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Abstract

Reproducibility of results is a cornerstone of the scientific method. Scientific
computing encounters two challenges when aiming for this goal. Firstly, repro-
ducibility should not depend on details of the runtime environment, such as
the compiler version or computing environment, so results are verifiable by
third-parties. Secondly, different versions of software code executed in the
same runtime environment should produce consistent numerical results for
physical quantities. In this manuscript, we test the feasibility of reprodu-
cing scientific results obtained using the I11inoisGRMHD code that is part of
an open-source community software for simulation in relativistic astrophys-
ics, the Einstein Toolkit. We verify that numerical results of simulating
a single isolated neutron star with I11inoisGRMHD can be reproduced, and
compare them to results reported by the code authors in 2015. We use two
different supercomputers: Expanse at SDSC, and Stampede2 at TACC. By
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compiling the source code archived along with the paper on both Expanse and
Stampede2, we find that I11inoisGRMHD reproduces results published in its
announcement paper up to errors comparable to round-off level changes in ini-
tial data parameters. We also verify that a current version of I11inoisGRMHD
reproduces these results once we account for bug fixes which have occurred
since the original publication.

Keywords: high-performance computing, computational reproducibility,
numerical relativity

1. Introduction: computational reproducibility

1.1. Defining computational reproducibility

Computational research, or scientific computing, uses advanced research computing capabilit-
ies to understand and solve complex problems in science. Computational research spans many
disciplines, but at its core, it involves the development and implementation of mathematical
models and numerical simulations applied to data. The main purpose of reproducibility is to
verify the scientific method and outputs, and provide a mechanism to confirm or refute a study’s
conclusions. That is why reproducibility is a Process, not an Achievement [1]. In this study,
HPC-driven computational reproducibility has a loose definition, which is to obtain consist-
ent scientific outputs rather than exact results using the original artifacts. This reproducibility
experiment is conducted by a different team with the same experimental setup, including the
same input data, the same numerical model, and following the same method and computational
steps, but using a different computational environment (HPC cluster). Due to differences in
compilers and hardware, some machine- and environment-specific parts of the source code,
mainly configuration files need to be modified so that it can be compiled and run on a new
cluster.

1.2. Computational reproducibility and FAIR principles

The FAIR (Findable, Accessible, Interoperable, and Reusable) data principles [2], aim to
enhance and support the reuse of digital material by both humans and machines. A high-level
principle of computational reproducibility is to provide a clear, specific, and complete descrip-
tion of how a reported result was reached, although different areas of study or types of inquiry
may require different kinds of information. Although scientific software differs from research
data, the high-level FAIR data principles also apply to software code, in terms of the goals that
ensure and improve the findability, accessibility, interoperability, reusability, transparency and
optimal use of research objects. A computationally reproducible research package may include
data (primary and secondary data), software program(s) and documentation (including soft-
ware dependencies and runtime / computational environment) for replicating published results,
and capturing related provenance information, etc. Over the last few years, a number of groups
have been working towards the development of a set of FAIR guiding principles for research
software (RS), including the FAIR For Research Software Working Group (FAIR4RS WG) [3,
4] which is co-led by RDA [5], FORCEI1 [6], and the efforts of Research Software Alliance
(ReSA) [7], the Software Sustainability Institute (SSI) [8] and grassroots communities (e.g.
UK Reproducibility Network [9]).
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1.3. Computational reproducibility challenges

Although research reproducibility is a critical and continuous component of the scholarly com-
munications process, computational irreproducibility cannot be traced to one single cause.
From the RS perspective, there are multiple factors that contribute to the lack of reproducibil-
ity: RS is not widely disseminated or shared and not readily discoverable and thus inaccessible,
inhibiting research transparency, reproducibility and verification. As one of the steps toward
scientific reproducibility, RS should be properly cited so that it is uniquely identified (e.g.
the specific version of any RS package that is used to produce respective results), which also
benefits transparency and traceability of research results. The Accessibility principle of the
FORCEI11 Software Citation Principles states that ‘software citations should permit and facil-
itate access to the software itself and to its associated metadata, documentation, data, and other
materials necessary for both humans and machines to make informed use of the referenced soft-
ware.” While this does not require that the RS be freely available, the metadata should be, and
should provide sufficient information for the RS to be accessed and used. The development,
deployment, and maintenance of reusable RS (whether computational in nature, or that relies
on any software-based analysis/interpretation) are increasingly recognized internationally as a
key part of facilitating trusted, reproducible research outputs and open science. Software ver-
sioning, a robust testing/quality framework (e.g. verification and validation), code repositories,
and portability, all of which are recognized as desirable aspects of software quality, have all
helped to drive the rapid evolution of research reproducibility. Software sustainability is key
to reproducible science too, as it provides a critical tool for effective review and analysis of
published results, which may lead to new research efforts. However, the wide range of robust
frameworks and approaches for curating and preserving RS as a complex digital object repres-
ents a significant challenge for sustainable access, thereby hindering research reproducibility.

