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A B S T R A C T   

In the urban corridor with a mixed traffic composition of connected and automated vehicles 
(CAVs) alongside human-driven vehicles (HDVs), vehicle operations are intricately influenced by 
both individual driving behaviors and the presence of signalized intersections. Therefore, the 
development of a coordinated control strategy that effectively accommodates these dual factors 
becomes imperative to enhance the overall quality of traffic flow. This study proposes a bi-level 
structure crafted to decouple the joint effects of the vehicular driving behaviors and corridor 
signal offsets setting. The objective of this structure is to optimize both the average travel time 
(ATT) and fuel consumption (AFC). At the lower-level, three types of car-following models while 
considering driving modes are presented to illustrate the desired driving behaviors of HDVs and 
CAVs. Moreover, a trigonometry function method combined with a rolling horizon scheme is 
proposed to generate the eco-trajectory of CAVs in the mixed traffic flow. At the upper-level, a 
multi-objective optimization model for corridor signal offsets is formulated to minimize ATT and 
AFC based on the lower-level simulation outputs. Additionally, a revised Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II) is adopted to identify the set of Pareto-optimal solutions for 
corridor signal offsets under different CAV penetration rates (CAV PRs). Numerical experiments 
are conducted within a corridor that encompasses three signalized intersections. The performance 
of our proposed eco-driving strategy is validated in comparison to the intelligent driver model 
(IDM) and green light optimal speed advisory (GLOSA) algorithm in single-vehicle simulation. 
Results show that our proposed strategy yields reduced travel time and fuel consumption to both 
IDM and GLOSA. Subsequently, the effectiveness of our proposed coordinated control strategy is 
validated across various CAV PRs. Results indicated that the optimal AFC can be reduced by 
4.1%–32.2% with CAV PRs varying from 0.2 to 1, and the optimal ATT can be saved by 2.3% 
maximum. Furthermore, sensitivity analysis is conducted to evaluate the impact of CAV PRs and 
V/C ratios on the optimal ATT and AFC.   

1. Introduction 

Traffic congestion and emission have evolved into global issues due to urbanization and motorization processes. According to the 
United States Environmental Protection Agency (EPA), transportation activities accounted for approximately 37.5% of CO2 emissions 
from fossil fuel consumption in 2019, primarily due to vehicle miles traveled [1]. Recently, with the advancement of intelligent 
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connected and autonomous driving technologies, the emergence of connected and automated vehicles (CAVs) is widely considered to 
hold significant potential for enhancing urban traffic safety, efficiency, and sustainability [2–4]. However, the market penetration of 
CAVs will not reach 100% until 2060 s. As a result, the coexistence of a mixed traffic flow comprising both CAVs and human-driven 
vehicles (HDVs) is anticipated to persist well into the future [5]. Therefore, the implementation of a control strategy that guarantees 
the quality of future urban mixed traffic flow (e.g., efficiency, energy saving, safety) becomes a pressing necessity. 

From a collective standpoint, research on traffic signal control strategies for mixed traffic flow has been studied to reduce total or 
average delays and fuel consumption. The core principle underlying these strategies involves the anticipation of mixed traffic flow’s 
state information (e.g., arrival time, queue length) through the utilization of real-time CAV data. Subsequently, the signal parameters 
are dynamically adjusted by solving an optimization model, in which the optimization objectives are directly mapped with the state 
information (e.g., minimum queue length) [6–12]. For instance, Wang et al. [11] proposed a CAV-based signal control system that 
integrates a real-time adaptive traffic signal control at the intersection level and a dynamically coordinated control strategy at the 
corridor level. At the intersection level, a state information estimation method was developed based on real-time CAV data, then a 
real-time adaptive traffic signal control model was established to minimize the total delay at the four-legged intersection. At the 
corridor level, the signal offsets were dynamically adjusted to provide maximum green bandwidths to the critical pathways. The 
numerical results indicated that the proposed strategy can outperform the fixed coordination control system by reducing the average 
vehicle delay and average number of stops even with a low CAV penetration rate. Notably, at a CAV penetration rate of 100%, there 
was a reduction of approximately 15.7% in average vehicle delay and 13.8% in average stops. 

From an individual perspective, eco-driving for CAVs is viewed as a vital approach to enhance the quality of mixed traffic flow. The 
fundamental concept of eco-driving is to curtail abrupt accelerations, decelerations, and idling by controlling an optimal fuel con
sumption trajectory for the ego CAV. Moreover, the following HDVs can be indirectly regulated through a car-following model, 
resulting in a reduction of the vehicular average travel time and fuel consumption. To cater the time-varying traffic conditions and the 
uncertain behaviors of HDVs, a Model predictive control (MPC) framework [13], also known as rolling horizon scheme, is commonly 
adopted to regulate the real-time optimal trajectory for the ego CAV [14–19]. For instance, Yu et al. [18] approached the trajectory 
optimization for the ego CAV as an optimal control problem (OCP), deducing the necessary optimal conditions based on Pontryagin’s 
Minimum Principle (PMP), subsequently crafting a numerical method to solve the OCP. Numerical results indicated that the proposed 
strategy reduced the fuel consumption over than 19.37%, as the CAV penetration rate exceeded 60%. 

Recently, the progress in advanced information and communication technology has enabled the realization of coordinated control 
within the realm of the internet of vehicles and intersections. Several studies have integrated the CAV’s trajectory planning and signal 
optimization together, aiming to further enhance the efficiency and minimize fuel consumption within mixed traffic flow [9,20–24]. Li 
et al. [9] were the pioneers in suggesting the coordinated control of signal timing plans and vehicle trajectory optimization. In their 
study, all vehicles were assumed as CAVs, adhering to acceleration patterns governed by a rule-based eco-driving strategy. The signal 
timing plan, aimed at minimizing overall delay, was established through an exhaustive method. Jung et al. [20] developed a bi-level 
optimization method for an eco-traffic signal system that integrates an eco-driving algorithm and an eco-signal operation at an isolated 
intersection. The upper-level optimized the setting of signal timing plan that minimized the total delays, while the lower level 
controlled the optimal fuel consumption trajectory of CAVs by solving a nonlinear programming problem. The penetration rate of CAV 
was also assumed 100%. A Similar methodology was also adopted by Xu et al. [21]. For mixed traffic flow scenarios, Yao et al. [22] 
developed a two-level framework that optimized both isolated intersection traffic signals and vehicle trajectories. At the vehicle level, 
a model predictive control framework was proposed to optimize vehicle trajectories while considering gasoline consumption. At the 
intersection level, dynamic programming was applied to optimize traffic signal timing, utilizing predicted vehicle arrival determined 
by the lower level. Tajalli and Haijbabaie [23] formulated the joint signal timing and trajectory control as a mixed-integer non-linear 
program (MILP) for isolated intersection, linearization of the objective function and nonlinear constraints was implemented to reduce 
the complexity of the MILP problem, then the Lagrangian relaxation technique was used to decompose the programming problem to 
several sub-problems as a balance between computational efficiency and solution equality. Considering the cooperation of in
tersections, Yang et al. [24] proposed a hierarchical cooperative driving framework with a mixed traffic composition of CAVs, con
nected vehicles (CVs), and HDVs for urban corridors. The framework consisted of three levels of models. At the vehicle level, a state 
transition mechanism was designed to differentiate the operations of CAVs encompassing eco-trajectory planning, cooperative 
adaptive cruise control (CACC), and collision avoidance. At the intersection level, a MILP problem was established to optimize the 
signal timing plan along with the arrival time of CAVs while considering CAV platoons. At the corridor level, link performance 
functions are employed to calculate the overall delay of the coordinated phases at each intersection and a linear programming (LP) 
problem is formulated to optimize the signal offsets for every cycle. 

