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Summary

Drought and the availability of nitrate, the predominant source of nitrogen (N) in agriculture, are

major factors limiting plant growth and crop productivity. The dissection of the transcriptional

networks’ components integratingdroght stress andnitrate responses provides valuable insights

into how plants effectively balance stress response with growth programs. Recent evidence in

Arabidopsis thaliana indicates that transcription factors (TFs) involved in abscisic acid (ABA)

signaling affect N metabolism and nitrate responses, and reciprocally, components of nitrate

signaling might affect ABA and drought gene responses. Advances in understanding regulatory

circuits of nitrate and drought crosstalk in plant tissues empower targeted genetic modifications

to enhance plant development and stress resistance, critical traits for optimizing crop yield and

promoting sustainable agriculture.

I. Introduction

Drought stress is closely associatedwithwater deficit, a condition that
arises when a plant’s transpiration rate exceeds its water absorption
capacity due to insufficient water, increased salinity, or osmotic
pressure (Bray, 1997; Vishwakarma et al., 2017). Dehydration
triggers osmotic andhormone-driven signals, including an increase in
abscisic acidABA, ahormone that plays a significant role in theplant’s
response to drought (Zhang et al., 2006; Vishwakarma et al., 2017).

In general, drought stress negatively impacts plant growth
(Fig. 1a). The prevailing tension between growth and drought

resistance is often attributed to energy and resource constraints:
Stressed plants must divert energy and resources away from growth
toward stress response mechanisms. During the initial stages of the
stress response, the stress signaling network actively inhibits cellular
anabolic processes and overall plant growth, even if the cellular energy
status remains stable (Zhang et al., 2006; Vishwakarma et al., 2017).
One critical aspect of plant growth prominently suppressed by

drought is nitrogen (N)metabolism and the signaling of nitrate, the
predominant source ofN in agricultural systems (Araus et al., 2020;
Plett et al., 2020). In contrast to drought, nitrate is a positive
nutrient signal for plant growth and development (Fig. 1a). Nitrate
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supply rapidly affects the expression of a myriad of genes that will
produce changes in root architecture, shoot development, and
increase plant biomass (Gaudinier et al., 2018; Y. Y. Wang
et al., 2018; Vidal et al., 2020; Li et al., 2021). Drought stress can
alter the expression of genes involved in N metabolism (Araus
et al., 2020; Fig. 1a). As depicted in Fig. 1(b), genes associated with
nitrate transport/sensing, reduction, and assimilation are upregu-
lated by nitrate, while they are downregulated in response to
drought treatments. These genes are responsible for converting N
from various sources, such as ammonia and nitrate, into forms that
can be used by the plant.When their expression level is reduced, the
plant’s ability to assimilate N is severely compromised (Fig. 1a,b).

Developing research strategies for improving drought tolerance
in plants under adequate nitrate levels is crucial yet intricate. We
recommend referring to the following reviews that have focused on
the physiological aspects of the nitrate and drought interaction and
proposed research strategies for improving drought tolerance under
changing nitrate availability (Ullah et al., 2019; Araus et al., 2020;
Plett et al., 2020).

This review highlights the genetic aspects of nitrate and drought
interaction, along with the transcriptional networks involved in
mediating the interactive effects between these signals using the
abundance of genomic data in Arabidopsis thaliana. Unraveling
the regulatory mechanism controlling drought and nitrate
responses is fundamental to devising innovative strategies that
can simultaneously enhance plant drought tolerance while
maintaining vigorous growth (Ding et al., 2018; Plett et al., 2020).

II. Molecular links between N, ABA, and drought
signaling

One of the key players influencing growth and stress response is the
ABA phytohormone. This hormone not only mediates essential
developmental processes such as seed maturation and dormancy
but also plays a critical role in stress responses, such as controlling

stomatal aperture during drought, promoting leaf senescence, and
inhibiting growth (Yoshida et al., 2014). For instance, plants
regulate water usage during drought stress through ABA-mediated
processes, leading to stomatal closure and traits negatively
impacting growth, including decreased photosynthetic rate,
reduced carbon consumption, and stunted growth (Lim
et al., 2015).

