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Abstract
High-fidelity simulators that connect theoretical models with observations are indispensable tools
in many sciences. If the likelihood is known, inference can proceed using standard techniques.
However, when the likelihood is intractable or unknown, a simulator makes it possible to infer the
parameters of a theoretical model directly from real and simulated observations when coupled
with machine learning. We introduce an extension of the recently proposed likelihood-free
frequentist inference (LF2I) approach that makes it possible to construct confidence sets with the
p-value function and to use the same function to check the coverage explicitly at any given
parameter point. Like LF2I, this extension yields provably valid confidence sets in parameter
inference problems for which a high-fidelity simulator is available. The utility of our algorithm is
illustrated by applying it to three pedagogically interesting examples: the first is from cosmology,
the second from high-energy physics and astronomy, both with tractable likelihoods, while the
third, with an intractable likelihood, is from epidemiology3.

1. Introduction

Simulation-based, or likelihood-free, inference is now ubiquitous in the sciences (see, for example, [1, 2]).
Recently, Dalmasso et al introduced likelihood-free frequentist inference [3] (LF2I), a simulation-based
method featuring provable frequentist [4] guarantees. LetD = {Xi | i = 1, . . . ,N} be the set of observable
data sampled from a simulator Fθ and D= {xi | i = 1, . . . ,N} be the set of observed data.

Consider a large, in principle infinite, collection of data-driven statements of the form θ ∈ R(D) with
parameter θ a point in the parameter space of a theoretical model, and R(D) is a data-dependent subset of
that space. Given a function of the data λ(D;θ), called a test statistic, the LF2I approach constructs
data-driven statements based on the test statistic that are either true or false with the guarantee that over a
large collection of such statements, a minimum fraction τ of them will be true. The fraction τ is called the
confidence level, while the fraction p⩾ τ of true statements, which may vary over the parameter space, is
called the coverage probability, or coverage for short. The interesting aspect of LF2I is that the guarantee,
p⩾ τ , holds for any data sample size N. Parameter subsets that satisfy this condition are called confidence sets
R(D). Ideally, the function λ(D;θ) compresses the data such that all relevant information about the
parameter θ is preserved. We define the observed test statistic, λD, to be the test statistic evaluated at the
observed data, λD ≡ λ(D = D;θ).

Confidence sets and classical hypothesis tests are closely related. A classical hypothesis test [4] is a
procedure for deciding between two hypotheses: a null hypothesis H0 and an alternative hypothesis H1. For
example, we may wish to perform the following test:

H0 : θ = θ0 versus H1 : θ ̸= θ0. (1)

3 Code to reproduce all of our results is available on https://github.com/AliAlkadhim/ALFFI.
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The hypothesis test in equation (1) is equivalent to

H0 : θ ∈Θ0versus H1 : θ ∈Θ1, (2)

whereΘ0 ∩Θ1 = ∅, andΘ0 could be a single parameter point (which defines a simple hypothesis) or more
than one point (thereby defining a composite hypothesis).

When the two hypotheses are simple the likelihood ratio test statistic is known to be optimal [5], while
experience indicates that the likelihood ratio, or a function thereof, works well even when one or both
hypotheses are composite [6]. The null hypothesis will either be rejected or will fail to be rejected depending
on the value of the test statistic evaluated on a set of observed dataD = D. If the null hypothesis is rejected,
we may choose to accept the alternative.

Assuming that large values of λ= λ(D;θ) cast doubt on the null hypothesis θ = θ0, the latter is rejected if
the p-value, P(λ > λD|θ), is less than a given threshold α, called the size or significance level of the test4[7].
For example, if the test statistic is a χ2 function, large values of χ2 disfavor the hypothesis θ = θ0. If the
parameter point θ0 is not rejected it is added to the confidence set R(D). A confidence set is, therefore, the set
of parameter points that have not been rejected at level α. The key idea of LF2I is to approximate the p-value
with a neural network in such a way that the resulting confidence sets satisfy p⩾ τ or, more realistically,
p≈ τ , given that the neural network provides an approximation to the p-value.

LF2I provides two methods to construct confidence sets: one requires approximating the value of λD,
called the critical value Cα, for which the p-value= P(λ > λD|θ) is equal to α,

R̂(D) =
{
θ0 ∈Θ | λ(D;θ0)⩾ Ĉα,θ0

}
, (3)

where Ĉα,θ0 is the estimated critical value at level α for the hypothesis θ = θ0, and a second method that
requires an approximation, p̂(D;θ0), of the p-value,

R̂(D) =
{
θ0 ∈Θ | p̂(D;θ0)> α

}
. (4)

The algorithm proposed in this paper generalizes the second method, i.e. equation (4) so that the coverage
can be explicitly checked using the p-value p̂(D;θ0), while the explicit checking of the coverage in LF2I can
only be done via equation (3), and then only for a particular value of α.

In practice, we choose to approximate the cumulative distribution function (cdf), P(λ⩽ λD|θ), with a
neural network, in contrast to LF2I where the p-value, P(λ > λD|θ), is approximated. Our key idea is to
make the neural network a function of both the parameter point θ and the “observed” test statistic
λD ≡ λ(D;θ). This simple extension makes it possible to apply the approximated cdf to any data set that is
sampled from the same underlying distribution as the observed data D. Moreover, the cost of approximating
the cdf is amortized over its subsequent use in constructing confidence sets and its use in explicitly checking
the coverage of these sets without the need to retrain the network. To distinguish the modified LF2I from the
original, we refer to the former as amortized likelihood-free frequentist inference (ALFFI). The ALFFI
approach is illustrated in three pedagogical examples chosen from diverse areas of the sciences. The first two
examples feature likelihoods that are tractable, while for the third example the real power of LF2I and ALFFI
is illustrated with a problem in which the likelihood is intractable.

