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Existing neuromorphic computing systems have always faced a longstanding challenge: 
when confronted with drastic environmental variations and unknown circumstances 
beyond the pre-set boundaries, they would inevitably suffer from substantial 
information loss and catastrophic model failure. In contrast, the human brain employs 
a neural adaptive self-sensitization mechanism to actively grasp critical information in 
changing environments, addressing these problems effortlessly. However, previous 
brain-inspired hardware lacked the capacities to seek out essential information across 
diverse inputs, often confined to passive responses within unalterable boundaries. Here, 
we report the adaptive self-sensitization in hydrogen-doped perovskite neurons based on 
versatile hydrogen gradient distributions, which transcends the fixed response range of 
conventional artificial neurons to autonomously capture previously unrecognized 
information. Therefore, the networks with self-sensitizable neurons can adaptively 
handle intricate tasks under turbulent and unknown environments by reshaping the 
information reception range and feature salience. It can address the issue of information 
loss and achieve seamlessly transition, processing ~250% more structural information 
than normal networks in building and vehicle detection. Furthermore, the self-
sensitizable convolutional network can surpass model boundaries to tackle the persistent 
challenge of data drift accompanying varying inputs, improving accuracy by ~110% 
compared to traditional networks in vehicle classification. The self-sensitizable neuron 
enables the networks to autonomously cope with unforeseen environments, opening new 
avenues for self-guided cognitive systems. 

 

Keywords: neuromorphic device, self-sensitization, edge detection, spiking neural 
network 
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INTRODUCTION 

Brain-inspired or neuromorphic computing is a new technology paradigm that aims to perform 
highly efficient computations based on neural networks1–6. In a neural network, neurons, the 
computing units, are interconnected by numerous synapses and have the potential to overcome the 
von Neumann Bottleneck where the computing unit and the memory are separated7–13. Nowadays, 
it is widely acknowledged that the brain's operation involves more than just simple nonlinear 
functions mapping between input and output, such as those used in deep neural networks (DNNs), 
no matter how complex or deep they may be14–17. Over millions of years of evolution, the biological 
brains have developed rich functionalities such as stochasticity, synchronizability and self-
sensitization18–21. These characteristics enable them to process information more flexibly and make 
wiser decisions when faced with dynamic and complex environments, thereby coping better with 
various survival challenges22–24. For instance, the biological brains exhibit remarkable adaptability 
in processing visual input signals under varying lighting conditions. When transitioning into 
darkness, they can dynamically adapt to the environmental change and enhance their ability to 
effectively recognize objects25. They also display adaptive sensitization to detailed auditory signals 
in noisy environments, enabling them to discern specific sounds with heightened accuracy and 
clarity26,27. A crucial mechanism underlying these significant capabilities in biological brains is the 
neuron self-sensitization, which facilitates versatile handling of critical details and varying features 
in diverse environments, enabling them to possess high levels of cognition and decision-making 
abilities28,29.  

In contrast, existing neuromorphic computing in AI has consistently lacked these excellent 
capabilities similar to biological brain, resulting in inevitable information loss and catastrophic 
model failure when facing drastic environmental changes exceeding predefined boundaries. For 
instance, abrupt weather changes could lead to critical traffic information loss, resulting in severe 
accidents in autonomous driving systems. Disaster rescue AI machines may fail to work in 
unforeseen scenarios beyond pre-set produces. Therefore, faithfully emulating the biological self-
sensitization will be a critical approach to address these significant challenges in existing artificial 
intelligence. However, previous brain-inspired devices lacked the capacities to autonomously seek 
out essential information among environmental changes, often confined to passive responses to 
external signals. These artificial neurons were also frequently constrained by a limited signal 
reception range, exhibiting limited adaptability when transitioning into various surroundings.30–35  

In this work, we report the self-sensitization mechanism based on perovskite nickelate 
artificial neurons, which can surpass the constrained signal reception range of conventional 
artificial neurons, autonomously perceiving environmental changes and capturing previously 
unrecognizable information through adaptive neuron activation function shift. This self-adaptive 
functionality stems from the complexity and multiplicity of hydrogen gradient distributions under 
electric pulse signals, enabling versatile responsiveness to different inputs, as shown in Figure 
1(A). The networks with the self-sensitizable neurons can handle challenging edge detection and 
object classification tasks under drastic and unforeseen variations of lighting conditions, where the 
computing resources were adaptively reorganized in response to the dynamic input data. In edge 
detection of buildings and vehicles, it exhibited autonomous recognition of different inputs, 
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transcending the limitation of information loss faced by normal networks in complex 
environmental changes. The self-sensitizable network can capture and process ~250% more 
information content, performing well in bright environments and adaptively reshaping its 
information reception range to seamlessly adapt to the dark environments. Furthermore, the self-
sensitizable convolutional neural network can tackle the challenge of data drift resulting from 
varying inputs that exceed predetermined training ranges. In vehicle classification, it achieved 
~110% improvement in recognition and decision-making capabilities compared to normal 
networks through autonomously remolding the feature salience in ever-changing circumstances. 
The contrasting effects in changing environments can be directly observed in Figure 1(B). We 
demonstrate that the self-sensitizable neurons endow the networks with cognitive capacities to 
process ever-changing information flexibly and efficiently, unveiling the future potential of 
incorporating bio-inspired traits in artificial intelligence systems. 

