods, the relative errors between the NKSVT-TR, VT-TR, and FI-TR 
method and the reference trajectories by, respectively, 0.39%, 5.18%, 
and 5.62% for CO2, 14.48%, 15.55%, and 18.90% for CO, and 26.50%, 
45.40%, and 17.41% for NOx. This shows that method proposed in this 
study is able to pollutant emissions markedly more accurately than other 
current methods. The fuel consumption and emission results are sum
marized in Table 2. 

Fig. 11. Cross-validation of traffic data with energy consumption models.  
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As shown in Fig. 13, it can be seen that the NKSVT-TR method has 
better estimation performance than the VT-TR and FI-TR methods, and 
the numerical results are closer to the calculated results of the micro
scopic combination NGSIM & MOVES. The VT-TR method overestimates 
the numerical results because it is gridded using the FD of the road, and 
this prevents it from accurately estimating the speed evolution of the 
entire spatio-temporal network. The results of the FI-TR method are 
closer to those of the macroscopic combination PeMS & EMFAC because 
the vehicle velocities calculated using the four-corner interpolation 

Fig. 12. Comparison of VSP distribution of reconstructed trajectories.  

Fig. 13. Comparison of fuel consumption and emissions under different model combinations.  

Table 2 
Comparison of fuel consumption (FC) and emissions with real value.   

Diff. with PeMS & EMFAC (%) Diff. with NGSIM & MOVES (%) 

type NKSVT-TR VT-TR FI-TR NKSVT-TR VT-TR FI-TR 

FC 31.55 41.09 10.02 3.88 10.46 11.95 
CO2 8.75 14.83 3.03 0.39 5.18 5.62 
CO 53.03 54.46 8.41 14.48 15.55 18.90 

NOx 83.75 111.20 19.97 26.50 45.40 17.41  
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method are based on the average velocities of the upstream and down
stream detectors weighted by their distance, which essentially averages 
the speeds at both ends of the road, and is therefore closer to the fuel 
consumption emission results calculated using the macroscopic average 
speed. In summary, the results of this study are closer to the estimated 
fuel consumption and emission results from microscopic vehicle tra
jectories and provide more accurate estimates of the actual results. 

5. Conclusions 

In this study, first, we use a nonparametric kernel smoothing method 
to fuse speed observations from multiple sources of data so as to over
come the drawbacks of the limited probe range of fixed sensors. This 
allows us to better reflect the traffic speed evolution between detectors, 
improve the accuracy of the road traffic state estimation, and effectively 
avoid the overlap of reconstructed trajectories. Second, we show that 
using mobile detector vehicle data as a reference can improve the ac
curacy of reconstructed trajectories under congested flow, better reflect 
the traffic kinematic wave characteristics caused by road congestion, 
and simulate the stop-and-go behavior of vehicles under congested flow 
conditions. The smaller the cell size and the higher the penetration rate 
of the probe vehicle, the higher the accuracy of the reconstructed tra
jectory will be. Third, the experimental results show that the proposed 
method is able to provide more accurate estimation, with a median 
reduction of 25.92%–75.73% in the RMSE of displacement, velocity, and 
acceleration compared to the VT-TR method, and 31.10%–71.16% in 
the three micro-variables compared to the FI-TR method, respectively. 
Next, the results of macro-micro combination models with different 
granularities show that the NKSVT-TR method reconstructs the trajec
tory with fuel consumption emission results closest to the micro- 
combination NGSIM & MOVES, and the relative errors of fuel con
sumption (CO2, CO, and NOx) with the micro-combination NGSIM & 
MOVES are 0.39%–26.65%; in comparison with VT-TR, the errors were 
reduced by 6.88%–92.47%, and 23.39%–93.06% compared with FI-TR, 
thus indicating that the method proposed in this study is able to calcu
late fuel consumption emissions is closer to actual microscopic results. 

It should be noted here, however, that the behaviors of overtaking, 
lane changing, and merging are not considered in data extraction. 
Accordingly, more fixed detectors will be set in bottleneck areas of the 
road in the next step. This could help to identify changes of vehicles in 
position and speed, and reconstruct different interaction behavior of 
vehicles, including lane-changing, overtaking and merging. 
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[4] Yang Y, Wang H, Löschel A, et al. Energy transition toward carbon-neutrality in 
China: pathways, implications and uncertainties. Front Eng Manag 2022;9:358–72. 

