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ARTICLE INFO ABSTRACT

Keywords: Eddy covariance serves as one the most effective techniques for long-term monitoring of ecosystem fluxes,
Eddy ‘co‘variance however long-term data integrations rely on complete timeseries, meaning that any gaps due to missing data
Gap-filling must be reliably filled. To date, many gap-filling approaches have been proposed and extensively evaluated for
Managed & low-flux ecosystems . .

ERAS drivers mature and/or less actively managed ecosystems. Random forest regression (RFR) has been shown to be stable

and perform better in these systems than alternative approaches, particularly when filling longer gaps. However,
the performance of RFR gap filling remains less certain in more challenging ecosystems, e.g., actively managed
agri-ecosystems and following recent land-use change due to management disturbances, ecosystems with rela-
tively low fluxes due to low signal to noise ratios, or for trace gases other than carbon dioxide (e.g., methane).

In an extension to earlier work on gap filling global carbon dioxide, water, and energy fluxes, we assess the
RFR approach for gap filling methane fluxes globally. We then investigate a range of gap-filling methodologies
for carbon dioxide, water, energy, and methane fluxes in challenging ecosystems, including European managed
pastures, Southeast Asian converted peatlands, and North American drylands.

Our findings indicate that RFR is a competent alternative to existing research standard gap-filling algorithms.
The marginal distribution sampling (MDS) is still suggested for filling short (< 12 days) gaps in carbon dioxide
fluxes, but RFR is better for filling longer (> 30 days) gaps in carbon dioxide fluxes and also for gap filling other
fluxes (e.g. sensible heat, latent energy and methane). In addition, using RFR with globally available reanalysis
environmental drivers is effective when measured drivers are unavailable. Crucially, RFR was able to reliably fill
cumulative fluxes for gaps > 3 moths and, unlike other common approaches, key environment-flux responses
were preserved in the gap-filled data.

1. Introduction

The eddy covariance (EC) technique measures the net exchange of
mass and energy between the land surface and the atmosphere, and eddy
covariance observational networks (e.g., FLUXNET) have expanded
monitoring efforts of carbon, water and energy cycles and helped stan-
dardise and distribute flux data, (Baldocchi 2020). In recent years, eddy
covariance applications have been extended to measure fluxes of other
greenhouse gases [e.g., methane] (FEugster and Pliiss 2010; Saunois
et al., 2016). However, just as with CO5, the completeness of these flux
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time series is limited by instrumental failures and data quality issues that
result in missing data ‘gaps’.

Many ‘gap-filling’ approaches have been applied to model missing
values based on the existing data (Reichstein et al., 2005; Moffat et al.,
2007; Kim et al., 2020; Zhu et al., 2022). These gap-filling techniques
range from process-based models, e.g., biosphere energy-transfer hy-
drology model (Knorr and Kattge 2005), to empirical models such as
non-linear regression and artificial neural networks [ANN] (Braswell
et al., 2005; Noormets et al., 2007) after the pioneering studies (Papale
and Valentini 2003; Reichstein et al., 2005). Marginal distribution
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sampling [MDS] (Reichstein et al., 2005; Moffat et al., 2007) and ANN
(Delwiche et al., 2021; Mahabbati et al., 2021) are widely adopted as
research-standard gap-filling approaches and remain the benchmark for
comparison of novel approaches. Recently proposed machine
learning-based methods - e.g., random forest regression (RFR) —
exhibited close or even better gap-filling performance than MDS and
ANN (Kim et al., 2020; Zhu et al., 2022). However, an understanding of
the reliability of eddy covariance gap-filling algorithms is still incom-
plete. For example, Moffat et al. (2010) and Albert et al. (2017) sepa-
rately analysed the net carbon flux responses to photosynthetic radiation
and air temperature. It remains unknown if these gap-filling approaches
can preserve other flux-environment responses - e.g., the carbon flux to
water table depth response in McCalmont et al. (2021) - that are also
crucial to investigating the biosphere-atmosphere interactions.

First, the flux of primary interest in most cases is carbon dioxide
(CO3), which has seen research effort concentrated more on this gas than
other fluxes. For example, studies on filling methane flux gaps (> two
months particularly) are still uncommon (Delwiche et al., 2021) as
methane flux-measuring instruments only became more practical in the
2010s (McDermitt et al., 2011). Methane flux gap-filling is typically
more challenging than CO; fluxes, due to high variability and responses
to multiple environmental controls: soil temperature and seasonality
were the most important drivers for wetlands (Irvin et al., 2021) but
water table depth is also important in cases where water table fluctua-
tions were substantial (Kim et al., 2020). Previous studies mainly
focused on the local scale (Hommeltenberg et al., 2014; Morin et al.,
2014) or a certain types of ecosystem (Dengel et al., 2013; Irvin et al.,
2021). Considering the recently released global methane flux database
(Delwiche et al., 2021), a global multi-ecosystem study is thereby
possible and will benefit our wunderstanding of methane
flux-environment interactions.

Second, most early eddy covariance towers were installed in pro-
ductive and/or less-disturbed natural ecosystems, and this sampling
distribution poses challenges to the development of gap-filling (Moffat
etal., 2007; Irvin et al., 2021; Zhu et al., 2022). Flux gap-filling for other
types of ecosystems can be challenging, these include managed ecosys-
tems and ecosystems with flux rates close to zero (Lucas-Moffat et al.,
2018; McKenzie et al., 2021; Yao et al., 2021a). In managed ecosystems,
for example, agricultural activities, can substantially alter flux temporal
dynamics (McCalmont et al., 2021; Cardenas et al., 2022), quantifying
the frequency and intensity of management activities can be challenging
for training a machine learning model to gap-fill these timeseries. For
low-flux ecosystems — e.g., drylands that comprise around 40% of the
global land surface (Huang et al., 2016; Cunliffe et al., 2022) — the low
signal-to-noise ratio makes gap filling challenging.

In addition, it is valuable to consider the possibility of gap-filling
only with drivers derived from publicly available meteorology rean-
alyses datasets. The high financial cost of an eddy covariance system and
the cost of redundant meteorological measurements are a significant
limiting factor in the extension of flux monitoring networks (Hill et al.,
2017), resulting in an incomplete picture of global scale ecosystem
carbon cycling (Schimel et al., 2015). In this case, gap-filling with open
meteorological reanalysis data could help promote the application of
eddy covariance globally. Furthermore, the use of meteorological
reanalysis data may help improve flux estimates in regions where
redundancy in flux and meteorological measurements is not available or
is very sparse (Xiao et al., 2012).