The evolutionarily conserved target-of-rapamycin (TOR) kinase
coordinates cellular and organismal growth in eukaryotes. In
plants, TOR integrates stress and N nutritional signals. TOR
regulates plant stress responses by phosphorylating PYL ABA
receptors, preventing stress activation in the leaf under non-stressed
conditions. Under stress, ABA-activated SnRK2s phosphorylate
Raptor, inhibiting TOR and promoting stress responses (P. Wang
et al., 2018; Fig. 2). Conversely, organic and inorganic N sources
activate the small GTPase Rho-related protein from plants
(ROP2), which in turn activates TOR (Liu et al., 2021; Fig. 2).
Thus, the ROP2-TOR axis may sense and transduce N signals to
stimulate leaf growth. Given that TOR is inhibited by stress and
activated by N, this could be a mechanism that coordinates leaf
growth to optimize plant resources.

In roots, ABA directly inhibits nitrate sensing and transport.
Nitrate is perceived and transported inside the root cell by the
nitrate transceptor (a transporter and sensor),NRT1.1 (also known
as CHL1 or NPF6.3; Ho et al., 2009). Notably, ABA signaling
modulates NRT1.1 activity. The phosphatase ABI2, which ABA
inhibits, indirectly oversees NRT1.1/NPF6.3 activity. Within this
regulatory cascade, ABI2 dephosphorylates CBL1–CIPK23, the
complex responsible for NRT1.1/NPF6.30 phosphorylation and
subsequent inhibition (L�eran et al., 2015; Fig. 2). Stress-induced
ABA production inactivates ABI2, triggering NRT1.1/NPF6.3
phosphorylation and thus reducing nitrate absorption. This is
corroborated by the similar phenotype of abi2 and nrt1.1mutants,
both failing to stimulate lateral root growth in the presence of
nitrate. The binding of ABA to its receptors, resulting in ABI2
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Fig. 1 Drought and N have opposite effects on major physiological plant traits. (a) Through stress sensing and signaling, drought stress actively inhibits traits
related to growth (blue arrows) and negatively impacts growth signaling (purple path). When N is abundant, and stress is absent, N-related growth signaling
activates growth traits, repressing stress signaling (yellow path) and promoting growth. The mechanisms underlying this reciprocal regulation are poorly
understood. (b) Genes involved in nitrate uptake, reduction, and assimilation are induced by nitrate and repressed by drought, according to (Canales
et al., 2014; Sharma et al., 2018), respectively. This contrasting influenceongeneexpressionmight correspond to the growth-enhancing role of nitrate and the
growth-restricting effect of drought.
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inactivation, could be a mechanism to decrease nitrate uptake and
lateral root expansion under stress.

Once it is transported and sensed by NRT1.1 in roots, nitrate
activates group III calcium-sensor protein kinases (CPKs), which
phosphorylates the master TF NIN-LIKE PROTEIN (NLP7) to
retain it in the nucleus (Marchive et al., 2013; Liu et al., 2017).
Besides NRT1.1 acting as a nitrate sensor in the cell membrane,
NLP7 itself can bind nitrate, acting as an intracellular nitrate sensor
(Liu et al., 2022). Nitrate directly interacts with NLP7 and induces
a conformational change in NLP7, de-repressing it to activate
transcription (Liu et al., 2022). Once NLP7 enters the nuclei of
root cells, it triggers a rapid transcriptional cascade, inducing

primary and secondary gene expression responses (Alvarez
et al., 2020).

The energy and stress sensor, SnRK1, regulates nitrate signaling
via NLP7, especially in conditions of nitrate and carbon deficiency.
KIN10, which is the a-catalytic subunit of SnRK1, phosphorylates
NLP7. This action relocates NLP7 to the cytoplasm, leading to its
degradation (Wang et al., 2022; Fig. 2). This mechanism
contributes to integrating changes in carbon and nitrate avail-
ability, reducing nitrate signaling during a carbon shortage under
stressful conditions.

