J. reine angew. Math., Ahead of Print Journal fiir die reine und angewandte Mathematik
DOI 10.1515/crelle-2023-0022 © De Gruyter 2023

Blown-up toric surfaces with non-polyhedral
effective cone
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Abstract. We construct projective toric surfaces whose blow-up at a general point has
a non-polyhedral pseudo-effective cone. As a consequence, we prove that the pseudo-effective
cone of the Grothendieck—Knudsen moduli space Ho,n of stable rational curves is not poly-
hedral for n > 10. These results hold both in characteristic 0 and in characteristic p, for all
primes p. Many of these toric surfaces are related to an interesting class of arithmetic threefolds
that we call arithmetic elliptic pairs of infinite order. Our analysis relies on tools of arithmetic
geometry and Galois representations in the spirit of the Lang—Trotter conjecture, producing
toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in
characteristic 0 and in characteristic p, for an infinite set of primes p of positive density.
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1. Introduction

An effective cone of a projective variety X and its closure, the pseudo-effective cone
Eff(X), contain an impressive amount of information about the birational geometry of X. An
even finer invariant is the Cox ring Cox(X), at least when the class group CI(X) is finitely
generated. If X is a Mori Dream Space (MDS), then Cox(X) is finitely generated, which in turn
implies that Eff(X) is polyhedral. A basic example of an MDS is a projective toric variety [20].
Its effective cone is generated by classes of toric boundary divisors. For a toric variety P, we
denote by Bl IP its blow-up at the identity element of the torus. Our main result contributes to
the growing body of evidence that this is a very intriguing class of varieties.

Theorem 1.1. In every characteristic, there exist projective toric surfaces P such that
the pseudo-effective cone Eff(Bl, IP) is not polyhedral.

In order to prove Theorem 1.1, we introduce two types of lattice polygons, Lang—Trotter
polygons and Halphen polygons. The blow-ups X = Bl, P of toric surfaces associated to these
polygons are examples of elliptic pairs studied in Section 3. An elliptic pair (C, X) is a projec-
tive rational surface X, with log terminal singularities, and a curve C contained in the smooth
locus of X such that p,(C) = 1 and C? = 0. Much of the geometry is encoded in the restric-
tion map res: C+ — Pic®(C), where C+ C CI(X) is the orthogonal complement. The order
of an elliptic pair is the order of res(C). A familiar example of an elliptic pair of infinite
order in any characteristic is the blow-up of P2 in 9 general points. By contrast, elliptic pairs
X = Bl P associated with a toric surface are defined over the base field. In particular, their
order is automatically finite in characteristic p.

If the order of an elliptic pair (C, X) is infinite and p(X) > 3, then Eff(X) is not poly-
hedral (Lemma 3.3). By contrast, polyhedrality of Eff(X) is harder to control if the order is
finite unless the pair is minimal (Definition 3.5) and has Du Val singularities, in which case
there is a simple criterion for polyhedrality (Corollary 3.18) in terms of the restriction map and
the root sublattice 7 C Eg. Every elliptic pair (C, X) has a (K + C)-minimal model (C,Y),
and if Eff(Y) is not polyhedral, then Eff(X) is also not polyhedral. Remarkably, the minimal
model (C, Y) has Du Val singularities if the order is infinite (Corollary 3.12).

We introduce the notion of an arithmetic elliptic pair of infinite order, a flat pair of
schemes (€, X') over the spectrum of a ring of algebraic integers with elliptic pairs as geo-
metric fibers, such that the generic fiber has infinite order. While closed fibers have finite
order, their minimal models automatically have Du Val singularities (after removing finitely
many primes). We call a prime p polyhedral if Eff(Y) is polyhedral, where (C,Y) is the
minimal model of the geometric fiber (C, X)) in characteristic p. In Section 5, we study distri-
bution of polyhedral primes using tools of arithmetic geometry in the spirit of the Lang—Trotter
analysis [46].

We found many examples of Lang—Trotter polygons that give rise to arithmetic elliptic
pairs of infinite order; see the list of 135 polygons displayed in Database 8.1. For some of
them, Eff(Bl, PP) is not polyhedral in characteristic p for an infinite set of primes p of positive
density. On the other hand, every prime p < 2000 is non-polyhedral for some Lang—Trotter
polygon (see Database 8.2). This is probably true for every prime number p, but seems out
of reach with our methods. While most of the Lang—Trotter polygons that we found are not
smooth, in Remark 5.16, we describe a smooth toric elliptic pair (C, X) with a large Picard
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number p = 18. The Mordell-Weil rank of C is equal to 9. We do not know if there is an upper
bound on the Picard number (or the Mordell-Weil rank) of a toric elliptic pair.

The image I' C P of the curve C has large multiplicity at e € PP. In practice, we start
by finding an equation of I', which would be difficult without a computer. We use a MAGMA
package, which can be downloaded from https://github.com/alaface/non-polyhedral and con-
tains descriptions of all functions. Throughout the paper, we often refer to [15, § 10], where
we perform many computer-aided calculations, for example, to check that a given polygon is
a Lang—Trotter polygon. This implicit method has obvious disadvantages; for example, it is not
clear how to apply it to construct an infinite sequence of examples. By contrast, we also found
infinite sequences of Lang—Trotter polygons using a parametric method (see Remark 5.14).
We start with an infinite sequence of elliptic curves {Cy}, which are members of an ellip-
tic fibration (rational or K3) with parameter k. We describe maps C; — P, to an infinite
sequence of toric surfaces that fold an arbitrarily large number of points of Cj onto one point
e € I'y C Pr. We hope that this new method may help with other problems related to the
Nagata approximation conjecture, where it is desirable to geometrically construct curves with
points of high multiplicity.