At the cultural and societal level, transformation to an open science-driven RS culture
depends on the creation of tools, platforms and services that enable researchers to mobilize
knowledge and make research processes more efficient, transparent, reproducible, and respons-
ive to societal challenges. Specific elements of this shift include: increasing collaboration and
interaction among researchers; the development of technical infrastructure that promotes the
adoption of emerging research practices; the development, promotion, and adoption of open-
source and open-science practices. These shifts require an agile and responsive ecosystem with
strong RS workforce support and sustainable funding.

1.4. Computational reproducibility with the Einstein Toolkit

The historical lack of direct observational data in numerical relativity (NR) targeting com-
pact objects coalescence led to simulation and the development of robust and reliable software
codes being a primary scientific approach in this field. NR is a discipline that combines general
relativity with numerical simulations to study the physics of compact objects, such as binary
neutron stars and black holes. NR transforms theoretical models for a system into execut-
able codes and simulates the system using the codes to produce physical observables, such as
gravitational waves, that can be detected and verified by experiments or astronomy observa-
tions, e.g. the Laser Interferometer Gravitational-Wave Observatory (LIGO). NR codes have
been crucial in the development of the gravitational wave templates used to understand the
physical parameters of the binary black hole and binary neutron star systems detected by the
LIGO-Virgo Collaboration [10]. With both open source and reproducibility being considered
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important aspects of numerical simulations, from among a selection of current open-
and closed-source astrophysics codes GRChombo [11], SpECTRE [12], SpEC [13],
DendroGR [14] and BAM [15] we use the Einstein Toolkit to perform our experiments due to
its wide use and support of many different computing clusters.

The reproducibility experiment described here is based on a use case for the Einstein
Toolkit. The Einstein Toolkit is an open-source, community-driven cyberinfrastructure eco-
system that provides key computational tools to support research in computational astrophys-
ics, gravitational physics, and fundamental science. The Einstein Toolkit community involves
experts with diverse backgrounds, from gravitational physics and astronomy to computer sci-
ence and engineering. As such, the Einstein Toolkit evolves and grows—just as fundamental
science itself progresses—to facilitate novel applications with ambitious science goals and
high productivity of its users, and to respond to the needs of new community members.

The Einstein Toolkit is built on the Cactus [16] computational framework to connect differ-
ent modules and to achieve a clean separation between science and infrastructure components.
This enables domain experts in astrophysics and computer engineering to focus their efforts on
the components they are most comfortable dealing with. All components within the Einstein
Toolkit are distributed using free and open-source licenses enabling users to mix and match
modules, adapt modules to their own needs and share these modules freely with collaborat-
ors. This arrangement, while flexible and allowing for easy collaboration among distributed
and non-coordinating groups, poses both opportunities and challenges with respect to ensuring
reproducible simulations.

It is worth mentioning that the numerical simulation framework — Cactus [16] already
puts a premium on reproducibility and portability. In particular, the Cactus framework
includes basic infrastructure to ensure the reproducibility of results as the code evolves, via
its included test suite mechanism. A set of system level regression test suites consist of input
descriptions for Cactus in the form of parameter files as well as expected output files and
an error threshold value, which are provided by the code authors. Cactus’ infrastructure lets
developers and users re-run these test suites and verify that the current code passes all test
suites, and ensures all code changes that result in changes in data beyond the test suite threshold
value are detected, based on which the developers can choose to either update the test data or
fix the newly introduced bug.

Cactus also contains a module, ‘Formaline’, that collects all source files used to com-
pile the simulation executable and embeds an archive of these files in the executable itself.
In addition, Formaline generates a unique identifier for each simulation executable and each
simulation run. At run time the executable outputs a copy of the included archive files along
with its regular simulation output. Each output file is also tagged with the unique identifier
of the simulation executable and simulation run. This way all code used to generate a set of
output files are included, alongside those files and all output files record the exact code used
to produce them.

Together Formaline and the test-suites provide mechanisms ensuring reproducible simu-
lations by recording the code version used to produce results and tracking code changes that
affect results.