Although researches have been made in the region of the coordinated control strategy consist of eco-driving and signal optimi
zation, existing studies are fraught several limitations. First, the driving mode is rarely accounted for within the eco-driving strategy, 
resulting in an absence of differentiation in the eco-driving approach when a CAV follows a HDV or another CAV [14,18,21,22,25]. 
However, in instances where a CAV follows a CAV, the ego CAV can achieve cooperative control through vehicle-to-vehicle (V2V) 
communication, thereby rendering the eco-driving strategy more adaptable and efficacious[16,24]. Second, many existing studies of 
the coordinated control strategy focus on an isolated intersection, without considering the cooperation between intersections [9, 
20–23]. Finally, a single-objective optimization model (e.g., minimum total delays, maximum outflow rate), or an optimization model 
that weighted summarizes the objectives were commonly used in signal optimization [9,20–24]. However, the objectives may conflict 
with each other (e.g., minimize total delays versus maximize traffic flow safety), and the trade-off is hard to determine for objectives 
with different units. Therefore, a multi-objective optimization model that draws the Pareto-optimal frontier of objectives is imperative 
to establish. 
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Realizing the research gaps, this study proposes a multi-objective coordinated control strategy in urban corridors for mixed traffic 
consisting of HDVs and CAVs. A bi-level structure is designed to decouple the interaction of the signal offset optimization and 
ecological trajectory planning of CAVs, as informed by previous studies [20–22]. In the structure, the lower-level simulates the tra
jectory of HDVs and CAVs with the implementation of a driving mode based eco-driving strategy. The upper-level optimizes the 
corridor signal offsets that minimize the average travel time and fuel consumption, both of which can be determined by the simulation 
of lower-level. Then, a revised Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is developed to achieve a set of Pareto-optimal 
solutions for corridor signal offsets, as well as the trajectories of HDVs and CAVs. Finally, the effectiveness of the proposed coordinated 
control strategy is discussed through microscopic simulation. 

The main contributions of this study are summarized as follows: 
(1) designs a bi-level structure that decouples the interaction of the corridor signal offsets optimization and CAV’s ecological 

trajectory planning, and proposes an eco-driving strategy for CAVs in the mixed traffic flow while considering the driving modes. 
(2) establishes a multi-objective optimization model for corridor signal offsets that minimizes the average travel time and fuel 

consumption of vehicles, and develops a revised NSGA-II that obtains the Pareto-optimal solutions of the multi-objective optimization 
model. 

(3) analyses the effectiveness of the proposed coordinated control strategy with different CAV PRs and V/C ratios. 
The remaining structure of this paper is organized as follows. Section 2 describes the addressed problem. Section 3 designs the 

trajectory generation method for HDVs and CAVs with the implementation of eco-driving. Section 4 formulates the multi-objective 
optimization model for corridor signal offsets, and proposes a revised NSGA-II to solve the optimization model. Section 5 conducts 
numerical experiments and sensitivity analysis. Section 6 presents the conclusions, research limitations and future work directions. 

2. Problem description and notations 

2.1. Problem description 

As illustrated in Fig. 1, this study focuses on an urban corridor consisting of multiple signalized intersections. Within this context, 
two types of vehicles are considered, i.e., HDVs and CAVs. All vehicles travel straight through the intersections within the corridor, 
without performing any turning movements such as left-turns or right-turns. Notably, each intersection is conceptualized as a single- 
lane roadway, thereby overtaking and lane-changing behaviors are prohibited for all vehicles. For each intersection, the setting of 
Signal Phase and Timing (SPaT) is assumed as uniform. There is a control center in the corridor that can simulate the trajectories of 
HDVs and CAVs, calculating the average travel time and fuel consumption by using the trajectories, then optimizing the corridor signal 
offsets based on these indicators. Moreover, for each intersection within the corridor, a sub-control center is in place. This sub-control 
center has the capacity to receive real-time vehicle dynamic states (e.g, position, and speed) and SPaT information by roadside units 
(RSUs). Utilizing these data, the sub-control center offers acceleration guidance to CAVs for the purpose of eco-driving. 

During the implementation of the CAVs’ eco-driving strategy, note that the preceding vehicle of the ego CAV can either be a HDV or 
a CAV. Thus, the implementation of eco-driving strategy should consider the driving mode (i.e., ego CAV following HDV, ego CAV 
following CAV). Moreover, it is noteworthy that the eco-driving strategy might encounter challenges, such as an inability to derive a 
viable acceleration profile or the potential for collision with the preceding vehicle. To address these concerns, a rolling horizon scheme 
is applied to ensure efficiency and safety, similar to the philosophy in MPC [26]. 

For the optimization of corridor signal offsets, there are two objectives (i.e., the average travel time and fuel consumption) that 
represent the efficiency and sustainability of the mixed traffic flow, which are inherently challenging to transform into directly 
comparable units. Therefore, a multi-objective optimization model is selected to obtain the Pareto optimal solutions, instead of single- 
objective or multi-objective weighted summation optimization model. 

However, the effectiveness of corridor signal offsets optimization is subject to alteration upon the implementation of CAV’s 
ecological trajectory planning. At the same time, the performance of the eco-driving strategy is also influenced by the corridor signal 

Fig. 1. The coordinated control strategy for mixed traffic in an urban corridor.  
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offsets setting. To decouple the interaction of the corridor signal offsets optimization and CAV’s ecological trajectory planning, a bi- 
level structure is designed as shown in Fig. 2. With the determined roadway (i.e., Number of intersections, setting of signal phase and 
timing) and mixed traffic flow (i.e., V/C ratio, CAV penetration rate) parameters. At the lower level, the trajectories of HDVs and CAVs 
with the implementation of a driving mode based eco-driving strategy are simulated to obtain average travel time ft and fuel con
sumption fe as a vector f, for given corridor signal offsets φ. At the upper-level, a multi-objective optimization for corridor signal offsets 
φ is solved to get the set of Pareto-optimal solutions, for given objective vector f. Through repeated iterations of this bi-level structure, 
the set of Pareto-optimal solutions for corridor signal offsets, and the trajectories of HDVs and CAVs are obtained finally. 

2.2. Notations 

Main notations applied hereafter are summarized in Table 1. 

3. Lower-level: trajectory generation for HDVs and CAVs 

In this section, the trajectory generation method under mixed traffic environment is introduced. First, three types of driving modes 
and corresponding car-following models are classified to depict the heterogeneous characteristics of HDVs and CAVs. Second, a tra
jectory generation method for HDVs is proposed while considering the lack of SPaT information. Third, a driving mode based eco- 
driving strategy combined with rolling horizon scheme is designed to optimize the speed profile of CAVs in situations where it 
cannot pass through the adjacent intersection as its current desired acceleration and SPaT information. Finally, a framework of lower- 
level problem is introduced to simulate the whole trajectories for given upper-level parameters. 