In this study we explore the effectiveness of gap-filling techniques for
net ecosystem exchange (NEE, i.e., CO5 flux), sensible heat (H), latent
energy (LE), and methane flux (FCH4) in challenging ecosystems. To
achieve this, we first globally evaluate gap-filling techniques for long
FCH4 gaps. We then, for the first time, investigate impacts of machine
learning algorithms, environmental drivers, and gap lengths on the gap-
filling performance in seven challenging ecosystems, including three
managed European grassland pasture sites, two Southeast Asian peat-
land conversion sites and two North American dryland sites. The aim of
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this study is to inter-compare and validate gap-filling approaches and
determine factors that impact gap-filling performance in challenging
ecosystems.

2. Methodology
2.1. Study designs

This study comprises two parts (A & B). In part A, we test our gap-
filling algorithm at 77 sites of a global methane flux database (FLUX-
NET-CH4). Following the routines proposed in Zhu et al. (2022), we first
tested the effectiveness of random forest (RFR) for filling FCH4 globally
as RFR has been repeatedly suggested particularly for gap-filling long
gaps (Kim et al., 2020; Irvin et al., 2021; Zhu et al., 2022). In part B, we
evaluated gap-filling performance for NEE, H, LE, and/or FCH4 across
machine learning algorithms to separate out the leading performance
limitations in seven challenging ecosystems. The two parts will be
referred to as ‘Part A’ and ‘Part B’ as study designs, analyses, and pre-
sentations in between are different.

2.2. Sites description

For this study we used eddy covariance measurements from 1) a
global open-access FCH4 dataset (FLUXNET-CH4) for Part A and 2) sites
we maintained in three challenging ecosystems for Part B.

2.2.1. FLUXNET-CH4 sites (Part A)

The FLUXNET-CH4 Version 1.0 Community Product released in 2021
is the first global FCH4 dataset (Delwiche et al., 2021). We used all the
77 open-access eddy covariance sites (across 204 site years) on a wide
range of soil types [see Table S1 for details] (Delwiche et al., 2021). The
mean and median gap ratio (gap half-hours / total half-hours) of the 77
sites are both 70%. In this study, incoming shortwave radiation
(SW_IN_F), air temperature (TA_F), and vapour pressure deficit (VPD_F),
provided the key three environmental drivers set (drivers); in addition to
these, incoming longwave radiation (LW_IN_F), precipitation (P), soil
temperature (TS_1), friction velocity (USTAR), wind speed (WS_F),
water table depth (WTD_F), and all other available drivers were added to
form the extended multiple drivers set (drivery,) (https://fluxnet.org/d
ata/fluxnet-ch4-community-product/data-variables/).

2.2.2. Challenging sites (Part B)
We also evaluated gap-filling techniques for three types of chal-
lenging ecosystems:

1) Three temperate grasslands as managed pasture (ROTH_HS,
ROTH_PP, and ROTH_HSC) affected by grazing and other agricul-
tural activities. These sites are from the Rothamsted North Wyke
Farm Platform in the United Kingdom, (NWFP, established in 2010,
see more at https://nwfp.rothamsted.ac.uk/) which provides a
platform to research ecosystem responses to livestock grazing under
different management practices in lowlands of southwest England.
Rainfall in the area is averages around 1000 mm yr~! with a mean air
temperature of ca. 10 °C. The three pastures were typically grazed
from April to October with cattle (ca. 4 ha’l), lamb (ca. 17 ha’l),
and sheep (ca 10 ha~!). ROTH_PP, the Permanent Pasture, is
considered as a control; it retains the original sown species (pre-
dominantly perennial ryegrass, Lolium perenne) and has not been
ploughed for the previous 10 years (Orr et al., 2016). ROTH_HS (i.e.,
High sugar grass) and ROTH_HSC (i.e., White clover/High sugar
grass mix) were separately ploughed and re-seeded in 2013
(ROTH_HS) and 2014 (ROTH_HSC) with the Lolium perenne grass
variety AberMagic and the combination of AberMagic and the white
clover variety AberHerald (more details can be found in Orr et al.
(2016) and Cardenas et al. (2022)).


https://fluxnet.org/data/fluxnet-ch4-community-product/data-variables/
https://fluxnet.org/data/fluxnet-ch4-community-product/data-variables/
https://nwfp.rothamsted.ac.uk/

S. Zhu et al.

Table 1
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Site background information and gap ratio for NEE, H, LE, and FCH4. 10 Hz data were processed into half-hourly mean fluxes rates using EddyPro software (v6.2.2 LI-
COR Environmental, Lincoln, Nebraska, USA).

Managed pastures Converted peatlands Drylands
Tower ROTH_HS ROTH_PP ROTH_HSC SAB SEB SEG SES
Coordinates 50.77°N, 3.91°W 50.77°N, 3.91°W 50.77°N, 3.90°W 3.16°N, 113.42°E 3.17°N, 34.34°N, 34.36°N,
113.35°E 106.74°W 106.70°W
Data time 01/01/2017-04/ 01/01/2017-10/ 01/01/2017-04/ 12/12/2016-31/ 16/04/ 03/10/2018-31/ 03/10/2018-31/
06/2019 (31 07/2019 (31 07/2019 (31 01/2020 (38 2017-10/02/ 12/2020 12/2020 (34
months) months) months) months) 2020 (34 months) months)
(34 months)
Plant type High Sugar grass Permanent Pasture High sugar grass/ Early converted Mature Bouteloua- Larrea tridentata
white clover mix peatland converted dominated shrubland
peatland grassland
Canopy height (m)  0.05 0.05 0.05 2.6 8 0.3 0.75
Measurement 1.59 1.57 1.59 6 20 3 2.5
height (m)
Sonic anemometer ~ Windmaster Pro’ Windmaster Pro’ Windmaster Pro’ R3-50' R3-50' CSAT-3” CSAT-3°
Infra-red gas LI-7200/(LI-7700 LI-7200/(LI-7700 LI-7200° L1-7200/7550° L1-7200/7550°  LI-7500° L1-7200/L1-7500°
analyser (IRGA)  for FCH4)® for FCH4) °
Existing gap ratio
NEE 69% 64% 63% 68% 80% 12% 11%
H 65% 64% 63% 70% 73% 7% 6%
LE 80% 75% 74% 70% 73% 11% 10%
FCH4 83% 83% / / / / /

! Gill Instruments Ltd, Lymington, Hampshire, UK.

2 Campbell Scientific, Logan, Utah, USA.

3 LI-COR Environmental, Lincoln, Nebraska, USA.

Table 2

Driver sets for the seven sites at three challenging ecosystems. Sites within the same ecosystem use the same driver sets. SW is shortwave solar radiation (W m ~ ), TA is
air temperature ( °C), VPD is vapour pressure deficit (kPa), PPFD is photosynthetic photon flux density (umol m ~ 25~ 1), USTAR is friction velocity (ms ~ 1), WS is wind
speed (ms 1), NETRAD is net radiation (Wm ~ 2), P is precipitation (mm), TS is soil temperature ( °C), SWC is soil water content (m3m’3), and SHF is soil heat flux (W

m ~ 2). The subscript ‘era’ indicates the corresponding drivers are re-analysed ones.

