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HIGHLIGHTS

o Estimation of fuel consumption and emissions is closer to the real values than other methods.

e Reconstructing second-by-second vehicle trajectories based on macroscopic traffic data.

o Introduces CAVs trajectory data as a reference in the process of estimating the road spatio-temporal speed evolution.
o Proposes a spatio-temporal consistency validation framework by using macro and micro data.

e Experimental tests the effect of cell size and probe vehicle penetration on reconstruction accuracy.
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Traffic energy consumption estimation is significant for the sustainable transportation. However, it is difficult to
directly employ macro traffic flow data to accurately estimate the traffic energy consumption due to many traffic
energy consumption models need second-by-second vehicle trajectory. To solve this problem, this paper proposes
a traffic energy consumption model based on the macro-micro data, which the macro data derived from the
fixed-location sensors and sparse micro data derived from the Connected and Automated Vehicles (CAVs). The
completed vehicle trajectories are constructed by the nonparametric kernel smoothing algorithm and variational
theory. To test the performance of the proposed method, the Next Generation Simulation micro (NGSIM) dataset
and Caltrans Performance Measurement System macro dataset obtained from the same road and time are used.
The results indicate that the proposed method not only can reflect the characteristics of traffic kinematic waves
caused by traffic congestion, but also minimize the errors generated by the macro-micro transformation. In
addition, it can significantly improve the accuracy of energy consumption estimation.

1. Introduction emissions [5]. In recent years, the energy consumption and air quality

degradation caused by road traffic have been become major issues of

Climate warming is a well-recognized global problem. With the rapid
growth of the world economy, the massive use of fossil energy sources,
such as coal, oil and natural gas, has resulted in excessive greenhouse
gas emissions that is one of the main catalysts of global warming [1-4].
According to the U.S. Energy Information Administration (EIA), the
transportation sector accounts for approximately 27% of total energy
consumption and is thus one of the key contributors to greenhouse gas
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concern [6,7], and thus traffic management agencies are increasingly
interested in the ability to estimate traffic energy consumption and
greenhouse gas (GHG) emissions [8]. Typically, classical emissions
models are used for such estimation, whether on a regional or road
section basis. In this quantification process, the traffic/vehicle state data
obtained from Connected and Automated Vehicles (CAVs), usually by
means of inductive loop detectors [9,10] or vehicle global positioning
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systems (GPS) [11,12], is fed into relevant macro/micro energy con-
sumption and GHG emission models.

Misra evaluated the peak CO and NOx emissions from the downtown
Toronto using the microscopic traffic simulation model PARAMICS and
the CMEM microscopic emission model [13]. Zhao et al. used SUMO to
obtain vehicle trajectory, and used the VT-Micro model to calculate the
instantaneous fuel consumption and traffic emissions for mixed traffic
flows [14]. While previous studies have been able to calculate accurate
energy consumption and GHG emissions data by combining micro fuel
consumption and emission models [15,16], differences in sensor cost
and sampling frequency have made it difficult to obtain second-by-
second speed trajectories on a large scale.

Inductive loop detectors are widely deployed in cities and highways,
and are able to collect the macro traffic data that can reflect the traffic
state within a certain period of time, such as the average speed, flow
density, and traffic volume. This traffic data can be combined with en-
ergy consumption and GHG emission models to calculate traffic fuel
consumption and emissions at a macro level [17,18]. Hao developed a
traffic-related air pollution assessment framework with PeMS data and
the macro-emissions model EMFAC to accurately assess the environ-
mental impact of traffic congestion in real time [19]. With the MOBILE
model, Choil and Frey estimated the pollutant emission inventories of
motor vehicles at different speeds [20]. The average traffic speed does
not take into account vehicular and traffic dynamics, however, and is
therefore not suitable for accurately estimating energy consumption and
GHG emissions in many scenarios.

In order to solve the problems of low accuracy of macroscopic energy
consumption and emission models and the difficulty of obtaining
microscopic traffic data, some scholars try to couple macroscopic traffic
models with microscopic vehicle energy consumption and emission
models to obtain microscopic traffic energy consumption and emission.
Turkensteen used CMEM to calculate fuel consumption and carbon
emissions of vehicles at a given speed and load, assuming that the
vehicle is driven at a fixed speed [21]. Zegeye approximated macro-
scopic traffic as microscopic traffic variables by making The macro-
scopic traffic flow model METANET and the microscopic energy
consumption and emission model VT-Micro are combined to achieve
shorter simulation times and accurate estimation of fuel consumption
[22]. Wang et al. reproduce traffic states and vehicle queue trajectories
from macroscopic traffic data obtained from detection stations, derived
accelerations from the reconstructed vehicle trajectories, and estimated
accelerations as inputs to VT-Micro to calculate fuel consumption and
emissions [23]. Chen et al. used the field speed data recorded by de-
tectors to estimate second-by-second velocity and acceleration data of
all passing vehicles and used CMEM to calculate the corresponding fuel
consumption and emissions [24].

However, to couple macro and micro traffic data of different gran-
ularity with vehicle energy consumption and emission models to esti-
mate energy consumption and emissions of roads, the problem that
traffic data cannot be used as input to energy consumption and emission
models must be solved. To couple macroscopic traffic data with micro-
scopic energy consumption and emission models, microscopic traffic
information is usually obtained from macroscopic traffic data using
vehicle trajectory reconstruction methods. Therefore, the focus of this
paper is to obtain second-by-second trajectory information of vehicle
trips estimated from real-time traffic information (e.g., average traffic
speed). Although a considerable number of studies have been conducted
to reconstruct speed trajectories using traffic data collected from various
surveillance systems, these can be divided into three main categories: in
terms of methods, spatio-temporal interpolation, filtering, and multi-
source data fusion.