3.1. Driving mode classification for HDV and CAV 

As shown in Fig. 1, there are three driving modes under mixed traffic environment, HDC (Human-driven control, HDV following 
HDV or CAV), ACC (Adaptive cruise control, CAV following HDV), and CACC (Cooperative Adaptive cruise control, CAV following 
CAV). HDC mode represents the human-driven behavior that cannot interact with RSUs and preceding vehicles. ACC and CACC are 
typical driving modes for CAVs. ACC utilizes onboard detection equipment to obtain information (e.g., speed, position) of the pre
ceding vehicles, enabling acceleration control optimization. CACC, which builds upon ACC, leverages V2V communication technology 
to exchange information with preceding vehicles, thereby forming CAV platoons and achieving collaborative control [27]. To address 
the heterogeneous characteristics of these driving modes, the intelligent driver model (IDM) with different desired time headway is 
employed in this study [28–30]. The IDM acceleration ad

n(t) of the n-th vehicle at time t is calculated using the following formula: 

ad
n(t) = fn(vn(t), Δvn(t), sn(t)) = amax

[

1 −

(
vn(t)
vmax

)4

−

(
s∗

n(t)
sn(t)

)2
]

(1)  

s∗
n(t) = s0 + max

{
0, vn(t)Tn + vn(t)Δvn(t)

/(
2

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒amaxacomf

⃒
⃒

√ )}
(2)  

whereamax, acomf represent the maximum and comfortable deceleration. vmax is the maximal limit speed. s0 denotes the jam gap. Tn 

represents the desired time headway, which can be Thdc, Tacc or Tcacc related to driving control mode, satisfies Thdc ≥ Tacc ≥ Tcacc. vn(t) is 
the current speed of the n-th vehicle. Δvn(t) is the speed error to the preceding vehicle n-1, Δvn(t) = vn(t) − vn−1(t). sn(t) and s∗

n(t)
represent the actual and desired safe space gap, sn(t) = xn−1(t) − xn(t) − l. l represents the length of vehicle, fn(vn(t),Δvn(t),sn(t))is the 
general form of the IDM. 

ad
n(t) represents the desired acceleration of the ego vehicle without other interference. However, on urban roads, the acceleration of 

HDVs and CAVs is not only affected by the preceding vehicle and itself, the traffic lights at the nearest intersection also play a sig
nificant role. If the ego vehicle is a HDV, it may come to a stop at the intersection due to a red signal phase. On the other hand, if the ego 
vehicle is a CAV in ACC driving mode, it has the capability to regulate its real-time speed based on the received information of pre
ceding HDV’s current state and intersection’s SPaT, reaching the optimization of travel time and fuel consumption. In cases where the 

Fig. 2. The bi-level structure of the coordinated control strategy.  
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ego CAV adopts the CACC driving mode, it can not only receive the current state information of the preceding vehicle, but also directly 
acquire the predicted trajectory of the preceding CAV, achieving cooperative driving control. 

3.2. Trajectory generation for HDVs 

Fig. 3. depicts the trajectory generation scheme for HDV n at intersection i within each time step Δt. The HDV will maintain the 
desired acceleration calculated by Eqs. (1) and (2), if the vehicle can pass the signalized intersection during the green or yellow phase. 
However, if the HDV cannot pass the intersection or the ongoing signal phase is red, it will come to a stop before reaching the stop bar 
[25]. Therefore, at the start time t0, the HDV needs to calculate the desired terminal time for passing through intersection i, based on its 
current state and desired acceleration. In this study, three acceleration values are identified to calculate the desired passage time tLi

n : (1) 
ad

n(t0) > 0; (2) ad
n(t0) = 0; and (3) ad

n(t0) < 0. 

Table 1 
Notations.  

Variables Meaning Unit 

General Notations  
i Intersection index  
n Vehicle index  
k Iteration index of the rolling horizon scheme  
j Chromosome index  
w Iteration index of the revised NSGA-II  
d Level index of non-dominated solution set  
Lower-level problem parameters  
Vehicle parameters  
xn(t) Position of the n-th vehicle at time t m 
sn(t) Space gap between the n-th vehicle and its preceding vehicle n-1 m 
s∗
n(t) Desired space gap between the n-th vehicle and its preceding vehicle n-1 m 

s0 Jam gap between two consecutive vehicles m 
tLi
n Passage time when the n-th vehicle reach the stop bar of intersection i s 

t̂Li
n 

Predicted passage time when the n-th vehicle reach the stop bar of intersection i s 

vn(t) Speed of the n-th vehicle at time t m/s 
Δvn(t) Speed error between the n-th vehicle and its preceding vehicle n-1 m/s 
vmax Maximum limit speed m/s 
amin Minimum acceleration m/s2 

amax Maximum acceleration m/s2 

acomf Comfortable deceleration m/s2 

an(t) Actual acceleration of the n-th vehicle at time t m/s2 

ad
n(t) Desired (safe) acceleration of the n-th vehicle at time t m/s2 

aLi
n (t) Acceleration affected by nearby stop bar of the n-th vehicle at time t m/s2 

Gn(t) Acceleration profile calculated by trigonometry method of the n-th vehicle at time t m/s2 

ar
n(t) Replaced acceleration if trigonometry method cannot find a feasible solution; Gn(t) = ∅ m/s2 

kmax Maximum change rate of acceleration m/s3 

Intersection parameters  
Li Position of the stop bar of intersection i m 
Gi Set of green phases of intersection i s 
Yi Set of yellow phases of intersection i s 
Ri Set of red phases of intersection i s 
Ωi Set of green and yellow phase of intersection i; Ωi = Gi

⋃
Yi s 

tC Duration of signal cycle s 
tG Duration of green phase s 
tY Duration of yellow phase s 
tR Duration of red phase s 
tls Lost time of vehicle’s start up s 
Upper-level problem parameters s 
Ninter Number of intersections  
φi,i+1 Offset of the signal phase from intersection i to intersection i + 1  
φ Vector of corridor signal offsets; φ = [φ1,2, φ1,3,.,φNinter−1,Ninter

] s 
ft (φ) Average travel time of vehicles for given signal offsets φ s 
fe (φ) Average fuel consumption of vehicles for given signal offsets φ s/veh 
f (φ) Vector of objective functions for given signal offsets φ; f (φ) = [ft, fe] mL/veh 
M Size of populations in the revised NSGA-II  
W Maximum iteration of the revised NSGA-II  
pc, pm Probabilities of crossover and mutation in the revised NSGA-II  
Uw Parent population in the w-th iteration  
Vw Child population in the w-th iteration  
Zw Merged population in the w-th iteration; Zw = Uw

⋃
Vw  

Rd Pareto-optimal solutions set of the d-th level.  
Djd Crowd distance of the j-th chromosome in the d-th non-dominated solution level   
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(1) ad
n(t0) > 0, the desired passage time tLi

n can be divided into two cases (reach to maximum speed or not), which is calculated as 
follows: 

tLi
n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
vn

2(t0) + 2ad
n(t0) × (Li − xn(t0))

√
− vn(t0)

ad
n(t0)

, xacc
n ≥ Li

t0 + tacc
n +

2(Li − xn(t0)) − tacc
n × (vn(t0) + vmax)

2vmax
, xacc

n < Li

(3)  

where xacc
n is the position HDC accelerates to maximum speed, satisfies xn,acc = xn(t0) +

v2
max−v2

n(t0)

2ad
n(t0)

. tacc
n is the acceleration time from 

current speed vn(t0) to the limit speed vmax, tacc
n =

vmax−vn(t0)

ad
n(t0)

. 