The paper is organized as follows. In section 2, we describe the ALFFI approach. This is followed, in
section 3, with the three examples. Section 3.1 uses ALFFI to infer the parameters of a simple cosmological
model that is fitted to Type 1a supernova data, while section 3.2 applies ALFFI to the prototypical
signal/background problem in high-energy physics, which in astronomy is known as the On/Off problem
[8]. For both of these problems, the likelihood is tractable. Section 3.3 illustrates the application of ALFFI to
a well-known epidemiological model, which, though simple, has an intractable likelihood. The paper ends
with a brief discussion in section 4 and our conclusions in section 5.

2. ALFFI

2.1. From cdf to confidence sets
A classical hypothesis test is designed to have power in distinguishing between the null and the alternative
hypothesis. Consider the α-level hypothesis θ = θ0, as in equation (1). This hypothesis is to be rejected
if P(λ > λD | θ0)< α. The corollary is that θ0 is not to be rejected if P(λ > λD | θ0)⩾ α, that is, if
P(λ⩽ λD | θ0)⩽ 1−α≡ τ . The set of points θ0 that have not been rejected at level α, and therefore remain

4 α is also the threshold at which one is willing to commit a Type I error, the probability of erroneously rejecting the null hypothesis when
it is in fact true.
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as potentially viable hypotheses for the true value of θ, is by definition a confidence set R(D) at 100τ%
confidence level (CL). The boundary of the confidence set R(D) is determined by the equation

P(λ⩽ λD | θ0) = τ. (5)

By construction, the coverage probability of such sets is

P(θ ∈ R(D) | θ)⩾ τ. (6)

Note that R(D) is a random set. Under repeated observations, the frequentist principle requires that the
relative frequency with which these sets include the true value of θ never falls below the stated CL τ = 1−α
regardless of the true value of θ. To the degree that the probabilities P(λ > λD | θ) and P(λ⩽ λD | θ) are
accurately modeled, the LF2I and ALFFI approaches yield random sets that satisfy the frequentist principle.

2.2. Data preparation for ALFFI
The LF2I and ALFFI approaches are applicable to any test statistic λ(D;θ) that is monotonic in the
following sense: the test statistic is constructed so that a particular direction in its 1-dimensional space
corresponds to hypotheses that are increasingly disfavored. In ALFFI, we consider test statistics for which
large values correspond to disfavored hypotheses, or equivalently, small values of the
p-value= P(λ > λD|θ = θ0), where λD ≡ λ(D = D;θ0) is the observed value of the test statistic for the
specified hypothesis. ALFFI (see appendix A) approximates the probability

P(λ⩽ λD | θ) =
ˆ λD

dY

ˆ
dD δ (Y−λ(D,θ)) p(D | θ) , (7)

where δ(.) is the Dirac delta function [9] and p(D|θ) is a statistical model, which may or may not be
tractable. However, as in the LF2I approach [3], it is assumed that one has access to a large collection S of
simulated pairs (D,θ) ∈ S where for every point θ sampled from any convenient prior πθ a single instance of
a data setD is simulated with the same characteristics, including sample size, as the real data D. In contrast to
LF2I, in ALFFI a second collection of data sets S ′ is created from S by randomizing the order of the data sets
{D} to form new pairs (D ′,θ) ∈ S ′ in which the parameters and the data setsD ′ are statistically
independent. The data sets in S ′ serve as instances of ‘observed’ data sets.

For every parameter θ in S, we compute two values of the test statistic, namely, λ(D,θ) and
λD = λ(D ′,θ), as well as the discrete variable Z which is unity if λ(D,θ)⩽ λ(D ′,θ) and zero otherwise. This
procedure results in a large collection of triplets of size B, T = {(Zi,λD,i,θi )}Bi=1, which constitute the
training data. In LF2I, the observed test statistic under the null that θ = θ0—the second component of the
triplet—is computed using a fixed data setD ′ = D, namely, the one actually observed, while ALFFI uses the
data setsD ′ ∈ S ′.

2.3. Approximating the cdf
The cdf P(λ⩽ λD|θ) is the expectation value E(Z|λD,θ) of the discrete variable Z, a fact that suggests a
straightforward way to approximate the cdf for a fixed data set D: histogram the parameter points θ, thereby
yielding the histogramH1, and using the same bins asH1 histogram the parameter points again, but this
time weighted by Z, yielding the histogramHZ. The ratioHZ/H1 provides a piece-wise-constant
approximation of E(Z|λD,θ).

Following LF2I, a smooth approximation of E(Z|λD,θ) is created with a deep neural network (DNN)
trained (that is, fitted) by minimizing the empirical risk

E(ω) =
1

N

N∑
i=1

L(ti, fi) , (8)

where L(t, f) is a loss function, f(x;ω) is a DNN with inputs x and free parameters ω, and t denotes known
targets. The empirical risk or average loss, equation (8), is a Monte Carlo approximation of the risk
functional

E [ f ] =

ˆ ˆ
L(t, f) p(x, t) dxdt, (9)

where p(x, t) = p(t|x)p(x) is the (typically unknown) probability distribution of the data x, t. From the
calculus of variations, the function f that minimizes equation (9) is the solution of

ˆ
∂L
∂f

p(t|x) dt= 0, (10)

3
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Table 1. Cosmological Model: xi ±σi and zi are the measured distance moduli and redshifts, respectively, whileH0 and n are the model
parameters. Signal/Background: N andM are the observed counts for signal and background, respectively, while n andm are the
expected signal and background counts, respectively. µ and ν are the unknown signal mean (parameter of interest) and unknown
background mean (nuisance parameter), respectively. SIR Model: {xi } are the 13 observed counts of infected children on the 13 days of
observation, and α and β are the model parameters. CTMC is a continuous time Markov chain model of the epidemic.