RESULTS AND DISCUSSION 
Experimental self-sensitization of stochastic neurons. 

Perovskite nickelates are a category of Mott quantum materials with strong electron-electron 
correlations and undergoes an electronic metal-to-insulator phase transition at room temperature 
upon hydrogen doping36,37. For instance, in NdNiO3 (NNO) with catalytic electrodes (Pd), 
hydrogen can be infused into the NNO lattice through annealing in a hydrogen gas atmosphere. 
Hydrogen atoms then contribute electrons to Ni d band, leading to a modification in electron filling 
state and a change in resistivity spanning several orders of magnitude38. Furthermore, the hydrogen 
ion distribution can be adaptively adjusted under the influence of electric fields, leading to 
pronounced alterations of electrical properties39,40. Therefore, the NNO neuron exhibits potential 
for achieving adaptive self-sensitization that can perceive and adapt to variations in environmental 
signals. For more detailed information about the materials and devices, see Figures S1-S5. 

The experimental measured self-sensitization properties based on the perovskite device are 
summarized in Figure 2. The stochastic neuron can generate spikes with a sudden resistance 
change under electric pulses, as shown in Figure 2(A). The spiking probability of the perovskite 
neuron follows a sigmoid distribution which is commonly seen in biological nervous systems, as 
shown in Figure 2(B) and Figure S6. To demonstrate the functionality of self-sensitization, we 
selected a 0.19 V/μm pulse field to stimulate the artificial neuron which initially showed a very 
low spiking probability. Subsequently, when several pulses were accumulated without applying 
any reverse reset pulses, we observed that the device exhibited adaptation to these weak signals, 
transitioning from a state of low spiking probability to a new state of higher spiking probability, 
as shown in Figure 2(C). We define neuron state before it adapts to weak pulses as the initial state, 
and the state after self-sensitization as the self-sensitized state. This phenomenon of self-
sensitization indicates that neurons can adaptively adjust their activation functions to enhance 
sensitivity to weak signals. 

Furthermore, we observed that the perovskite neuron can achieve different sensitized states 
by accumulating diverse signals, as shown in Figure 2(D). It suggests that the neuron can 
adaptively enhance its spiking ability to weak signals, expanding the range of signal reception, as 
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shown in Figure S7. It is worth noting that the device does not respond to all weak signals from 
the external environment. When we applied very weak signals to stimulate the neuron, it did not 
exhibit adaptive activation function shift even after more than thirty repetitions, which means the 
neurons can selectively filter out background noise with low intensity, as shown in the bottom 
right figure of Figure 2(D). Then we measured the spiking probability distribution functions of 
varying sensitized states and observed different probability distributions accordingly, as shown in 
Figure 2(E). Furthermore, the neuron exhibits varying degrees of adaptive activation function shift 
in different sensitized states which can be represented by the spiking threshold variations, as shown 
in Figure 2(F). The results can be repeated on the same device and reproduced from different 
devices, confirming the consistent self-sensitization characteristics, as shown in Figures S8-S12. 
More detailed statistical and quantitative analyses of the device functionalities were conducted to 
demonstrate good stability and uniformity, as shown in Figures S13-S16. Besides, the H-NNO 
device still remains the function of generating spiking behaviors after 106 cycles of endurance 
measurement, as shown in Figure S17. Our experimentally measured self-sensitization suggests 
that the perovskite neuron can adaptively adjust its neuron states to surpass the normally 
constrained range of signal reception, capturing previously unrecognized signals. 

Microscopic origins of the self-sensitization. 

To understand the microscopic mechanism of the self-sensitization in perovskite neurons, we 
conducted various experiments to explore the distinctions between different neuron states. The 
nuclear reaction analysis (NRA) experiment was performed on vertical nickelate devices41. NRA 
offers a nearly exclusive way to date to quantify the absolute amount of hydrogen directly within 
a solid, which provides direct evidence of hydrogen doping profile41, and a schematic is shown in 
Figure 3(A). The results revealed the spontaneous diffusion of hydrogen along the material's 
thickness direction, leading to a distinct gradient distribution, as shown in Figure 3(B). The 
pronounced minima and maxima of hydrogen concentration near the film surface are due to the 
near surface instrumental functions and the adsorption of native hydrogen (e.g., H2O)41–43. 

Next, the micro-X-ray absorption spectroscopy (micro-XAS) experiments were performed on 
the in-plane nickelate devices to explore the changes in the electronic structure after hydrogen 
doping, as shown in Figure 3(C) and Figure S18. We collected Ni K-edge energy spectra of a H-
doped NNO sample at different positions near the Pd electrode and a gradual decrease of the Ni 
K-edge peak energy towards the Pd electrode was observed, which is attributed to the slight 
decrease of Ni valence state caused by the injection of additional electrons through hydrogen 
doping38,44, shown in Figure 3(D). The Ni K-edge peak positions for the non-spiking and spiking 
neuron states, as well as the pristine sample (no H-doping) are shown in Figure 3(E). No peak 
position change was observed near the Pd electrode for the pristine sample. However, a distinct 
difference in the shift of the K-edge peak energy was observed between the spiking state and the 
non-spiking state. A larger energy peak decrease in the non-spiking state indicates a higher 
concentration of hydrogen ions in the device channel, leading to a higher resistance state, 
consistent with the electrical measurements. 