(2) ad
n(t0) = 0, tLi

n is calculated as follows: 

tLi
n = t0 + tcs

n = t0 +
Li − xn(t0)

vn(t0)
(4)  

where tcsn represents the time that HDV drives from xn(t0) to stop bar Li as a speed of vn(t0). 
(3) ad

n(t0) < 0, the passage time tLi
n can also be divided into two cases (decelerates to zero or not), which is calculated as follows: 

tLi
n =

⎧
⎪⎪⎨

⎪⎪⎩

t0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
vn

2(t0) + ad
n(t0) × (Li − xn(t0))

√
− vn(t0)

ad
n(t0)

, xdec
n ≥ Li

∞ , xdec
n < Li

(5)  

where xdec
n is the position HDC decelerates to zero, satisfies xdec

n = xn(t0) −
v2

n (t0)

2ad
n(t0)

. tdec
n is the acceleration time from current speed vn(t0) to 

zero, tdec
n =

−vn(t0)

ad
n(t0)

. 
Based on desired passage time and the SPaT information at the intersection i, the acceleration of the ego HDV can be ascertained. If 

tLi
n ∕∈ Ωi or t0 ∕∈ Ωi, the HDV should stop before the stop bar. To ensure safety, the acceleration of the HDV must be neither lower than 

Fig. 3. The control scheme of HDVs.  
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car-following acceleration ad
n(t0) nor stopped acceleration aLi

n (t0). The stopped acceleration aLi
n (t0) is calculated as follows: 

aLi
n (t0) = amax

[

1 −

(
vn(t0)

vmax

)4

−

(
s0 + max

{
0, vn(t0)Tn + v2

n(t0)
/(

2
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒amaxacomf

⃒
⃒

√ )}

Li − xn(t0)

)2]

(6) 

If t0 ∈ Ωi and tLi
n ∈ Ωi, i.e., the HDV can pass the stop bar Li before red phase, it will maintain the desired acceleration ad

n(t0). 
Particularly, if tLi

n ∈ Yi and the HDV can pass the stop bar Li as the current speed vn(t0) (tcs
n ∈ Yi), the acceleration of such HDV will be set 

to zero while considering safety and comfortably. Hence, the acceleration of HDV can be determined as follows: 

an(t0) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{

ad
n(t0), aLi

n (t0)
}

, if t0 ∕∈ ΩiortLi
n ∕∈ Ωi

ad
n(t0), if t0 ∈ Ωi, tLi

n ∈ Ωi, tcs
n ∕∈ Yi

0, otherwise
(7) 

The position and speed of the HDV at next step (t0 + Δt) can be updated as follows: 

vn(t0 + Δt) = vn(t0) + an(t0)Δt (8)  

xn

(
t0 + Δt

)
= xn(t0) +

Δt
2

(vn(t0) + vn(t0 + Δt)) (9) 

Using Eqs. (7)–(9) repeatedly, the trajectory of HDV at each intersection can be derived. 

3.3. Eco-driving strategy for CAVs 

CAVs have an advantage over HDVs in situations where the desired acceleration is not feasible. Leveraging SPaT information and 
state data from the preceding vehicle, CAVs can predict the passage time ̂tLi

n of the nearest intersection. Based on the predicted passage 

time ̂tLi
n , CAVs can generate an ecological trajectory that allows them to pass through the current intersection without stopping. The 

eco-driving strategy for CAVs consists of two parts: (1) passage time prediction and (2) eco-acceleration generation. A scheme is 
proposed to outline the process of these components, as shown in Fig. 4. 

3.3.1. Passage time prediction 
In the passage time prediction, two cases are considered: one where there exists a vehicle in front of the ego CAV, and the other 

where there is not. In the absence of a preceding vehicle, the ego CAV can pass the stop bar at the earliest arrival time or the starting 

time of the next green phase, ̂tLi
n = max

{⌈
t0
tC

⌉
tC + φi−1,i

⃒
⃒
i>1, t0 +

Li−xn(t0)

vmax
+

(vmax−vn(t0))
2

2vmaxamax

}
. 

When there are vehicles ahead of the ego CAV, t̂ Li
n is determined based on its preceding vehicles and SPaT information. If the 

preceding vehicle is a CAV, the ego CAV is at CACC driving mode, it can directly acquire the passage time of the preceding CAV. On the 

Fig. 4. The eco-driving strategy for CAVs.  
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other hand, if the preceding vehicle is a HDV, an assumption is made that the speed of the leading HDV remains constant [19]. 
Consequently, the predicted passage time t̂ Li

n−1 that the preceding vehicle passing through the stop bar can be determined using the 
following formula: 

t̂Li
n−1 =

⎧
⎪⎨

⎪⎩

χtLi
n−1 +

(
1 − χ

)
t̂Li

n−1 , if CACCdrivingmode

t0 +
xsl − xn−1(t0)

vn−1(t0)
, otherwise

(10)  

where χ is a binary decision variable, χ = 1 when tLi
n−1 ∈ Ωi, else χ = 0. 

Based on the current SPaT information and ̂tLi
n−1, ̂tLi

n can be calculated as follows: 

t̂Li
n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t̂Li
n−1 + thw, t̂Li

n−1 ∈

[(⌈
t̂Li

n−1

tC

⌉

− 1
)

tC, tr − thw

]

∪

[⌈
t̂Li

n−1

tC

⌉

tC, t′r − thw

]

⌈
t̂Li

n−1

tC

⌉

tC, t̂Li
n−1 ∈

[

tr − thw, tr

]

∪

[

t′r − thw, t′r
]

⌈
t̂Li

n−1

tC

⌉

tC + tls + Npthw, t̂Li
n−1 ∈

[

tr ,

⌈
t̂Li

n−1

tC

⌉

tC

]

∪

[

t′r , ∞
]

(11)  

where thw is the saturation time headway, which equals to the reciprocal of IDM maximum volume. tr is the time with current signal 

phase turning to red, tr =

(⌈
t̂
Li
n−1
tC

⌉

− 1
)

tC + tR + tY . t′r is the time with the next signal phase turning to red, tr =

⌈
t̂
Li
n−1
tC

⌉

tC + tR + tY . tls is 

the start time at the beginning of green phase. Np is the number of preceding vehicles with respect to current CAV before the stop bar. 
The first branch in Eq. (11) addresses the scenario where both the current and preceding vehicle can pass through stop bar before 

the red phase, t̂Li
n is set as t̂ Li

n−1 +thw to ensure vehicle travel efficiency. The second condition covers situation where the preceding 

vehicle can pass through stop bar before the red phase, while the current CAV cannot do so in time, ̂tLi
n is equal to 

[
t0
tC

]
tC. The last branch 

deals with the case that the preceding vehicle cannot reach the stop bar before red phase, and there are Np number of vehicles in front 

of the preceding vehicle, where ̂tLi
n is set to 

[
t0
tC

]
tC + tls + Np × thw. 

3.3.2. Eco-acceleration generation 
The trigonometry function method [31] is selected to generate the ecological trajectory of CAVs while considering the compu

tational efficiency, outlined as follows: 

vn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vh + vd cos
(

st
)

, t ∈
[
t0, t0 +

π
2s

)

vh +
s
a

vd cos a
(

t −
π
2s

+
π
2a

)
, t ∈

[
t0 +

π
2s

, t0 +
π
2s

+
π
2a

)

vh +
s
a

vd , t ∈
[
t0 +

π
2s

+
π
2a

, t̂Li
n

)

(12)  

where vh is the average speed at time period t, calculated by vh = min
{

vmax,
Li−xn(t0)

t̂
Li
n −t0

}

. vd is the speed difference between the current 

speed vn(t0) and the average speed vh, calculated by vd = vn(t0) − vh. (s, a) control the rate of change of acceleration, different values of 
(s, a) show the different acceleration and jerk profiles. 