Example
Observed
data (D) θ Priors πθ D ∼ Fθ Tractable L ? λ

Cosmological
Model

xi ±σi,zi H0,n
H0
100 ∼
Unif(0.66,0.76),
n∼ Unif(0.05,0.65)

xi ∼N (µ,σi) Yes equation (16)

Signal/
background

N= 3,
M= 7

µ, ν µ∼ Unif(0,20),
ν ∼ Unif(0,20)

n∼ Poisson(θ+ ν),
m∼ Poisson(ν)

Yes equation (21)

SIR Model xi α,β α∼ Unif(0.1,0.9),
β×103

5 ∼
Unif(0.25,0.65)

{xi} ∼ CTMC(θ) No equation (25)

assuming that p(x)> 0 ∀x. In the examples below, and following LF2I, we use the quadratic loss
L(t, f) = (t− f)2, which, using equation (10), leads to the well-known result [10, 11]

f(x;ω∗) =

ˆ
tp(t|x) dt≡ Et [t | x] , (11)

where ω∗ are the best-fit parameters of the neural network model. Setting x= {λD,θ} and the targets t=Z
in equation (11) yields

f(λD,θ;ω
∗)≈ E [Z | λD,θ] ,

= P(λ⩽ λD | θ) , (12)

that is, it yields the quantity that we wish to approximate.
One of the key virtues of the LF2I and ALFFI approaches, as is evident in the result in equation (12), is

that the neural network f is conditioned on θ, which implies that it is independent of the prior πθ from
which the parameter points are sampled. The form of the prior affects only the accuracy of the
approximation: the accuracy of the approximation will be greatest where the density of the prior is greatest.

3. Results

The ALFFI approach is illustrated in the following three diverse examples: the first is from cosmology, the
second from high-energy physics and astronomy, and the third from epidemiology. Our choice of the
particular problem in each field highlights typical statistical inference problems that are encountered in each
field. We demonstrate that the ALFFI method yields valid5 multi-parameter confidence sets for all three
examples, both in cases where the likelihood is tractable (the first two examples), and where the likelihood is
intractable (the third example). We also demonstrate the use of different test statistics, demonstrating the
compatibility with binned and un-binned analyses. Table 1 summarizes key attributes of each example.

3.1. Example 1: cosmological model
In the late 1990 s, fits of cosmological models to Type 1a supernova data led to the conclusion that the
expansion of the Universe is accelerating [12, 13]. The fits then, as now, were performed using tractable
likelihoods, typically a multivariate normal. In this example, we fit a cosmological model to the Union 2.1
data compilation of the Supernova Cosmology Project [14] via maximum likelihood and also with ALFFI.
The Union 2.1 data set comprises measured distance moduli, x±σ, and redshifts, z, for 580 Type 1a
supernovae. Given the size of the data sample, it is expected that accurate confidence sets for the
cosmological parameters can be constructed using standard methods such as maximum likelihood. ALFFI is
therefore not needed for this problem; it is simply used to showcase the algorithm.

Our cosmological model is defined by the equation of state

P =−nanΩ/3, (13)

5 By valid we mean that the confidence set has the nominal type I error or CL.
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Figure 1. Example 1 (cosmology): maximum likelihood fit of 2-parameter cosmological model to Union 2.1 Type 1a data set.
Note the excellent fit, which with a χ2 per number of degrees of freedom (ndf) of 0.98 is on par with that of the ΛCDMmodel.

where n is a free parameter and a(t), Ω(a), and P are the dimensionless universal scale factor, the
dimensionless energy density, and the dimensionless pressure, respectively, and t is the time since the Big
Bang. Together with the Hubble constantH0 this is a 2-parameter problem. (Details of the model are given
in appendix B). If the small correlations between the 580 Typa 1a data points are neglected, the likelihood for
these data is a diagonal multivariate normal. Maximizing this likelihood with respect to its parameters is
equivalent to minimizing the function

χ2 =
N∑

i=1

(
xi −µ(zi,θ)

σi

)2

, (14)

where µ(z,θ), the distance modulus[15]—an astronomical measure of distance, is given by

µ(z,θ) = 5 log10

[
(1+ z) sin

(√
−ΩK u(z,θ)

)
/
√
−ΩK

]
+ 5 log10

(
c/H0/10

−5Mpc
)
. (15)

The quantity c is the speed of light in vacuum in km/s, ΩK is the curvature parameter, which we set to zero,
and

u(z,θ) =

ˆ 1

1/(1+z)

da

a2
√
Ω(a)

, = 2
1
2n

[
γ

(
1

2n
,
1

2

)
− γ

(
1

2n
,
(1+ z)−n

2

)]
√
e/n,

is a dimensionless function. When the model is fitted to the Union 2.1 data set by minimizing equation (14)
an excellent fit is obtained, as shown in figure 1.

We now apply ALFFI to the same problem using the test statistic

λ(D,θ) =

√
χ2

N
, (16)

where χ2 is defined in equation (14), and satisfies the requirement by ALFFI that large values of the test
statistic cast doubt on the null hypothesis. The form of the test statistic is chosen so that it isO(1) as it is an
input to the neural network. The boundary of the associated 100τ% confidence set is given by equation (5),
which requires a good approximation to the cdf P(λ⩽ λD|θ). The latter is approximated in two ways: with
histograms and with a deep neural network (DNN) as described in section 2.3. The 2D histograms have 10
bins in both dimensions n andH0 with the parameter n scaled down by a factor 10 andH0 scaled down by a
factor 100, so that both input parameters are ofO(1).

The DNN is 1781-parameter fully-connected feed-forward neural network, with 3 input features,
x= {λD,n,H0}, 5 hidden layers with 20 nodes each, and a single output. We use a ReLU [16] activation
function, the output node is a sigmoid that constrains the output to lie within the unit interval, and the DNN
is trained as described in section 2 using PyTorch [17].