[5] Bi H, Shang WL, Chen Y, Wang K, Yu Q, Sui Y. GIS aided sustainable management 
for urban road transportation systems with a unifying queuing and neural network 
model. Appl Energy 2021;291:116818. 

[6] Samaras C, Tsokolis D, Toffolo S, Magra G, Samaras Z. Improving fuel consumption 
and co 2 emissions calculations in urban areas by coupling a dynamic micro traffic 
model with an instantaneous emissions model. Transp Res Part D Transp Environ 
2017;65:772–83. 

[7] Yu Z, Li W, Liu Y, Zeng X, Zhao Y, Chen K, et al. Quantification and management of 
urban traffic emissions based on individual vehicle data. J Clean Prod 2021;328: 
129386. 

[8] Shao S, Tan Z, Liu Z, Shang W. Balancing the GHG emissions and operational costs 
for a mixed fleet of electric buses and diesel buses. Appl Energy 2022;328:120188. 

[9] Bramich D, Menendez M, Ambuehl L. Fitting empirical fundamental diagrams of 
road traffic: a comprehensive review and comparison of models using an extensive 
data set. IEEE Trans Intell Transp 2021;23(9):14104–27. 

[10] Saffari E, Yildirimoglu M, Hickman M. Data fusion for estimating macroscopic 
fundamental diagram in large-scale urban networks. Transp Res C 2022;137. 
Article 103555. 

[11] Islam MR, Hadiuzzaman M, Barua S, Shimu TH. Alternative approach for vehicle 
trajectory reconstruction under spatiotemporal side friction using lopsided 
network. Iet Intell Transp Syst 2019;13(2):356–66. 

[12] Aljamal Mohammad A, Abdelghaffar Hossam M, Rakha Hesham A. Real-time 
estimation of vehicle counts on signalized intersection approaches using probe 
vehicle data. IEEE Trans Intell Transp Syst 2022;5:2719–29. 

[13] Misra A, Roorda MJ, MacLean HL. An integrated modelling approach to estimate 
urban traffic emissions[J]. Atmos Environ 2013;73:81–91. 

[14] Zhao B, Lin Y, Hao H, et al. Fuel consumption and traffic emissions evaluation of 
mixed traffic flow with connected automated vehicles at multiple traffic scenarios 
[J]. J Adv Transp 2022;2022:1–14. 

[15] Xiong C, Shahabi M, Zhao J, et al. An integrated and personalized traveler 
information and incentive scheme for energy efficient mobility systems. Transp Res 
Pt C-Emerg Technol 2020;113:57–73. 

[16] Xu J, Hilker N, Turchet M, Al-Rijleh M-K, Tu R, Wang A, , et alHatzopoulou M. 
Contrasting the direct use of data from traffic radars and video-cameras with traffic 
simulation in the estimation of road emissions and PM hotspot analysis. Transp Res 
Part D Transp Environ 2018;62:90–101. 

[17] Delphine L, Arnaud C, Nicole S, Ludovic L. Accounting for traffic speed dynamics 
when calculating COPERT and PHEM pollutant emissions at the urban scale. 
Transp Res Part D Transp Environ 2018;63:588–603. 

[18] Grote M, Williams I, Preston J, Kemp S. A practical model for predicting road 
traffic carbon dioxide emissions using inductive loop detector data - sciencedirect. 
Transp Res Part D Transp Environ 2018;63:809–25. 

[19] Hao P, Wang C, Wu G, et al. Evaluating the environmental impact of traffic 
congestion based on sparse mobile crowd-sourced data[A]. In: 2017 IEEE 
conference on technologies for sustainability (SusTech)[C]. IEEE; 2017. p. 1–6. 

[20] Choi HW, Frey HC. Light duty gasoline vehicle emission factors at high transient 
and constant speeds for short road segments[J]. Transp Res Part D Transp Environ 
2009;14(8):610–4. 