1) The spatio-temporal interpolation method: This mainly relies on the
spatio-temporal autocorrelation property of fixed detector data. It
first calculates weights based on the distance between data points,
and then fills in each point of the spatio-temporal region using the
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weighted average of the measurements of each data point. Instan-
taneous [25], time-slice [26], dynamic time-slice [27], and linear
models [28] can all be used to estimate the spatio-temporal speed
distribution between fixed detectors within the observation range
using the speed recursion method. Since all these models use an
averaging approach for data collection and trajectory reconstruction,
however, they are not very accurate in congested conditions, thus
causing some high and low values to be discarded and resulting in
reconstructed trajectories that do not reflect individual vehicles’
different behaviors. Ni and Wang first offered a two-dimensional
estimate of road speed based on fixed speed measurements ob-
tained from an intelligent traffic system, and then reconstructed the
vehicle trajectory based on its time of entry into the network [29].
Wu added random velocities to the velocities obtained using
quadratic smoothing to generate a comprehensive speed trajectory
for a trip, considering a priori knowledge of real-time traffic infor-
mation on the travel route provided by intelligent transportation
system (ITS) techniques [30]. Krol proposed the reconstruction of the
vehicle trajectory using interpolation techniques to describe the
density in the considered spatio-temporal framework. The density of
each point was interpolated according to the density of the four
corners of the spatio-temporal region, and then a triangular shaped
fundamental diagram was used to construct the trajectory of each
vehicle [31]. Since densities were collected in an aggregated manner,
however, the density of each point in the block would be the same if
the densities of the four corners were the same, implying that vehi-
cles should travel at a constant speed. Coifman [32] proposed a
method for estimating vehicle trajectories on highway sections using
traffic data from a single dual-loop detector, using traffic flow theory
to infer local traffic conditions. The drawback of the method, how-
ever, is that it cannot be applied during the transition period from
uncongested to congested traffic conditions, thus limiting its prac-
tical application.
The filtering method: This is a spatio-temporal traffic state estimation
method capable of considering the propagation of traffic congestion.
It uses a nonlinear low-pass filter to interpolate the traffic state be-
tween fixed detectors. Examples of this method include Treiber and
Helbing’s [33] adaptive smoothing approach, where they used a
nonlinear spatio-temporal low-pass filter for fixed detector data so
that, in congested traffic, the perturbation moved upstream at a near-
constant rate, whereas in free traffic, the information propagated
downstream. Van Lint and Hoogendoorn [34], meanwhile, obtained
reliable traffic state estimates by improving the adaptive smoothing
method so that it could fuse data from individual traffic detectors.
Wang proposed a generalized stochastic macroscopic traffic flow
model and extended Kalman filtering based on a highway section or
road network traffic state [23]. Chen established a trajectory esti-
mation algorithm based on an extended vehicle tracking model for
the undetected part of each trajectory [35]. Based on that, a particle
filter-based trajectory fusion algorithm was proposed to fuse the
estimated trajectories for minimization. Chen proposed a hybrid
method to reconstruct the complete vehicle trajectories at signal
intersections. This used variational networks and Kalman filtering to
reproduce stochastic features of the reconstructed queue boundary
curves [36]. Wei et al. used a particle filtering-based method to
reconstruct the trajectories along the main missing trajectories be-
tween successive updates of detected vehicles at multiple in-
tersections [37]. Feng et al. used a particle filtering approach that
considered five spatio-temporal trajectory correction factors and
reconstructed vehicle trajectories in a large-scale network based on
data collected by automatic vehicle recognition and conventional
detectors [38]. Xu et al. also estimated the trajectories of signal
intersection arterials by integrating different data sources through
particle filters [39].
3) Multi-source data fusion method: This approach aims to combine data
from fixed and mobile detectors to compensate for the shortcomings
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of fixed detector data and sparse data from mobile sensors. Mehran
et al. [40] proposed a new data fusion framework based on the three-
dimensional (3D) kinematic wave model and variational theory
[41,42] to reconstruct vehicle trajectories on urban arterials by
fusing cab and cross section data. Sun et al. [43] reconstructed
vehicle trajectories by fusing probe vehicle and signal timing data
based on variational theory, and validated the method using vehicle
trajectory data measured at intersections. The results showed that
while the method was robust to changes in probe vehicle penetra-
tion, the variational theory-based model ignored the random-wave
properties of speed. Tsanakas [44] proposed a two-stage approach
to reconstruct multi-vehicle trajectories by first calculating the speed
of each cell through filtered smoothing, and then calculating the
position at each time step using bicubic interpolation. Chen et al.
[45] used the hybrid property to develop a macro-micro integration
framework to reconstruct vehicle trajectories on highways, where
data fusion provided a critical speed baseline for reconstructing the
trajectory. Additionally, the car-following and inverse car-following
models were used to produce candidate trajectories and determine
the optimal trajectory with the minimum speed baseline difference
based on dynamic programming.

These aforementioned studies, however, have certain limitations in
regard to reconstructing vehicle trajectories. Given the low deployment
rate of fixed detectors on highways and the long aggregation time, most
studies attempted to replace fixed detector data by counting the speed
aggregation values of microscopic vehicle trajectories at fixed positions
in a short period of time (usually 30 s), rather than using real fixed
detector data to reconstruct vehicle trajectories. Further, most of the
studies were more readily applicable to free traffic flow conditions, and
therefore do not reflect the stop-and-go behavior of vehicles under
congested traffic flow conditions. Moreover, some methods were un-
dertaken from the perspective of estimating travel time without
considering the vehicle kinematic characteristics, resulting in abnormal
vehicle speed and acceleration results.

This paper, therefore, proposes an energy consumption estimation
method of regional traffic based on macro-micro modelling with sparse
data from CAVs. There are three main contributions. First, the speed
observed from fixed detectors is utilized to reconstruct second-by-
second vehicle trajectories. Second, a small number of CAV trajectory
data is introduced as a reference in the process of estimating cell speed,
allowing a more accurate description of the evolution of road spatio-
temporal speed and thus ultimately a more accurately reconstructed
trajectory. Last, a spatio-temporal consistency validation framework is
developed using Next Generation Simulation (NGSIM) data and Caltrans
Performance Measurement System (PeMS) data. The framework com-
pares the traffic energy consumption and emissions under the different
aggregation approaches for macro and micro models. It addresses the
lack of accuracy caused by the errors embedded when converting be-
tween macro and micro modelling during the process of estimating
traffic energy emissions.