Based on previous research [31] to minimize energy consumption, parameter s should be chosen as large as possible, with the 
temporal-spatial, vehicle acceleration and jerk constraints, s is determined by an optimization model as follows: 

max
s∈(0,1]

{s} (13) 

Subject to: 

xn(t0) +

∫ t̂Li
n

t0
vn(t)dt = Li (14)  

0 ≤ vn(t) ≤ vmax, ∀t ∈
(
t0, t̂Li

n

]
(15)  

amin ≤ an(t) ≤ amax, ∀t ∈
(
t0, t̂Li

n

]
(16)  

|dan(t)/dt| ≤ kmax, ∀t ∈
(
t0, t̂Li

n

]
(17) 
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where kmax is the maximum change rate of acceleration, respectively. Eq. (14) states that the CAV passes the stop bar at time of ̂tLi
n . Eqs. 

(15), (16), and (17) limit the boundary of speed. acceleration and the jerk, respectively. Note that there are two variables in one 
equation. Therefore, for a given s, a can be calculated using Eq. (14). Discretized with interval of 0.01, s can be easily solved by 
exhaustive method. Once the pair of (s, a) is ascertained, the trajectory of CAV n can be derived employing Eq. (12). 

However, it is worth noting that the trigonometry method outlined in Section 3.3.2 may not always yield a feasible (s, a) pair under 
some extreme conditions, and it might not effectively prevent crashes among vehicles if only employed once. To address these 
challenges, a rolling horizon scheme is devised, as illustrated in Fig. 5. The solid line depicts the acceleration implemented over each 
time step Δt, and the dashed line denotes the unaccepted acceleration. In scenario where the trigonometry method yields a feasible (s, 

a) pair, the eco-trajectory Gk
n(t) = dvn(t)/dt is generated at the start time tk

0 of each iteration k for a time period [tk0, t̂ Li ,k
n ]. It is important 

to make the actual acceleration remains below the car-following acceleration ad
n(tk

0) to ensure driving safety. On the other hand, in 
situation where the (s, a) pair is infeasible, an approximate acceleration ar

n(tk
0) is chosen to as a substitute for Gk

n(t). In that case, the 
actual acceleration also should be chosen as the minimal value of ar

n(tk
0) and ad

n(tk0) In essence, the actual acceleration adopted by the 
ego CAV in time period [tk0, tk+1

0 ] (tk+1
o = tk

0 + Δt) is as follows: 

ak
n(t) =

{
min

{
ad

n

(
tk
0

)
, ar

n

(
tk
0

)}
, if Gk

n(t) ∈ ∅
min

{
ad

n

(
tk
0

)
, Gk

n(t)
}

, otherwise
(18)  

where ad
n(tk0) is the car-following acceleration calculated by Eq. (1). ar

n(tk
0) is the minimal acceleration needed from current speed vn(tk

0)

to the average speed (vk
h) of the n-th CAV, ar

n(tk0) = max
{
amin, 1

Δt (vk
h − vn(tk

0))
}
. 

Without considering the lane change behavior of the CAV, the position and speed of CAV at next time tk+1
0 are determined as 

follows: 

vn
(
tk+1
0

)
=

∫ tk+1
0

tk0

ak
n(t)dt, xn

(
tk+1
0

)
=

∫ tk+1
0

tk0

vn(t)dt (19) 

By Iteratively applying Eqs. (10)-(19), the trajectory of the CAV implementation with eco-driving strategy at each signalized 
intersection can be obtained. 

3.4. Simulation framework of the lower-level problem 

Algorithm 1. depicts the simulation framework of the lower-level problem. The corridor road information (number of intersections, 
length of each intersection) and signal parameters (SPaT and corridor signal offsets) are pre-defined. The total number of vehicles 
(CAVs and HDVs) is determined for given V/C ratio, CAV penetration rate, and simulation time horizon. During each time step, the 
acceleration of each HDV is generated by the control scheme in Section 3.2, and the movement for one CAV follows the eco-driving 
strategy in Section 3.3. After the simulation, all the vehicles’ information (including position, speed, and acceleration) in the urban 
corridor are recorded to calculate the travel time and fuel consumption for the upper-level optimization. 

Fig. 5. The rolling horizon scheme of CAV’s eco-driving.  
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Algorithm 1. The simulation of lower-problem.  

4. Upper-level: multi-objective optimization for corridor signal offsets 

The upper-level problem focuses on the corridor signal offset optimization based on the results obtained from lower-level problem. 
In this section, a multi-objective optimization model for corridor signal offsets is established to minimize both average travel time and 
fuel consumption, and then a revised NSGA-II is proposed to identify the set of Pareto-optimal solutions of the optimization model. 

4.1. Evaluation indicators for upper-level problem 

As discussed in Section 3, the trajectory of each vehicle can be obtained through lower-level simulation for given corridor signal 
offsets φ. In this study, the vehicular average travel time ft(φ) and fuel consumption fe(φ) are used as performance vectors to assess the 
effectiveness of different corridor signal offsets settings. The values of ft(φ) and fe(φ) are determined based on the trajectories of the 
vehicles, calculated as follows: 

ft(φ) =
1

Nsim

∑Nsim

n=1
ft,n(φ), fe(φ) =

1
Nsim

∑Nsim

n=1
fe,n(φ) (21)  

where Nsim represents the total number of vehicles in the lower-level simulation, ft,n(φ) and fe,n(φ) denote the travel time and fuel 
consumption of n-th simulated vehicle. 

The travel time of the n-th vehicle ft,n(φ) can be readily calculated based on the length of its trajectory. However, the average fuel 
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consumption fe,n(φ) need to be estimated using an appropriate model. In line with previous studies [18,19,25], this paper adopts the 
fuel consumption model developed by the Australian Road Research Board (ARRB): 

fe,n(φ) =

∫

g(vn(t), an(t))dt (22)  

g
(

v, a
)

= α +

{
max

{
β1vRT

(
v, a

)
+ β2mva2, 0

}
, ifa ≥ 0

max{β1vRT (v, a), 0}, otherwise
(23)  

RT
(
v, a

)
= b1 + b2v2 + ma + mgθ (24)  

where m represents the mass of one HDV or CAV. RT is the total tractive force required to drive the vehicle. α,β1, and β2 are the 
parameter relevant to the fuel rate of vehicles. b1 and b2 are the parameter relevant to resistance force. θ represents the road grade. 
More details about the value of parameters can refer to [32]. 

4.2. Signal offsets optimization model for urban corridor 

In previous research on signal optimization, the objectives primarily revolved around total delay and the efficiency of intersection 
operations. The typical approach was to select a single objective from these or to create a weighted summation of the chosen objectives 
[9,20–24]. However, the objectives may conflict with each other, and determining trade-offs between objectives with different units 
could be challenging. Therefore, the objective of our proposed model is to identify the Pareto-optimal frontier for corridor signal offsets 
φ = [φ1,2, φ2,3, ., φNinter−1,Ninter

] with the aim of minimizing both the average travel time and fuel consumption. The optimization model is 
formulated as follows: 

min f(φ) = [ft(φ), fe(φ)] (25) 

Subject to: 

ft(φ) =
1

Nsim

∑Nsim

n=1
ft,n(φ), fe(φ) =

1
Nsim

∑Nsim

n=1
fe,n(φ) (26)  

ft,n(φ), fe,n(φ)isgivenbylower − levelsimulation (27)  

0 ≤ φi,i+1 ≤ tC, i = 1, 2.Ninter − 1 (28)  

φi,i+1 ∈ N, i = 1, 2.Ninter − 1 (29)  

where φi,i+1 represents the signal offset between intersection i and i + 1. Eq. (28) states the lower and upper boundary of signal offsets. 
The parameter Nsim is determined for given V/C ratio γ, the saturation time headway thw, signal parameters [tG, tY , tR], simulation time 
horizon Tsim, and CAV penetration rate λ. 