Subsequently, conducting atomic force microscopy (cAFM) experiments were performed to 
further validate the self-sensitization mechanism stemming from the different distributions of 
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hydrogen ions45. We characterized the variations in channel resistance at different positions by 
measuring current maps within a microregion of 1.5 μm2 in different neuron states, providing 
insights into the different distributions of hydrogen ions, as shown in Figures 3(F)-(I). After 
hydrogen doping, a gradient in conductivity of the NNO device can be observed directly near the 
Pd electrode (top of the figure), as shown in Figure 3(F). The evident change in current gradient 
between the pristine sample and the H-doped sample within a range of several hundred nanometers 
in the device channel is illustrated in Figure 3(G) and Figures S19-S20, confirming the significant 
impact of hydrogen doping in conductivity. Figure 3(H) shows the difference in current drop near 
the Pd electrode for the non-spiking and spiking neuron states, suggesting varying hydrogen 
content corresponding to different neuron states, in alignment with the findings from the micro-
XAS experiments. Furthermore, through cAFM experiments conducted on the initial and self-
sensitized states, we observed a clear difference in the slope of the normalized current, indicating 
variations in the distribution of the hydrogen gradient, as shown in Figure 3(H). These findings 
play a pivotal role in elucidating the mechanism of self-sensitization in perovskite neurons. 

Applications of self-sensitizable neurons in AI. 

To test the practicality of self-sensitizable neurons, we utilized experimental data of varying 
activation functions that adaptively shift based on diverse signals to simulate the self-sensitizable 
behaviors in the circuit simulation and neural network. When encountering different weak signals, 
the neurons exhibited adaptive states adjustment to increase sensitivity to these signals, as shown 
in Figures 4(A)-(C) and Figure S21. This characteristic will enable the neural networks to 
autonomously perceive various inputs, adapting seamlessly to different environments. To initially 
illustrate the impact of self-sensitizable neurons on neural networks, we constructed a simple fully 
connected self-sensitizable spiking neural network (without convolutional layers) for the 
classification tasks with the standard Fashion MNIST dataset46. This dataset features simple edge 
information of objects, allowing for a preliminary validation of the self-sensitizable network’s 
adaptability. The self-sensitizable networks exhibited an improvement in accuracy compared to 
normal networks on datasets with normal brightness, while the improvement became significantly 
more pronounced when dealing with datasets in dark environments, as shown in Figures 4(D)-
(E). Furthermore, the enhancement in accuracy became increasingly prominent with continuous 
variations in environmental brightness, as shown in Figure 4(F). More detailed sensitivity analysis 
and time/energy quantification of the self-sensitizable neuron were shown in Figures S22-S23. 
The self-sensitizable networks demonstrate their potential for adaptive adjustment in response to 
environmental changes using standard datasets, thereby opening up the possibilities for tackling 
more challenging tasks, including edge detection and image classification with abundant and 
complex information. 

To better demonstrate the adaptive capabilities of the self-sensitizable neurons in complex 
environments, we implemented the experimental data to develop an enhanced edge detection 
algorithm, which can adaptively detect edge information of objects in varying environments. The 
networks with self-sensitizable neurons showcase seamless adaption to complex lighting 
conditions, overcoming the limitations of normal networks that struggle to handle dynamic input 
changes, thereby avoiding the loss of crucial details during transitions. The improved vehicle edge 
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detection performance of self-sensitizable networks in different environments compared to the 
normal networks can be clearly observed in Figure 5(A). To demonstrate the versatile capabilities 
of the adaptive network and augment the diversity of input information, we employed Stable 
Diffusion AI models to create extensive datasets comprising various vehicle images, including 
sedans, pick-up trucks, SUVs, airplanes, captured under diverse lighting conditions, as shown in 
Figure S24.  