We observe a different behavior in Halphen polygons, which give rise to elliptic pairs of
finite order with Du Val singularities both in characteristic 0 and in prime characteristic. Here
the condition on singularities of the minimal model is not guaranteed by a general theory and
needs to be checked by hand. We exhibit an example in Theorem 6.5 of a Halphen polygon such
that Eff(Bl, IP) is not polyhedral in characteristic O and in characteristic p for all but a finite
set of primes p. Empirically, Halphen polygons seem to be harder to find than Lang—Trotter
polygons.

Our main application of Theorem 1.1 is to the birational geometry of the Grothendieck—
Knudsen moduli space M, of stable rational curves with n marked points. The study of
effective cones of moduli spaces has a long history, starting with the pioneering work of
Harris and Mumford [40], who used computations of effective divisors to show that Mg is
not unirational for g > 0.

While the moduli space Mo,n is a rational variety, its birational geometry is far from
understood, in spite of numerous efforts; see for example [1,8,17,18,23,25,26,31-35,44]. The
Picard number of M, grows exponentially, and it is not a Fano variety for n > 6; in fact, its
anticanonical class is not pseudo-effective if n > 8. In this regard, Mo,n looks similar to the
blow-up of P2Zinn points (a connection was found in [16]).

A question attributed to Fulton, which received a lot of attention, is whether, similarly
to the case of toric varieties, any subvariety of Mo,n is numerically equivalent to a sum of
strata. For the case of curves, the statement is known as the F-conjecture. A result of Gibney,
Keel and Morrison [34] proves that the F-conjecture, if known for all n, implies the similar
statement for M g ,, for all genera g and number of marked points 7, thus giving an explicit
combinatorial description to the ample cone of Mg’n. The conjecture holds for n < 7 and is
open forn > 8.

For the case of divisors, Fulton’s question is whether the class of every effective divisor on
Mo,n is a sum of boundary divisors. Every boundary divisor is an extremal ray of E_ff(MO,n);
in fact, these divisors are exceptional, i.e., they can be contracted by birational contractions.
For example, M ¢ 5 is a degree 4 del Pezzo surface, and its boundary divisors form the Petersen
graph of ten (—1)-curves, which generate Eff(M ¢ 5). Extremal rays of a different type for M o ¢
were found by Keel and Vermeire [67], thus giving a negative answer to Fulton’s question for
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divisors when n > 6.1 However, Hassett and Tschinkel proved in [41] that Eff(M o) is still
fairly simple, namely it is a polyhedral cone, generated by the boundary and the Keel-Vermeire
divisors (only one up to S¢ symmetry).

A large class of exceptional divisors on M, was discovered by Castravet and Tevelev
[17]. They are parametrized by irreducible hypertrees, which can be obtained, for example,
from bi-colored triangulations of the 2-sphere. Up to the action of the symmetric group S, this
gives 1,2,11,93,1027, ... new types of exceptional divisors on Ho,n, n=71728,91011,....
Equations of these divisors appear as numerators of leading singularities scattering amplitude
forms for n particles in N = 4 super-symmetric Yang—Mills theory [2, 65].

New extremal rays of E_ff(ﬁo,n) were found by Opie [58] disproving an over-optimistic
conjecture from [17]. Further extremal rays were found by Doran, Giansiracusa and Jensen
in [23]. Our second result explains this complexity.

Theorem 1.2. The cone Eff(M g ,,) is not polyhedral for n > 10, both in characteristic 0
and in characteristic p, for all primes p.

The moduli space Mo,n is related to blown-up toric varieties via the notion of a rational
contraction, a dominant rational map X --» Y of projective varieties that can be decomposed
into a sequence of small Q-factorial modifications [43] and surjective morphisms. By [18],
there exist rational contractions Bl, mn+1 -—> Mo’n --> Bl, LM,,, where LM,, is the Losev—
Manin moduli space of chains of rational curves; see [19,50]. This is a toric variety associated
with the permutohedron. A feature of LM,,, noticed in [18] and proved in Theorem 7.1, is its
“universality” among all projective toric varieties IP. Specifically, for any projective toric vari-
ety I, there exist rational contractions LM,, --> P and Bl, LM,, --> Bl, P for n sufficiently
large. Thus, Mg, has worse birational geometry than Bl, P. For example, given a rational
contraction, if Eff(X) is a (rational) polyhedral cone, then Eff(Y) is also (rational) polyhedral
(Lemma 2.2). In particular, if the cone Eff(Bl, P) is not polyhedral for some toric variety PP,
then Eff(Bl, LM,,), and therefore Eff(M g ,), are not polyhedral either, for n sufficiently large.

A similar strategy was used in [18] to show that H(m is not an MDS in characteristic 0
for n > 134, answering a question of Hu and Keel [43]. The bound was lowered to 13 by
Gonzalez and Karu [36] and then to 10 by Hausen, Keicher and Laface [42]. Theorem 1.2 gives
the same bound n > 10, but it exhibits an even wilder behavior than previously expected, as
effective cones are a rougher invariant than Cox rings (the Cox ring is graded and the effective
cone is the semigroup of possible weights of the grading). For instance, the toric surfaces used
in [18] were the weighted projective planes P(a, b, c). Of course, Bl, P(a, b, ¢) has Picard
number 2 and its effective cone is polyhedral. Nevertheless, Goto, Nishida and Watanabe [37]
proved that Bl, P(a, b, ¢) is not an MDS in characteristic O for certain values of a, b, ¢, by
exhibiting a nef but not semi-ample line bundle. However, in characteristic p > 0, this line
bundle is semi-ample, and therefore this space is an MDS, by Artin’s criterion [3]. Hence, this
technique cannot be used for blown-up toric surfaces and Mo,n- So the following corollary of
Theorem 1.2 is new.

Corollary 1.3. If n > 10, the moduli space MO,n is not an MDS in characteristic p,
for all primes p.

1) Using forgetful maps, one has a negative answer for all cycles of dimension at least 2 when n > 6.
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By contrast, MO,n is an MDS in all characteristics if n < 6 (see [14, 43]). This leaves
open only the casesn = 7,8, 9.