2. Energy consumption estimation based on the micro-trajectory
reconstruction method

This section introduces how to utilize the micro-trajectory recon-
struction method to estimate the energy consumption of regional road
traffic. The vehicle speed trajectory is synthesized in the following three
steps.

2.1. Spatio-temporal speed estimation of road sections based on
nonparametric kernel smoothing

(1) Traffic fundamental diagram estimation
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The macroscopic Fundamental Diagram (FD) is a model describing
the relationship between traffic density and traffic flow on a road sec-
tion. It can visually characterize road traffic flow characteristics and is
important in both road area control and macroscopic modelling. The
most common triangular shaped FD uses two straight lines to fit the non-
congested and congested areas, where the slope of the non-congested
area is the free-flow speed and the slope of the congested area is the
congestion propagation speed.

In this study, we extracted the historical macro data (aggregated 5-
min flow/density values) of fixed detectors in our case study for one
month from June 1st to June 30th, 2005, from 7:50 to 8:35. Then, we
fitted the triangular-shaped FD so as to estimate key parameters quickly.
These parameters were: free-flow speed V., capacity gmax, and critical
density kjom, which are expressed as:

Viee = min(l30,max<Vf) ) (€]
nax = max () )
Kiam = max(max(K,»_j) , 150) 3)

where V}‘ Q}, and K;; are the speed, traffic flow, and density, respec-

tively, obtained from the output of loop detector j at moment i. The free-
flow speed and capacity are the data of cross-sectional detector; the
minimum value was set to 150 because the blockage phenomenon of the
road section is difficult to detect, and the critical density is the maximum
density of the entire network. The free-flow speed was limited to a
maximum of 130 km/h owing to the speed limit of the case study road.

(2) Nonparametric kernel smoothing-based cell speed estimation

Because the data collected by loop detectors was discrete, it did not
reflect the dynamic changes of traffic in time and space. The approach
reported in this section, therefore, improves the roadway speed esti-
mation accuracy by fusing the fixed loop detector data and probe vehicle
data, thus compensating for the deficiencies of the individual data
sources on their own.

Spatio-temporal speed contours (where the x-axis is time, the y-axis
is space, and the inner color (or z-axis) represents speed) are the basis of
various traffic studies and applications. They are typically used to divide
a spatio-temporal network into different cells, before applying one of
various methods to estimate the traffic speed of all cells. He [46]
demonstrated that using non-rectangular parallelogram cells to slice the
spatio-temporal network further was better able to take into account the
backward waves compared to the traditional rectangular parallelogram
cells, reducing the errors in microscopic vehicle trajectory and travel
time estimation in the presence of traffic congestion. For this purpose,
we sliced the spatio-temporal network using the congestion wave speeds
estimated in Section 3.1, sliced the spatio-temporal network into mul-
tiple non-rectangular parallelogram cells based on the time and spatial
intervals, and used the speed at the center of the cell as the average
speed of the whole cell.

Treiber-Helbingr [33] proposed a nonparametric method called the
Generalized Treiber-Helbing Filter (GTF) to achieve spatio-temporal
interpolation of fixed detector velocities. Van Lint and Hoogendoorn
[34] extended the GTF by fusing data from multiple sources (EGTF). As
shown in Fig. 1, for each parallelogram cell, the range of data points (t,
x) that have an effect on the speed of the cell center (t, x) is customized.
According to the description in the literature [44], this range is defined
in this paper as a circular region with the cell center(t, x) as the center
and a radius r (shown as a red circle in the Fig. 1), which is related to the
distance between the two fixed detectors. The speed of the cell center is
estimated from the distances of the different source data points con-
tained in this range from the cell center point (t, x), and from the speed
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Fig. 1. Multi-source data fusion for cell speed estimation.

measurements of these data points.

To capture traffic disturbances, two auxiliary speed surfaces were
established, one for free-flow and the other for congestion conditions.
For each data source, the two auxiliary speed surfaces were estimated as
follows:

) %ﬂ,;'rea (t, X) Vs
V) = @

seS
PO CRI
S VT ©
seS
where V; is the speed measurement at data point s; S is the set of speed

counts in the range A(t,x); ﬂgm and 3" are given by the following
equations:

ree X — Xy
ﬂg (t,x):Q)o(tftSf c ,X*XS) (6)

free

) X — Xg
B (1, %) :Qo([*ts* 5 }x*Xs) @)

where @ is a kernel function that assigns a weight to each speed
count V;, defined as follows:

)

T o

and where 7 and o are the temporal and spatial smoothing widths,
respectively.

By combining data from different data sources, the EGTF speed field
is expressed as:

por 1y S D [ e 0B Cs)+ (1= w05 (1)) [ Vi
Vv ,X) = 5

S st St [Win (5s00Bn (0) + (1 =i (5,0 B (1) ) |
)

m(1x;

where Vi, is the speed value measured by the data source m at point (ts,
Xs), M is the set of data sources, m € M, a,, is the data source-specific
weight for each source m reliability, Ay is the set of speed counts
located within the user predefined region (t, x) and A(t, x), and wy (x, t)
is the weight of the influence of the two auxiliary speed surfaces of data
source m on this metric. This is therefore an adaptive weighted s-type
function that depends on the congestion level at point (t, x) expressed as:

v — min (Ve (x, 1) , v (x, 1)) ) }

(10

1
Wi (x, 1) = 3 {1 + tanh< A
v
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where V is the speed threshold between the free-flow and congestion
conditions, which indicates the transition width in the surroundings.