The edge information of vehicles is often intricate and diverse, and the self-sensitizable 
neurons empower the networks to adaptively adjust neuron states to capture and extract complete 
edge information, as shown in Figure 5(B). The diverse neuron states in the networks were 
obtained from the experimentally measured self-sensitization data of the perovskite neurons. The 
self-sensitizable networks captured more detailed information that was often missed by normal 
networks due to the constrained range of signal reception, improving edge continuity and the 
integrity of object structures. Subsequently, to further investigate the mechanism of the self-
adaptive learning in networks, we extracted the intensity distribution of inputs in both bright and 
dark environments, as well as the spiking probability of two types of neurons in response to 
different environments, as shown in Figures 5(C) and 5(D). In the bright environment, the spiking 
probability distribution of the self-sensitizable neurons indicates that the network redistributed the 
computing resources to enhance the sensitivity to detailed information while maintaining 
responsiveness to strong signals, resulting in good edge detection performance. Notably, when 
transitioning into the dark environment, the self-sensitizable neurons adaptively adjusted their 
states based on variations of signal intensity to reshape the reception range, generating a new peak 
of signal reception to capture the weak information that normal neurons could not recognize. These 
characteristics of self-sensitizable neurons equip the networks with the capacities to autonomously 
handle environmental variations and smoothly transition between different lighting conditions. 
Additionally, while self-sensitizable neurons enhance sensitivity to weak signals, they actively 
reduce the spiking probability for extremely weak signals, effectively filtering out background 
noise and preventing its interference with edge information, as shown in Figures 5(C) and 5(D). 
We further conducted a comparison of the spiking activity between normal and self-sensitizable 
neurons in different input conditions, as shown in Figure 5(E). The results demonstrated the 
increase in spiking activity exhibited by self-sensitizable neurons compared to normal neurons, 
providing further confirmation of their enhanced information capture and processing capabilities 
in diverse environments.  

Furthermore, we conducted a comparison of connectivity in the edge detection results 
obtained from different networks, which is an important indicator for evaluating the 
interconnection of edge information at the pixel level, as shown in Figure 5(F). The findings 
revealed that the self-sensitizable network was capable of discerning rich details when 
transitioning into dark environments, ensuring the continuity and integrity of detailed edge 
information. We also demonstrated the capability of the self-sensitizable network to delineate more 
complete edge structures of diverse objects in dynamic environments through comparisons of 
structural phase coherence and edge length, as shown in Figures S25-S27. These characteristics 
empower self-sensitizable networks with vast prospects for applications in intricate real-world 
environments, such as license plate recognition in various lighting conditions and animal tracking 
in dynamic environments, as shown in Figure 5(G) and Figures S28-S29. In order to further 
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quantify the advantages of self-sensitizable neurons in edge detection, we developed a vehicle 
classification neural network that relied on edge information, with which we tested the outputs of 
edge detection networks with either self-sensitizable or normal neurons in dynamic environments. 
The edge information output from the self-sensitizable neurons exhibited good accuracy in the 
vehicle classification neural network, with relative improvements of 62.1% for SUV-plane, 54.4% 
for pickup-plane, and 74.7% for sedan-plane, as shown in Figure 5(H). These results suggest that 
the self-sensitizable network captures more vehicle edge information and provides the 
classification neural network with more discriminative features, resulting in higher accuracy of 
vehicle classification. 

We further validated the potential of self-sensitizable neurons in tackling more complex tasks 
under ever-changing circumstances. With the adaptive characteristics of these neurons, the self-
sensitizable network can seamlessly adapt to dynamic environments and extract ~250% more 
information content of subjects within the surroundings in detection of intricate buildings, 
addressing the issue of information loss suffered by normal networks in varying lighting 
conditions, as shown in Figures 6(A) and 6(B). Therefore, based on these advantages of self-
sensitizable neurons, we utilized experimental data to establish a spiking convolutional neural 
network for vehicle classification, which can extract crucial information in diverse environments 
and uphold a superior level of classification accuracy. When the environmental intensities undergo 
alteration, the self-sensitizable convolutional layers provide more distinct features compared to 
normal convolutional network, as shown in Figure 6(C) and Figure S30. We compared the 
outputs of neurons between two types of networks in different surroundings, as shown in Figures 
6(D)-(E) and Figure S31. The self-sensitizable neurons can adaptively reshape the information 
reception range according to different environmental intensities, enabling the convolutional 
networks to maintain a high subject-environment distinctiveness. In contrast, the normal neurons 
limited by their constrained information content, struggled to adapt to the changing data 
distribution within dynamic surroundings, resulting in a significant decrease in subject-
environment distinctiveness. Subsequently, we used Gradient-weighted Class Activation Mapping 
(Grad-CAM) to study the advantages of self-sensitizable networks in classification tasks, which is 
an important method to assess the contribution of different features to classification decisions. The 
self-sensitizable convolutional network can remold the feature salience based on shifting 
environmental intensities, resulting in accurately recalibrating recognition emphasis to focus on 
the crucial subject during classification. Conversely, the normal convolutional network, lacking 
the ability to distinguish the subject and the environment when transitioning into dark 
surroundings, failed to concentrate on the correct locations and could not make accurate 
classification, as shown in Figures 6(F)-(G) and Supplemental Figure 32. Finally, we conducted 
classification tests on the two types of networks using images with various proportions of bright 
and dark environments. The self-sensitizable network maintained a high classification accuracy of 
~90% across varying environments and outperformed the normal network by ~110% in dark 
surroundings, as shown in Figure 6(H). These results illustrate that the self-sensitizable network 
achieves autonomous information processing and seamless adaptation across diverse 
environments, surpassing the predefined model boundaries to tackle the problem of data drift 
resulting from varying inputs. More details can be found in Supplemental experimental 
procedures. Furthermore, to demonstrate the widespread applicability of the self-sensitizable 
neural network, we also performed sound recognition tasks and achieved a high level of accuracy, 
as shown in Figure S33. Additionally, the H-NNO device was fabricated by standard CMOS 
technology and exhibits excellent compatibility with Si and SiO2 substrates47. The compatibility 
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allows the device to integrate seamlessly with existing semiconductor processes, providing greater 
flexibility and functionality for electronic system design. 