2. Polyhedrality of effective cones

Let k be an algebraically closed field of arbitrary characteristic. We recall some defi-
nitions (see for example [47,48]). If X is a normal projective irreducible variety over k, let
CI(X) be the divisor class group and let Pic(X) be the Picard group of X. As usual, we denote
by ~ the linear equivalence of divisors and by = the numerical equivalence. For Cartier divi-
sors Dy, Dy, we have D1 = D, if and only if Dy - C = D5 - C, for any curve C C X. We
let Num! (X) := Pic(X)/= be the group of numerical equivalence classes of Cartier divisors
on X. We denote Num!(X)g = Num!(X) ®z R, Num!(X)g = Num!(X) ®z Q.

Sometimes, we extend ~ to the linear equivalence of Q-divisors in a usual way (for Q-
divisors, A ~ B if kA ~ kB as Cartier divisors for some k > 0), but mostly, we use numerical
equivalence of Q-divisors to avoid confusion.

Similarly, we define Z;(X)Rr to be the group of R-linear combinations of irreducible
curves in X, i.e., formal sums y = ) a;C;, a; € R, with all C; C X irreducible curves. As
in [47, Definition 1.4.25], we let Num (X)r = Z1(X)r /=, where for two one-cycle classes
Y1, V2 € Z1(X)Rr, we have numerical equivalence y; = y, if and only if D - y; = D -y, for
all Cartier divisors D on X . It follows from the definitions that Num! (X )g ® Numj(X) — R,
(8,7) + & -y is a perfect pairing, so Num! (X)gr and Numj (X)g are dual finite-dimensional
real vector spaces.

We define the pseudo-effective cone Eff(X) € Num! (X )R as the closure of the effective
cone Eff(X), i.e., the convex cone generated by numerical classes of effective Cartier divisors
[48, Definition 2.2.25]. We let Nef(X) € Num!(X)g be the cone generated by the classes
of nef divisors. We define Mov;(X) € Numj(X)g as the closure of the cone generated by
numerical classes of movable 1-cycles; see [48, Definition 11.4.16]. The cones Eff(X) and
Mov; (X) are dual to each other. This was proved first in [12] for the case when X is a smooth
projective variety in characteristic 0, but it holds in general. For X an irreducible projective
variety over a field k of characteristic 0, this is proved in [47, Theorem 11.4.19]. For the case
of arbitrary characteristic, the same proof holds; see for example [29, Remark 2.1].

Definition 2.1. A convex cone € C Rf is called polyhedral if there are finitely many
vectors vp, ..., Vs € R® such that € = R>gv; + -+ + R>ovy. The cone is said to be rational
polyhedral if one can choose the v;’s in Q.

Lemma 2.2. Let f: X — Y be a surjective morphism of normal projective irreducible
varieties. If Eff(X) is (rational) polyhedral, then the same is true for Eff(Y).

Proof. Suppose Eff(X) is a (rational) polyhedral cone. By the duality between the cones
Eff(X) and Mov (X), it follows that Mov (X) is also a (rational) polyhedral cone. The proper
push-forward of 1-cycles induces a map of R-vector spaces

Ss«:Numj (X)g — Num; (Y)g.
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By [30, Corollary 3.12], f«(Mov{(X)) = Movy(Y). The definitions of Num;(X) and
Mov; (X) given in [30] coincide with the ones given above; see [30, Section 2.1, Example 3.3].
It follows that Mov () is a (rational) polyhedral cone. Again by the duality between the cones
Eff(Y) and Mov; (Y), it follows that Eff(Y) is a (rational) polyhedral cone. m]

We concentrate on the case of surfaces. The cone and contraction theorems hold in any
characteristic with very mild assumptions; see [27,28,45,64]. Our main reference for smooth
algebraic surfaces is [53], while we refer to [52] for intersection theory on normal singular
surfaces.

Proposition 2.3. Let X be a normal projective Q-factorial surface with Picard number
at least 3 and such that the cone Eff(X) is polyhedral. Then

(1) every class C € Num!(X) of self-intersection 0 (or its opposite —C ) is in the relative
interior of either the cone Eff(X) or its codimension one facet.

(2) The effective cone Eff(X) is generated by finitely many negative curves.” In particular,
Eff(X) = Eff(X) is a rational polyhedral cone.

Part (2) of Proposition 2.3 appears also in [54].

Proof. (1) Fix h an ample divisor. Let
Q0 :={w|w?>>0 0 h>0} C Num'(X)g

be the non-negative part of the light cone. Then either C or its opposite —C lies on the bound-
ary 00Q. By Riemann—Roch, the cone Q is contained in Eff(X). Since the Picard number of
X is at least 3, the cone Q is round. In particular, dQ can intersect only a facet of Eff(X) of
codimension 1 and only in its relative interior.

(2) By (1), any @ € Num!(X) generating an extremal ray of Eff(X) has w? < 0. By
[22, Lemma 6.2 (e)]®, for any such o, there exists an irreducible curve E such that w is
a positive multiple of the class of E. O

Remark 2.4. In the settings of Proposition 2.3, if the class C admits a positive integer
multiple nC such that [nC| is a base point free pencil, then C is not big. Thus, it lies in
the relative interior of a maximal facet T of Eff(X), and by the Hodge Index Theorem, the
supporting hyperplane of 7 is C1. In particular, any class of an irreducible curve R which
generates an extremal ray of t satisfies R - C = 0 so that R is an irreducible component of
a fiber of the fibration 7: X — P! induced by |nC|. Since the contribution of the components
of a fiber to the “vertical” rank of the Picard group is the number of components minus one, it
follows that, in order for Eff(X) to be polyhedral, it must be

1+ > (IComp. of f7'(b)| — 1) = rk(Pic(X)) — 1.
beP!