2.2. Microscopic vehicle trajectory reconstruction based on 3D kinematic
wave theory

2.2.1. Discretization of cell lattices

3D kinematic wave theory is a traffic flow model combining kine-
matic wave theory and the accumulation curve principle to provide an
accurate estimate of the traffic shock wave caused by traffic congestion
in the opposite direction of vehicle travel, assuming that vehicles follow
the first-in-first-out principle in a closed area. This is illustrated in
Fig. 2a, where a third coordinate (z-axis) is added to the spatio-temporal
axis of the two-dimensional kinematic wave to represent the cumulative
vehicle numbers. The red curve in the figure, meanwhile, is the refer-
ence probe vehicle trajectory of CAVs, the green dashed line represents
the forward wave, and the black dots on the time axis are the entry and
exit times of the vehicles. Daganzo [41] proposed a traffic flow calcu-
lation model for road networks based on 3D kinematic wave theory with
variational theory and comparative capacity constraints. As shown in
Fig. 2b, their approach divides the spatio-temporal network according to
the forward and backward wave speed. The i-coordinate of the coordi-
nate system of the divided variational network is aligned with the
backward wave, and the j-coordinate is aligned with the forward wave;
each grid node has a value representing the cumulative number of ve-
hicles at that spatio-temporal location. The cumulative number of ve-
hicles passing through an unknown node is obtained in a discrete spatio-
temporal space based on the boundary state. The application of varia-
tional theory based on 3D kinematic waves is therefore here based on a
discretized spatio-temporal network.

Because the forward and backward arc slopes of the spatio-temporal
network are deterministic, the dynamic changes in the traffic state are
not fully considered. Thus, the free-flow speed of the small grid point is
set as the average speed of the cell where it is located. The basic pa-
rameters of the initial variational network—i.e., time, and space steps of
the backward wave—are determined as follows:

Imax
_ 11
w [ an
tslep =1s (12)

U X W X tep 13)

Sser = Tt w

where w is the backward arc slope, and u is the forward arc slope (i.e.,
the average speed of the traffic in the cell where point (x,t) is located);
tstep is the time step, which is a predetermined value, and sgp is the
space step.

2.2.2. Multi-vehicle trajectory reconstruction based on 3D kinematic wave
theory

After completing the network division as above, the initial cumula-
tive vehicle number of the first column nodes in the initial variational
network is set to one. The reference probe vehicle trajectory can be
regarded as a path connected by nodes with the same cumulative vehicle
number on the variational network whose starting and ending points
correspond, respectively, to the cumulative vehicle numbers of the up-
stream and downstream nodes, as recorded by the fixed detector.
Considering that it is difficult to match the probe vehicle trajectory
exactly with the spatio-temporal network, however, the probe vehicle
trajectory must be gridded as a constraint to calculate the cumulative
number of vehicles at subsequent nodes. For the cumulative number of
vehicles at each time point at the upper and lower boundaries of the
initial variational network, it is necessary to determine when vehicles
enter and leave the network based on other external conditions.
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Fig. 2. Schematic diagram of variational theory based on 3D kinematic waves.

In the triangular-shaped FD, the increase in the number of vehicles at
the unknown nodes (i, j) in the network takes only two values, i.e., the
increment of the forward wave is zero, which means that there is no
change in the cumulative number of vehicles along the forward wave,
and the increment of the backward wave is kjon ® Sgep, Which is the
maximum change allowed in the cumulative number of vehicles. Ac-
cording to the literature [41,42], the solution of the kinematic wave
problem based on variational theory is a set of spatio-temporally
continuous shortest paths. Since the traffic flow cannot be reversed in
space and time, it can only be searched from the node with a low cu-
mulative number of vehicles to the node with a high or equal number of
vehicles. Therefore, for the acyclic variational network in this paper, it is
simple and efficient to use Dijkstra shortest path algorithm for search-
ing. Under the constraint of detecting the vehicle trajectory as well as
the spatio-temporal network boundary, the cumulative number of ve-
hicles for each unknown number of nodes in the network can be
determined according to the shortest path algorithm, expressed as
follows:

N(i,j) = Min{N(i,j— 1) ,N(i — 1,j) + kjun ® Syep } a4

where N(i, j) denotes the cumulative number of vehicles at node (i, j),
and kjm'Ssep represents the amount of variation in the cumulative
number of vehicles that may occur at node (i, j). Finally, nodes with the
same cumulative number of vehicles are connected in order to output
the vehicle trajectory.

2.3. Estimation of energy emission based on the MOVES model

In this study, the vehicle specific power (VSP) method is adopted to
estimate the energy consumption of road traffic on the basis that VSP
can better characterize the behavior of motor vehicles on real-world
roads [47]. The MOVES model uses the VSP method to characterize
the driving characteristics of a motor vehicle in addition to its speed,
with VSP representing the tractive power of the vehicle expressed as
follows:

Av; + Bv? 4+ Cv} + mva;
m

VSP; = (15)

where v is the speed (m/s), a is the acceleration (m/sz), m is the weight
of the vehicle (t), and, A, B, C are the vehicle road load factors. The
MOVES emission model clusters the VSP values into different VSP bins at
1 kW/t intervals and combines them with instantaneous speed intervals
to obtain the vehicle operating mode. The emissions of a vehicle oper-
ating on the road are basically estimated by multiplying the emission
rate with the VSP distribution, as shown in Eq. (16):

emission = running time X Z emission rate X VSP distribution (16)
VSP bin

The emission rates for different VSP bins represent vehicle emissions
at different power demands. The VSP distribution (or operating mode
distribution in the MOVES model) is the fraction of time spent in each
VSP bin. The emission rate is fixed for a specific type of vehicle; so the
distribution of VSP in a fleet can determine the emissions in a traffic
network.

3. Case study

To investigate the impact of macro and micro data conversion
methods on regional traffic fuel consumption emission results, this study
constructs a data validation framework with spatiotemporal consis-
tency. As shown in Fig. 3, the Performance Measurement System (PeMS)
macro data (low-density scatter data) and Next Generation Simulation
(NGSIM) micro data (vehicle trajectory data) in the US101 freeway in
the US State of California State are selected for comparison and analysis.
The PeMS data are obtained from the inspection stations 717,488 and
717,489 of the California Highway 101, which are located on the same
roadway as the NGSIM US 101 trajectory data (shown in Fig. 3). The
PeMS data are extracted from June 1st to June 30th, 2005; while the
NGSIM US 101 trajectory data corresponded to the time interval be-
tween 7:50 and 8:35 on June 15th, 2005. The NGSIM data set has
become the microscopic real data standard, underlying the vast majority
of empirically based advances of the past decade. However, the data of
CAV is unknown in the scenario of this article, so a certain proportion of
CAVs trajectories can be used as observed CAVs data.