Managed pastures Converted peatlands Drylands
drivers drivery, driverer, drivers drivery, driverer, drivers drivery, drivere,
SW SW SWera SW SW SWera SW SW SWera
TA TA TAera TA TA TAera TA TA TAera
VPD VPD VPDe¢ra VPD VPD VPDe¢;a VPD VPD VPDga
PPFD USTAR PPFD
USTAR WS USTAR
WS WTD WS
NETRAD / P
P / NETRAD
TS / /
SWC / /
SHF / /
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Fig. 1. Locations and site years of 77 FLUXNET-CH4 sites (circles) and 7 sites

(squares) in the challenging ecosystems.

2) Two oil palm (Elaeis guineensis) plantations established into
tropical peatland in Sarawak, Northern Malaysian Borneo, which
provide datasets capturing both a developing plantation ecosystem
and the mature phase under tropical conditions. The converted sites
(Sabaju (SAB) and Sebungan (SEB)) were established into land

-2.-1
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Longitude

Fig. 2. Overview of gap-filling performance (R% circle colours, MBE: circle
sizes) at the FLUXNET-CH4 sites. The performance measures are averages of
gap-filling techniques and different artificial gap lengths. The unit for MBE is
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Table 3

Statistics of gap-filling performance for three approaches: MDS, RFR3, and
RFRm. MDS and RFR3 use drivers set and RFRm uses driver,, site. Q1 and Q3 are
the first quartile and the third quartile, respectively. The unit for RMSE and MBE
arenmol CHym ~ 25~ ..

R? Slope RMSE MBE
MDS
Min 0.00 0.00 1.84 ~5.14
Q1 0.08 0.13 15.95 -0.59
Median 0.34 0.43 33.78 0.05
Mean 0.37 0.42 60.78 0.99
Q3 0.66 0.66 63.17 0.92
Max 0.89 0.92 346.88 21.24
RFR3
Min 0.00 0.01 1.80 ~14.40
Q1 0.16 0.25 13.12 -0.45
Median 0.44 0.47 28.73 0.05
Mean 0.47 0.48 52.29 0.59
Q3 0.77 0.79 52.82 1.21
Max 0.93 0.97 298.48 17.89
RFRm
Min 0.00 0.01 1.76 ~13.05
Q1 0.30 0.31 12.63 -0.23
Median 0.52 0.50 27.86 0.13
Mean 0.53 0.53 48.54 0.54
Q3 0.79 0.79 52.18 0.71
Max 0.94 0.94 253.92 20.12
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Fig. 3. Gap-filling R? boxplots for the three approaches grouped by the Inter-
national Geosphere-Biosphere Programme classification (IGBP). Triangles in
the boxes are mean values. CRO: Croplands, EBF: Evergreen Broadleaf Forests,
ENF: Evergreen Needleleaf Forests, GRA: Grasslands, URB: Urban and Built-Up
Lands, WAT: Water Bodies, WET: Permanent Wetlands, and WSA: Woody Sa-
vannas (https://fluxnet.org/data/badm-data-templates/igbp-classification/).

previously cleared of peat swamp forest with forest residues
remaining on site, unburnt and compacted into rows, with soil
drainage carried out through a regular grid system of drainage canals
cut into the peat. The SAB dataset captures the early conversion
period immediately following conversion (years 1-3), starting at
bare soil with palms developing rapidly over the three years, while
the SEB dataset covers the mature, cropping phase (years 10-12).
Rainfall in the area is typically high at ca. 3000 mm yr'' with a mean
air temperature of ca. 26 °C. Full details of the study site area,
experimental set up, data collection, processing and quality control
can be found in McCalmont et al. (2021).

3) Two dryland sites, located in the Northern Chihuahuan Desert,
New Mexico, USA, to evaluate the gap-filing performance under the
low signal-to-noise conditions. These are AmeriFlux core sites (US-
Seg and US-Ses, separately referred to as SEG and SES hereafter)
(Anderson-Teixeira et al., 2011; Litvak 2016a, b; Boschetti et al.,
2021). Rainfall in the area is ca. 230 mm yr~! with a mean air
temperature of ca. 15 °C. US-Seg experienced a severe wildfire in
2009 (https://ameriflux.lbl.gov/sites/siteinfo/US-Seg). Instrumen-
tation and more background information of these seven sites can be
found in Table 1. The data filtering and other data processing steps
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Fig. 4. Methane flux gap-filling performance in terms of R*> and MBE for 1-day,
7-day, and 30-day long gaps. The horizontal lines and triangles within the boxes
indicate medians and means, respectively. The lower and higher whiskers
separately are first and third quartiles.

followed Reichstein et al. (2005), Papale et al. (2006), and referred
to the FLUXNET processing standards Pastorello et al. (2020).

2.3. Gap-filling pipeline

2.3.1. Environmental drivers
Gap-filling approaches were driven by environmental variables, we
investigate the influence of three different driver sets:

1) three typically measured key drivers (drivers) — shortwave solar
radiation (SW), air temperature (TA), and vapour pressure deficit
(VPD)

2) three measured key drivers along with additional in-situ measured
drivers (drivery,)

3) three modelled key drivers from re-analysed public records
(driverera)

In Part A, the driver sets for gap-filling FLUXNET-CH4 sites were
introduced above. For the challenging sites in Part B, measured half-
hourly drivers (drivers and drivery,) and reanalysis drivers (driverer,)
derived from a publicly available database (European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5)
(Hersbach et al., 2018) are given in It is noteworthy that reanalysis data
may not represent the exact tower-level meteorological conditions
(Vuichard and Papale 2015; Lipson et al., 2022). We used driverera
directly aims to test flux estimation when or where measurement data
are unavailable.

In addition to environmental drivers, we also used auxiliary drivers
(denoted as AUX) —i.e., hour, day of year, and year information for each
half-hourly data point.