[21] Turkensteen M. The accuracy of carbon emission and fuel consumption 
computations in green vehicle routing[J]. Eur J Oper Res 2017;262(2):647–59. 

[22] Zegeye SK, De Schutter B, Hellendoorn J, et al. Integrated macroscopic traffic flow, 
emission, and fuel consumption model for control purposes[J]. Transp Res Part C 
Emerg Technol 2013;31:158–71. 

[23] Wang M, Daamen W, Hoogendoorn S, et al. Estimating acceleration, fuel 
consumption, and emissions from macroscopic traffic flow data[J]. Transp Res Rec 
2011;2260:123–32. 

[24] Chen Z, Yang C, Chen A. Estimating fuel consumption and emissions based on 
reconstructed vehicle trajectories[J]. J Adv Transp 2014;48(6):627–41. 

[25] Hou Y, Edara P, Sun C. Situation assessment and decision making for lane change 
assistance using ensemble learning methods. Expert Syst Appl 2015;42(8): 
3875–82. 

[26] Herrera JC, Bayen AM. Traffic flow reconstruction using mobile sensors and loop 
detector data. University of California Transportation Center, Working Papers; 
2007. 

[27] Marczak F, Buisson C. New filtering method for trajectory measurement errors and 
its comparison with existing methods. Transp Res Rec J Transp Res Board 2012; 
2315(1):35–46. 

[28] Van Lint JWC, et al. Empirical evaluation of new robust travel time estimation 
algorithms. Transp Res Rec 2018;2160(1):50–9. 

W.-L. Shang et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0005
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0005
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0005
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0010
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0010
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0015
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0015
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0020
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0020
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0025
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0025
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0025
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0030
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0030
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0030
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0030
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0035
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0035
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0035
http://refhub.elsevier.com/S0306-2619(23)01280-1/optwXfwTKWzyB
http://refhub.elsevier.com/S0306-2619(23)01280-1/optwXfwTKWzyB
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0040
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0040
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0040
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0045
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0045
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0045
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0050
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0050
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0050
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0055
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0055
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0055
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0060
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0060
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0065
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0065
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0065
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0070
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0070
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0070
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0075
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0075
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0075
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0075
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0080
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0080
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0080
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0085
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0085
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0085
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0090
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0090
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0090
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0095
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0095
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0095
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0100
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0100
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0105
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0105
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0105
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0110
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0110
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0110
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0115
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0115
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0120
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0120
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0120
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0125
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0125
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0125
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0130
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0130
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0130
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0135
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0135


Applied Energy 351 (2023) 121916

14

[29] Ni D, Wang H. Trajectory reconstruction for travel time estimation. J Intell Transp 
Syst 2008;12(3):113–25. 

[30] Wu G, Boriboonsomsin K, Barth M. Development and evaluation of intelligent 
energy management strategies for plug-in hybrid electric vehicles 2012;15(3): 
1091–100. 

[31] Krol L. The reconstruction of vehicle trajectories with dynamic macroscopic data. 
Master Thesis,. University of Twente; 2009. 

[32] Coifman B. Estimating travel times and vehicle trajectories on freeways using dual 
loop detectors. Transp Res Part A Policy Pract 2002;36(4):351–64. 

[33] Treiber M, Helbing D. Reconstructing the spatio-temporal traffic dynamics from 
stationary detector data. Cooperative Transp Dyn 2002;1. 3.1–3.24. 

[34] Van Lint JWC, Hoogendoorn S. A robust and efficient method for fusing 
heterogeneous data from trafic sensors on freeways. Comput Aided Civ Inf Eng 
2009;24:1–17. 

[35] Chen X, Yin J, Tang K, Tian Y, Sun J. Vehicle trajectory reconstruction at signalized 
intersections under connected and automated vehicle environment. IEEE Trans 
Intell Transp Syst 2022;23(10):17986–8000. 

[36] Chen P, Wei L, Meng F, Zheng N. Vehicle trajectory reconstruction for signalized 
intersections: a hybrid approach integrating Kalman filtering and variational 
theory. Transp B Transp Dyn 2021;9(1). 