The computational reproducibility experiment described in this paper follows the current
practices of FAIR principles for data and RS, respectively. The raw simulation results and ana-
lysis code are findable and accessible through the WyoScholar data depository with doi:10.
15786/20452374. The figures in this paper are reproducible with the containerized environ-
ment included in the analysis code with Docker.
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2. Use case study

As a concrete example of the challenges faced in achieving computational reproducibility
in HPC computations, we reproduce results obtained using the I11inoisGRMHD code [17]
which was first officially included in the ET_2015_11 ‘Somerville’ release of the Einstein
Toolkit. In the manuscript announcing I11inoisGRMHD [17] the authors evolved solutions
for a TOV star in general relativistic hydrodynamics and compared their results to those
obtained by other codes. The TOV star is a spherically symmetric, nonrotating neutron star
assuming an equation of state that represents initially cold, degenerate nuclear matter. This
TOV star does not have a magnetic field. The single polytropic EOS for the TOV star is
P= KpF, where K =1, I' = 2. This is the same setup as in appendix A of [17]. Our aim is to
reproduce the results described in that paper. In the following text, we refer to I11inoisGRMHD
manuscript [17] as the ILGRMHD paper, and we refer to the ILGRMHD paper results as IGM
paper results.

We perform the case study on two different supercomputers, SDSC Expanse [18] and TACC
Stampede2 [19], each evolving the same dataset constituting the initial condition that was
used in the ILGRMHD paper and we compared our results to IGM paper results. In order
to differentiate between changes due to modifications to simulation code and changes due to
differences in the supercomputer environment, we used two versions of the I11inoisGRMHD:

e the most recent I11inoisGRMHD from the ET_2022_11 ‘Sophie Kowalevski’ release of the
Einstein Toolkit, called IGM 2022 in the following
e the original I11inoisGRMHD used in [17], dubbed IGM 2015 available in [20].

I11inoisGRMHD’s complete code history is available in its public source code repository [21]
using git, which we used to track down commits introducing any observed change in behavior.
IGM 2015 can be found on the original publication authors’ website [22].

We choose two different supercomputers to test the consistency of Einstein Toolkit and
to obtain an estimate for the sensitivity of results on the runtime environment. Consistency in
our test is defined as a simulation that uses the same parameter file, and that is created using
the same version of the simulation software (Einstein Toolkit ) run in different runtime
environments, such as different compiler versions, hardware configurations, etc but generat-
ing consistent numerical results for physical quantities. For example, we expect that the
central density of the star oscillates with the same amplitude and frequency for simulations on
Stampede2 and Expanse, but with slight differences in the numerical results due to compiler
optimization, code versions and CPU model. Thus a bitwise notion of reproducibility is not
useful in this context and instead a relaxed notion of reproducibility based on minimal expec-
ted changes in results due to roundoff errors is used. Roundoff error in this paper is defined
the same way as in the ILGRMHD paper [17]. That is, our simulated result should agree with
the claimed result at least as well as when simulating otherwise identical data perturbed by the
round-off error of the underlying floating point format. More details are discussed in 2.3.1 and
figure 1.

Both Expanse and Stampede2 are supported by Einstein Toolkit’s Simulation
Factory [23] module, which contains information on how to compile code and submit simu-
lations using the clusters’ resource management system. Simulation FactoryisEinstein
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Table 1. Top half: Hardware, compiler, and optimization level for each cluster. Bottom
half: compute resources used in test simulation. On Expanse we used nodes in the
‘compute’ partition, and on Stampede2, we used the nodes on ‘stampede2-skx’ par-
tition. Nodes on these two clusters have different hardware configurations. MPI library
names, and optimization level flags are taken from Simulation Factoryin IGM2022.
Differences such as these in hardware, compile and runtime environment may cause
observable differences in the output of physical quantities even for identical input.

Cluster
Parameters Expanse Stampede2-skx
CPU AMD EPYC 7742 Intel Xeon Platinum 8160
# of cores per node 128 48
Compiler GCC@10.2.0 Intel@18.0.2
Optimization -02 -mavx2 -mfma -Ofast -AVX512 -xHost
MPI openmpi/4.0.4 impi/18.0.2
# of nodes 1 1
# of MPI ranks 32 24
# of OpenMP threads 4 2

Toolkit’s primary means to maintain compatibility with computing clusters, simplifying
deployment of code on supported clusters.

2.1 Experimental setup

Both IGM 2015 and IGM 2022 were compiled using Simulation Factory of IGM 2022. This is
required to account for changes in the cluster environment. Both SDSC Expanse and TACC
Stampede2 came online after 2015, so none of the compilation instructions of these two
clusters is present in IGM 2015.