2) A negative curve is an irreducible curve B with B2 < 0.
3" The proof in [22] is for smooth surfaces, but the argument works verbatim in our case.
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Proposition 2.5. Let X be a normal projective Q-factorial surface with Picard number
at least 3. Assume that C C X is an irreducible curve with C? = 0 and C = —aKy with
o € Qso. Then the following are equivalent.

(1) There exist irreducible negative curves By, ..., By that generate C- C Num! (X )o and
such that
(2.1) C=a1B1+---+asBs withay,...,as € Q.

(2) Eff(X) is a rational polyhedral cone generated by negative curves.

Proof. Proposition 2.3 gives (2) = (1). We prove (1) = (2) under our additional as-
sumptions. Note that C (hence —K) is nef. Recall that any @ € Num!(X)r generating an
extremal ray must have w? <0, and if ®? < 0, then w is the class of a multiple of a curve
[22, Lemma 6.2] (see footnote 3). The same is true when w?=0,asifw-C =0, by the
Hodge Index Theorem, w and C generate the same ray, while if w - C > 0, then w - K <0
and o is generated by the class of a curve by the cone theorem. Hence, it suffices to prove
that X contains finitely many irreducible curves E with E? < 0 such that E is not numerically
equivalent to a rational multiple of C'. We can also assume that £ # B; for all i.

We consider two cases. If £-C =0, then E - B; =0 for all i by (2.1) and by our
assumption that E # B; for all i. Since By ..., By generate C1 over Q, E must be numer-
ically equivalent to a rational multiple of C, which we have also ruled out.

Suppose E - C > 0. Since Bj ..., By generate CL over Q, the classes which have fixed
intersections with the B;’s form an affine subspace of dimension one in Num! (X )@, differing
one from another by a multiple of the class of C. Since £ - C > 0 and C - C = 0, there is at
most one such class with EZ also fixed. Hence, it suffices to prove that £ - B; and E 2 belong
to a finite set. By assumption (1) and adjunction, we have

1
> 4i(E-B)=E-(-K) < E>+2<2.
o

Hence, 0 < E - B; <2a/a;. As there exists [ € Z~ (the index of Pic(X) in CI(X)) such that
the /D is Cartier for any curve D (hence, /(D - E) is an integer), it follows that £ - B; belongs
to a finite set. We have —2 < E2 by adjunction and nefness of —K. As E 2 <0, it follows
similarly that £2 must belong to a finite set. ]

3. Elliptic pairs: General theory

As in Section 2, we work over an algebraically closed field k of arbitrary characteristic.
While Propositions 2.3 and 2.5 address polyhedrality of Eff(X) for a general surface X, in this
section, we study polyhedrality further for a rational surface in the presence of a curve C with
self-intersection 0 under some additional assumptions.

Definition 3.1. An elliptic pair (C, X) consists of a projective rational surface X with
log terminal singularities and an irreducible curve C C X, of arithmetic genus one, disjoint
from the singular locus of X and such that C2 = 0. Let C+ < CI(X) be the orthogonal
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complement to C. We define the restriction map
res: C+ — Pic®(C), D+ O(D)|c.
Since K - C = 0 by adjunction, we can also define the reduced restriction map
fes: Clo(X) := C+/(K) — Pic®(C)/(res(K)).

We will often study a birational morphism X — Y, which is an isomorphism in a neighborhood
of C. We will then use notation Cyx, Cy, etc., to avoid confusion.

The most familiar elliptic pairs are rational elliptic fibrations X — P! with a fiber C
(which can be the support of a multiple fiber). However, we do not make this assumption. Note
that, as X is rational, 2! (X, Ox) = 0, and hence Pic(X)gp = Num!(X)g.

Lemma-Definition 3.2. We define the order e = e(C, X) of the elliptic pair (C, X) to
be the positive integer satisfying any of the following equivalent conditions (or oo if none of
them are met).

(1) res(C) € Pic®(C) is a torsion line bundle of order e.

(2) e is the smallest positive integer such that h°(C,res(eC)) = 1.
(3) e is the smallest positive integer such that h°(X,eC) = 2.

(4) e is the smallest positive integer such that h°(X,eC) > 1.

The order e(C, X) only depends on a Zariski neighborhood of C in X.

Proof. The equivalence of (1) and (2) is clear. We use this as a definition of e. In particu-
lar, e(C, X') only depends on a Zariski neighborhood of C in X . Since log terminal singularities
are rational and C is disjoint from the singular locus of X, if X is a resolution of singulari-
ties of X, then ho()? ,nCg) = h°(X,nCy) for any integer n. Hence, to prove the remaining
equivalences, we may assume that X is smooth. For any n > 0, we have

h?(X,nC) = h°X,Kx —nC) =0,

as otherwise Ky would be effective. Moreover, by Riemann—Roch, we have y(Ox (nC)) = 1
for all n. Thus, either 1°(X,nC) =1 and h°(C,res(nC)) = 0 for every n > 0, or for some
n > 0, wehave h°(X,nC) =2, h%(C,res(nC)) = 1and h°(X,IC) = 1, h°(C,res(IC)) = 0
forl <[ <n. D

Lemma 3.3. Suppose (C, X) is an elliptic pair. Let e = e(C, X). Then

(1) e < oo ifand only if C is the support of a (multiple) fiber of a (quasi-)elliptic fibration.”

(2) If e = oo, then C is rigid, which means that h®(nC) =1 for all n > 0. In this case,
Eff(X) is not polyhedral if the Picard number p(X) > 3.

4 If C is smooth or if chark # 2,3, then the fibration is automatically elliptic [9]. If not, it can be quasi-
elliptic, i.e., have cuspidal generic fiber.
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Proof. Suppose e < co. Then eC ~ Y D; for some irreducible curves D; # C by
Lemma 3.2(3). As C? = 0, it follows that the D;’s are disjoint from C and |eC]| is a base-
point-free pencil. Since C? = K - C = 0 by adjunction, Plec|: X — P! is a (quasi-)elliptic
fibration. Suppose ¢ = co. Then C is rigid by Lemma 3.2 (4). By Proposition 2.3, if Eff(X)
is polyhedral and the Picard number of X is at least 3, then Eff(X) is generated by negative
curves and C is contained in the interior of a facet. Thus, h%(X,kC) > 1 for some k, and
therefore e(C, X) < oo by Lemma 3.2 (4). |

Lemma 3.4. [f(C, X) is an elliptic pair, then Ky + C is an effective divisor.