We use a batch size K= 50≪ N randomly sampled from N= 250000 data sets of 580 simulated distance
moduli per data set, sampled at the same redshifts as the observed data. The Adam [18] optimizer with a
fixed learning rate of 10−3 is used to train the network. As the training proceeds, the network with the
smallest average loss is saved. The average loss is computed using a validation data set of size 5000 that is not
used by the optimizer. We employ the following early stopping [19] criterion: the training stops if after

5
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Figure 2. Example 1 (cosmology): confidence sets R(D) for τ = 0.68,0.80,0.90, and 0.95. (dashed lines) Boundaries of confidence
sets, R(D), defined by P(λ ⩽ λD|θ) = τ computed using the histogram-based approximation of the cdf. (solid lines) Boundaries
of confidence sets computed using the DNN-based approximation of the cdf. (black dot) Location of the minimum of
P(λ ⩽ λD|θ), computed with the DNN approximation, which is taken to be the best-fit point and which agrees with the
maximum likelihood results in figure 1.

50 000 steps no network is found with a smaller validation loss than the saved network. The best network as
defined by this training protocol is found after about 100 000 iterations. If one defines an epoch to be N/K
iterations, which for this example is 5000, then 100000 iterations corresponds to 20 epochs of training. The
simulated data sets of 580 distance moduli are sampled from 580 independent normal distributions using the
standard deviations taken from the observed data.

Approximating P(λ⩽ λD|θ) using histograms and using ALFFI leads to the confidence sets shown in
figure 2.

The best-fit values of the cosmological parameters θ = {n,H0} are taken to be the location of the
minimum of P(λ⩽ λD|θ), which as indicated in figure 2 agrees with the values obtained from the likelihood
fit.

In the LF2I approach, the coverage over the parameter space is checked by modeling the coverage
probability with another neural network as a function of the parameters of the theoretical model. There are
pros and cons to that approach. It is certainly convenient to have a functional approximation of the coverage
probability as a function of the parameter space point because one can then estimate the coverage at any
given point, not only at points for which there are sufficient simulated data. Unfortunately, however, as is
true of most machine learning models, a reliable estimate of the accuracy of the trained machine learning
model is not available. In ALFFI, the coverage is checked explicitly by direct enumeration at all points for
which there are sufficient data. Since the problem consists of counting how often a particular statement is
true, the problem is binomial; therefore, a reliable estimate of the accuracy of the coverage calculation is easy
to compute. On the other hand, the coverage is available only at the parameter points for which there are
sufficient simulated data. In this example, for a given parameter point, T= 4,000 sets of 580 Type1a
supernovae data are simulated. For each data set, a test statistic, λD, is computed. If P(λ⩽ λD|θ)⩽ τ then,
by definition, θ lies within the confidence set associated with λD. If S is the number of times this statement is
true over the collection of T simulated data sets, then the coverage probability is p±

√
p(1− p)/T, where

p= S/T. For continuous probability distributions and exact confidence sets, the coverage probability p is
exactly equal to the CL τ . Therefore, if the confidence sets produced by ALFFI are accurate then we should
find p≈ τ given that we are making an approximation. This calculation is performed at 500 randomly
sampled points within the 95% CL set associated with the observed Type 1a data, as shown in the left panel
of figure 3.

The right panel shows the coverage probabilities calculated for the 500 randomly sampled parameter
points, shown in the left panel, compared with the desired 1−α= τ CLs, depicted by the solid horizontal
lines. Since the coverage probabilities are greater or equal to the CLs, we conclude that the coverage of the
confidence sets computed using ALFFI satisfy the coverage condition in equation (6).

6
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Figure 3. Example 1 (cosmology): (left) 500 points, from the 95% CL confidence set for the Type 1a data, at which the coverage
has been computed. (right) the dots are the coverage probabilities for each of the 500 points in the cosmological model n,H0

parameter space and the horizontal lines are the values of the confidence levels τ .

3.2. Example 2: signal/background or ON/OFFmodel
The cosmological example served to illustrate the ALFFI algorithm, but, as noted, ALFFI is not really needed
because the cosmological data are numerous, the likelihood function is tractable, and parameter estimation
via maximum likelihood works well. Our second example addresses the signal/background problem in
high-energy physics (see, for example, [20]), which in astronomy is referred to as the On/Off problem [8].
We choose an example in which the likelihood is tractable but the data are sparse and, consequently,
asymptotic methods may not be reliable [7]. We demonstrate that the ALFFI method yields valid confidence
sets even when the regularity conditions that underpin Wilks’ theorem [21] and its variants [6] are violated.

The signal/background problem in high-energy physics and astronomy is as follows. An observation is
made, for given period of time, which consists of counting N events: typically, photons in astronomy and
particle collisions in high-energy physics. The count is potentially a sum of counts from signal and
background sources. A second independent observation is made for the same duration (in the simplest case)
where by design the background has the same characteristics as in the first observation but no signal is
present. The second observation yields a countM. It is generally assumed that the likelihood function for the
data D= {N,M} is the product of two Poisson distributions,

L(D;µ,ν) =
(µ+ ν)

N exp(−(µ+ ν))

N!

νM exp(−ν)

M!
, (17)

where µ and ν are the mean signal and background counts, respectively. In the signal/background problem
the parameter of interest is µ, while ν is a nuisance parameter. We shall comment on how one might deal with
such parameters in the discussion.