Conclusion 
In conclusion, we have demonstrated artificial self-sensitizable neurons can surpass the 

inherent limitation of passive signal reception with an unalterable range in traditional neurons, 
enabling to autonomously seek out and process critical information across drastic environmental 
changes. The bio-inspired self-sensitization is accomplished by precisely modulating ordered 
microstructures, such as the hydrogen gradient, a strategy readily applicable to enhance 
performance or introduce new functionalities in other material systems and devices. Furthermore, 
based on these device characteristics, we have constructed improved edge detection algorithm and 
classification neural network capable of adapting to intricate environments, tackling the challenges 
of inevitable information loss and data drift faced by conventional networks under complex and 
varying inputs. These results showcase the potential of self-sensitizable devices in artificial 
intelligence architectures operating amid intricate real-world scenarios, offering new opportunities 
for the realization of highly intelligent systems with autonomous cognitive capabilities.   

 

EXPERIMENTAL PROCEDURES 

Resource availability 
Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 
lead contact, Hai-Tian Zhang (htzhang@buaa.edu.cn) 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

The data that support the findings of this study are available from the lead contact upon reasonable 
request. 

 

Method 
Film growth 

The NdNiO3 thin films were grown on LaAlO3 (001) substrates using a metal organic 
decomposition (MOD) approach, as described in our previous report48. In brief, Nd (AC)3 or Ni 
(AC)2 first reacted with C7H15COOH and ammonia to form Nd(C7H15COO)3 and Ni(C7H15COO)2, 
which were used as the chemical precursors for the MOD process. These chemical precursors were 

mailto:htzhang@buaa.edu.cn
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mixed at equal stoichiometry and dissolved in xylene at 0.1 mol/L, and spin-coated on LaAlO3 

(001). Afterwards, the samples were annealed under 15 MPa oxygen pressure at 450 °C for the 
decomposition of the metal organic precursors, and then annealed under the same pressure at 850 
°C for 2 hours to crystalize the material.  

 

Fabrication of NdNiO3 devices 

The device was fabricated by the standard ultraviolet photolithography technology. A thick 
photoresist film (AZ5214) was deposited by spin coating at 7000 rpm for 60 seconds and then 
baked at 110 °C for 240 seconds at the beginning. Next, UV-exposure was performed with standard 
ultraviolet photolithography technology (URE-2000/35L, Institute of Optoelectronics 
Technology, Chinese Academy of Sciences). The photoresist was developed in the developer 
(prepared by AZ400K and DI water, the ratio of AZ400K and DI water is 1: 5) for 50 seconds and 
then soaked in DI water for 10 seconds. The developed photoresist was then etched away by ion 
beam etching (IBE) to leave only the rectangular nickelate channel on the substrate, and the 
remaining parts are insulating LaAlO3 substrate. Finally, the left square electrode was exposed by 
negative gel sleeve engraving, followed by Au electrode (50 nm) deposition through thermal 
evaporation. The right electrode is exposed by the same method and then the atomically flat Pd 
electrodes (50 nm) were deposited by electron beam evaporation. The H-NNO device channel 
length is 20 μm. The NdNiO3 devices studied in this work were annealed in a forming gas 
atmosphere (4%H2/96%N2) at 120 °C for 5 minutes. The hydrogen was doped at the catalytic Pd 
electrode through the so-called hydrogen spillover process.  

 

Electrical measurements 

Electrical measurements of the perovskite devices were performed using an XMT-600 
micromanipulator probe station at room temperature. The probe station was placed on a DVT-
2000 vibration isolation table to minimize noise caused by vibrations. The Tektronix AFG31000 
series arbitrary function generator and the Keithley 2636B were used to perform neuron 
stimulation measurements, and ultra-low noise triaxial cables were used to minimize noise 
interference during the measurement. The resistance value of the device was obtained by fitting 
the voltage-current curve within the linear range of -0.1 V to 0.1 V. The measurement process was 
controlled by LabVIEW programs. All applied electric fields were referenced to the Au electrode. 

 

Characterization of the as-grown nickelate film 

The crystal structure of as-grown nickelate films were measured by X-ray diffraction (Rigaku 
D/max2500H, Japan). The cross-section morphologies of as grown NdNiO3/LaAlO3 (001) were 
characterized by scanning transmission electron microscopy (STEM) measurements in the high-
angle annular dark-field (HAADF) mode. The resistivity of as-grown NdNiO3/LaAlO3 (001) was 
measured as a function of temperature using the Physical Property Measurement System (PPMS). 
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Nuclear reaction analysis 