Table 2. Gaps in measured drivers were filled with ERA5 data
following Vuichard and Papale (2015). ERAS provides global hourly
meteorology at 0.25° x 0.25° since 1979, and we used air and dew point
temperature at 2 m above the ground and downward solar radiation at


https://ameriflux.lbl.gov/sites/siteinfo/US-Seg
https://fluxnet.org/data/badm-data-templates/igbp-classification/
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Fig. 5. Panel (a) shows the normalised FCH4 very-long gap (vl4) filling errors. The values are sums of normalised errors at FLUXNET-CH4 sites and are grouped by
gap-filling approaches. The term ‘error’ here means the cumulative difference between filled artificial gaps and measurements in the vl4 scenario. The term ‘nor-
malised’ means, at each site, the error was divided by the FCH4 sum. Panel (b) and (c) show the performance at two FLUXNET-CH4 sites DE-Zrk (c) and US-Bil (d) in
the very-long gap (v14) scenario where the first two-thirds of time series (i.e., the grey area left to the solid black vertical line) to train the gap-filling models while the
last one-third of time series (i.e., the area right to the solid black vertical line) were used as the artificial gap to evaluate the gap-filling performance. The fluxes are
presented in the cumulative manner to evaluate the aggregated errors. Gaps originally existed in measurements (i.e., blue lines) were removed beforehand to test the

gap-filling performance.

the ground surface. ERA5 gridded time-series were interpolated into
coordinates of the seven EC towers, respectively. It is noteworthy that
reanalysis data may not represent the exact tower-level meteorological
conditions (Vuichard and Papale 2015; Lipson et al., 2022). We used
driverey, directly aims to test flux estimation when or where measure-
ment data are unavailable.

In addition to environmental drivers, we also used auxiliary drivers
(denoted as AUX) - i.e., hour, day of year, and year information for each
half-hourly data point.

2.3.2. Artificial gap scenarios

In Part A, gap-filling validation compared the filled artificial gaps
with corresponding measured fluxes. The validation of RFR gap-filling
for FCH4 took the same machine-learning algorithm implementation
and artificial gap scenario as Zhu et al. (2022). In this scenario, 25% of
half-hours were randomly removed from FCH4 time series to create
artificial gaps with three gap-lengths: 20% were 24-hour long gaps, 30%
were 7-day long gaps, and the last 50% were 30-day long gaps.

In Part B, to fully evaluate the gap-filling performance on various
gap-lengths based on Moffat et al. (2007) and Zhu et al. (2022), we used
ten gap scenarios:

a) Very-short gaps (vs) of single half-hour
b) Short gaps (s) of eight consecutive half-hours
¢) Medium gaps (m) of 64 consecutive half-hours (= 1.5 days)

d) Long gaps (1) of 12 consecutive days

e) Mixed-length gaps (M1) of combining scenarios a to d

f) Very-long gaps (v11) of 30 consecutive days

g) Very-long gaps (v12) of 60 consecutive days (= 2 months)

h) Very-long gaps (v13) of 90 consecutive days (= 3 months)

i) Very-long gaps (vl4) by making the whole last 1/3 time series as
artificial gaps

j) Mixed-length gaps (M2) of combining 1-day, 7-day, and 30-day long
gaps, see (Zhu et al., 2022).

Scenarios a — e, identical to Moffat et al. (2007), were used to
represent typical length gaps caused by de-spiking, data quality control,
or system failure. Scenarios f — j were used to assess the capability of
gap-filling techniques to deal with very long gaps. Note that the
non-artificial gaps - i.e., the ‘real’ missing half-hours in original mea-
surements — were removed in evaluating gap-filling performance. All the
evaluations and validations were carried out on artificial gaps.

2.3.3. Gap-filling approaches

Gap-filling techniques in this study include MDS and six machine-
learning algorithms. In both Part A, we used MDS and the random for-
est (RFR) algorithms. In and Part B, we used all seven algorithms. The
MDS method was implemented via the widely used REddyProc (v. 1.2.2)
open source R package (Wutzler et al., 2018). The implementation of the
six machine-learning algorithms followed the workflow in Zhu et al.
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Fig. 6. Gap-filling R? against MBE grouped by approaches for NEE (a), H (b), LE (c), and FCH4 (d). The dots represent mean R* and MBE across ecosystems, driver

sets, and gap-lengths a — e.

(2022). Full description of all the seven approaches can be found below.
The effectiveness of each gap-filling approach was assessed by
comparing gap-filled to original values using the coefficient of deter-
mination (R%) and slope of the ordinary least squares regression, root
mean squared error (RMSE) and the mean bias error (MBE). The sta-
tistical comparisons were calculated using the Python SciPy (V1.7.1)
package (Virtanen et al., 2020). We applied the following methods, in
addition to our statistical metrics, to further evaluate the gap-filling
performance: 1) the cumulative errors to evaluate the accuracy in
calculating annual sums particularly for the long gap length scenarios
(v11 —vl4) and 2) the ‘(permutation) feature importance’, which suits all
the algorithms here (Altmann et al., 2010), to measure the contribution
of drivers to the machine learning algorithms. Furthermore, we also
investigate the capability of reproducing already known relationships
between fluxes and environmental variables — e.g., the 2nd order poly-
nomial fit of ecosystem respiration to water table depth (WTD)
(McCalmont et al., 2021).

2.3.3.1. Gap-filling workflow. The whole gap-filling workflow included
approach validation and application. We first applied this workflow to
all the FLUXNET-CH4 towers in Part A. Then in Part B, we applied it to
the challenging towers to separately test the seven gap-filling

approaches for the flux of interests (i.e., NEE, H, LE, or FCH4) in various
artificial gap scenarios described in Section 2.3.2 - i.e., in every work-
flow implementation, we tested one approach in one scenario for one
flux at one tower. Specifically, in the validation step, we randomly
masked out flux measurements to create artificial gaps. As the artificial
gaps may overlap with existing ‘real’ gaps, we applied a criterion which
required at least 50% original measured data be present (Zhu et al.,
2022). Otherwise, we would randomly recreate gaps unless the criterion
was met. Then we filled the artificial gaps to compare with corre-
sponding measurements. In the application step, we applied the vali-
dated approach to fill the ‘real’ gaps. See the algorithm paper for more
technical details (Zhu et al., 2022).

2.3.3.2. Marginal distribution sampling (MDS). For MDS, a standard gap-
filling approach, gaps were filled by considering the covariance of fluxes
with meteorological drivers (global radiation, air temperature and
vapour pressure deficit) and the temporal autocorrelation of the flux
values. Where only flux data are missing, but meteorological data are
present, the missing flux value was filled with the mean value of fluxes
under similar meteorological conditions within a seven-day window. If
no meteorological data are available in the time window, the value was
filled with a mean value from the same time of day (the mean diurnal
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Fig. 7. Gap-filling R? and MBE grouped by driver sets for NEE (a), H (b), LE (c), and FCH4 (d) on average of ecosystems and gap-length scenarios.

course), initially = 1 hour either side of the missing value or from
increasingly widening windows (i.e., linear interpolation of data either
side of the missing value). Standard deviations of these mean values
used in gap-filling are recorded along with a categorical classification of
the confidence level of the filled value based on approach and window
size (Reichstein et al., 2005).

2.3.3.3. Machine-learning algorithms. Here, we tested three commonly
used gap-filling algorithms [(1) — (3)] and three additional algorithms
[(4) — (6)] to assess their potential for improving the gap-filling
performance:

1) Multiple layer perceptron (MLP) (Hinton 1989);

2) Support vector regressor (SVR) (Platt 1999);

3) Random forest regressor (RFR) (Breiman 2001);

4) Xgboost (XGB) (Chen and Guestrin 2016);

5) Ada boost regressor (ABR) (Freund and Schapire 1997);
6) Gradient boosting regressor (GBR) (Friedman 2001).