Proof.  As C is contained in the smooth locus of X, we can pass to a resolution of
singularities and prove for a smooth surface X that h>(—C) = h°(K + C) > 0. By adjunction,
Ox (K + C)|c ~ wc =~ Oc, so there is an exact sequence

0— 0Ox(K)—> 0Ox(K+C)—> Oc — 0.

The statement follows from the vanishing 2°(X, K) = h!'(X,K) = 0. ]

Definition 3.5. We say that (C, X) is a minimal elliptic pair if it does not contain
irreducible curves E suchthat K - £ < 0Oand C - E = 0.

Remark 3.6. A curve E as in the definition must have E? < 0. Indeed, EZ < 0 by
the Hodge Index Theorem, with equality if and only if the classes of C and E are multiples
of each other. But since £ - K <0 and C - K = 0, the latter is not possible. Moreover, E
is a rational curve [27, Theorem 5.6]. By the contraction theorem, there exists a morphism
¢: X — Y contracting only E. As ¢ is an isomorphism in a Zariski neighborhood of C and
Y is log terminal, (C,Y) is an elliptic pair. Moreover, Ky = ¢* Ky + a E for some a € Q.
Since E - Ky < 0 and E? < 0, it follows that ¢ > 0. Furthermore, K)Z( < KIZ,.

Lemma 3.7. Let (C, X) be an elliptic pair. The following conditions are equivalent:
(1) (C, X) is minimal;
(2) K + C is nef;
(3) C ~ a(—K) for some a € Q~y, a linear equivalence of Q-divisors;

“4) K?=0.

Proof. To prove (1) = (2), assume that K + C is not nef. By the cone theorem®, for
a log surface (X, C) (see [27,64]), there is an irreducible curve E such that (K + C)- E <0
and E2 < 0. As K + C is effective, E must be one of its components. Since C - (K + C) =0
and C is nef, we must have C - E = 0, and hence K - E < 0. This contradicts the minimality
of (C, X).

Next we prove (2) = (3). Since (K 4+ C) - C = 0, by the Hodge Index Theorem, we
must have (K 4+ C)? < 0. But since K + C is nef, (K + C)? > 0. Thus, (K + C)? = 0, and
it must be that K + C = AC for some A € Q. As no multiple of K is effective, it follows that

5) This trick is from the proof of the canonical bundle formula for elliptic fibrations in [10].
6 Note that there are no singularity assumptions on K + C in the cone theorem for surfaces.
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C = a(—K) for some & € Q~¢. Since X is rational, in fact, C ~ «(—K), a linear equivalence
of Q-divisors.

The implication (3) = (4) is clear. To see (4) = (1), suppose (X, C) is not minimal.
By Remark 3.6, there is a contraction ¢: X — Y of a curve E such that K - E <0, E2 <0
and C - E = 0. Moreover, KIZ, > K)z( = 0. But (C, Y) is an elliptic pair, and so K)2, < 0 by the
Hodge Index Theorem, which gives a contradiction. O

Theorem 3.8. Let (C, Z) be an elliptic pair with smooth Z. Then (C, Z) is minimal if
and only if p(Z) = 10 or; equivalently, K* = 0. If (C, Z) is minimal, then

(i) C ~ n(—K) for some positive integer n;

(i) Z is a blow-up of P2 at 9 points (possibly infinitely near) and the intersection pairing
on Z makes Clg(Z) isomorphic to the negative definite lattice Eg.

Suppose that (C, Z) is minimal and e(C, Z) < oo. The following are equivalent.
(1) Eff(Z) is polyhedral and generated by (—2) and (—1)-curves.
(2) Eff(Z) is polyhedral.

(3) Ker(res) € Eg contains 8 linearly independent roots of Eg.

Proof. By Lemma 3.7, the elliptic pair (C, Z) is minimal if and only if K? = 0. Since
Z is a smooth rational surface, it is an iterated blow-up of P? or a Hirzebruch surface Fe. As
K? goes down by one and the Picard number goes up by one when blowing-up a smooth point,
K? = 0if and only if p(Z) = 10. We claim that Z is the blow-up of P? at 9 points. Assume
not. Then Z is the iterated blow-up of a Hirzebruch surface F, (¢ = 0 or e > 2) at 8 points.
A negative curve B on F, has B> = —e and B? goes down by blow-up. By adjunction and
since —Kz is nef, the only negative curves on Z are (—1) and (—2)-curves, so we must have
e = 0, or e = 2 and none of the blown up (possibly infinitely near) points on I, lie on the
negative section. If e = 0, we are done, as BlplP>1 x P! is isomorphic to the blow-up of P2 at
two points. If e = 2, we are also done, as a blow-up of [F5 at a point not lying on the negative
section is isomorphic, via an elementary transformation, to a blow-up of 'y at one point. This
proves the claim. It follows that Clg(Z) = Eg. Since —K is a primitive vector of Pic(Z), it
follows by Lemma 3.7 (3) that C ~ n(—K) for some integer n > 0.

Suppose that (C, Z) is minimal and ¢ = ¢(C, Z) < oo. By Lemma 3.3, |eC| gives a
(quasi-)elliptic fibration Z — P!. Clearly, (1) = (2) and Proposition 2.3 (2) implies (2) = (1),
as the only negative curves are (—1) and (—2)-curves. Assume (1). By Proposition 2.5, we have
C =) a;B; fora; € Q¢, with irreducible negative curves B; generating C L over Q. Since
B; is irreducible, res(B;) = 0. Since B; - K = 0, each B; is a (—2)-curve. Since the curves B;
generate C 1 over Q, eight of them are linearly independent modulo K. This proves (3).