The nuclear reaction analysis (NRA) is the technique to quantitatively detect the hydrogen 
concentration based on the nuclear reaction between the 15N2+ from accelerator and hydrogen (or 
proton). A nuclear reaction between the 15N2+ incident ion beam and 1H located at the material at 
a characteristic incident kinetic energy of ~6.385 MeV, and this release characteristic gamma-ray 
as to be detected to indicate the hydrogen concentration. To detect the 1H depth profile, the kinetic 
energy of the incident 15N2+ was increased from 6.385 MeV stepwise, in which case the nuclear 
reaction took place at a specific penetration depth according to a linear reduction in the kinetic 
energy of 15N2+ with the penetration depth (~3.12 keV nm−1). The depth resolution of NRA is of ~1 
nm. 41 

 

In situ X-ray absorption spectroscopy measurements 

The XANES data for Ni K-edge (8.31 keV-8.39 keV) were collected at room temperature in 
fluorescence mode using Hard X-ray Microfocus Beamline BL15U1 of the Shanghai Synchrotron 
Radiation Facility (SSRF). The synchrotron X-ray was first filtered by a nitrogen cooled double 
Si (111) crystal monochromator and then focused by a Kirkpatrick-Baez (KB) mirror with a beam 
size of 2.5 × 2.5 μm2 on the sample. During the measurement, the synchrotron was operated with 
a ring current of 200 mA, resulting in a photon flux of 1.1×1011 phs/s/μm2 at the focal point. The 
incident photon energy was calibrated using a standard Ni metal foil prior to data collection. The 
fluorescent signals for each energy point were acquired by using Vortex®-90EX Silicon Drift 
Detector with an integration time of 3 seconds. The XANES spectra were obtained after energy 
calibration and normalization using the ATHENA packages.49 

 

Conductive atomic force microscopy measurements 

The conductive atomic force microscopy measurement (cAFM) was performed by a commercial 
scanning probe microscope (Cypher ES, Oxford Instruments) using conductive tips with a spring 
constant of about 2.8 N/m45. The ORCA mode and ORCA holder were used for current mapping. 
In the ORCA mode, the tips were virtually grounded, and the Pd electrode of the device is 
connected with the instrument through the Al wire as another end. A constant bias voltage of 0.5 V 
was applied to the sample during scanning. The ORCA holder used has a maximum current range 
of 10 μA and sensitivity of about 1 pA. The current in the area near the Pd electrode (approximately 
0.1 μm) at 0.5 V bias is lower than the sensitivity of the instrument.  

 

Applications of self-sensitizable neurons in fully connected spiking neural networks 

We developed a self-sensitizable fully connected spiking neural network based on rate learning 
for image classification tasks using the Fashion MNIST datasets. This network utilizes the average 
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firing rate of spiking neurons for learning. In this approach, the network encodes inputs as pulse 
events, propagates them through multiple simulated time steps, and derives the average firing rate 
of the neurons over the temporal sequence as the output. By assessing the loss between the output 
spiking rate and the label output, connection weights are adjusted using optimization algorithms 
such as gradient descent. This adjustment aims to bring the network's output closer to the expected 
values (input label). Rate learning-based spiking neural networks demonstrate robust learning 
performance with reduced computational complexity. More details about processing and training 
are provided in the Supplemental experimental procedures. 

Fashion MNIST is a classic dataset used in the fields of machine learning and computer vision to 
evaluate and validate algorithms for image classification tasks. The Fashion MNIST dataset 
consists of images representing 10 different categories of fashion items, offering a more 
challenging task compared to the well-known MNIST dataset. Each category contains 7000 
grayscale images of size 28x28 pixels. These categories include T-shirt, Trouser, Pullover, Dress, 
Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot. The train set contains 60,000 labeled images, evenly 
distributed among the 10 categories. Each category has 6,000 training images. The test set contains 
10,000 labeled images, also equally distributed across the 10 categories. Compared to the 
traditional MNIST dataset which consists of hand-written digits, Fashion MNIST is more 
challenging due to the greater diversity in appearance and structure of fashion items. This 
complexity poses a more intricate image classification task for algorithms. 

 

Applications of self-sensitizable neurons in edge detection algorithm 

We introduced a novel approach by applying the self-sensitizable neuron model to edge detection. 
The self-sensitizable neurons processes image gradient data obtained through the Sobel operator 
and dynamically adjusts their neural states based on distinct distributions of image gradient data. 
This characteristic enables the self-sensitizable neuron to maintain exceptional performance in 
edge detection of complex buildings and vehicles across diverse environments. The model 
incorporating self-sensitizable neurons underwent testing across different environments using a 
dataset generated by an AI painting model based on stable diffusion, primarily comprises four 
types of vehicles: sedans, sports utility vehicles (SUVs), pick-up trucks, and airplanes. 
Representative sample images can be found in the Figure S13. The dataset is divided into two 
distinct environments: bright and dark environments. Each environment consists of 1700 images, 
encompassing 500 images of sedans, 500 images of SUVs, 500 images of pick-up trucks, and 200 
images of airplanes. Each of these images is a three-channel color image with 512×512 pixels. The 
distinction between vehicles and backgrounds varies in different environments, thereby allowing 
for an accurate assessment of the model algorithm's edge detection capabilities under varying 
conditions. To illustrate the differences more precisely in edge detection capabilities between 
different neurons, we utilized a Convolutional Neural Network (CNN) to classify the outputs of 
edge detection, providing a more intuitive representation of the distinction in the edge detection 
results. More details are available in Supplemental experimental procedures. 
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Applications of self-sensitizable neurons in spiking convolutional neural networks 