In addition, intermediate versions of I111inoisGRMHD obtained from the source code repos-
itory were compiled to pinpoint the exact commit that introduces any significant changes in
output.

On all clusters the code was compiled with value-unsafe optimizations enabled implying
slightly different realizations of each mathematical expression in compiled code, both between
different clusters and between different compiler versions. The value-unsafe optimizations are
achieved by setting various OPTIMISE flags in the machine configuration file included in the
Simulation Factory. The default options for Expanse and Stampede2 configuration enabled
value-unsafe optimizations, which is what we used. In addition, the ILGRMHD paper used
value-unsafe optimization in their simulations, which we are comparing with.

Cluster configurations and compiler versions are shown in table 1. Compiling
I11inoisGRMHD on the two clusters is slightly different since compiler versions and queuing
systems infrastructure differ between the two clusters. In each case, we use settings taken
from Simulation Factory in IGM 2022, which supports both clusters. The key difference
between the clusters, for I11inoisGRMHD, is the different CPU microarchitecture used: AMD
EPYC, launched in 2017, and Intel Skylake, launched in 2015. This, combined with different
compilers and aggressive optimization settings used, results in round-off level differences
when evaluating mathematical expressions. These differences then propagate and, potentially,
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could amplify to levels incompatible with consistent physical results. On the other hand, differ-
ent MPI stacks on clusters, the MPICH-based Intel MPI stack on Stampede2 and OpenMPI on
Expanse, do not influence the numerical results since I11inoisGRMHD’s evolution code solely
uses data transfer primitives, e.g. MPI_Send and MPI_Recv, that only copy data identically
but not on reduction operations that act on values.

The code published in [17] does not include scripts to post-process the raw simulation
output and plot graphs shown in the manuscript. As part of the experiment, the required
scripts were implemented in Python based on information available in the published mater-
ial. Additionally, copies of the original scripts were obtained from the author and are now
available without modification on [20]. Their output, given identical input files, was compared
to that of the newly implemented Python code.

2.2. Simulation parameters and diagnostics

Einstein Toolkit simulations are controlled via parameter files, which define numerical
simulation inputs, such as grid spacing, evolution method, and initial data of the physics setup.
Einstein Toolkit targets backward compatibility of parameter files—a parameter file run
using Einstein Toolkit version IGM 2015 should produce numerically consistent results to that
same parameter file run using any later version such as IGM 2022.

We reproduce one of the tests in the ILGRMHD paper using the original parameter file
to verify this. Two simulations were created: one using IGM 2015 and the other using IGM
2022. The parameter file, tov_star_parfile_for_IllinoisGRMHD.par, used as the basis
for this experiment, is included in IGM 2015 and was used with only modifications on the grid
spacing corresponding to different resolutions.

All simulations use a cubic fixed mesh refinement grid, and x, y, z dimensions all have the
same number of grid points. The grid spacing in high, medium, and low-resolution simulations
are (0.32,0.4,0.5) code units, respectively, in the coarsest refinement level. Four refinement
levels of size (1.5,3.0,6.0,12.0) Rys, where Rys is the radius of the star, are used. Therefore,
the grid spacings in the finest refinement level are Axgese = (0.02,0.025,0.03125) code units,
which correspond to (75, 60, 48) grid points inside the finest refinement level.

We follow the boundary conditions as defined in [17]. For primitive variables (pg, P, V), the
outer boundary enforces zero-derivative, value-copy of these primitive variables to the outer
boundary if the incoming velocity is positive, which is referred to as ‘outflow’ boundary con-
ditions in [17]. The outer boundary condition for vector potentials A,, and ,/¥® is to linearly
extrapolate the values to the outer boundary.

Following the conventions in [17], we use two outputs, namely, the change in central density
(Ap,) and the L2-norm of the Hamiltonian constraint violation (||?|) in the numerical tests.
Change in central density is defined as

()= pe(t=0)
Bre=T =0 W

For a stable TOV star in equilibrium, both the change in central density and the Hamiltonian
constraint violation are expected to converge to zero when resolution increases. For finite res-
olution both Ap, and ||H|| will have a small but nonzero value.

Convergence order is used in [17] to evaluate the performance of the code for different
resolutions and as a basic check on the correct implementation of the evolution equations.

7
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For a quantity Q € {Ap,, |||} whose expected value is 0, convergence order for a set of two
resolutions Ax; and Ax;, is computed as

o (§20) e (32).

where Q(Ax) 1) is the quantity as computed in the simulation with grid spacing Ax; and Ax;,
respectively.