4.3. Solution algorithm 

The optimization model proposed in Section 4.2 is not only a multi-objective optimization model, but also a bi-level programming 
model. The lower-level problem is resolved through microscopic simulation, making it challenging to precisely solve the optimization 
model using exact methods. As a widely used metaheuristic method for multi-objective optimization, the Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II) is viable to obtain a Pareto frontier for objective functions [33]. However, a direct mapping from 
decision variables φ to objective functions f(φ) is required for the original NSGA-II, whereas the mapping from φ to f(φ) is obtained 
indirectly by the trajectory of vehicles in our study. In that case, a revised NSGA-II combined with a microscopic simulation for the 
lower-level problem is proposed to obtain the Pareto-optimal solutions of the proposed optimization model. For given hyper
parameters (the size of population M, the maximum number of iteration W, and the probabilities of crossover pc and mutation pm), the 
main steps of the revised NSGA-II consist of the following main steps: 

Step 1 Population initialization: For each corridor signal offsets φj = [φj
1,2, φj

1,2, ., φj
Ninter−1,Ninter

] of j-th chromosomes in population 

M, assuming φj
i,i+1 (i = 1, 2, ., Ninter − 1, j = 1, 2, ., M) as continuous variables, using a uniform randomness number uij from [0, 1] to 

generate φj
i,i+1, i.e., φj

i,i+1 = 0 + uij(tC − 0). Then fix φj
i,i+1 to an integer variable by round function, and obtain the initial parent 

population U0 = [φ1,φ2,.,φM]. The initial child population V0 is generated using the same method. Set the number of iterations to zero, 
i.e., w = 0. 

Step 2 Non-dominated sorting: Merge Uw and Vw into a population Zw of size 2 M, i.e., Zw = Uw ∪ Vw. Each element φ in Zw 

represents a feasible solution for the upper-level optimization model. For each element φj, j = 1, 2, ., 2M, evaluate the vector of ob
jectives f j = [f j

t , f j
e] (i.e., the average travel time and fuel consumption) based on the lower-level problem simulation (Algorithm 1) and 

Eqs. (21)-(24). Obtain the objective vector Fw = [f 1, f 2, ., f2M] for population Zw. Then, implement the fast-non-dominated-sorting for 
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population Zw to classify all chromosomes φj, j = 1, 2, ., 2M into different dominance levels Rd (d = 1,2,.) (i.e., Pareto ranks and Pareto 
fronts). Calculate the crowding distance Djd of j-th chromosome in dominance level Rd. More details for the achievement of fast-non- 
dominated sorting and crowding-distance-assignment can be found in [33]. 

Step 3 Population selection: Use tournament method to select the new parent population Uw+1 from Zw. Note that the size of Zw is 
2 M, hence only half of Zw will be chosen to the new population Uw+1. Firstly, select chromosomes in Zw based on the ascending order 
of dominance levels Rd (d = 1, 2, .). Then, for chromosomes in the same dominance levels Rd (d = 1, 2, .), select chromosomes in 
population Zw in descending order of crowding distance Djd. 

Step 4 New population generation: Set the child population Vw+1 to an empty set, i.e., Vw+1 = ∅. Randomly select two chro
mosomes φ1, φ2 from population Uw+1, and generate a rand number ω from [0, 1], i.e., ω ∼ U(0, 1). If ω is less than the crossover 
probability pc (i.e., ω ≤ pc), performing the simulated binary crossover operator to generate two new chromosomes φ̃1, φ̃2, and put 
them into Vw+1, i.e., Vw+1 = Vw+1 ∪ [φ̃1, φ̃2]. Generate φ̃1, φ̃2 repeatedly until the size of population Vw+1 reaches M. Then, for each 
chromosome φ̃j

, j = 1, 2, ., M in Vw+1, obtaining a rand number μ from [0,1], i.e., μ ∼ U(0,1). If μ is less than the mutation probability pm 

(i.e., μ ≤ pm), performing the polynomial mutation operator to create a new chromosome φ̃j′, and replacing the old one, i.e., φ̃j 
= φ̃j′. 

More details on simulated binary operator and polynomial mutation operator can be found in [34]. 
Step 5 Termination Criterion: Stop the iteration if the number of iteration w reaches the maximum generation W and output the 

parent population Uw, otherwise set w = w +1 and go back to Step 2. 
For a clear description, the brief pseudo-code is designed for the revised NSGA-II illustrated in Algorithm 2. 

Algorithm 2. Brief realization of the revised NSGA-II.  

5. Numerical results and sensitivity analyses 

The multi-objective coordinated control strategy for mixed traffic in urban corridors is evaluated through microscopic simulation. 
Simulation experiments are performed on a personal computer with a 2.10 GHz Intel(R) Core (TM) i7–12700 processor and 16 GB 
RAM, using Matlab R2023a. The selected case study involves a corridor with three single-lane roadway signalized intersections, and all 
intersections are equipped with the same signal parameters. The critical parameters used in this study are listed in Table 2 [19,24,25, 
29]. 
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Fig. 6. Comparison of IDM, GLOSA, and the proposed model.  

Table 2 
Critical parameters in simulation setup.  

Parameter value 

Corridor parameters  
Number of intersections Ninter 3 
Length of intersection L (m) 400, 450, 450 
Road slope θ (rad) 0 
V/C ratio γ 2/3 
The simulation time step Δt (s) 1 
The simulation time horizon Tsim (s) 300 
Signal Phase information  
Length of signal cycle tC (s) 60 
Length of green phase tG (s) 30 
Length of yellow phase tY (s) 3 
Length of red phase tR (s) 27 
Lost time at the beginning of green phase tls (s) 3 
Variables in CAV eco-driving and IDM parameters  
Safety time headway of vehicle THDC, TACC, TCACC (s) 1.5, 1.3, 0.9 
Saturation flow rate of IDM thw (s/veh) 2.0 
Minimum safety gap s0 (m) 2.0 
Length of vehicle l (m) 6.0 
Limit speed of vehicle vmax (m/s) 18.0 
Initial speed of vehicle (m/s) 10.0 
Upper bound of CAV acceleration amax (m/s2) 2.5 
Desired deceleration of HDV acomf (m/s2) -2.0 
Lower bound of CAV acceleration amin (m/s2) -4.0 
Limit changing rate of acceleration kmax (m/s3) 10.0  
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5.1. The benefits of the proposed eco-driving strategy in single-vehicle simulation 

To illustrate the benefits of the proposed eco-driving strategy, a simulation for a single-vehicle environment is performed. The 
lengths of intersections are 400, 450, 450 m, respectively. The signal of the first intersection begins in the green phase at t = 0 s, and 
the signal offsets for intersections φ1,2, φ2,3 are configured as 36 s. The initial speed of the vehicle is set to 10.0 m/s, and the vehicle’s 
arrival time is set to t = 10 s. It is assumed that a sub-control center within each intersection that collects real-time vehicle state and 
SPaT information to provide eco-acceleration for each CAV. 

The performance of the proposed eco-driving strategy is compared with IDM ( described in Section 3.2) and a widely used eco- 
driving strategy called the Green Light Optimal Speed Advisory (GLOSA) algorithm [35]. The core concept of the GLOSA is to pro
vide acceleration guidance based on SPaT and the current state of the ego vehicle. This guidance aims to help the CAV reach the desired 
speed while considering the safety conditions related to signal phase changes. Based on GLOSA, the CAV can achieve a trajectory that 
minimizes delay with safety constraints. More detailed information about the GLOSA can refer to [35]. 