Interestingly, both nitrate sensors, NRT1.1 and NLP7, are
highly expressed in stomata, a primary site of drought and ABA
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Fig. 2 General schematic illustrating the key proteins mediating balance between growth and stress responses. The diagram depicts proteins reacting to
nitrogen (N) stimuli, primarily nitrate (NO3

�), or stress mainly through abscisic acid (ABA)-dependent mechanisms, underscoring a balance between growth
and stress responses in the shoot and root ofArabidopsis thaliana. In optimal N conditions in leaves (upper left panel), ROP2 protein is activated in response to
various N sources, which in turn activates the TOR complex. In its active configuration, this complex phosphorylates PYLABA receptors (PYLs), preventing the
activation of stress-related signaling under optimal growth conditions (e.g., SnRK2 activation). Under stress conditions (upper right panel), SnRK2 is
phosphorylated and consequently activated via ABA-dependent mechanisms, involving the association of PYLs with PP2C phosphatase effectors. Once
activated, SnRK2 phosphorylates RAPTOR, a key component of the TOR complex, leading to its dissociation and inactivation. Additionally, ROP2 is inhibited
under nutritional deficient conditions (e.g., low N). These processes collectively amplify stress responses and inhibit growth mechanisms in leaves. In roots
(lower left panel), nitrate is perceived and transported by NRT1.1, which triggers the activation of a series of calcium-sensor protein kinases (CPKs). These
kinases phosphorylate NLP7, a master transcription factor (TF) and nitrate sensor, ensuring its retention in the nucleus. Simultaneously, the phosphatase ABI2
keeps the CBL1–CIPK23 complex in its inactive state. As a result, pathways stimulating root growth are promoted. Conversely, under stress conditions (lower
right panel), ABA inhibits the phosphatase ABI2, allowing the CBL1–CIPK23 complex to remain phosphorylated and active. As a result, NRT1.1 is inactivated
through phosphorylation by this complex. Furthermore, under nitrate-depletion or stress conditions, KIN10 phosphorylates NLP7 at residues that promote its
cytoplasmic retention and degradation, thus inhibiting nitrate-mediated gene expression and plant growth.
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signaling integration. Indeed, nrt1.1 and nlp7 knockout mutants
exhibit drought tolerance but are smaller in size than wild-type
(WT) plants (Guo et al., 2003; Castaings et al., 2009), reinforcing
the notion that achieving drought tolerance may entail a trade-off
with N-mediated growth. NRT1.1 is instrumental in regulating
stomatal opening and closure, thereby linking nitrate sensing with
the drought response.Guo et al. (2003) demonstrated this dual role
of NRT1.1 in nitrate sensing and drought signaling, showing that
NRT1.1mediated nitrate-induced stomatal closure in Arabidopsis
plants exposed to drought stress (Guo et al., 2003). Additionally,
NLP7 genome-wide targets are enriched in drought-responsive
genes (Araus et al., 2020), suggesting that it not only controls N
signaling but also modulates plant responses to drought, likely
within stomata.

III. Gene regulatory networks integrating drought
stress and N signaling

Over the past 20 yr, transcriptomics has been extensively employed
to investigate the complex mechanisms by which plants perceive
changes in nitrate, ABA, or drought stress at the molecular level.
Comprehensive genomic analyses have revealed that thousands of
genes display differential expression when faced with these
treatments (as reviewed in Sharma et al., 2018; Araus et al., 2020;
Vidal et al., 2020). Prior meta-analyses have provided lists of genes
consistently responsive to nitrate and drought, allowing the
observation of core biological processes regulated by each treatment
(Canales et al., 2014; Sharma et al., 2018).
A recent meta-analysis proposed that Arabidopsis employs the

same genes to respond to both N and drought signals. Specifically,
51% of the genes differentially expressed due to N changes also
respond to drought. This overlap is larger than expected by chance
and remains consistent regardless of the N source. The study also
disclosed that genes responding promptly to nitrate changes
also respond to drought, and genes responding to drought intersect
with nitrate-responsive genes, particularly those enriched in ABA-
responsive genes (Araus et al., 2020). These findings suggest the
presence of convergent regulatory circuits controlling nitrate, ABA,
and drought responses. In other words, transcriptional networks
managing nitrate responses also influence ABA- and drought-
responsive genes, and transcription factors guiding drought
responses also impact nitrate responses.

To explore this hypothesis, we conducted ameta-analysis, taking
advantage of available sets in Arabidopsis detailing nitrate-
responsive, ABA, or drought-responsive genes and platforms that
provide access to extensive, validated TF-target gene interactions.