We use two additional quantities to measure the difference in numerical results between
different setups. The absolute difference in change of central density is defined as

A™ (Ape) = [Ape — Ape,| (3)

and the relative difference in Hamiltonian constraint violation is defined as

| |||H||1—||H2
AR (Al =
(i =

where relative differences are used for ||| to remove dependencies on an arbitrary overall
scale for || H||. In order to perform this comparison between simulations, one of the time series
in the comparison may have to be interpolated to match the time steps of the other time series.
Time series 1 always has a higher sampling rate than time series 2, and we linearly interpolate
time series 1 to match the timesteps of time series 2. Because both time series have very high
sampling rates and we downsample time series 1 to match the other, the comparison results
should not be affected by the interpolation qualitatively. Additional details are specified in the
caption of each figure.

“

2.3. Results

After simulating the test cases included in the IGM 2015 announcement manuscript [17], we
compared our simulation results with those results in [17]. In particular, the Hamiltonian con-
straint |||, change in central density Ap,, and convergence order of these quantities are used
to compare results across different supercomputers and to the original publication results in
figure 3 of [17].

This section presents our reproducibility study results by first computing results using two
different versions of the Einstein Toolkit running the same parameter file once on each of
TACC Stampede2 and SDSC Expanse, respectively. Then the simulation results by the same
version of the Einstein Toolkit on two different clusters are compared against each other,
as well as different Einstein Toolkit versions on the same cluster.

The simulations on both clusters were run until at least # = 5514y, ~ 153.0, where tqy, =
\/1/pe, and p. ~ 1.29 x 10~! is the central density of the star at t=0in G=c=Mg = 1
unit. The numerical simulation setup and running steps of this reproducibility experiment are
reproducible with details in appendix A. Our simulation setup files, raw data, and analysis
code are available at doi:10.15786/20452374.

2.3.1. Round-off level agreement between simulations.  In [17] a notion of agreement up
to round-off errors is introduced by observing how two simulations, using the same execut-
able code, whose input parameters relative difference is no more than the floating point € (see
appendix C for details) deviate from each other over the course of the simulation. To under-
stand the round-off error of our numerical experiments, we performed the same significant
digits agreement test as in [17].
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Figure 1. The number of significant digits agreement for central density changes
between initial 15th digit perturbed and unperturbed results. The red solid line is the
significant digits agreement between initially perturbed results with IGM 2015 and IGM
paper results. The Blue dashed line is the comparison between initially perturbed and
unperturbed results with IGM 2022. Our IGM results are obtained on Stampede2.

An initial 15th digit random perturbation was added to the initial data on the grid in manner
described in the ILGRMHD paper and repeated in appendix C. That is, at each grid point all
primitive variables in [llinoisGRMHD are multiplied by a common factor 1 + €, where € is a
random number in the interval [0,1071). All conserved physical quantities are re-calculated
based on the new perturbed initial primitive variables. After 30 dynamical timescales, the sig-
nificant digits agreement for both IGM 2015 and IGM 2022 cases oscillate between 6-8 digits.
Our results, as shown in figure 1, agree with the original publication result in [17] figure 1.
Hence, for the set of tests considered in this manuscript, two simulations that differ by no more
than an absolute error of 10~° in p after 30 dynamical time scales are considered to agree up
to round-off level errors.

2.3.2. Expanse. Figure 2 shows the agreement between our simulation result for Ap. and
the original IGM published result. The top row shows how Ap, evolves when simulated using
IGM 2015 and IGM 2022 and compares to the results of the ILGRMHD paper. On the left,
for IGM 2015, which uses the code published in the ILGRMHD paper, our results, shown in
solid, dashed, and dot-dashed lines, stop tracking the (dotted) results of the ILGRMHD paper.
This is especially evident in the convergence order plot in the middle section, which shows
nearly perfect agreement. This is shown explicitly in the bottom panel, which demonstrates
that our results and the ILGRMHD paper differ by no more than 10~ and are consistent within
round-off error as introduced in section appendix C.

The right-hand column displays corresponding results comparing IGM 2022 with the
ILGRMHD paper. Here, differences are much more obvious, already in the top plot for Ap,,
where there is much less overlap visible between the curves. This difference is much more
obvious in the convergence plot in the middle, which shows IGM 2022 having much smaller
oscillations around the expected convergence of 2. The bottom right absolute difference graph
quantifies this and shows that the difference starts out very large of order 10~ and slowly
decreases to 107 as the simulation progresses. However, even at the end of the simulation,
the difference still exceeds the threshold magnitude established for round-off level agreement.
This significant difference can be tracked down to git commit 8b562af09, which is present in

9
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Figure 2. Comparing the central density changes Ap. for simulations created with two
versions of the Einstein Toolkit on Expanse. The left two panels are for the IGM
2015, while the right two are for the IGM 2022. The upper two figures show Ap. and
its convergence order. The bottom figures present the magnitude of the absolute error
between our results and IGM paper results. The right column figures show there is a
significant difference between IGM 2022 result and IGM paper results.