As shown in Fig. 4, we first estimate the spatio-temporal speed
evolution of road segments by fusing the observed speed values from
different fixed detectors and probe vehicles, using a nonparametric
kernel smoothing method to compensate for the shortcomings of using a
single data source to characterize the basic state of road segments.
Second, to consider the complex and variable road traffic environment
and better reflect the congestion transmission of the actual road, a se-
lection of the vehicle trajectories in the NGSIM dataset are chosen to be
the virtual probe vehicles, which are used to constrain and reconstruct
the microscopic vehicle trajectory based on the variational theory of 3D
kinematic waves. Finally, the energy emission consumption of the
reconstructed trajectory is estimated based on the MOVES model.

To verify the effectiveness of the proposed model, we conduct a
comparative analysis using a four-step experiment. First, the NGSIM
data are filtered to reduce errors in the baseline data. Second, the
reconstruction accuracy of the proposed under different parameter
combinations is compared using root mean square error (RMSE) and
mean absolute error (MAE) metrics. Again, the trajectory conversion
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(b) PeMS data map

Fig. 3. Micro and macro data with spatiotemporal consistency.
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Fig. 4. Flow Chart of the Proposed Method.

accuracies of the three methods are compared using the RMSE and MAE
metrics, and the trajectory reconstruction accuracy of the three methods
are compared under free flow and congested flow conditions. Finally, to
verify the effects of macro data on the micro-trajectory method on traffic
energy consumption and emissions, the California motor vehicle emis-
sion models—i.e., Emissions Factors (EMFAC) and MOVES—are
selected, and traffic data of different granularities are input into the
corresponding energy consumption and emission models. We compared
the fuel consumption and emission of macro data with the macro energy
consumption model, macro data after micro disaggregation and micro
energy consumption model, and verified the environmental character-
ization effect under the combination of traffic and energy consumption
models at different levels.

4. Results and discussion

We conducted experiments to compare the performance of the pro-
posed 3D kinematic wave trajectory reconstruction method based on
Nonparametric Kernel Smoothing and Variational Theory (NKSVT-TR)
with trajectory reconstruction based on four-corner interpolation (FI-
TR), and trajectory reconstruction based on variational theory (VT-TR).
The pre-processed NGSIM US101 Lane 1 7:50-8:05 vehicle trajectory
data are used as the observation data, while the overtaking and lane-
changing behaviors of vehicles are not considered. For these three tra-
jectory reconstruction methods, it is assumed that the total number of
trajectories and the entry and exit times of the reconstructed vehicles are
known and could be measured using road loop detectors.
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4.1. Data pre-processing

In reality, the NGSIM data have a number of outliers and observation
errors that can have a big impact when used directly in the calculation of
microscopic vehicle behavior. Furthermore, when the observed trajec-
tory data are used to calculate vehicle speed and acceleration by first-
order and second-order derivatives, such observation errors are multi-
plied. Pre-processing of the data is therefore necessary before the veri-
fication experiment.

We used Montanino and Punzo’s [48] four-step method to correct the
NGSIM trajectory data, which was divided into the following four steps:
(1) the very large and very small outliers of acceleration were removed;
(2) trajectory data corresponding to the speed values of high and me-
dium frequencies were filtered using a low-pass filter (frequency of 1.25
Hz); (3) trajectory data corresponding to acceleration values that did not
conform to physical characteristics were eliminated; and (4) the low-
pass filter in step (2) was used to filter and denoise the trajectory
data. The vehicle acceleration and speed of NGSIM US101 after step-by-
step processing are shown in Fig. 5; the vehicle acceleration, speed, and
position profiles before and after processing are shown in Fig. 6.

4.2. Sensitivity analysis of model parameters

The experiments used randomly sampled NGSIM data as the virtual
probe detector vehicle trajectory as well as VT-TR, including the vehicle
position at a fixed time interval (0.1 s) and the speed information. Fixed
detector data was obtained from the loop detector data from the PeMS
US101 section and included the average speed data at a fixed position.
Since the cell size and penetration rate of the probe vehicle are very
important to the results of this study the values of their parameters had
to be determined in advance. In this regard, limitations in computational
power meant that, when calculating the spatio-temporal speed contour
of the road section, the road has to be discretized into a cell, with the
central speed of that cell calculated separately to represent the entire
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speed field. Tsanakas [44] and He [49] applied parallelogram cells to
estimate the spatio-temporal speed network, considering cell sizes of
(10 x 50), (30 x 50), (30 x 100), (60 x 50), and (60 x 100) (in sec x m).
In this study, therefore, the cell sizes of (30 x 50), (30 x 100), and (60 x
100) spatio-temporal grids are considered to verify the accuracy of the
cell time and spatial intervals for spatio-temporal speed network esti-
mation. Meanwhile, the number of probe vehicles is an important factor
affecting the spatio-temporal speed estimation; thus, for each cell size,
three probe vehicle penetration rates are set: 5%, 10%, and 15% [44],
respectively. As listed in Table 1, nine sets of experimental combinations
are used.

The RMSE and MAE metrics have been widely used to test recon-
struction accuracy [44,45]. Our experiments therefore compare the er-
rors between the instantaneous position, speed, and acceleration of the
reconstructed trajectories and reference (actual) values. The RMSE and
MAE of the vehicles are calculated as follows:

N Gl -m )
n=1 f

N

RMSE =

a7

In - 2

_ (@) =z () )

Zizvzl 2 In

MAE = (18)
N

where z,(t;) is the estimated value of the variable (position, speed, ac-
celeration) at time step i, i = 1,2, ...,I, Z,(t;) that corresponds to the
reference value; N is the total number of vehicles.