The computational methodology employed in edge detection shares certain similarities with 
spiking convolutional neural networks (S-CNNs). Therefore, we integrated self-sensitizable 
neurons within the framework of S-CNNs. The S-CNN model was constructed using Pytorch. The 
convolutional layers were adapted from the conventional CNN model (Alex-Net) and transposed 
to the SNN framework. Through convolution and pooling operations, S-CNNs extract local 
features from images, imparting translation invariance and localized receptive fields to the 
network. The convolution and pooling operations facilitate parameter sharing, leading to a 
reduction in model parameters. This parameter sharing enhances the model's generalization 
capacity and efficiency. 

We selected a subset of our custom dataset containing four distinct types of vehicles in bright 
environments for training. We simulated challenging dark scenarios by reducing image intensity 
and tested the network.  

Then we employed Gradient-weighted Class Activation Mapping (Grad-CAM) to further 
investigate the decision-making process of the model. By combining the gradient information and 
feature maps of the model, we visualized the activation regions relevant to specific categories. 
Based on these results, we interpreted the advantages of the self-sensitizable S-CNN in adapting 
to changing environments from both a cognitive and decision-making perspective. Further 
elaboration can be found in Supplemental experimental procedures. 
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Figure 1. Self-sensitization and applications in AI. (A) Schematic of the biological neuron 
sensitization and the hydrogen-doped perovskite nickelate device. In biological nervous system, 
increased availability of sodium channels facilitates the subsequent generation of potential 
difference across the neuron's membrane, thereby reducing the neuron threshold and enabling the 
neuron to sensitively respond to weaker signals. The functionality of the self-sensitizable neuron 
can be implemented on a single hydrogen-doped NdNiO3 device, where the proton gradient can 
precisely react to electric pulses, leading to different neuron activation functions and signal 
reception abilities. (B) Applications of self-sensitizable perovskite neurons in edge detection and 
classification tasks. The networks with self-sensitizable neurons exhibit improved performance 
through adaptively adjusting activation functions to capture more detailed edge information and 
distinct object features in ever-changing environments. 
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Figure 2. Electrical characterization of the self-sensitizable stochastic perovskite neuron. (A) 
The perovskite nickelate neurons exhibited stochastic spiking behaviors under electric pulses 
(0.21 V/μm for 100 μs). The stochastic neuron can generate spikes with a sudden resistance change 
under electric field pulses. The occurrence of these spikes is stochastic and dependent on the 
magnitude of the electric field. The combination of an electric pulse and a reverse pulse was 
employed to ensure that the results of each pulse action do not interfere with each other.  (B) 
Spiking probability of the perovskite neuron as a function of pulse voltages. The solid line 
represents a sigmoid fitting that is commonly observed in the biological neural system. The spiking 
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probabilities were obtained by sampling over 30 pulsing events for each pulse voltage. (C) With 
the accumulation of weak pulses (0.19 V/μm for 100 μs) without any reset pulse, the neuron 
spiking probability increased significantly in response to the same electric pulse magnitude, which 
means the neuron can adaptively capture the previously unrecognized signal. The black part 
represents the initial state before the self-sensitization and the purple part represents the self-
sensitized state. (D) By accumulating different electric pulse fields with the same pulse width, the 
artificial neuron achieved different self-sensitized states to capture a broader range of weak signals. 
Furthermore, it can filter out weaker signals selectively, preventing the device from being 
disrupted by background noise. (E) Spiking probabilities of different sensitized states as shown in 
(D), which suggests that the neuron can adaptively exhibit varying degrees of adjustment based on 
different input signals. (F) The threshold voltages for different sensitized states extrapolated from 
(E), where the neuron exhibits different degrees of neuron activation function shift in response to 
diverse external signals. The pulse voltage at which the perovskite neuron exhibits a spiking 
probability of 10% is defined as its spiking threshold. 
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Figure 3. Microscopic mechanism of the self-sensitization in a perovskite neuron. (A) 
Schematic of the nuclear reaction analysis (NRA) which can quantify the absolute amount of 
hydrogen within a solid. (B) The hydrogen content exhibited a gradient distribution from the 
surface to the film-substrate interface. It is worth noting that the distinct minima and maxima of 
hydrogen concentration near the film surface are attributed to the influence of the instrumental 
function of the NRA and native hydrogen absorbed by the surface. (C) Schematic of the micro-X-
ray absorption spectroscopy measurement. The incoming X-ray beam is focused on different 
positions near the Pd electrode. The fluorescence signal is recorded by a detector positioned 
perpendicular to the X-ray beam. (D) The X-ray absorption spectra were measured at different 
positions on the device, ranging from the device channel (top) to the Pd electrode (bottom). The 
curves illustrate the variation of the Ni K-edge XAS spectra, and the dashed line is used as a guide 
to visualize the peak shift. The shift of the peak towards lower energies indicates a change in the 
valence state of Ni, which can be attributed to the variation in hydrogen gradient. (E) The Ni K-
edge peak positions for the pristine sample (no H-doping) and different neuron states along the 
device channel. No peak shift was observed in the pristine sample, while a noticeable difference 
in peak shift was found between the non-spiking state and the spiking state, indicating distinct 
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changes in Ni valence and the distribution of hydrogen gradient. The dashed line represents the 
edge of the Pd electrode. (F) Current maps obtained in the conducting atomic force microscopy 
(cAFM) experiments by scanning near the Pd electrode (top of the figure), and the current gradient 
near the Pd electrode was observed for a H-doped sample. The tested area has a size of 1.5 μm2 
with 256×256 pixels. (G) Mean current values were plotted as a function of position along the 
channel direction. Gradual decrease in current observed in the H-doped sample indicates the 
presence of a hydrogen gradient within the NNO channel. (H) Mean current values for the non-
spiking state and the spiking state of the perovskite neuron, with a difference in current by one 
order of magnitude near the Pd electrode. (I) Difference in normalized current distribution between 
the initial state and the sensitized state indicates that the sensitizing field (0.19 V/μm) altered the 
distribution of hydrogen gradient.  
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Figure 4. Practicality test of the self-sensitizable neurons. (A)-(C) Simulation based on 
experimentally measured neuron activation function shifts of perovskite neurons. The neuron 
model exhibits varying degrees of self-sensitization to different normalized inputs. (D) The 
classification accuracy of the self-sensitizable and normal networks (both without convolutional 
layers) on the standard Fashion MNIST dataset in bright environment. (E) Significant accuracy 
improvement of the self-sensitizable networks compared to normal networks in dark environment. 
(F) The advantages of the self-sensitizable networks becomes increasingly evident as the 
brightness of the environment continuously changes. 
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Figure 5. Applications of self-sensitizable neurons in vehicle edge detections. (A) Vehicle edge 
detection using self-sensitizable or normal neurons in both bright and dark environments. The 
networks with self-sensitizable neurons exhibited good performance in different environments, 
surpassing the networks with normal neurons. (B) Complete edge information captured by 
different adaptive states of self-sensitizable neurons. These neuron states in the networks are from 
the experimental measurements of the self-sensitizable perovskite neuron. (C) and (D) The 
distributions of signal intensity in different environments and the corresponding spiking 
probability of normal neurons and self-sensitizable neurons. The spiking probability in c suggests 
that the self-sensitizable networks redistributed the computing resources in bright environments to 
enhance the sensitivity to detailed information. (D) illustrates that the self-sensitizable networks 
reshaped the signal reception range in dark environments with an additional spiking probability 
peak, capturing the weak information that normal networks failed to recognize. (E) Increased 
spiking numbers of self-sensitizable neurons compared to normal neurons across different images 
in bright and dark environments (Bright1, Dark1, Bright2, Dark2, etc.) showcases the adaptability 
of self-sensitizable neurons in efficiently processing weak signals under diverse environmental 
conditions. (F) The edge connectivity of different vehicles when transitioning into dark 
environments, calculated by averaging the connectivity from 100 results of different vehicle 
detections. (G) The self-sensitizable network can adaptively capture detailed information of 