Our specific example is from the first experiment to search for neutron-antineutron oscillations using
free neutrons [22], which took place in the 1980 s at the Institut Laue-Langevin (ILL) in Grenoble, France.
Neutron-antineutron (nn̄) oscillations are predicted by many proposed theories of physics beyond the
Standard Model of particle physics [23]. For our purposes it suffices to note that if nn̄ oscillations can occur
then a pure neutron state, when observed at time t≪ than the mean neutron lifetime, will be observed with
probability

7
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Pt =

(
ϵ2

ϵ2 +∆E2

)
sin2

((
ϵ2 +∆E2

)1/2
t
)
,

≈
(

ϵ2

∆E2

)
sin2 (∆Et) , (18)

as an antineutron state, where 2∆E is the difference in neutron and antineutron energies in external fields
and ϵ= τ−1

nn̄ is the energy characteristic of whatever new physics is responsible for the oscillations; τnn̄ is
referred to as the oscillation time. We use units in which h̄= 1. The experimental conditions are such that
∆E≫ ϵ, which justifies the approximation in equation (18). Furthermore, in the Grenoble experiment the
quasi-free condition∆Et≪ 1 could be realized, leading to a transition probability,

Pt ≈ (t/τnn̄)
2
, (19)

independent of the energy perturbation∆E arising from the neutron and antineutron interactions with the
ambient magnetic field. In the quasi-free condition N = 3 events were recorded in this experiment.

The background in the Grenoble experiment was directly measured by applying a magnetic field to
suppress the transition probability Pt by making∆E large enough. This condition yieldedM= 7 events. The
maximum likelihood estimate of the signal is µ̂= N−M=−4 events. However, since µ⩾ 0, we choose to
take the best estimate of the signal in such experiments to be

µ̂=

{
N−M if N>M
0 otherwise.

(20)

The sparsity of the data in the Grenoble experiment and our choice of signal estimate explicitly violate two of
the regularity conditions for standard asymptotic results to hold [7]: the data should be sufficiently
numerous and estimates must not lie on the boundary of the parameter space. The first condition is violated
by the limited number of observations, and the second is violated by µ̂= 0, which lies on the boundary of
the parameter space µ̂ ∈ [0,∞). The violation of these regularity conditions, however, is not a problem for
LF2I and ALFFI.

To construct confidence sets in the parameter space of θ = {µ,ν}, we use the test statistic

λ(D;θ) =−2 log

[
L(D;µ,ν)

L(D; µ̂, ν̂)

]
, (21)

where µ̂ is given by equation (20) and ν̂(µ) by

ν̂ =

{
M if µ̂= N−M
(M+N)/2 otherwise.

(22)

The cdf, P(λ⩽ λD|θ), was again approximated with a fully-connected feed-forward DNN with 3 input
features x= {λD,µ,ν}, 6 hidden layers with 12 nodes each, and a single output, estimating E [Z | λD,µ,ν].
The activation function at each hidden node is a PReLU [24], and the network was trained with the Adam
optimizer with a fixed learning rate of 6× 10−4. The training set is composed of 107 examples, which were
used in batches of size 5× 103, for the duration of 105 iterations, that is, for 50 epochs. A batch
normalization [25] layer was added after every hidden layer, which was found to improve the results.

The DNN was used to compute the confidence sets shown in figure 4 and the associated coverage
probabilities shown in figure 5. The fact that the coverage probabilities are close to the desired CLs confirms
the accuracy of the confidence sets obtained with ALFFI.

3.3. Example 3: susceptible-Infected-Recovered (SIR) model
In the cosmology and signal/background examples, the likelihood functions are tractable. In our third
example, from the field of epidemiology, the likelihood is intractable [26]. Therefore, this example is one for
which LF2I and ALFFI are the most useful.

In this example, we fit the well-studied SIR epidemiological model to a classic data set, reproduced in
figure 6, from a flu outbreak at an English Boarding School [27]. The SIR model has a nearly 100-year
history, beginning with the work of Kermack and McKendrick in 1927 [28]. The simplest version of the
model comprises coupled ordinary differential equations (ODEs) and assumes a population of individuals
that is closed and well-mixed in which individuals fall into one of three classes or compartments: susceptible
(S), infectious (I), and recovered or removed (R). The rate of change of susceptible individuals depends on
the rate at which new infections arise as a result of contact between infectious and susceptible individuals. It
is typically assumed that the contact rate (number of contacts per unit time) is proportional to the total
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Figure 4. Example 2 (signal/background): confidence sets R(D) for τ = 0.68,0.80,0.90, and 0.95. (dashed lines) Boundaries of
confidence sets, R(D), defined by P(λ ⩽ λD|θ) = τ with the histogram-based approximation of the cdf. (solid lines) Boundaries
of confidence sets computed using the DNN-based approximation of the cdf.

Figure 5. Example 2 (Signal/Background): (left) 500 points, from 95% CL confidence set for the Grenoble data [22], at which the
coverage has been computed. (right) the coverage probabilities for each of the 500 points in the signal/background {µ,ν}
parameter space.

Figure 6. Example 3 (SIR): english boarding school data. The number of infected individuals at the reported times in days from
the start of the flu outbreak.

9
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population size N or constant. The assumption that contacts are proportional to the total population size
leads to a mass action term βSI for the number of new infections per unit time (called the incidence in
epidemiology). Infectious (I) individuals can leave the infectious class through recovery (or death) and
progress to the the Recovered (or Removed) class, R. It is often assumed that the number of
recoveries/removals per unit time is linear in I: αI. Under this assumption, the time spent in I is
exponentially distributed with mean 1/α. The resulting system of ODEs is

dS

dt
=−βSI,

dI

dt
=−αI+βSI,

dR

dt
= αI. (23)

The qualitative dynamics of this model are governed by an epidemiological quantity called the basic
reproduction number, R0, which for this SIR model is R0 = β/α. If R0 > 1, the model exhibits a single
outbreak, with I increasing to a peak, then approaching zero as time tends to infinity. Under this scenario, S
will decay and approach a positive, constant value, meaning that the epidemic does not infect the whole
population. If R0 ⩽ 1, I will decay and approach zero as time tends to infinity. This model has played an
invaluable role in understanding infectious disease dynamics, informing control strategies, and serving as a
building block for more complex compartmental epidemiological modeling frameworks.