Table 1 lists the average RMSE and MAE of the vehicles for the
proposed method at the different combinations of cell size and probe
vehicle penetration. It can be seen that the RMSE is generally larger than
the MAE, indicating that the errors are not uniformly distributed in the
reconstructed area. The estimated trajectories are more accurate at the
entrance and exit of the road, with errors typically increasing near the
middle of the road. This happens because fixed sensors were deployed at
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Fig. 5. Comparison of acceleration and speed profiles of vehicle No. 356 after step-by-step processing.
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Fig. 6. Comparison of acceleration, speed, and position profiles before and after treatment of vehicle No. 356.

Table 1
Errors under different combinations of parameters.
Serial number Cell size Probe Vehicle Position Speed Acceleration
Penetration (%)
RMSE MAE RMSE MAE RMSE MAE

1 5 77.5968 65.0811 4.7823 3.8522 1.4874 1.0299
2 30s x 50 m 10 72.1628 62.9308 4.5860 3.7160 1.4783 1.0359
3 15 66.7624 57.8796 4.582 3.7862 1.4289 1.0011
4 5 78.3946 65.9687 4.8361 3.8865 1.5038 1.0294
5 30s x 100 m 10 70.9197 61.8651 4.5667 3.6965 1.4941 1.0470
6 15 68.7614 59.8540 4.7245 3.8973 1.4577 1.0208
7 5 79.0716 66.5784 4.7947 3.8825 1.4612 1.0170
8 60s x 100 m 10 72.0659 62.9452 4.5320 3.6734 1.4786 1.0421
9 15 68.4411 59.3672 4.5489 3.7447 1.4396 1.0069

both ends of the road, thus can’t capture the vehicle condition between
the detector. As expected, higher probe vehicle penetration and smaller
cells significantly improved the overall performance of the method. This
happens because a higher probe vehicle penetration provides more ob-
servations and thus more accurate input. In respect to the different cell
sizes (e.g., scenes 1, 2, and 3; scenes 4, 5, and 6; and scenes 7, 8, and 9), it
can be seen both that more speed information is obtained as the probe
vehicle penetration increases, and that the speed estimates for the
spatio-temporal grid are more accurate with the lowest RMSE and MAE
for the position. Higher penetration rates, however, produce slightly
larger speed and dithering errors compared to medium penetration rates
(e.g., speed errors for scenes 2 and 3, scenes 5 and 6, and scenes 8 and 9)
because dense data points interfere more frequently with speed conti-
nuity. It is also notable that for the same probe vehicle penetration, a
larger cell improves acceleration and dithering performance compared
to a smaller cell since the short spatio-temporal interpolation width
serves to establish fast local speed transitions. The combined position,
speed, and acceleration error analysis results showed that the recon-
struction accuracy of the third cell combination is higher; thus, the third
cell combination (i.e., cell size of 30 x 50 and probe vehicle penetration
of 15%) is chosen as the initial model parameter for all subsequent
experiments.

4.3. Model accuracy comparison

4.3.1. Multi-vehicle trajectory reconfiguration

Vehicles on a road can be divided by state into driving, stopping, and
stop-and-go, which correspond, respectively, to free flow, stopping
waves, and congestion sections in the vehicle trajectory spatio-temporal
diagram. To better simulate the multiple states of vehicles in the driving
process, therefore, as well as to better reflect the influence of sur-
rounding vehicles on the state of self-vehicles, it is necessary to analyze
the spatio-temporal consistency of the reconstructed multi-vehicle and
reference trajectories in a certain time period. Fig. 7 shows a comparison
of the reconstructed vehicle trajectories obtained using the three

methods with the corrected NGSIM data in the first 15 min. For all three
reconstruction methods, the entry time of the reconstructed vehicles and
average speed observed by the fixed detector are used as model inputs;
the NKSVT-TR and VT-TR methods added the probe vehicle trajectories
with a penetration rate of 15% (48 vehicles) as the reference trajectory.
The spatio-temporal network of multi-vehicle trajectories for the three
methods in free-flow and congested flow states are presented in Figs. 8
and 11 in order to analyze the trajectory reconstruction effects in more
detail.

As shown in Fig. 7, in comparison with the vehicle trajectory
reconstructed using the FI-TR method shown in Fig. 7d, the two 3D ki-
nematic wave methods based on variational theory (Fig. 7b and Fig. 7c)
better reflect the stop-and-go behavior of vehicles in a congested envi-
ronment. This is due to the fact that the variational theory based on 3D
kinematic waves considers the trajectory curve of the probe vehicle and
therefore generates shape constraints on the curve of the reconstructed
trajectory. Meanwhile, the vehicle trajectories reconstructed by the FI-
TR method are close to a straight line, although the combination of
the vehicle travel period adds a random value to the vehicle speed. This
happens because the FI-TR method assumes that the vehicle is in a
closed and empty roadway during the reconstruction process, and not
affected by the surrounding environment and vehicles. In addition, the
nonparametric kernel smoothing method in Fig. 7b improves the esti-
mation performance because the NKSVT-TR method results in fewer
trajectory gaps and crossings than the VT-TR method. Thus, NKSVT-TR
captures the speed disturbances of cells more effectively, independently
of the variational theory approach used in the second stage.