26 
 

license plate numbers when shifting into dark surroundings, exhibiting the potential to operate 
effectively in complex real-world environments. (H) Significant increase in accuracy of self-
sensitizable neurons in classifying SUVs, pickup trucks, sedans, and airplanes, compared to the 
normal neurons. 
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Figure 6. Applications of self-sensitizable convolutional neural networks in classification 
tasks. (A) Self-sensitizable neurons empower the networks to capture more information in ever-
changing environments, allowing for complete object recognition. (B) The networks with self-
sensitizable neurons can extract more information content in dynamic environments, exceeding 
normal networks by ~250% when transitioning into dark surroundings. (C) The convolutional 
feature maps of the self-sensitizable networks and the normal networks when classifying images 
after transitioning to low-light environments. The self-sensitizable convolutional layers can extract 



28 
 

more distinct features. (D) The outputs of the convolutional neurons in two types of networks. The 
self-sensitizable neurons can adaptively reshape the information reception range to maintain the 
subject-environment distinctiveness in ever-changing surroundings. In contrast, the normal 
neurons struggled to discern the environment and the subject clearly when transitioning into dark 
environments. (E) Comparing the outputs of different neurons to assess subject-environment 
distinctiveness. The self-sensitizable network maintained a robust ability to distinguish subject and 
environment across varying environmental intensities. (F) and (G) Gradient-weighted Class 
Activation Mapping (Grad-CAM) associates classification decisions with different regions of the 
input images, enabling a clear visualization of the primary contributing regions to the classification 
result. The red portions in the images represent crucial features guiding the classification. (H) 
Vehicle image classification tasks with different proportions of bright and dark environments. The 
self-sensitizable convolutional network maintained a high classification accuracy, while the 
accuracy of the normal network diminished significantly. 

 