Fig. 6 depicts the spatio-temporal trajectories, speed profiles, acceleration profiles, and fuel consumption of the three models. Note 
that the vehicle arrivals at t = 10 s, hence the signal phase of the first intersection will turn to red after 23 s. If the vehicle starts with 
maximum speed (i.e., 18 m/s), the passage time in the first intersection is approximately 22.2 s, which is close to the time that the 
signal phase turns to red. Therefore, the ego vehicle is unable to pass through the first intersection with an initial speed of 10 m/s. As 
shown in Fig. 6(a) and (b), the IDM method comes to a stop at intersections, whereas both the GLOSA and our proposed method enable 
to pass through the intersections without stopping. However, the ego vehicle employed with GLOSA fails to achieve passing in
tersections at the beginning of the green light time to mitigate the start-up lost time, as our proposed model does. This limitation arises 
from the safety constraints that dictate the transition of signal phases. GLOSA is compelled to maintain a safe distance when the green 
phase begins, which results in a delay in its passage through the intersection. Consequently, the GLOSA exhibits a longer travel time in 
comparison to IDM and our proposed model. On the other hand, as depicted in Fig. 6(c), the acceleration profile of our proposed model 
exhibits a smoother trend compared to GLOSA and IDM. This smoother acceleration profile effectively prevents abrupt changes in 
speed, leading to reduced fuel consumption, as indicated in Fig. 6(d). 

Furthermore, to eliminate the bias of energy consumption models towards the efficacy of our eco-driving strategy. Expect the ARRB 
model, the VT-Micro [36], and the electric vehicle energy consumption (EVEC) model [37] are also selected to validate the effec
tiveness of our proposed model at different arrival times, as shown in Table 3. The results show that our proposed model obtains the 
minimum travel time. In part of energy consumption, our proposed model outperforms the IDM and GLOSA in both ARRB, VT-micro, 
and EVEC models. 

5.2. The efficiency of coordinated control strategy 

The parameters of corridor simulation for mixed traffic are outlined in Table 2, the V/C ratio is set at 2/3, and the CAV PR is set to 
0.6. The arrival interval of vehicles is random. For the revised NSGA-II, the size of population M = 80, the maximum number of it
erations W = 32, and the probabilities of crossover pc = 0.9 and mutation pm = 0.1. Based on the setup, the coordinated control 
strategy is executed. To mitigate the influence of random arrival intervals, the AFC and ATT for each solution of signal phase offsets are 
obtained by averaging 20 times Monte Carlo simulations. 

Regarding the convergence of NSGA-II, Fig. 7(a) depicts the value of objective functions with each dual iteration. The grand truth 
value is derived through an exhaustive method, involving total feasible solutions of tC × tC. Consequently, the lower-level problem of 
the exhaustive method necessitates 3600 simulation runs. It is found that, in comparison to the objective function values of the initial 
population (w = 0), both the AFC and ATT exhibit notable reductions as the number of iterations increases. By the time the iteration 
count reaches w = 16, the Pareto-optimal frontier closely approximates the truth value. Notably, the simulation efforts required by 
NSGA-II are merely half of those needed by the exhaustive method, with the simulation count for NSGA-II being (w + 1) × M = 1360. 
Moreover, to demonstrate the stability of the revised NSGA-II, the numerical experiment has been run 5 times with different initial 
populations independently. The objective functions of Pareto-optimal solution sets for each run have been illustrated in Fig. 7(b). The 
Result shows that the Pareto-optimal solution sets for each run close to the ground truth value, namely different initial population 
produces the same Pareto-optimal frontier. This result validates the stability of the revised NSGA-II. 

As shown in Fig. 7(a), two boundary values on the truly Pareto frontier are discernible, denoting the minimum achievable AFC and 
ATT values. These are referred to as the optimal AFC and optimal ATT, respectively. The effectiveness of the proposed coordinated 
control strategy is assessed by comparing the spatio-temporal trajectories of optimal ATT and AFC, as depicted in Fig. 8. The trajectory 
of HDVs is represented by the solid black line, while the trajectory of CAVs is depicted by the solid blue line. It can be found that the 
signal offsets in the optimal ATT scenario are lower than those in the optimal AFC scenario, i.e., the signal offsets of the optimal ATT 
scenarios are [23,27] s, whereas the optimal AFC are [50] s. The trajectories of optimal ATT and AFC coincide within the first 
intersection. Consequently, the terminal speed at which the first CAV passes through the first intersection is about 7.7 m/s, as depicted 
in Fig. 6(b). In the optimal AFC scenario, the average speed of the ego CAV within the second intersection is calculated as 
450/50 = 9 m/s, as shown in Fig. 8(b). Therefore, the speed of the ego vehicle and its following vehicles undergo only marginal 
changes compared to the optimal ATT scenario, resulting in a significant reduction in fuel consumption as displayed in Fig. 7(b) (from 
263.6 mL to 222.7 mL). However, this decrease in fuel consumption is a trade-off by an increase in travel time when compared to the 
optimal ATT scenario (from 90.2 s to 130.2 s). 
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5.3. Sensitivity analysis to CAV PR 

Fig. 9 presents the Pareto-optimal frontier for average travel time and fuel consumption with different CAV PR, it is observed that 
with an increase in CAV PR, the Pareto-optimal frontier exhibits an overall trend of moving towards the lower left direction in the 
objective functions’ plane composed of ATT and AFC. This phenomenon indicates that the solutions of the Pareto-optimal frontier with 
lower CAV PR are almost dominated by the solutions with higher CAV PR. In other words, for any solution within the lower CAVPR, 
superior solutions in terms of both AFC and ATT can invariably be found within the higher CAV PR. This observation underscores that 
the coordinated control strategy involving corridor signal offset optimization and CAV’s eco-driving enhances efficiency and energy 
savings within mixed traffic flow. 

Moreover, the optimal AFC and ATT with different CAV PR are given in Table 4. The values of optimal AFC and ATT exhibit a 
decreasing trend as CAV PR increases, the maximum reduction in optimal ATT is 2.3% (decreasing from 90.8 s to 88.7 s), and the 
optimal AFC is reduced by 32.2% maximum (decreasing from 279.1 mL to 189.1 mL). However, the optimal ATT with a CAV PR of 0.2 
is longer by 0.2% in comparison to that with a CAV PR of 0.0. This can be attributed to the fact that, when the CAV PR is set to 0.2, the 
driving mode for CAVs predominantly approaches ACC. This adjustment influences the prediction for passage time as outlined in 
Section 3.3.1, leading to instances where the predicted passage time is larger than the actual value in certain cases. Specifically, there 
are situations where a preceding HDV manages to pass the adjacent intersection based on the current signal cycle along with its ac
celeration and speed. However, according to Eqs. (10) and (11), a driving behavior of constant speed is assumed, thereby making the 
predicted passage time larger than the actual value. Consequently, this discrepancy results in a longer travel time. Such findings is in 
line with [24]. 

5.4. Sensitivity analysis to V/C ratio 

The V/C ratio holds a significant influence over the execution of the coordinated control strategy. A higher V/C ratio compresses 
the spatio-temporal resource of vehicles, potentially resulting in increased travel time and fuel consumption for the mixed traffic flow.  
Fig. 10 depicts the Pareto-optimal frontier under various V/C ratios, with the fixed CAV PR of 0.6. As the V/C ratio increases, the 
optimal ATT exhibits a rising trend, whereas the optimal AFC demonstrates a decreasing trend. This phenomenon can be attributed to 
the increase in the number of CAVs as the V/C ratio rises. This increase in CAVs facilitates smoother passage for more HDVs through 
intersections, consequently leading to a notable reduction in fuel consumption for all vehicles. However, the rise in the V/C ratio also 
results in the compression of available road space resources for vehicles, leading to a decrease in speed and a rise in travel time. 