The SIR model is often fitted to data by minimizing a weighted least squares function,

F(θ) =
N∑

n=1

wn (xn − In)
2
, (24)

where the data D= {x1, . . . ,xN} are the number of infected individuals at the corresponding reporting times
t1, . . . , tN, In = I(tn,θ) is the predicted mean infection count at time tn, found by solving equations (23) for
the given θ, and wn are weights. Following example 1, we choose a test statistic that is transformed and scaled

λ(D,θ) =
√

F(θ)/N/50, (25)

so that the statistic isO(1). The weights are set to wn = I−1
n , which we hasten to add should not be taken to

imply that the counts xn are Poisson distributed. On the contrary, the counts xn are correlated and their
fluctuations are super-Poissonian.

We follow a similar training protocol as for example 1, except that the training sample size for this
example is 750 000, a fully-connected DNN is used with 6 hidden layers and 25 nodes each, and the best
model is found after about 350 000 iterations, that is, after 23 epochs. The confidence sets obtained are
shown in figure 7 and the coverage probabilities are shown in figure 8. Again, we find that ALFFI produces
accurate confidence sets.

4. Discussion

The approximated p-value function in LF2I is computed for a specific data set D, therefore, it cannot be used
for other similar data sets with the same sample size. Consequently, the LF2I p-value function cannot be
used to check the coverage explicitly at a given parameter point. In LF2i, an explicit coverage check can be
performed using the critical value function Ĉα, but only for a given α. LF2I provides an algorithm to train
another neural network to approximate the coverage probability over the parameter space of the theoretical
model. But, unfortunately, a reliable way to quantify the accuracy of the approximated coverage probability
function is not available as is true of the neural network approximation of the p-value. Therefore, it is useful
to devise methods that make the explicit calculation of coverage at any given parameter point, and for any
level α, straightforward. Such methods make it possible to check the quality of the confidence sets by
assessing the degree to which the coverage matches the CL τ = 1−α, at any given point. If the coverage
probabilities within the neighborhood of the estimated parameters agree with the desired CL, τ , then one
may conclude that the confidence sets, R(D), are satisfactory. The motivation for the extension introduced in
this paper is the desire to have the p-value do double duty: 1) determine the confidence sets and 2) permit
the explicit checking of the coverage using the same neural network.

A simple extension of the LF2I algorithm for the critical value function makes it possible to use the same
approximation, Ĉα, to construct confidence sets and check their coverage for any value of the CL τ . The
LF2I algorithm is extended by including the CL τ as an input to the neural network and by using random
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Figure 7. Example 3 (SIR): confidence sets R(D) for τ = 0.68,0.80,0.90, and 0.95. (dashed lines) Boundaries of confidence sets
computed with the histogram-based approximation of the cdf. (solid lines) Boundaries of the confidence sets computed with the
DNN-based approximation of the cdf. (black dot) Location of the minimum of the DNN-based cdf, which is taken to be the
best-fit point.

Figure 8. Example 3 (SIR): (left) 500 points, from the 95% CL confidence set for the Boarding School data, at which the coverage
has been computed in the SIR α,β parameter space.(right) the coverage probabilities for each of the 500 points in the SIR
parameter space for different confidence levls (solid horizontal lines).

values of τ during training. In practice, we augment the training data by assigning a random value of τ to
every sampled point θ. During training the quantile loss associated with each point θ is calculated with the
associated value of τ . Since the critical value network is a function of θ and τ , it can used in a way analogous
to how the cdf is used in ALFFI. To illustrate the efficacy of this extension to LF2I and also provide a
comparison with ALFFI, the extended algorithm was applied to the SIR example, but using a much smaller
training sample size of 80 000 and a network with 5 hidden layers rather than 6, with coverage computed at
249 points. Figure 9 shows coverage results for confidence sets computed using the τ -dependent network.
The results are comparable to those in figure 8 computed using ALFFI. But we advise caution in drawing
firm conclusions from the comparison as the structures of the neural network models used have not been
systematically optimized.

The computation of the coverage at a given point θ entails determining which confidence sets contain θ, a
calculation that can be done extremely fast with ALFFI and the critical value function of LF2I. In both
approaches, the computational burden required to compute the coverage at a given point θ is simply the
burden of generating a sufficient number of simulations at that point. For example, suppose that one is
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Figure 9. Example 3 (SIR with extended ALFFI critical value function): (left) 249 points, from the 95% CL confidence set for the
Boarding School data, at which the coverage has been computed in the SIR α,β parameter space. (right) the coverage
probabilities for each of the 249 points in the SIR parameter space for different confidence levels (solid horizontal lines).

interested in computing the coverage probability, P(θ ∈ R(D) | θ), at the point θ to an accuracy of≈5%,
then 400 simulated data sets at that point would be sufficient.

Although we demonstrate the use of ALFFI for simultaneous inference on two parameters in each of the
three examples, the method, in principle applies to problems with any number of parameters. However, it
remains to be seen how, in practice, ALFFI’s accuracy in computing confidence sets scales with the
dimensionality of the theoretical model, and how that scaling compares with that of LF2I. Understanding
this scaling would require a dedicated study.

In the cosmological and epidemiological models all parameters are of interest. But in the
signal/background-On/Off problem one is typically interested only in the mean signal µ. The mean
background, ν, is a nuisance parameter. Unfortunately, constructing confidence intervals for µ when there
are nuisance parameters and when the data are sparse is challenging, though approximate methods exist (see,
for example, [6]) including in LF2I. Given the success of LF2I and ALFFI in producing reasonably accurate
confidence sets, it is of interest to explore whether the reasoning that underlies these approaches can be
extended to an algorithm that can yield provably valid confidence intervals for individual parameters, ideally
constructed from the associated multi-parameter confidence set.