IGM 2022 but not in IGM 2015. We have verified that reverting this single commit brings IGM
2022 into round-off level agreement with the ILGRMHD paper. Inspecting the commit mes-
sage reveals that the commit fixes a minor bug present in IGM 2015 which results in an incor-
rect energy density being present at ¢ =0, physically corresponding to an out-of-equilibrium
configuration, which explains why the observed difference decreases over time as the system
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Figure 3. Comparing the Hamiltonian constraint || #|| for simulations created with two
versions of Einstein Toolkit on Expanse. The left panel is for the IGM 2015, and the
right panel is for the IGM 2022. The upper two figures show ||#|| and the convergence
order. The bottom two present the relative error between our results and IGM paper

results.

relaxes back to the equilibrium configuration. We refer to this discrepancy as the incorrect

initial stress-energy tensor issue.
These same observations also hold in figure 3 which displays results for the Hamiltonian

constraint || ||. Similar to the situation for Ap,, our result agrees with the originally published
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Figure 4. Comparing the central density changes Ap, for simulations created with two
versions of Einstein Toolkit on Stampede2. This is the same comparison as in
figure 2, but instead, the simulation was performed on Stampede2. The significant dif-
ference on the right panel is due to the incorrect stress-energy tensor issue described in

section 2.3.2.

result with IGM 2015 and has a significant difference for IGM 2022, due to the incorrect initial
stress-energy tensor issue described in the previous paragraph.

2.3.3. Stampede2. Figures 4 and 5 display equivalent results for Ap, and ||| obtained
on Stampede2. The same effects as observed on Expanse are evident, including differences
caused by changes in the source code between IGM 2015 and IGM 2022.
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Figure 5. Comparing the Hamiltonian constraint || #|| for simulations created with two
versions of Einstein Toolkit on Stampede2. This is the same comparison as in

figure 3.

2.3.4. Simulation result comparison between Stampede2 and Expanse.  Figure 6 compares
results obtained using IGM 2022 on Expanse and Stampede2, respectively. For both Ap,
and ||| results agree well within the threshold for round-off agreement. The overall res-
ults between the clusters are very similar to the results displayed in the left-hand columns of
figures 2-5 illustrating that simulations using identical source code for IGM are in round-off
level agreement both when using the code in the ILGRMHD paper, and IGM 2022.
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Figure 6. The comparison of Ap. and ||7{|| on Expanse and Stampede2. Both simula-
tions are run using IGM 2022.
3. Conclusions

In this study, we explore two aspects of reproducibility of computational research:

(i) different computing clusters using the same simulation code,
(i) same computing cluster with different versions of the simulation code.

This poses challenges unique to scientific software, which is expected to compile and per-
form under a variety of runtime environments which are not known in advance. For example,
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different compute clusters employ different compilers and different compiler versions optim-
ized for the cluster, some of which may fail to compile the scientific software without modi-
fication. In general application software, this issue is addressed by packaging all dependen-
cies with the software, for example, in the form of container images as used by the Ubuntu
SNAP format [24]. Containers are increasingly available on HPC systems [25, 26] providing
a way to encapsulate all code dependencies except the operating system kernel with the sci-
ence code. This, however, typically entails a loss of efficiency that may be unacceptable for
high-performance computing [27, 28], and compiling from source remains the norm for HPC
codes in the current state of scientific software.

With this caveat, we observed that the same simulation code produced results agreeing to
the round-off level. Our simulations using IGM 2015 agree with the original publication results
on both Hamiltonian constraint and central density drift to round-off level, as shown in the
lower left panel of figures 2-5.

During our experimentation with IGM 2015, we identified two minor discrepancies in the
ILGRMHD paper. The first discrepancy concerns the description of the perturbation used in
section 4.1 of the ILGRMHD paper; it is accurately described in section 4.2 of the ILGRMHD
paper but incorrectly presented in section 4.1 of that paper. Specifically, the factor € of the per-
turbation 1 + € is a random number generated within the range [0, 10~!3), contrary to the fixed
number 101 stated in section 4.1 of the ILGRMHD paper. Second, our simulations using
IGM 2022 showed discrepancies from the IGM paper results as we stated in section 2.3.2. We
tracked down to a change in the source code, and reverting this change restored the reprodu-
cibility of IGM paper results.