Figs. 8 and Figs. 9 show the performance of the three reconstruction
methods under different traffic states, where the orange curve represents
the trajectories of the probe vehicles and the gray curve represents the
reconstructed trajectories of each vehicle. Figs. 8a~8c show the per-
formances of the three methods under free-flow conditions. As shown in
the figures, the vehicle is closer to a free-flow state downstream of the
road. The reconstructed multi-vehicle trajectories in Fig. 8a are closer to
the trajectories of the probe vehicles at both ends compared with Fig. 8b
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Fig. 8. Comparison of reconstructed trajectories of the three methods under free-flow conditions.

and Fig. 8c, and the reconstructed effect is better. The reconstructed
vehicle trajectories in Fig. 8b cause some vehicle trajectories to cross due
to not having a brother accurate estimate of the basic road conditions.
The reconstructed vehicle trajectories in Fig. 8c at the free flow state is
smoother and neater, but the trajectory similarity is higher and more
desirable without affecting the vehicle trajectories downstream because
of the stop-and-go behavior of the vehicle in the middle of the road.
Figs. 9a~9c show the performances of the three methods under
congested flow conditions. Among the two methods based on 3D

kinematic wave theory, Fig. 9a better reflects the stop-and-go behavior
under congested traffic conditions compared with Fig. 9b. And because
the local speed under congested conditions is not clearly reflected, the
trajectory estimated in Fig. 9b conflicts with the trajectory of the probe
vehicle. As shown in Fig. 9¢, meanwhile, the FI-TR method of recon-
struction shows the same ideal trajectory in congested flow conditions as
in free-flow conditions;, an outcome that can be attributed mainly to the
fact that this approach does not consider the influence of other vehicles
in the road.
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4.3.2. Comparison of the accuracy of the various reconstructed trajectories Figs. 10d - 10(f) show the RMSE violin plots of the three micro-

To verify the effectiveness of the method in this study, the errors variables of the reconstructed vehicle trajectories compared with the
under the microscopic and reference variables of the reconstructed reference NGSIM data, where the thick black line in the rectangular box
trajectories were calculated for all three methods. The convergence is the median of the data; the range of the black box is from the lower to
profiles of the average RMSE of the vehicles as the cumulative number of the upper quartile, and the width of the graph indicates the probability
vehicles increase are shown in Figs. 10a — 10c. In comparison with the density falling at the corresponding value. The results show that all the
other two methods, the method proposed in this study has a lower proposed methods in this paper have better estimation effect than the
overall position error. In contrast, the vehicle trajectories reconstructed other two methods. Specifically, the median of the RMSE of the pro-
by VT-TR exhibit a large error owing to the neglect of the random wave posed method is 57.68%, 25.92% and75.73% lower in position, speed,
error in speed, while the FI-TR method ignores the constraints of other and acceleration, respectively, than that derived from the VT-TR
vehicles in the network on the road, thus making the resulting trajectory method. Further, the median RMSE of the proposed method is, respec-
too idealized; a feature that again causes a larger trajectory error. The tively, 71.16%,31.10% and 69.63% lower for the same three micro-
speed error in Fig. 10b and acceleration error in Fig. 10c exhibit a similar variables than that of the FI-TR method. In addition, by comparing the
pattern to the position error in Fig. 10a. In comparison with the other graph widths of the three methods for position, speed, and acceleration,
two reconstruction methods, therefore, the NKSVT-TR method is supe- it can be seen that NKSVT-TR is more robust.

rior for estimating the local speed surface.

10
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4.3.3. Energy emission analysis of road segments

To further analyze the effects of errors in the micro traffic data,
macro traffic data, and different macro and micro conversion methods
on traffic energy emission calculations, this section compares the results
of four different combinations of traffic models and energy consumption
and emission models. We used MOVES, i.e., a microscopic energy con-
sumption and emission model from the United States, and EMFAC, i.e., a
macroscopic energy consumption and emission model from California,
USA, for the energy consumption and emission calculations. The MOVES
model calculates the microscopic emissions of vehicles by meticulously
portraying the activity characteristics of vehicles at the microscopic
level. The EMFAC model, meanwhile, as a macroscopic fuel consump-
tion emission model, can calculate rich motor vehicle pollutants, such as
HC, CO, NOy, PM, CO5, N0, and CHy4. Because microscopic data have
higher vehicle driving detail characterization and thus relatively high
accuracy in this experiment, the combined results of the microscopic
NGSIM data and microscopic energy consumption emission MOVES
model are used as the baseline data for this experiment.

The experimental framework is illustrated in Fig. 11. First, the
combination of macro PeMS data and the macro fuel consumption
emission model EMFAC (PeMS & EMFAC) is used as a reference result
representative of the macro calculation results. Second, the macro PeMS
data are disaggregated into micro data using three reconstruction
methods (NKSVT-TR, VT-TR, and FI-TR) and then input to the MOVES
model to calculate the energy consumption emission results, i.e., the
combinations of NKSVT-TR & MOVES, VT-TR & MOVES, and FI-TR &
MOVES. Finally, NGSIM & MOVES are used as the benchmark for the
calculation of energy consumption emissions in the experimental
section.

In general, this study analyzes the results of different emission esti-
mation methods by comparing Mean Absolute Percentage Error (MAPE)
values in the interval of [—20,20] kW/t. When performing emission
calculations, the MOVES model requires an input of 1 Hz trajectory data,
and thus the experiments downsampled the NGSIM data to meet the
model input requirements.

The VSP distributions of the three reconstruction methods with the
reference data are shown in Fig. 12. In comparison with Fig. 12a, the
MAPE:s of the VSP distributions of the three methods with reference data
were 10.57%, 16.18%, and 23.74%, respectively. This result indicates
that the VKS-VT method in this study can more accurately reflect the
microscopic characteristics of vehicles for better calculation of vehicle
emissions. Frey [47] indicates that VSP and speed can jointly determine
the vehicle operation mode to reflect the instantaneous speed and ac-
celeration level of the vehicle. From Fig. 12b, it can be seen that the VSP
generated by the method in this paper is distributed in the interval of
[—20, 20] kW/t, and the value of VSP = 0 has the largest proportion,
which is consistent with the performance of Fig. 12a. Meanwhile,

Applied Energy 351 (2023) 121916

Fig. 12c has VSP < 0, implying that the vehicle state is mostly in the
deceleration and braking states. This is because the VT-TR method only
connects the grid point connections as vehicle trajectories without
proper smoothing of the trajectories, resulting in vehicles prone to ac-
celeration outliers at the connection points and overlapping recon-
structed and detected vehicle trajectories owing to the lack of accurate
estimation of the road traffic state (as shown in Fig. 9b). Fig. 12d has the
largest proportion in the VSP > 0 part, indicating that the vehicle is
mostly in coasting as well as acceleration states. This is because the
method determines the driving speed of the vehicle and thus the influ-
ence of the surrounding vehicles based only on the speed values of the
upstream and downstream fixed detectors, while the speed values of the
downstream detectors are generally larger than the values of the up-
stream detectors. The reconstruction process therefore assumes that the
vehicle is in a process of slow acceleration.