One possible approach to construct confidence intervals from the confidence sets created with LF2I and
ALFFI is to mimic the way that confidence intervals can be constructed from confidence ellipsoids for a
multivariate normal density. In the two dimensional example, the objective would be to map a
2-dimensional confidence set to a one-dimensional confidence interval, as is done in the bivariate normal
density. For example, in the signal/background problem, one can construct an interval for µ as follows:
I(D) = [min({µi }),max({µi })], where {(µi,νi)} are points from the associated confidence set. It should be
possible to use an algorithm like ALFFI to map from the CL of the set to that of the associated interval for the
parameter of interest. If this can be done, then one would be able to determine what CL is needed for the
confidence set to obtain the desired CL for the associated interval. To the best of our knowledge, if such a
mapping could be devised in the general case it would constitute the first method in which valid
multidimensional confidence sets can be mapped to valid one-dimensional confidence intervals without the
need for explicit knowledge of the underlying statistical model. Ideas along these lines are under
investigation.

In LF2I and ALFFI, the approximated probabilities do not depend on the prior πθ since the network is
conditional on the parameters θ. However, the accuracy of the approximation depends on the prior. Greater
accuracy is expected where the density of sampled parameters is greater, just as the accuracy of any machine
learning model typically varies across the space of inputs reflecting the distribution of training data over that
space. Therefore, it makes sense to choose a prior that places the parameter points when they are needed
most. For example, if one knew approxinately where the 68% CL sets are located in the parameter space, it
would be advantageous to choose a prior that places the points in the neighborhood of those sets.
Alternatively, the parameter points could sampled using an active learning approach.
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5. Conclusions

The LF2I and ALFFI approaches are useful when asymptotic results [6, 7] may not be applicable, and are
particularly useful when the likelihood function is intractable. The ALFFI approach extends the p-value
approximation of LF2I by approximating one minus the p-value (that is, the cdf) of a test statistic with a
neural network in which the test statistic is an input. This makes it possible to check the coverage probability
of confidence sets, for any desired CL, at any point in the parameter space of a theoretical model using the
same neural network. In LF2I one can check the coverage explicitly with the approximation to the critical
value function, but not with the approximation to the p-value function. Direct calculation of the coverage
probability at any given point provides an a posteriori assessment of the accuracy of the confidence sets
constructed with ALFFI. In addition, by directly binning the point cloud of theoretical model parameters, it
is possible to cross-check the neural network approximation.
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Appendix A. ALFFI algorithm

Algorithm 1. Estimate the CDF C(λD | θ0) = P(λ < λD | θ0), given the observed value λD of a test statistic λ.

Ensure: estimated CDF Ĉ(λD | θ) for all θ = θ0 ∈Θ
1: Set T ← ∅
2: for i in {1, . . . ,B} do
3: Draw parameter θi ∼ πθ

4: SimulateDi ←{X1, . . . ,Xn}i ∼ Fθ
5: Compute test statistic λi ← λ(Di,θi)
6: SimulateD ′

i ←{X1, . . . ,Xn} ′i ∼ Fθ
7: Compute observed test statistic under the null θ = θ0, λ

′
i ← λ(D ′

i ,θi)
8: Compute discrete indicator variable Zi ← 1(λi < λ ′

i )
9: T ← T ∪{(Zi,θi,λ

′
i )}

10: end for
11: Use T to learn the function Ĉ(λD | θ)
12: return Ĉ(λ | θ).

Appendix B. Cosmological model: details

The Equation of state of our cosmological model is

P =−banΩ, (B.1)

where n and b are free parameters, and P , a(t), and Ω(a) are the dimensionless pressure, the dimensionless
universal scale factor, and the dimensionless energy density, respectively, and t is the elapsed time since the
Big Bang. For n> 1 and a≪ 1, the equation of state is that of a pressureless dust of particles as in the ΛCDM
model [15]. However, at later times the energy density becomes dominated by so-called phantom energy
[29]. Our model is consistent with the Friedmann-Lemaître-Robertson-Walker metric with zero curvature,
and the Friedmann equations [15], (

1

a

da

dt

)2

=H2
0Ω(a) (B.2)
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and a
dΩ

da
=−3(Ω+P) , (B.3)

are assumed to hold, whereH0 is the Hubble constant. The first Friedmann equation, equation (B.2),
incorporates the convention a(t0) = 1 at the present epoch t0. By definition, the Hubble constant is the
present value of the Hubble parameterH(a) = a−1da/dt, which implies Ω(1) = 1 for all cosmological
models.

Combining equations (B.1) and (B.3), integrating the latter, and imposing the constraintΩ(1) = 1, yields

Ω(a) = exp [3b(an − 1)/n] /a3, (B.4)

for the dimensionless energy density. This model is defined by the three parameters n, b, andH0, but we
reduce it to a 2-parameter model by choosing b= n/3. From the first Friedmann equation, equation (B.2),
the energy density Ω(a) and the dimensionless timeH0t are related as follows

H0t=

ˆ a

0

dy

y
√
Ω(y)

,

=
√
e2

3
2n γ

(
3

2n
,
an

2

)
/n, (B.5)

where γ(a,x) =
´ x
0 ta−1 e−t dt is the lower incomplete gamma function. Setting a= 1 yields the

dimensionless age of the Universe

H0t0 =
√
e2

3
2n γ

(
3

2n
,
1

2

)
/n. (B.6)

The distance modulus [15], which an astronomical measure of distance, is given by

µ(z,θ) = 5 log10

[
(1+ z) sin

(√
−ΩK u(z,θ)

)
/
√
−ΩK

]
+ 5 log10

(
c/H0/10

−5Mpc
)
, (B.7)

where c is the speed of light in vacuum in km/s, ΩK is the curvature parameter, and

u(z,θ) =

ˆ 1

1/(1+z)

da

a2
√
Ω(a)

, = 2
1
2n

[
γ

(
1

2n
,
1

2

)
− γ

(
1

2n
,
(1+ z)−n

2

)]
√
e/n,

is a dimensionless function. With ΩK → 0, the distance modulus simplifies to

µ(z,θ) = 5 log10 [(1+ z) cu(z,θ) /H0] + 25. (B.8)