Assume (3). Let f1, ..., Bg be (—=2)-classes in C =+, linearly independent modulo K and
such that res(8;) = 0. Adding to each §8; an integer multiple of K, we may assume that each
Bi restricts trivially to C. We claim that, for each i, either B; or (K + C) — B; is effective.
Indeed, for each B := f;, we have a short exact sequence

0—->0B—-C)—0(pB)—> 0Oc —0.

If B is not effective, then B — C is not effective either. Hence, we have 1! (Z, (B — C)) > 0.
But x(@O(B8 — C)) = 0 by Riemann—Roch. Thus, #?(Z, (B — C)) > 0,and so (K + C) —
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is effective. We have found 8 effective divisors D1, ..., Dg with res(D;) = 0, Dl.2 = —2 and
linearly independent modulo K. Each of the divisors D; is supported on a union of the fibers
of the (quasi-)elliptic fibration (and no D; is a rational multiple of C). Since the irreduc-
ible components of reducible fibers are (—2)-curves, it follows that (—2)-curves generate C+
over Q. Clearly, for some integer / > 0, [C is an effective combination of (—2)-curves. Then
Proposition 2.5 (1) implies (2). O

Remark 3.9. Smooth projective rational surfaces Z for which there is an integer m > 0
such that the linear system |—m K z| is base-point free and of dimension 1 are called Halphen
surfaces of index m and have been studied from many different points of view; see for example
[4,13,38]. If (C, Z) is an elliptic pair as in the second half of Theorem 3.8, then Z is a Halphen
surface with index n - e, where e := ¢(C, Z) and n is a positive integer such that C ~ —nKz.
Let N be the sublattice of g that is generated by roots contained in Ker(res), i.e., N is gener-
ated by the classes of all the (—2)-curves on Z (see the proof of Theorem 3.8). By the Hodge
Index Theorem, the (—2)-curves on Z are precisely the irreducible components of reducible
fibers of the fibration induced by the linear system |eC| = |—n - eK z|; call them Sy,...,S}.
If p; denotes the number of irreducible components of §;, the rank of N (i.e., the maximum
number of linearly independent roots of Eg contained in Ker(res) or, equivalently, the maxi-
mum number of (—2)-curves that are linearly independent modulo K 7) equals Z,)-Lzl (i —1).
By a result of Gizatullin, ZLI (ui — 1) < 8 if and only if the automorphism group Aut(Z) is
infinite; in this case, there exists a free abelian group G of rank 8 — ) 7, (1; — 1), of finite
index in Aut(Z), such that any non-zero element in G is an automorphism that acts by trans-
lation on each fiber of the elliptic fibration [38, Theorem 7.11, Corollary 7.12], i.e., E_ff(Z ) is
not polyhedral if and only if Aut(Z) is infinite.

Theorem 3.10. For any elliptic pair (C, X), there exist a minimal elliptic pair (C,Y)
and a morphism w: X — Y, which is an isomorphism over a neighborhood of C. Consider the
Zariski decomposition on X of K + C,

K4+C~N+P, N=a1Ci+-+asCs, a; € Qsp,
the linear equivalence of Q-divisors.” Then

(1) Y is obtained by contracting curves Cy,...,Cs on X.

(2) P =0ifandonly if —Ky ~ Cy; then N is an integral combination of C1, ..., Cs and
Y has Du Val singularities.

Definition 3.11. We call an elliptic pair (C, Y) a minimal model of (C, X).
Corollary 3.12. Let (C,Y) be a minimal model of an elliptic pair (C, X) such that
e(C, X) = oo. Then Y has Du Val singularities. Consider the Zariski decomposition

K+C~N+P

on X.Then P ~ 0 and K + C ~ N is an integral effective combination of irreducible curves
Cy1,...,Cs with a negative-definite intersection matrix. The minimal model Y is obtained by
contracting curves Cy,...,Cs and Cy ~ —Ky.

7) Recall that the C;’s are irreducible curves with a negative-definite intersection matrix and P is a nef
effective Q-divisor such that P - C; = 0 for all i. The Q-divisor N is determined uniquely.
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Proof. We first prove the theorem and then its corollary. We obtain a minimal model
7: X — Y byrunning a (K + C)-MMP [27,64]. Equivalently (by Lemma 3.7),  is a compo-
sition of contractions of the form ¢: X — Y, where each ¢ is the contraction of a K-negative
curve E such that £ - C = 0. On each step,

Kx +Cx ~¢*(Ky + Cy) +aE, witha € Q=o,

a linear equivalence of Q-divisors. At the end, we obtain that Ky + Cy is nef, i.e., (C,Y) is
minimal. If the curves contracted by  are Cq,...,Cs € X, then Ky + Cy ~ N 4+ P, with

S
P =n*(Ky + Cy), NZZaiCi, a;j € Qxo,

i=1

a linear equivalence of Q-divisors. The divisor P is nef and effective (Lemma 3.4) and we have
P - C; = 0 for all i. Hence, this is the Zariski decomposition of K + C. Moreover, P = 0 if
and only if Ky + Cy ~ 0.

Assume now P = 0. Recall an algorithm for computing the Zariski decomposition [7].
Write K + C ~ b1 By + --- + b; By as an integral, effective sum of irreducible curves B;. Let
N’ :=>x;B;, where 0 < x; < b; are maximal such that P’ := " (b; — x;) B; intersects all
C; non-negatively. Then N’ and P’ give a Zariski decomposition of K + C. Since N = N’
is unique and P’ = P = 0, the Zariski decomposition is K + C ~ by By + --- + b; B;. To
prove the singularity statement, note that —Ky ~ Cy implies that Ky is Cartier. Thus, Y has
Du Val singularities.