Algorithm (1) is an artificial neural network (ANN) but we use the
specific label, multiple layer perceptron (MLP) to avoid ambiguity
because the term ANN now encapsulates various kinds of neural net-
works (Abiodun et al., 2018). It is also a standard gap-filling approach

particularly for gaps longer than one month (Delwiche et al., 2021;
Mahabbati et al., 2021). The SVR was also an established gap-filling
algorithm, it converts non-linear regressions into higher-dimensional
linear regression by a predefined kernel function (Khan et al., 2021;
Yao et al., 2021b).

Decision tree-based algorithms, especially the RFR, were reported to
be superior to the standard gap-filling approaches (Kim et al., 2020;
Mahabbati et al., 2021; Zhu et al., 2022). Hence, we also used other
mainstream decision tree-based algorithms [algorithm (4) - (6)] to
further test the effectiveness of tree-based algorithms in gap-filling. In
addition, information redundancy - i.e., the correlation between drivers
— can be detrimental to the gap-filling performance (Kim et al., 2020).
Therefore, we also adopted the RFR with principal component analysis
(RFRpca) to reduce redundant information as in Kim et al. (2020).

We used the Scikit-Learn package (v 0.23.1) (Pedregosa et al., 2011)
within Python (v 3.6) to provide interfaces to all machine-learning al-
gorithms except XGB which was provided independently (v 1.1.1, htt
ps://xgboost.readthedocs.io/en/latest/index.html) (Chen and Guestrin
2016). Hyperparameters of all the machine learning algorithms were set
as default (see the links after algorithm names). Details of the six
machine-learning algorithms can be found in the Supplementary
materials.


https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://xgboost.readthedocs.io/en/latest/parameter.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://xgboost.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/index.html
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3. Results forests (EBF) had higher averaged flux value and R? than permanent

3.1. Gap-filling evaluation for FLUXNET-CH4 sites (Part A)

3.1.1. Global validation of RFR gap-filling for methane fluxes

The performance for filling long methane gaps exhibited large spatial
variability but no regional patterns (Fig. 2). The gap-filling performance
was the best in wet tundra and fen ecosystems in north Europe and
northwest America as well as rice and bog ecosystems in northeast Asia
and North America (indicated by higher R? and smaller bias, see https:
//fluxnet.org/data/fluxnet-ch4-community-product/ for the types and
distribution of ecosystems). As for the methane flux gap-filling ap-
proaches per se (Figure S2), three-driver random forest (RFR3) per-
formed better than marginal distribution sampling (MDS), as indicated
by a 29% higher R? median; Furthermore multiple-driver random forest
(RFRm) performed better than RFR3 by 19% (Table 3). Regarding the
gap-filling error in terms of RMSE and uncertainty in terms of the
interquartile range of bias, three-driver random forest was better than
marginal distribution sample due to a 10% smaller RMSE median and a
smaller uncertainty (1.51 vs. 1.66 nmol CHs m ~ 25 ~ !). Using multiple
drivers further reduced the error of random forest gap-filling by 3% and
with a smaller uncertainty of 0.94 nmol CH4nf2 s ~ 1 (Table 3).

Following the International Geosphere-Biosphere Programme (IGBP)
classification, gap-filling R? of RFRm was higher than RFR3 and further
higher than MDS in nearly all classes (Fig. 3), alongside with the
opposite pattern of error —i.e., error of RFRm was smaller than RFR3 and
further smaller than MDS (Figure S5). Details for gap-filling perfor-
mance in terms of site classification in Delwiche et al. (2021) can be
found in Figure S5 too. The R? distribution was in relation to types of
ecosystems, fen and marsh ecosystems had higher R? than other site
classes.

Considering both IGBP and site (Delwiche et al., 2021) classifica-
tions, taking gap-filling results of RFRm (Fig. 3b) as an example, higher
R? values were observed in classes with higher fluxes. Meanwhile,
classes with higher fluxes were also seen with relatively larger
gap-filling errors, and these characteristic were seen for the other two
gap-filling methods. Flux values and R? exhibited a positive
second-order polynomial relationship (Figure S5) and this positive
relationship was more obvious for the site classification (Fig. 3b). In
other words, IGBP classes (of the same site class) with higher fluxes
showed higher R2. For example, in the bog class, evergreen broadleaf

wetlands (WET) and further higher than evergreen needleleaf forests
(ENF). However, this pattern was not seen obviously for site classes.

When filling longer gaps, R? of all three gap-filling approaches
decreased while the bias increased, particularly for filling the 30-day
gaps (Fig. 4). For filling all three gap-lengths, multiple-driver random
forest still performed better than three-driver random forest and further
performed better than marginal distribution sampling. Comparing
filling 1-day long gaps and 7-day long gaps, the gap-filling performance
of all three approaches were relatively stable (R? medians decreased by
less than 30% while the uncertainty difference was approximately 2
nmol CHy m ~ 25 ~ 1). However, as gap-length increased further from 7-
day to 30-day, the gap-filling performance of all three approaches
declined greatly (R? medians dropped by nearly 90% while the uncer-
tainty increased to nearly 40 nmol CHy m ~ 25~ 1).

3.1.2. Intercomparisons between machine learning algorithms

As regards the cumulative gap-filling errors at global FLUXNET-CH4
sites (Fig. 5a), the random forest regressor (RFR) had smaller error
compared to the other machine learning algorithms. Here, we show the
results of Xgboost (XGB) as an example of other decision tree-based al-
gorithms. The marginal distribution sampling was not employed
because it cannot fill very long gaps (Zhu et al., 2022). Comparing the
number of drivers, the cumulative error of using multiple drivers (e.g.,
RFRm) was higher than using the three essential drivers (RFR3). As an
example, Fig. 5b and c show the typical gap-filling performance at two
FLUXNET-CH4 sites — DE-Zrk with strong seasonality and US-Bil with
low seasonality. Gap-filling approaches at the two sites exhibited con-
trasting performance. Cumulative fluxes filled by all approaches at site
DE-Zrk were in good agreement with corresponding measurements
(Fig. 5b). Whilst large disagreement was observed at site US-Bil
(Fig. 5¢). As regards performance difference between algorithms, the
RFR and XGB estimated cumulative methane flux (FCH4) much closer to
measurements (Fig. 5e) than the research-standard multiple layer per-
ceptron (MLP) algorithm.