Computational reproducibility is essential to the continuing development of scientific soft-
ware, especially when a new module or functionality is added. In addition, it is also critical
for the use of scientific code by others and the verification of results by others.

Furthermore, long-term computational reproducibility is an important aspect researchers
be aware of. New researchers joining the field should be able to track and understand how to
reproduce and interpret existing numerical experiment results. With this in mind, we suggest
best practices for manuscripts announcing new scientific software or simulation results.

e Creating a DOI for specific versions of source code or depositing the source code used in
the paper. To help the scientific community reproduce the results, it is recommended that
papers include a trackable identifier such as DOI or Git Hash. With these unique identifiers,
the simulation results and the software itself can be understood.

e Attaching parameter files as supplemental materials to the paper. If the parameter files can-
not be submitted as supplemental material, authors should create a DOI for parameter files
used to run simulations that produce results claimed in the paper. Due to newer versions
of the Einstein Toolkit, we found that we have to change some parameters of the simula-
tion parameter files to reproduce the results claimed in the ILGRMHD paper. Along with a
trackable version of the simulation software, a parameter file associated with a DOI makes
the simulation easy to reproduce, and the simulation workflow transparent.

e Separate the computational and physical discussion. Authors for a paper with numerical
experiment results should have separate sections to discuss the physical result and computa-
tional results, and how to reproduce them. Theories and problem setups should be discussed
in the physical result part. Numerical experiment setups, such as simulation framework and
parameter files should be introduced in the computational result section.

In conclusion, this work studied the challenges encountered when reproducing scientific res-
ults obtained with a state-of-the-art, real-world science code when applied to a common test
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problem. This test problem was originally used to verify both code correctness and perform-
ance in the ILGRMHD paper.

Science codes, and compilers used in high-performance computing architectures, are not
designed to provide bit-identical results despite identical source code and input, instead allow-
ing for deviations to some extent between results as long as those deviations are considered
‘small” compared to intrinsic approximation and discretization errors of the method used.

Additionally, scientific codes are undergoing constant changes as bugs are discovered and
fixed and new features are added to them to study new phenomena. These changes result
in numeric values differing at levels above round-off error deviations. Often these fixes are
only documented in a revision control system and not in an explicit change log file. A key
task of determining reproducibility is thus to identify these value changing bug-fixes and
quantify whether the observed differences are compatible with the change introduced to the
code. Hitherto, this process requires an expert understanding of the science code and is not
automated.

We demonstrate that, within these constraints, results obtained using IGM 2015 can be inde-
pendently reproduced on multiple clusters and with multiple versions of I11inoisGRMHD. We
also provide suggestions to remedy some computational challenges encountered in this repro-
ducibility study.

4. Future work

In this work, we have not attempted to extend the notion of reproducibility past value changing
bug fixes in the code. Some codes, for example [29], attempt to address this issue by explicitly
marking commits that introduce single-bit changes in results while others [30] record a level of
fuzziness within which results are considered equal. Neither approach seems fully satisfactory
and a more robust method based on the notion of equal up to round-off error may help provide
a better handle on code changes that affect reproducing scientific results.
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Appendix A. Steps to compile the codes

In the following section, we provide detailed instructions on how to compile the codes, IGM
2015 and IGM 2022, on the two clusters, Expanse and Stampede2. IGM 2015 is the code used
in the ILGRMHD paper available from its author’s website and from [20]. IGM 2022 is the
‘Sophie Kowalevski’ (ET_2022_11) release of the Einstein Toolkit available from [31]. To
compile IGM 2022 on either Expanse or Stampede2-skx, the steps are documented on the
Einstein Toolkit website [31]

Listing 1: Compiling IGM 2022

curl -KLO \
https://raw.githubusercontent.com/gridaphobe/CRL/ET_2022_11/GetComponents

chmod a+x GetComponents

./GetComponents—parallel \
https://bitbucket.org/einsteintoolkit/manifest/raw/ET_2022_11/\

einsteintoolkit.th

cd Cactus
Jsimfactory/bin/sim setup-silent
/simfactory/bin/sim build—thornlist thornlists/einsteintoolkit.th

is sufficient. Compiling IGM 2015 on the other hand, due to changes in compilers and cluster
environment, requires some additional steps.
We begin by downloading the code from [20]:

Listing 2: IGM 2015: step 1

curl —OL ’https://zenodo.org/record/7545717/files/IllinoisGRMHD_"\
’Sept_1_2015_public_release__based_on_ET_2015_05.tar.gz’

tar xf [llinoisGRMHD_Sept_1_2015_public_release__based_on_ET_2015_05.tar.gz
cd IllinoisGRMHD_Sept_1_2015_public_release__based_on_ET_2015_05

Next we replace Simfactory2015 with Simfactory2022 to use its machine definition
files

Listing 3: IGM 2015: step 2

rm -r simfactory
cp -a ../Cactus/simfactory/ simfactory

Step 3: IGM 2015 -contains legacy code that GCC version 10 and newer
flags as invalid and requires adding -fallow-argument-mismatch to F9OFLAGS
and F77FLAGS variables, and -fcommon to CFLAGS and CXXFLAGS variables
in simfactory/mdb/optionlists/expanse-gnu.cfg. Step 4: Simfactory2022
no longer provides F77, F77FLAGS, F77_DEBUG_FLAGS, F77_0OPTIMISE_FLAGS,
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F77_NO_OPTIMISE_FLAGS, F77_PROFILE_FLAGS, F77_OPENMP_FLAGS, and F77_WARN_
FLAGS and instead uses F90 etc throughout. To compile IGM 2015 we duplicate all F9O settings
and rename the copies to F77 settings in simfactory/mdb/optionlists/stampede2-skx.
cfg. Intel compilers version 17 or higher contain an apparent compiler bug at high optimiza-
tion levels that makes them fail to compile file bbox . cc. Thus we add

Listing 4: IGM 2015: step 5

#if _ INTEL_COMPILER > = 1700
#pragma GCC optimization_level 1
#endif

at the top of repos/carpet/CarpetLib/src/bbox.cc. With these modifications in place
we compile using the ThornList file supplied in the main directory of IGM 2015:

Listing 5: IGM 2015: step 6

cd IllinoisGRMHD_Sept_1_2015_public_release__based_on_ET_2015_05
Jsimfactory/bin/sim setup-silent
/simfactory/bin/sim build—thornlist ThornList

Appendix B. Steps to start the simulations

We use a modified version of the file exe/tov_star_parfile_for_I1linoisGRMHD.par
included in IGM 2015. The included parameter file is set up for a short validity test and
requires some modification to match the file used in [17]. Step 1: we change the value of
CoordBase: :dx, CoordBase: :dy, and CoordBase: :dz from 1.0 to 0.5, 0.4, and 0.32 for
low-resolution, medium-resolution, and high-resolution simulations, respectively.

Step 2: we enable the time termination condition and set the final time to 155

Listing 6: Final time

#cactus::cctk_itlast = 128
Cactus::terminate = "time”
Cactus::cctk_final_time = 155

Step 3: for convenience of output we change I0: :out_dir’s value to $parfile.
Step 4: finally we add checkpointing and recovery options at the end of the file:
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Listing 7: Termination and checkpoint

ActiveThorns = TerminationTrigger

TerminationTrigger::max_walltime = @WALLTIME_HOURS @
# Trigger termination 30 minutes before the walltime is reached
TerminationTrigger::on_remaining_walltime =30
TerminationTrigger::output_remtime_every_minutes = 30
TerminationTrigger::termination_from_file =yes
TerminationTrigger::termination_file = “terminate.txt”
TerminationTrigger::create_termination_file =yes
CarpetlOHDF5::checkpoint =yes

10::recover = "autoprobe”
10::checkpoint_on_terminate =yes

Appendix C. Steps to compute expected round-off level differences

We estimate the effect of round-off level changes induced, e.g. by compiler applied code optim-
ization on the time evolution of results by explicitly adding a small, random perturbation of
10~ 13 relative size to the initial data for all primitive variables. Comparing the results of this
perturbed initial data with an unperturbed simulation provides an estimate for these effects and
establishes an order of magnitude estimate for which differences are compatible with round-off
level changes in the data.

IGM 2022 already contains facilities to add such a perturbation in the
ID_converter_ILGRMHD module:

Listing 8: Random perturbation

ID_converter_ILGRMHD::random_pert = le-15

IGM 2015 on the other hand contains a bug that renders the parameter ineffectual and we apply
the git commit hash £822e2278695615a9ad508d58fe25b0c94451a31 "WV UThorns/
ID_converter_ILGRMHD: When adding an optional perturbation to the initial data, the per-
turbation should be applied to all IllinoisGRMHD quantities, not HydroBase, at this part of
the routine. Behavior was correct except for density. This one-line patch fixes that.” from IGM
2022 which fixes the bug.
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