Finally, we prove the corollary. Suppose that ¢(C, X) = ¢(Cy,Y) = oco. If P # 0, we
have Cy ~ a(—Ky) for some o € Q, & # 1. Then Cy ~ a"‘Tl(Ky + Cy), a linear equiva-
lence of Q-divisors. But Ky + Cy restricts trivially to Cy by adjunction, and therefore res(C)
is torsion, which is a contradiction. So we must have P = 0, and this finishes the proof of the
corollary by (1)—(2) of the theorem. D

Remark 3.13. We give an example of a minimal rational elliptic fibration that does
not satisfy C ~ —K. Let W be a minimal smooth rational elliptic fibration with a nodal
fiber Iy. Blow up the node of the fiber and contract the proper transform of the fiber (which
has self-intersection —4). This produces a minimal rational elliptic fibration Y with a %(1, 1)
singularity, which is log terminal. The fiber C¢ through the singularity is a nodal multiple fiber
of multiplicity 2. We have C ~ 2Cy ~ —2K.

Lemma 3.14. Let (C,Y) be an elliptic pair such that Y has Du Val singularities. Let
w:Z — Y be its minimal resolution.

(1) (C,Y) is minimal if and only if (C, Z) is minimal. Equivalently, p(Y') = 10 — R, where
R is the rank of the root system of the singularities of Y .

(2) Assume (C,Y) is a minimal elliptic pair. Then the following are equivalent:
« Eff(Y) is a polyhedral cone;
e Eff(Y) is a rational polyhedral cone;
« Eff(Z) is a polyhedral cone.
When p(Y') = 2, all the above statements hold.
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Proof. As Kz = n* Ky, the pair (C, Z) is minimal if and only if (C, Y) is minimal by
Lemma 3.7. As p(Y) = p(Z) — R, the first statement follows. If Eff(Z) is (rational) polyhe-
dral, then Eff(Y) is (rational) polyhedral by Lemma 2.2. Assume now Eff(Y) is polyhedral. If
p(Y) > 3, then ¢(C,Y) < oo by Lemma 3.3, and by Proposition 2.3 (1), Eff(Y) is a rational
polyhedral cone with Cy contained in the interior of a maximal facet. If p(Y) = 2 (the small-
est possible), then Eff(Y) is a rational polyhedral cone by the cone theorem (it is spanned by
the class of C and by the class of the unique negative curve). Note that this does not provide
any information about e(C, Y). In both cases, it follows that C)J; contains p(Y) — 2 effective
divisors which are linearly independent modulo Ky and restrict trivially to C. As CI(Z)qg
decomposes as 7* C1(Y)g @ T, where T is a sublattice spanned by classes of (—2)-curves
over singularities of Y, we have

(CH)g = (7*Cy)o & To.

It follows that C é‘ contains p(Y) — 2 + R = 8 effective divisors which are linearly indepen-
dent modulo Kz and restrict trivially to C. As in the proof of Theorem 3.8, it follows that
Eff(Z) is a polyhedral cone. m]

Remark 3.15. 1In the set-up of Lemma 3.14, if (C,Y) has Du Val singularities and
Cy ~ —Ky, where n: Z — Y is its minimal resolution, then Z is a Halphen surface of index
e(C,Z),as Cz ~ —Kz. Indeed, this follows from 7*Ky = Kz, n*Cy = Cz.

Definition 3.16. Let (C, X) be an elliptic pair such that the minimal model (C, Y') has
Du Val singularities. Let 7: Z — Y be the minimal resolution of Y. Let

T € Eg =Clo(2)

be a root sublattice spanned by classes of (—2)-curves over singularities of Y. We call T the
root lattice of (C, X), and we denote by T its saturation Eg N (T ® Q).

The push-forward 74: C1(Z) — CI(Y) induces a map Clg(Z) — Clo(Y) with kernel T,
i.e., Clop(Y) ~ Eg/ T and the map resz factors through resy. Moreover,

Clo(Y)/torsion >~ IEg/TA“.

The intersection pairing on Y and pull-back of Q-divisors realizes Eg/ T as a sublattice of the
vector space (T ® Q)+ € Eg ® Q with the intersection pairing on Z.

Remark 3.17. Root lattices T C Eg were classified by Dynkin [24, Table 11]. The
quotient group Clg(Y) ~ Eg/ T was computed, e.g., in [57].

Corollary 3.18. Let (C,Y) be a minimal elliptic pair with Du Val singularities and
p(Y) = 3. Let R be the rank of the root lattice of (C,Y) and suppose e(C,Y) < co. Then
Eff(Y) is polyhedral if and only if there are roots 1, . .., Bs—r € Eg \ T, linearly independent
modulo T and such that tes(B;) = 0. In particular; if R = 7, then Eff(Y) is polyhedral if and
only if tes(B) = 0 for some root € Eg \ T.

Corollary 3.18 provides an effective criterion of polyhedrality for minimal elliptic pairs
(C,Y) with Du Val singularities and e(C, Y) < oo, while Corollary 3.12 shows that a minimal
model (C,Y) of an elliptic pair (C, X) with e(C, X) = co has Du Val singularities. These
disjoint scenarios are reconciled in the following definition.
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Definition 3.19. Let (C, X) be an elliptic pair with ¢(C, X) = oo defined over K,
a finite extension of Q. Let R C K be the corresponding ring of algebraic integers. There
exist an open subset U C Spec R and a pair of schemes (€, X) flat over U, which we call an
arithmetic elliptic pair of infinite order, such that the following holds.

» Each geometric fiber (C, X) of (€, X) is an elliptic pair of order e, which depends only
on the corresponding point » € U. We have e, < oo for b # 0.

* The contraction morphism X — Y to the minimal model extends to the contraction of
schemes X' — ¥ flat over U.

e All geometric fibers (C,Y) of (€,¥Y) over U are minimal elliptic pairs with Du Val
singularities and the same root lattice 7" C Eg.

Let X, Y be geometric fibers over aplace b € U, b # 0. We call b a polyhedral prime if Eff(Y')
is polyhedral. If b is not polyhedral, then Eff(X) is also not polyhedral.