3.2. Gap-filling evaluation in challenging ecosystems (Part B)

3.2.1. Comparison between methods, drivers, and gap-lengths
Averaged across scenarios a — e, i.e., scenarios in Moffat et al. (2007),
random forest (RFR) performance was best for most fluxes (indicated by


https://fluxnet.org/data/fluxnet-ch4-community-product/
https://fluxnet.org/data/fluxnet-ch4-community-product/
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Fig. 9. Gap-filling performance in terms of R? of various approaches at seven towers in the three challenging ecosystems for NEE (a), H (b), and LE (c). This figure is

based on the aritificial gap-lengths a — e.

higher R? and smaller bias, Fig. 6). For net ecosystem exchange (NEE),
gap-filling performance of marginal distribution sampling (MDS) was
the best due to the highest R? and a relatively small bias. Random forest
regression (RFR) and gradient boosting regression (GBR) also exhibited
relatively good gap-filling performance (R? > 0.8); the bias difference
between approaches was smaller than 0.05 ¢ Cm ~ 2 d! (Fig. 6a). In
contrast, the gap-filling performance was the worst by using support
vector regression (SVR, R? < 0.6) and Ada boost regression (ABR, bias >
0.1gCm ™~ 2d- 1). For sensible heat (H) and latent energy (LE), random
forest regression (RFR), gradient boosting regression (GBR), and mar-
ginal distribution sampling (MDS) still showed the best gap-filling per-
formance (R? > 0.5 and bias < 5 W m ~ 2); in this case, Xgboost (XGB)
also exhibited an equivalent R? and bias (Fig. 6b and ¢). Again, support
vector regression (SVR) and Ada boost regression (ABR) showed the
worst performance. For methane fluxes (FCH4), random forest regres-
sion (RFR) showed relatively better performance but the gap-filling

performance of all approaches were bad (R? < 0.1, Fig. 6d). Bias of
Ada boost regression (ABR) exceeded 40 nmol CH, m ~ 25 ~ ! while it
was smaller than 20 nmol CHs m ~ 25 ~ ! for all other approaches.
Generally, for net ecosystem exchange (NEE), sensible heat (H), and
latent energy (LE), the gap-filling R? of using multiple drivers (drivery,
m > 3) was higher than using three drivers (drivers) and modelled
drivers (driverer,) for all the approaches (Fig. 7a —c). In contrast, for
methane fluxes (FCH4), the R? for modelled drivers (drivere,,) was the
highest for most of the approaches (Fig. 7d). Gap-filling bias showed no
uniform characteristics in comparisons between driver sets; for example,
multiple layer perceptron (MLP) bias in filling net ecosystem exchange
gaps for using modelled drivers (drivere,) was close to zero, but bias for
using three drivers (drivers) was 0.17 g Cm ~ 2 d"! and bias for using
multiple drivers (driver,,) was even larger, reaching 0.28 gCm ~ 2d ~ !
(Fig. 7a). However, bias of random forest regression (RFR) for using
drivery, was close or smaller than drivers and smaller than drivere,, for
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Fig. 10. Gap-filled fluxes against measurements in the very-long gap (vl4)
scenario where the first two-thirds of time series (i.e., the grey area left to the
solid black vertical line) to train the gap-filling models while the last one-third
of time series (i.e., the area right to the solid black vertical line) were used as
the artificial gap to evaluate the gap-filling performance. The fluxes are pre-
sented in the cumulative manner to evaluate the aggregated errors. The blue,
orange, and green blocks represent the grazing period for cattle, lamb, and
sheep, respectively. The grey dashed vertical lines are the occurrence of man-
agement activities.

net ecosystem exchange, sensible heat, and latent energy but not for
methane (Fig. 7).

The gap-filling R consistently decreased as the gap-length increased
from very-short (vs) to long (1) gaps in the ‘standard’ artificial gap sce-
nario (Moffat et al., 2007) for all the approaches (Fig. 8). Similar results
for other fluxes can be found in Figure S4. In comparison between
marginal distribution sampling (MDS), random forest regression (RFR)
and gradient boosting regression (GBR), MDS R? decreased by the
largest amount as gap-length increased from medium (m) to long (1),
nearly 25%. In the meantime, MDS showed the largest and continuous
absolute bias increase as the gap-length increased from very-short (vs) to
long (s); but the bias variations of random forest and gradient boosting
were smaller. For very-long gaps (vl — v4), R? also decreased as the
gap-length increased. R? decreased to a much lower ratio (~ 25%) for
machine-learning approaches than for MDS. In particular, MDS failed to
fill gaps when the gap-length reached 3-month (v13). random forest
regression (RFR), gradient boosting regression (GBR), and Xgboost
(XGB) had relatively small absolute bias amongst gap lengths; and
random forest bias variations were smaller compared to other
approaches.

Gap-filling R? for the standard artificial gap scenario (Moffat et al.,
2007) showed relatively obvious ecosystem-level patterns (Fig. 9).
Gap-filling R? for the control permanent pasture (ROTH_PP) was higher
and with narrower interquartile range (IQR) than managed pastures
(ROTH_HS and ROTH_HSC). R? for the mature converted tropical
peatland (SEB) was higher and with narrower IQR than the plantation
establishment phase peatland (SAB). Dryland sites (SEG and SES) were
seen with the lowest R? and/or the widest IQR compared with other
ecosystems. These phenomena were particularly obvious for net
ecosystem exchange (Fig. 9a).

3.2.2. Further evaluations

Filled gaps by most approaches were in line with the corresponding
measurements (Fig. 10). For grazing events (i.e., chromatic blocks) that
affected biomass amount and fluxes relatively slowly, no obvious
increasing difference between filled gaps and measurements was seen
during grazing periods when other management activities did not take
place. These management activities include spraying herbicides and

10
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grass cutting (full details of management practices at the Rothamsted
sites can be found here: https://nwfp.rothamsted.ac.uk/). In contrast,
the upheaval in flux was mainly observed around management activities
(e.g., around day 250 in ROTH_HSC).

Regarding machine learning algorithms, the research-standard
multiple layer perceptron (MLP) exhibited very unstable cumulative
flux compared with corresponding measurements. The Xgboost [XGB]
(Fig. 10a), support vector regressor [SVR] (Fig. 10b), and Ada boost
regressor [ABR] (Fig. 10c) showed relatively larger cumulative differ-
ence against measurements than other machine learning algorithms. In
ROTH_HS and ROTH_HSC, the difference between filled gaps and mea-
surements were larger for using multiple drivers (drivery,) than for using
three essential drivers (drivers).

In site SAB, a previous study observed 2nd order polynomial re-
sponses of night-time net ecosystem exchange (NEE) to water table
depth (WTD). As shown in Fig. 11, the reproduced 2nd order polynomial
fits of WTD against filled gaps using the multiple layer perceptron
(MLP), support vector regressor (SVR), and Ada boost regressor (ABR)
were barely in agreement with the fit for measurements. In contrast to
Xgboost (XGB), for random forest regressor (RFR) and gradient boosting
regressor (GBR), the reproduced fit of using multiple drivers (drivery,)
was more in line with the fit for measurements than using three drivers
(drivers). Overall, the RFRm reproduced 2nd order polynomial fit was
the closest to the fit for measurements. Flux responses to other envi-
ronmental variables for all challenging sites can be seen in Figure S6.