The recently developed platform, ConnecTF, integrates
genome-wide datasets based on TF-target binding (Chromatin
Immunoprecipitation and sequencing (ChIP-seq) orDNAAffinity
Purification andSequencing (DAP-seq);O’Malley et al., 2016) and
TF-target regulation in Arabidopsis. ConnecTF facilitates the
generation of biological insights, such as integrating lists of
differentially expressed genes across various treatments and
identifying TFs most likely to control these genes based on
overlapping significance (Brooks et al., 2021). ConnecTF houses
ChIP-seq data that capture in vivo TF binding to gene promoters

for many TFs in the ABA signaling pathway (Song et al., 2016). It
also provides TF-regulation data for 33 TFs in the nitrate-signaling
pathway, as recorded by the Transient Assay Reporting Genome-
wide Effects of Transcription (TARGET; Brooks et al., 2019), a
cell-based assay that identifies direct TF-regulation genome-wide
(Bargmann et al., 2013).

In this meta-analysis, we separate drought-responsive genes by
ABA-dependent and ABA-independent. We overlapped drought-
responsive (Sharma et al., 2018) with ABA-responsive (Song
et al., 2016) genes, and such genes were considered ABA-
dependent. Conversely, the list of genes in the symmetric difference
between the two sets was considered ABA-independent.

To ascertain whether ABA-dependent and ABA-independent
gene expression in response to drought is influenced by TFs
engaged in nitrate signaling, we compared the list of target genes
captured by TARGET for 33 nitrate TFs (Brooks et al., 2019) with
the list of genes regulated by either treatment. The results of this
meta-analysis reveal that the nitrate-responses cluster with ABA-
dependent drought responses; ABA-independent are a separate
cluster. The targets of 14 out of 33 TFs (from CDF1 to NAP) are
significantly enriched (P-value < 1E-40, Fisher’s exact test) inABA-
dependent responses and nitrate-responsive genes (Fig. 3a).

Transcription factors involved in nitrate signaling, including
known TFs that regulate nitrate-related phenotypes such as TGA1
(Alvarez et al., 2014), HHO2 (Maeda et al., 2018), NAP (Alvarez
et al., 2019), and LBD37 (Rubin et al., 2009), also govern drought
ABA-dependent responses. Strikingly, none of the TFs involved in
nitrate signaling showhigh enrichment inABA-independent genes.
These results suggest that influential TFs for nitrate response
modulate ABA-dependent rather than ABA-independent drought
responses (Fig. 3b).

Conversely, we assessed whether gene expression in response to
nitrate is influenced by TFs involved in ABA-dependent and ABA-
independent signaling. To achieve this, we compared the list of TF-
bound genes via ChIP-seq for 21 TFs regulated by ABA (Song
et al., 2016) with genes consistently regulated by nitrate (Canales
et al., 2014). Genes bound by most TFs show significant
enrichment in ABA-dependent and ABA-independent drought-
responsive genes (P-value < 1E-50, Fisher’s exact test; Fig. 4a).
Remarkably, a significant overlap was found for 18 out of 21 ABA-
TF-bound genes with nitrate-regulated genes, suggesting a role for
ABA-dependent andABA-independent signalingTFs in regulating
nitrate-responsive gene expression (Fig. 4b). Previous studies have
found regulatory connections between ABA-dependent pathways
and nitrate signaling. For example, Nero et al. (2009) found
enrichment of the ABRE cis-motif, recognized by ABA activated
TFs, in the promoter of nitrate-responsive genes. A recent study
demonstrated convergent regulatory connections between ABA
and nitrate signaling through the ABAResponse Element Binding/
Abscisic Acid Responsive Element Binding Factor (ABF)2 and
ABF3 (Contreras-L�opez et al., 2022).

Building upon these findings, a critical role for ABF2 and ABF3
in orchestrating nitrate responses has been further unveiled,
particularly within the root endodermis – a pivotal site for nitrate
signaling (Contreras-L�opez et al., 2022). A comprehensive analysis
of TF-target interactions using Yeast One-Hybrid (Y1H),
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ChIP-seq, and TARGET assays revealed that ABF2 and ABF3
regulate a significant number of nitrate-responsive genes within the
endodermis, including known nitrate-TFs such as TGA1, LBD38,
and HRS1. This evidence emphasizes the role of ABA signaling via
ABF2 and ABF3 as early, cell type-specific regulators in the nitrate
response (Contreras-L�opez et al., 2022). ABF2 and ABF3 also have
reported functions in drought tolerance; thus, they would serve as
key coordinators integrating nitrate, ABA, and drought stress
signals.