[37] Wei L, Wang Y, Chen P. A particle filter based approach for vehicle trajectory 
reconstruction using sparse probe data. IEEE Trans Intell Transp Syst 2020;22(5): 
2878–90. 

[38] Feng Y, Sun J, Chen P. Vehicle trajectory reconstruction using automatic vehicle 
identification and TrafficCount data. J Adv Transp 2015;49(2):174–94. 

[39] Xu X, Lint HV, Verbraeck A. A generic data assimilation framework for vehicle 
trajectory reconstruction on signalized urban arterials using particle filters. Transp 
Res Part C Emerg Technol 2018;92:364–91. 

[40] Mehran B, Kuwahara M. Fusion of probe and fixed sensor data for short-term traffic 
prediction in urban signalized arterials. Int J Urban Sci 2013;17(2):163–83. 

[41] Daganzo CF. A variational formulation of kinematic waves: solution methods. 
Transp Res Part B Method 2005;39(10):934–50. 

[42] Daganzo CF. A variational formulation of kinematic waves: basic theory and 
complex boundary conditions[J]. Transp Res Part B Method 2005;39(2):187–96. 

[43] Sun Z, Hao P, Ban XJ, Yang D. Trajectory-based vehicle energy/emissions 
estimation for signalized arterials using mobile sensing data. Transp Res D 2015; 
34:27–40. 

[44] Tsanakas N, Ekstrm J, Olstam J. Generating virtual vehicle trajectories for the 
estimation of emissions and fuel consumption. Transp Res Part C Emerg Technol 
2022;138:103615. 

[45] Chen X, Yin J, Qin G, et al. Integrated macro-micro modelling for individual 
vehicle trajectory reconstruction using fixed and mobile sensor data. Transp Res 
Part C 2022;145. 

[46] He Z, Lv Y, Lu L, Guan W. Constructing spatiotemporal speed contour diagrams: 
using rectangular or non-rectangular parallelogram cells? Transp.B 2019;7:44–60. 

[47] Frey HC. Trends in onroad transportation energy and emissions. J Air Waste 
Manage Assoc (1995) 2018;68(6):514–63. 

[48] Montanino M, Punzo V. Making ngsim data usable for studies on traffic flow 
theory: multistep method for vehicle trajectory reconstruction. Transp Res Rec J 
Transp Res Board 2013;2390:99–111. 

[49] He Z, Zhang W, Jia N. Estimating carbon dioxide emissions of freeway traffic: a 
spatiotemporal cell-based model. IEEE Trans Intell Transp Syst 2019;21(5): 
1976–86. 

W.-L. Shang et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0140
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0140
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0145
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0145
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0145
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0150
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0150
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0155
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0155
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0160
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0160
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0165
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0165
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0165
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0170
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0170
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0170
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0175
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0175
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0175
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0180
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0180
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0180
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0185
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0185
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0190
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0190
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0190
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0195
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0195
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0200
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0200
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0205
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0205
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0210
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0210
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0210
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0215
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0215
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0215
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0220
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0220
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0220
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0225
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0225
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0230
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0230
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0235
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0235
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0235
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0240
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0240
http://refhub.elsevier.com/S0306-2619(23)01280-1/rf0240

	Estimation of traffic energy consumption based on macro-micro modelling with sparse data from Connected and Automated Vehicles
	1 Introduction
	2 Energy consumption estimation based on the micro-trajectory reconstruction method
	2.1 Spatio-temporal speed estimation of road sections based on nonparametric kernel smoothing
	2.2 Microscopic vehicle trajectory reconstruction based on 3D kinematic wave theory
	2.2.1 Discretization of cell lattices
	2.2.2 Multi-vehicle trajectory reconstruction based on 3D kinematic wave theory

	2.3 Estimation of energy emission based on the MOVES model

	3 Case study
	4 Results and discussion
	4.1 Data pre-processing
	4.2 Sensitivity analysis of model parameters
	4.3 Model accuracy comparison
	4.3.1 Multi-vehicle trajectory reconfiguration
	4.3.2 Comparison of the accuracy of the various reconstructed trajectories
	4.3.3 Energy emission analysis of road segments


	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