The shortwave radiation (SW) contributed the most information
(importance > 50%) for gap-filling net ecosystem exchange (NEE) and
latent energy (LE) in managed pasture sites [ROTH_HS, ROTH_PP,
ROTH_HSC] and Malaysian converted sites [SAB and SEB] (Fig. 12). SW
and the net radiation (RN) were the dominant driver (importance close
to 90%) for gap-filling sensible heat (H) at all the seven challenging
sites. The SW and RN contributed nearly 50% for gap-filling LE at the
dryland sites [SEG and SES]. However, no clearly dominant environ-
mental drivers were seen for gap-filling methane flux (FCH4) at
ROTH_HS & ROTH_PP and for gap-filling NEE at SEG & SES (Fig. 12).
Wind speed and direction (WIND) contributed the most information for
gap-filling FCH4 at ROTH_HS and ROTH_PP. For gap-filling NEE at SAB
and SEB, the sum importance of the three essential drivers (i.e., solar
radiation, vapour pressure deficit, and air temperature) was smaller
than 40%.

4. Discussion
4.1. Global methane flux gap-filling feasibility and limitations

In in this study, filling long methane gaps with random forest at
global FLUXNET-CH4 sites exhibited inferior performance. In contrast,
random forest demonstrated great performance for filling short methane
gaps in Kim et al. (2020) and for filling long net ecosystem exchange,
sensible heat, and latent energy fluxes in Zhu et al. (2022). In compar-
ison with MDS, the advantages of using random forest were sound
(Fig. 3) and this is in line with Irvin et al. (2021). However, filling long
methane flux gaps is still challenging. The gap-filling performance var-
ied largely by sites (Figure S2). This discrepancy in R? between sites
could relate to the strength of methane flux (Fig. 3) and variability in
methane flux time series. For example, at sites BR-Npw and US-Tw4
(Figure S2) that were also in Kim et al. (2020), the gap-filling perfor-
mance was good (R? > 0.8) and methane time series at both sites
exhibited very strong seasonality. On the contrary, at sites with poor
gap-filling performance (e.g., AT-Neu and CH-Dav where R? < 0.05,
Figure S2), the temporal variations of methane time series were more
irregular. In agreement with Irvin et al. (2021), the correlation between
gap-filing performance and seasonality/periodicity in methane time
series was broadly seen, sites with good gap-filling performance showed
strong periodicity and vice versa (Figure S2). This suggested that filling
methane gaps heavily depended on the periodicity of drivers to


https://nwfp.rothamsted.ac.uk/

S. Zhu et al.

Agricultural and Forest Meteorology 332 (2023) 109365

20f
o
R IPSPOWPIRT P g
w w
o —" o
L) _/'
101 21.54x2 + 3.634x + 12.49 x2 + 18.326x + 7.49
20f
o 15l J—— SR | -
2| s i
10f #=.6.51x? + 8.209x + 11.15 =-2.22x% + 5.315x + 10.6
20f
@ 15} —e 5
9 [T
x e ® X
10t e
x® +21.635x + 6.87
20f
™ £
o 15} 8 e —
o« % il
107 =1 .46x2 + -1.267x + 13.1 =1.52x% + -1.315x + 13.1
20F
e 15| eafinmitnpempfimtntpimivymes | o o . :
10 R Lt
[ 9=-1.43x2 + 2.053x + 14.12 4=-3.28x2 + 5.925x + 12.81
20F
§15- P &
) 35" 0 &
10 14.702x + 8.25
20f
L]
0 0% Lol .
w15 =
- % °
107 4275 ox2 + 19.692x + 7.64
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Fig. 11. Reproduced night-time NEE (y-axes) responses to water table depth (WTD, x-axes) below the surface binned to 0.01 m increments in site SAB. Data were
from the very-long gap (vl4) scenario. The solid curves are the responses for measured fluxes while the dashed curves are for filled gaps using different machine
learning algorithms and driver sets.

mEm SW  wes RN EEm VPD mmm TA mmm WIND mmm SOIL mew OEF mmm AUX

1.0

08

06

0.4

02

0 e o e e ot o e o e e e e
VB
gheceieciBp B Bl
2 & e @LERVARYORYRE Y0
I EETL/EE&T T 'n [l n 0
f5EIreE EEx
Ee5FE2Rr bR
& 1SR4 0g &

-4 < &

Fig. 12. Feature importance to gap-filling for fluxes in challenging ecosystems.
The sum of drivers in every ecosystem equals to 100%. SW: shortwave radia-
tion, RN: net radiation, TA: air temperature, WIND: wind speed and wind di-
rection, SOIL: soil temperature, soil water content, and soil heat flux if possible;
OEF: other environmental features like precipitation; AUX: auxiliary drivers

like season and day of year.

11

reproduce the temporal dynamics in methane fluxes.

Where gap filling failed to replicate this periodicity may simply be
due to a lack of data at specific sites [e.g., data for FI-Hyy only covered
four months, see Table S1 and Figure S2] or local ecosystem type and
climate [e.g.,, CH—Hgu where the dominant vegetation was alpine
meadow and the methane time series showed no periodicity] (Delwiche
et al., 2021). According to Fig. 5, despite the low R the cumulative
gap-filling error can be relatively small for machine learning algorithms
excluding the artificial neural network (i.e., MLP). This suggests that
filling very long methane flux gaps can be feasible if the goal is to es-
timate annual sums.

Further improvements in the gap-filling performance will benefit
from understanding the ecosystems. As we tested both classic and state-
of-art machine learning algorithms (Fig. 5), further technical advances
may not enhance the gap-filling performance for methane fluxes. The
dependence of gap-filling performance on methane periodicity is a sig-
nificant challenge. Machine learning approaches can exploit the tem-
poral structure information and achieved good gap-filling performance
at sites with strong periodicity, therefore it infers that the dominant
environmental drivers of methane fluxes are complex and may vary
largely by ecosystem type (Figure S3). Hence, understanding the study
ecosystem and identifying the dominant driver (Knox et al., 2021) can
be very helpful to the challenging sites with poor gap-filling
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performance for methane and other fluxes.
4.2. Selection of machine-learning algorithms and driver sets

In agreement with previous studies (Falge et al., 2001; Reichstein
et al., 2005; Moffat et al., 2007), marginal distribution sampling (MDS)
was effective in filling net ecosystem exchange (NEE) gaps < 12 days
(Fig. 6a). As gaps shorter than 12 days cover most typical gap-lengths
caused by data quality control or short-term system failure, MDS is
therefore still recommended to be the standard gap-filling approach
(Pastorello et al., 2020). For longer gaps, support vector regression
(SVR) and Ada boosting regression (ABR) approaches are not recom-
mended due to their lower R and larger absolute MBE (Fig. 6). In
contrast, both random forest regression (RFR) and gradient boosting
regression (GBR) showed similar performance (Fig. 6), but RFR may be
preferred due to its relatively smaller bias and smaller bias variations
with increasing gap-length (Fig. 8). Multiple layer perceptron (MLP) (i.
e., shallow layered neural networks) was the most stable approach to
gap-length (Fig. 8). The deep learning techniques that have been broadly
applied in other environmental sciences (Reichstein et al., 2019; Zhu
et al., 2021) might show potential in further improving the gap-filling
performance for very long gaps.