How do N, ABA, and drought signals intersect at the regulatory
level in crops? The scope of genomic data for these crops is less
extensive than that for Arabidopsis, limiting our ability to conduct a
similar meta-analysis. Nonetheless, recent research has revealed
regulatory links betweenN, ABA, and drought in rice. Specifically,
the rice ABF1 (OsABF1) TF plays a role in governing the
expression of genes influenced by both drought and N (Shanks
et al., 2022). OsABF1 functions within a network module that
bridges gene expression to phenotypic responses under conditions
of N and drought (Shanks et al., 2022).

Collectively, existing research, togetherwithnewanalyses conducted
in this review, suggest a persuasive conclusion: nitrate-signaling genes
exert influence on ABA signaling and drought-responsive gene

expression mechanisms. The recent comprehensive genomic analyses
underline the importance of exploring the complex signaling
interaction between nitrate and drought signals.

IV. Conclusion

Both nitrate and drought are potent signals that modulate gene
expression. While the signaling cascades and TFs governing each
response have been deeply explored, our understanding of how
these elements interconnect is still emerging. Here, we delve into
the established molecular connections between nitrate and
drought, highlighting potential transcriptional networks that link
these signals.

The known molecular links have been mainly described at the
level of protein phosphorylation and modulation of protein
function. In leaves, stress suppresses TOR via ABA signaling, while
N activates TOR through ROP2 stimulation. In roots, the ABA
signaling elements, ABI2 and KIN10, directly influence and alter
the phosphorylation status of the nitrate sensors NRT1.1 and
NLP7, respectively. These observations imply a potential func-
tional connection between the TOR and ABA signaling pathways,
linking stress-induced growth regulation with nitrate uptake and
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signaling. How leaves respond to root-borne signals originating
from nitrate and drought sensing remains unknown.

Our meta-analysis suggests that transcriptional regulation may
be a nexus between nitrate and drought signaling. Indeed, we
postulate that gene responses to both nitrate and drought involve
overlapping regulatory circuits. Our analysis revealed that TFs
influencing both ABA-dependent and ABA-independent drought
responses also affect the expression of nitrate-responsive genes.
Conversely, TFs central to nitrate responses exclusively influence
ABA-dependent drought responses. The outcome of altering TFs
from one pathway and assessing its influence on the other genome-
wide within a unified experimental framework has yet to be
established. Undertaking this approach could offer deeper insights
into how plants orchestrate transcriptional processes to tailor organ
responses to both drought and changes in nitrate levels.

We speculate that as more transcriptomic and TF-target
interaction data in different crops grows, network analyses will be
performed to uncover transcriptional connections between nitrate
and drought responses. Exploring such networks will help design
strategies to alleviate the trade-off between growth and stress
tolerance and develop crop varieties that thrive in drought
conditions and utilize N efficiently.
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Fig. 4 Genes bound by transcription factors (TFs) involved in abscisic acid (ABA) signaling are highly enriched inN-responsive genes. (a) Genes regulated byN,
ABA, and drought treatments in Arabidopsis were collected from Canales et al. (2014), Song et al. (2016), and Sharma et al. (2018), respectively. The
intersection of genes regulated by each treatment and genes bound by 21 ABA-responsive TFs captured by ChIP-seq (Song et al., 2016), was performed using
the Target List Enrichment tool in the ConnecTF platform (Brooks et al., 2021). The results of the overlaps and their significance are presented as a heatmap. ID
and symbol of each TF and the number of TF-bound genes (parentheses) are indicated. Eighteen out of 21 ABA-TFs (FBH3, DREB2A, and HSFA6A are not
enriched) are highly enriched in N-regulated genes. (b) The schematic shows that ABA-dependent and ABA-independent pathways activated by drought
equally contribute to modulating gene responses to nitrate.
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