Figs. 13a and Fig. 13b show the calculated total vehicle fuel con-
sumption and pollutant emissions (CO2, CO, and NOy) for each of the
five combinations.

As shown in Fig. 13a, the accuracy of the fuel consumption calcu-
lation results for the micro-combination NGSIM & MOVES is improved
by 26.64% compared with the macro-combination PeMS & EMFAC. The
accuracy of the microscopic fuel consumption results reconstructed by
the three reconstruction methods NKSVT-TR, VT-TR, and FI-TR is
improved by 31.55%, 41.09%, and 10.02%, respectively. By comparing
the fuel consumption results of the reconstructed trajectories of the three
reconstruction methods with those of NGSIV, it is found that the relative
error between the fuel consumption calculated by NKSVT-TR, VT-TR,
and FI-TR and the fuel consumption emissions calculated by the micro-
combination NGSIM & MOVES is 3.88%, 10.46% and 11.95%, respec-
tively. This shows that the proposed method is able to calculate a rela-
tively more accurate level of fuel consumption. As shown in Figs. 13b -
13d, by comparing the emission results of PeMS & EMFAC and NGSIM &
MOVES, it is found that the results of the micro-combination NGSIM &
MOVES are 9.17%, 33.68%, and 45.26% more accurate, respectively,
while NKSVT-TR & MOVES, VT-TR & MOVES, and FI-TR & MOVES are
more accurate than the PeMS & EMFAC macro combination by,
respectively, 8.75%, 14.83%, and 3.03% for CO3, 53.03%, 54.46%, and
8.41% for CO, and 83.75%, 111.20%, and 19.97% for NOy. After
comparing the pollutant emission results between the reconstructed and
reference NGSIM trajectories obtained using the three reconstruction
methods, the relative errors between the NKSVT-TR, VT-TR, and FI-TR
method and the reference trajectories by, respectively, 0.39%, 5.18%,
and 5.62% for CO2, 14.48%, 15.55%, and 18.90% for CO, and 26.50%,
45.40%, and 17.41% for NOx. This shows that method proposed in this
study is able to pollutant emissions markedly more accurately than other
current methods. The fuel consumption and emission results are sum-
marized in Table 2.

_|—> PeMS & EMFAC
PeMS I » EMFAC
P NKSVT-TR & MOVES
Disaggregation
NKSVT-TR
VT-TR & MOVES
VT-TR
MOVES t+—
FLTR | T t—» FI-TR & MOVES
NGSIM
NGSIM & MOVES
» (benchmark)

Fig. 11. Cross-validation of traffic data with energy consumption models.
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Fig. 13. Comparison of fuel consumption and emissions under different model combinations.

As shown in Fig. 13, it can be seen that the NKSVT-TR method has
better estimation performance than the VT-TR and FI-TR methods, and
the numerical results are closer to the calculated results of the micro-
scopic combination NGSIM & MOVES. The VT-TR method overestimates
the numerical results because it is gridded using the FD of the road, and
this prevents it from accurately estimating the speed evolution of the
entire spatio-temporal network. The results of the FI-TR method are
closer to those of the macroscopic combination PeMS & EMFAC because
the vehicle velocities calculated using the four-corner interpolation
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method are based on the average velocities of the upstream and down-
stream detectors weighted by their distance, which essentially averages
the speeds at both ends of the road, and is therefore closer to the fuel
consumption emission results calculated using the macroscopic average
speed. In summary, the results of this study are closer to the estimated
fuel consumption and emission results from microscopic vehicle tra-
jectories and provide more accurate estimates of the actual results.

5. Conclusions

In this study, first, we use a nonparametric kernel smoothing method
to fuse speed observations from multiple sources of data so as to over-
come the drawbacks of the limited probe range of fixed sensors. This
allows us to better reflect the traffic speed evolution between detectors,
improve the accuracy of the road traffic state estimation, and effectively
avoid the overlap of reconstructed trajectories. Second, we show that
using mobile detector vehicle data as a reference can improve the ac-
curacy of reconstructed trajectories under congested flow, better reflect
the traffic kinematic wave characteristics caused by road congestion,
and simulate the stop-and-go behavior of vehicles under congested flow
conditions. The smaller the cell size and the higher the penetration rate
of the probe vehicle, the higher the accuracy of the reconstructed tra-
jectory will be. Third, the experimental results show that the proposed
method is able to provide more accurate estimation, with a median
reduction of 25.92%-75.73% in the RMSE of displacement, velocity, and
acceleration compared to the VT-TR method, and 31.10%-71.16% in
the three micro-variables compared to the FI-TR method, respectively.
Next, the results of macro-micro combination models with different
granularities show that the NKSVT-TR method reconstructs the trajec-
tory with fuel consumption emission results closest to the micro-
combination NGSIM & MOVES, and the relative errors of fuel con-
sumption (CO3, CO, and NOy) with the micro-combination NGSIM &
MOVES are 0.39%-26.65%; in comparison with VT-TR, the errors were
reduced by 6.88%-92.47%, and 23.39%-93.06% compared with FI-TR,
thus indicating that the method proposed in this study is able to calcu-
late fuel consumption emissions is closer to actual microscopic results.

It should be noted here, however, that the behaviors of overtaking,
lane changing, and merging are not considered in data extraction.
Accordingly, more fixed detectors will be set in bottleneck areas of the
road in the next step. This could help to identify changes of vehicles in
position and speed, and reconstruct different interaction behavior of
vehicles, including lane-changing, overtaking and merging.
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