For t< t0, the time dependence of the scale factor a(t) is similar to that of the standardΛCDMmodel. But the
model exhibits a future singularity (a Big Rip) characterized by the condition a→∞ at a finite time given by

H0trip =
√
e2

3
2n Γ

(
3

2n

)
/n, (B.9)

that is, at

trip =
Γ
(

3
2n

)
γ
(

3
2n ,

1
2

) t0.
ORCID iD

Ali Al Kadhim https://orcid.org/0000-0003-3490-8407

References

[1] Brehmer J 2021 Nat. Rev. Phys. 3 305
[2] Cranmer K, Brehmer J and Louppe G 2020 Proc. Nat. Acad. Sci. 117 30055–62
[3] Dalmasso N, Masserano L, Zhao D, Izbicki R and Lee A B 2023 Likelihood-free frequentist inference: confidence sets with correct

conditional coverage (arXiv:2107.03920)
[4] Neyman J 1937 Phil. Trans. R. Soc. A 236 333–80
[5] Neyman J and Pearson E S 1933 Phil. Trans. R. Soc A 231 289–337
[6] Cowan G, Cranmer K, Gross E and Vitells O 2011 Eur. Phys. J. C 71 1554
[7] Algeri S, Aalbers J, Dundas Mora K and Conrad J 2020 Nat. Rev. Phys. 2 245–52

14

https://orcid.org/0000-0003-3490-8407
https://orcid.org/0000-0003-3490-8407
https://doi.org/10.1038/s42254-021-00305-6
https://doi.org/10.1038/s42254-021-00305-6
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
https://arxiv.org/abs/2107.03920
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1937.0005
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1140%2Fepjc%2Fs10052-011-1554-0
https://doi.org/10.1140%2Fepjc%2Fs10052-011-1554-0
https://doi.org/10.1038/s42254-020-0169-5
https://doi.org/10.1038/s42254-020-0169-5


Mach. Learn.: Sci. Technol. 5 (2024) 015020 A Al Kadhim et al

[8] Li T P and Ma Y Q 1983 Astrophys. J. 272 317–24
[9] Gillespie D T 1983 Am. J. Phys. 51 520–33
[10] Ruck D, Rogers S, Kabrisky M, Oxley M and Suter B 1990 IEEE Trans. Neural Netw. 1 296–8
[11] Richard M D and Lippmann R P 1991 Neural Comput. 3 461–83
[12] Riess A G et al 1998 Astron. J. 116 1009
[13] Perlmutter S et al 1999 Astrophys. J. 517 565–86
[14] Suzuki N et al Supernova Cosmology Project Team 2012 Astrophys. J. 746 85
[15] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559–606
[16] Agarap A F 2018 Deep learning using rectified linear units (relu) (arXiv:1803.08375)
[17] Paszke A et al 2019 Pytorch: an imperative style, high-performance deep learning library (arXiv:1912.01703)
[18] Kingma D P and Ba J 2017 Adam: a method for stochastic optimization (arXiv:1412.6980)
[19] Raskutti G, Wainwright M J and Yu B 2014 J. Mach. Learn. Res. 15 335–66
[20] Lyons L, Prosper H B and De Roeck A (eds) 2008 (ed) Statistical Issues for LHC Physics. Proc., Workshop, PHYSTAT-LHC (Geneva,

Switzerland, June 27-29, 2007) (CERN Yellow Reports: Conf. Proc.)
[21] Wilks S S 1938 Ann. Math. Statist. 9 60–62
[22] Fidecaro G et al (CERN-GRENOBLE-PADUA-RUTHERFORD-SUSSEX) 1985 Phys. Lett. B 156 122–8
[23] Phillips D G I I et al 2016 Phys. Rep. 612 1–45
[24] He K, Zhang X, Ren S and Sun J 2015 Delving deep into rectifiers: surpassing human-level performance on imagenet classification

(arXiv:1502.01852)
[25] Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep network training by reducing internal covariate shift

(arXiv:1502.03167)
[26] Andersson H and Britton T 2012 Stochastic Epidemic Models and Their Statistical Analysis vol 151 (Springer)
[27] Anon 1978 Br. Med. J. 1 587
[28] Kermack W O and McKendrick A G 1927 Proc. R. Soc. A 115 700–21
[29] Caldwell R R, Kamionkowski M and Weinberg N N 2003 Phys. Rev. Lett. 91 071301

15

https://doi.org/10.1086/161295
https://doi.org/10.1086/161295
https://doi.org/10.1119/1.13221
https://doi.org/10.1119/1.13221
https://doi.org/10.1109/72.80266
https://doi.org/10.1109/72.80266
https://doi.org/10.1162/neco.1991.3.4.461
https://doi.org/10.1162/neco.1991.3.4.461
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086%2F307221
https://doi.org/10.1086%2F307221
https://doi.org/10.1088/0004-637X/746/1/85
https://doi.org/10.1088/0004-637X/746/1/85
https://doi.org/10.1103%2Frevmodphys.75.559
https://doi.org/10.1103%2Frevmodphys.75.559
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1016/0370-2693(85)91367-X
https://doi.org/10.1016/0370-2693(85)91367-X
https://doi.org/10.1016/j.physrep.2015.11.001
https://doi.org/10.1016/j.physrep.2015.11.001
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.03167
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1103/PhysRevLett.91.071301
https://doi.org/10.1103/PhysRevLett.91.071301

	Amortized simulation-based frequentist inference for tractable and intractable likelihoods
	1. Introduction
	2. ALFFI
	2.1. From cdf to confidence sets
	2.2. Data preparation for ALFFI
	2.3. Approximating the cdf

	3. Results
	3.1. Example 1: cosmological model
	3.2. Example 2: signal/background or ON/OFF model
	3.3. Example 3: susceptible-Infected-Recovered (SIR) model

	4. Discussion
	5. Conclusions
	Appendix A. ALFFI algorithm
	Appendix B. Cosmological model: details
	References