For net ecosystem exchange (NEE), sensible heat (H), and latent
energy (LE) fluxes, the selection of driver set affected gap-filling R? by ~
10% (Fig. 7). In general, using multiple drivers (i.e., drivery,) improves
the fraction of flux variance explained by the machine learning gap-
filling model. In line with our findings presented in Zhu et al. (2022),
we have shown that using three drivers (drivers) can achieve compa-
rable gap-filling performance to using drivery, even in the more chal-
lenging ecosystems. Averaged R? of using modelled drivers (driveres,)
was higher than 0.7 while the bias was less than 0.05 g Cm ~2d ~ ! for
NEE and less than 0.5 W m ~ 2 for H and LE (Fig. 7). This suggests that
reanalysis data can be effective in estimating fluxes when or in regions
where measured flux and meteorological data are unavailable.

4.3. Shortcomings and advantages of machine-learning approaches for
the challenging ecosystems

Machine-learning approaches may fail in gap-filling when the flux
environmental driving mechanism was unclear (Fig. 12 and Figure S3)
unless strong flux periodicity was present. This was particular the case
for gap-filling methane when flux periodicity was extremely low in the
time series. For example, methane was typically low at sites ROTH_HS
and ROTH_PP, but in the summer of 2018, the ecosystem experienced
short-term rapid methane increases which could be in relation to the
presence of livestock in the field (Figure S1). Identifying the ‘right’
drivers was also crucial to gap-filling fluxes in the dryland sites SEG and
SEG. Fluxes in dryland ecosystems are dependant on water availability
(Barnes et al., 2021), but according to Table 2, we did not have the soil
water supply data. This could be one major reason limiting the
gap-filling performance in dryland sites. Besides, sudden biomass or flux
changes were not captured (e.g., management activities in Fig. 10) by
the machine learning algorithms. It was difficult to quantify the man-
agement activities as algorithm drivers (Orr et al., 2016) and this may
cause the failed capture. Therefore, determining the drivers directly and
explicitly correlating with flux variations in these challenging ecosys-
tems may be the way to improve the gap-filling performance for these
machine-learning approaches.

In contrast, machine learning algorithms can well extrapolate the
impacts of slow biomass changes from the past into the future - e.g.,
grazing events at sites ROTH_HS, ROTH_PP, and ROTH_HSC (Fig. 10)
and plant growth at site SAB (Figure S1) — even though such change
information was not directly used as drivers. For example, random forest
regression (RFR) successfully reproduced cumulative net ecosystem
exchange (NEE) for both early-stage and mature converted peatlands
(Figure S1b). This was assessed by removing the last 30% of the flux time
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series (scenario vl4) and gap-filling it. The reproduced sums matched
well with the removed measurements for the mature ecosystem but
showed slight overestimation for the early-stage ecosystem (Figure S1b).

In agreement with the literature (Kim et al., 2020; Mahabbati et al.,
2021; Irvin et al., 2021; Zhu et al., 2022), there was no single algorithm
that stood out clearly as the best in our range of options (Fig. 6), but the
random forest (RFR) was found to be a very competitive alternative to
the existing standard gap-filling algorithms. Decision tree-based algo-
rithms, e.g., RFR, were shown to be more resilient to short-term dis-
turbances, such as management events (Fig. 10), than the
research-standard multiple layer perceptron (MLP). In comparison with
other decision tree-based algorithms, RFR was also advantageous in
reproducing the flux responses to environmental drivers [e.g., water
table depth in SAB] (Fig. 11). Furthermore, the use of RFR approaches
can improve the explained variance by 20% to 25% (Fig. 9) in dryland
ecosystems where all gap-filling approaches struggled. Further eddy
covariance towers and studies are in need in drylands because they
cover ~40% of the global land area (Huang et al., 2016) but are
under-sampled with eddy covariance towers (Boschetti et al., 2019). For
filling very long gaps (v14), the performance of RFR was particularly
promising on timescales ranging from multi-hour to multi-day. Hence,
RFR is recommended to use in future eddy covariance studies.

Spatiotemporal scaling remains a challenge - i.e., for how long or for
how far can flux data be extrapolated in time and space dimensions. In
the spatial dimension, extrapolating eddy covariance fluxes typically
uses satellite remote sensing and gridded meteorology data, and this
study field is referred to as flux upscaling (Jung et al., 2020). However,
satellites cannot provide both the high spatial and high temporal reso-
lution observations needed to directly compare with eddy covariance
fluxes at half-hourly and tower-level scales. In the temporal dimension,
machine learning algorithms exhibited promise in predicting fluxes in
the coming year. Predictions of fluxes in the more distant future may be
possible in the absence of environmental (e.g., vegetation species and/or
temperature) changes outside the measurement range. However for both
spatial and temporal scalability more work is required.

5. Conclusion

The accuracy of gap-filling techniques is critically important to the
continuous flux measurements from eddy covariance. For the first time,
we comprehensively evaluated what factors affect the gap-filling per-
formance and by how much, particularly in challenging ecosystems. We
have shown that while increasing the number of in-situ driver mea-
surements improves gap filling performance, utilisation of publicly
available regional datasets, when combined with machine learning
techniques, particularly random forest regression (RFR), can still pro-
vide good results. RFR also showed superior performance when
considering more challenging ecosystems with high levels of manage-
ment interventions, in this case grazed pasture or tropical peatland
converted to agriculture. While marginal distribution sampling (MDS)
still performed well with gaps up to the medium range, for much longer
gaps, RFR was a clear improvement. Gains in performance were also
seen for RFR in gap filling methane datasets, but more limited and
inconsistent at the site-specific level. Critically, the environment-flux
responses emerged in RFR but not in MLP gap-filled data. The use of
RFR for future gap-filling is thereby further recommended. Despite
being a significant global climate impact, ecosystem scale datasets for
methane flux are only very recently becoming available and much work
remains to improve our understanding of ecosystem drivers, and the
relationships between them, for this important greenhouse gas Fig. 1.
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