Furthermore, the values of optimal AFC and ATT with different V/C ratios are given in Table 5. The benchmark scenario, with a 
CAV PR of 0.0, has been selected for comparison. Notably, both the optimal ATT and AFC values under a CAV PR of 0.6 are all smaller 
than those in the benchmark scenario (CAV PR is 0.0) This observation underscores the efficacy of the proposed corridor control 
strategy, achieved through the synergistic implementation of eco-driving strategy, and signal offset optimization. The maximum 
savings of optimal ATT is 1.5% (decreasing from 94.8 s to 93.4 s), and the optimal AFC is saved by 23.5% maximum (decreasing from 
287.9 mL to 220.2 mL). 

5.5. Sensitivity analysis to joint composition of CAV PR and V/C ratio 

The effectiveness of the proposed coordinated control strategy is evaluated with combined consideration of the V/C ratio and CAV 
PR, as illustrated in Fig. 11. The x-axis denotes the V/C ratio ranging from 1/6 to 6/6 as an interval of 1/6. The y-axis represents the 
CAV PR ranging from 0.0 to 1.0 as an interval of 0.2. As illustrated in Fig. 11 (a), the optimal ATT exhibits an increase as the V/C ratio 
rises, similar to the findings in Table 5. Additionally, it is noteworthy that the penetration of CAVs enhances the maximum savings in 
ATT, escalating from 0.8% to 4.4% with the increase in the V/C ratio. For instance, when the V/C ratio is 1/6, the maximum savings in 
optimal ATT amount to 0.4% (calculated as 100 × (85.7 – 85.0)/85.7), while at the V/C ratio of 6/6, the maximum savings in optimal 
ATT reach 4.4% (calculated as 100 × (101.3 – 96.8)/101.3). This observation underscores the effectiveness of the proposed coordi
nated control strategy. However, when the value of CAV PR is below 0.4, the optimal ATT still performs a larger value than the non- 
CAV environment (CAV PR = 0.0) attributed to the conservative estimation of the passage time of the preceding HDV. 

Regarding the optimal AFC, as shown in Fig. 11 (b), when the CAV PR surpasses 0.4, the optimal AFC value exhibits a decreasing 
trend with rising V/C ratios, aligning with the trends noted in Table 5. However, when the CAV PR fall below 0.4, the optimal AFC 
experiences a decrease firstly, followed by an increase. The lowest value of optimal AFC coincides with a V/C ratio of 5/6. When the 
value of the V/C ratio is at 5/6, the average travel time reaches to 97.3 s, and the average speed is calculated as 1300/97.3 = 13.4 m/s. 
Notably, this speed is very close to the eco-cruise speed (i.e., the cruising speed at which vehicles can achieve minimal fuel 

Table 3 
Average travel time and energy consumption benefits with different arrival time.  

Methods Travel time (s) Energy consumption model 

ARRB (mL) VT-micro (mL) EVEC (kJ) 

IDM (benchmark) 94.9 385.7 198.6 698.5 
GLOSA 97.3 (+2.5%) 350.9 (−9.0%) 175.1(−11.8%) 649.4 (−7.0%) 
Our proposed model 93.5 (−1.5%) 229.1 (−40.6%) 139.9 (−29.6%) 576.0 (−17.5%)  
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Fig. 7. The convergence and stability of the revised NSGA-II.  

Fig. 8. The spatio-temporal trajectories of optimal ATT and AFC.  

Fig. 9. The Pareto-optimal frontier with different CAV PR.  
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consumption) with a value of 13.3 m/s, as documented in [18]. Additionally, with an increasing V/C ratio, the average travel time 
related to optimal AFC undergoes a decrease, culminating in the occurrence of the minimum optimal AFC at a V/C ratio of 5/6. 
Furthermore, the adoption of the proposed coordinated control strategy contributes to notable enhancements in the maximum savings 
of the AFC. This improvement ranges from 31.9% to 35.9% as the V/C ratio increases. For instance, when the V/C ratio is 1/6, the 
maximum savings in optimal AFC amount to 31.9% (calculated as 100 × (293.5 – 200.5)/293.5), and when the V/C ratio is 6/6 (i.e., 
fully saturated conditions), the maximum savings in optimal AFC remain at 35.9% (calculated as 100 × (287.9 – 184.5)/287.9). 

6. Conclusions 

This study proposes a multi-objective coordinated control strategy for mixed traffic with partially connected and automated ve
hicles in urban corridors. To decouple the joint effects of the vehicular driving behaviors and corridor signal offsets setting, a bi-level 
structure is designed. At the lower-level, three types of driving modes are presented to depict the desired car-following acceleration, 
and a trigonometry method combined with driving modes is selected to generate the ecological trajectories of CAVs. At the upper-level, 
a multi-objective optimization model for corridor signal offsets is established to optimize the ATT and AFC based on the lower-level 
simulations. Additionally, a revised NSGA-II is proposed to determine the set Pareto frontier solutions with different CAV penetration 
rate (CAV PR). Numerical experiments and sensitivity analysis are conducted to analyze the effectiveness and the generalization of the 
proposed control strategy. The main conclusion of the study drawn as follows:  

(1) Both the travel time and fuel consumption are reduced by the proposed eco-driving strategy compared with IDM and GLOSA in 
the single-vehicle simulation;  

(2) The Pareto-optimal solutions with lower CAV PR are dominated by the solutions with higher CAV PR;  
(3) The values of optimal AFC and ATT exhibit a decreasing trend as the CAV PR increases. The maximum savings in optimal ATT 

reach 2.3%, and for the optimal AFC, the savings amount to 32.2%;  
(4) The optimal ATT with low CAV PR performs a larger value than the non-CAV environment due to a conservative estimation of 

the passage time of preceding HDV. 

Our proposed coordinated control strategy can potentially help the planning of CAV’s trajectory and the design of corridor signal 
offset setting in the future mixed traffic flow environment. However, there are still several limitations in this study: (1) A simple 
passage time estimation method is used. An estimation method while considering historical information can effectively improve the 
accuracy of passage time, such as the Kalman filter. (2) A corridor with a single-lane roadway is selected. In the real world, a typical 
intersection usually consists of multiple incoming lanes, the trajectory planning composited of longitudinal and lateral movement is 
essential for actual implementation. (3) The optimization model for isolated signalized intersections is not addressed. A more 

Table 4 
Optimal ATT and AFC with different CAV PR.  

CAV PR 0.0 (benchmark) 0.2 0.4 0.6 0.8 1.0 

ATT (s/veh) 90.8 91.0 (þ0.2%) 90.4 (−0.4%) 90.2 (−0.7%) 89.5 (−1.4%) 88.7 (−2.3%) 
AFC (mL/veh) 279.1 266.1 (−4.7%) 265.2 (−5.0%) 222.7 (−20.2%) 202.2 (−27.4%) 189.1 (−32.2%)  

Fig. 10. The Pareto-optimal frontier with different V/C ratio.  

C. Wan et al.                                                                                                                                                                                                           



Physica A: Statistical Mechanics and its Applications 635 (2024) 129485

18

comprehensive approach involving cooperative optimization between vehicles, intersections, and urban corridors could potentially 
yield greater benefits for mixed traffic flow. Further study will consider a more complex and realistic environment for mixed traffic. 
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