Distribution of polyhedral primes is an intriguing question in arithmetic geometry that
we will start to address for arithmetic toric elliptic pairs.

4. Lang-Trotter polygons and toric elliptic pairs

At the beginning, we work over an algebraically closed field k of any characteristic. We
recall that a polygon A € R? is called a lattice polygon if its vertices are in Z2. If A is a lattice
polygon, we will denote by Vol(A) its normalized volume, i.e., twice its euclidean area (so that
Vol(A) is always a non-negative integer). We recall that, given any Laurent polynomial

4.1) f= Z oy x* € k[xEl x3F2,
uez?

where x* := x]'x52, we can construct a lattice polygon NP(f), called the Newton polygon

of f, by taking the convex hull of the points u € Z? such that a;, # 0.
A lattice polygon A defines a morphism

gA:G,zn — P'Aﬂzzl_l, x> [x*:ue ANZ3,

where x = (x1, x2) € (k*)2. We will denote by PA the projective toric surface defined by A,
i.e., the closure of the image of ga, and by e € P the image ga(1, 1). A hyperplane section
is denoted by Ha. The linear system | Ha| is denoted by £ A, and given a positive integer m,
we let £ (m) be the subsystem of &£ A consisting of the curves having multiplicity at least m
at e. We will denote by wa: XA — Pa the blow-up at e € Pa and by E the exceptional divisor
of wA.

Notation 4.1. Given a triple (A, m, "), where A is a lattice polygon, m a positive
integer and I' € £ (m), the curve I is given by a Laurent polynomial (4.1), and the curve
V(f) = I' N G2, will also be denoted by I". We denote by C the proper transform of I" in X .
In this section, we will investigate properties of pairs (C, Xa). We drop the subscript A from
notation Pa, XA if no confusion arises.
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Proposition 4.2. Consider a triple (A, m, ') as in Notation 4.1. Suppose T is irreduc-
ible and its Newton polygon is A. The following hold.

(1) The arithmetic genus of C is
1
pa(C) = 5(\/ol(A) —m?+m—[0ANZ?)) + 1.

(ii) Any edge F of A of lattice length 1 gives a smooth point pr € C defined as the inter-
section of C with the toric boundary divisor corresponding to F. This point is defined
over the field of definition of T.

Proof.  Since A is the Newton polygon of I', I' € P does not contain any torus-invariant
point of IP. In particular, I" is contained in the smooth locus of P, and hence C is contained in
the smooth locus of X. By adjunction formula,

1 1
2a(C) = 5(C2 +C-Kx)+1= 5(Vol(A) —m? 4+ C-Kx) + 1,

where the second equality follows from [21, Proposition 10.5.6]. But C - Kx =I'- Kp +m
so that, in order to prove (i), we only need to show that

(4.2) I'-Kp =—[|0ANZ?|.

Observe that —Kp is the sum of all the prime-invariant divisors of P and each prime-invariant
divisor D C P corresponds to an edge F of A; see [21, Proposition 10.5.6]. Let us fix such an
edge F. By a monomial change of variables, we can assume that F' lies on the x, axis. The
inclusion of algebras k[x1,x3!] — k[xF!, x| gives the inclusion G2 — Gy, x Al, and
V(x1) € Gy x Al is an affine open subset of D. Since I" does not contain any torus-invariant
points of P, ' N D = ' N V(x1), and the latter intersection has equation

(4.3) flr= ) aux*= f(0.x2) =0.
ueFNZ2

The degree of this Laurent polynomial is the lattice length of F so that (4.2) holds.

Moreover, if F has length 1, equation (4.3) has degree 1, which means that I intersects
the prime divisor D transversally at a smooth point pr € I'. Since D is defined over the base
field, if I" is defined over a subfield ko C k, then sois pf. O

Definition 4.3. Let A C R? be a lattice polygon with at least four vertices (so that
p(XA) > 3). We say that A is good if, for some integer m, the following hold:

(i) Vol(A) = m?;
(i) [0A NZ2%| =m;
(iii) dim £ (m) = 0, and the only curve I' € £ A (m) is irreducible;
(iv) the Newton polygon of I" coincides with A;
A good polygon is said to be
* a Halphen polygon if res(C) = Ox (C)|c is torsion;

 a Lang-Trotter polygon if res(C) = Ox (C)|c¢ is not torsion.
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Theorem 4.4. If A is a good polygon, then (C, X p) is an elliptic pair (we call it a toric
elliptic pair), e(C, XA) > 1 and C is defined over the base field. If A is Lang—Trotter, then
chark = 0, e(C, XA) = oo and Eff(X A) is not polyhedral.

Proof. Let A be a good lattice polygon. The curve I is irreducible by Definition 4.3 (iii)
and does not pass through the torus-invariant points of PA by Definition 4.3 (iv). It follows that
C is contained in the smooth locus of X a. Toric surface singularities, i.e., cyclic quotient sin-
gularities, are log terminal. By Definition 4.3 (iv) and [21, Proposition 10.5.6], I'> = Vol(A) so
that Definition 4.3 (i) is equivalent to C2? = 0. Finally, conditions (i) and (ii) of Definition 4.3,
together with Proposition 4.2, imply that p,(C) = 1. Thus, (C, X ) is an elliptic pair. Observe
that Ox (C)|c = res(C) € Pic®(C) (see Definition 3.1) so that being Lang—Trotter is equiv-
alent to e(C, Xa) = oo. Suppose this is the case. Since dim £ (m) = 0, the curve I', and
thus also the curve C, and thus also the line bundle Ox (C)|c are all defined over the base
field. In characteristic p, the group (Pic® C )(IFp) is torsion, which contradicts e(C, Xa) = oo.
Thus, chark = 0. Since A has at least 4 vertices, p(Xa) > 3 and Eff(X) is not polyhedral by
Lemma 3.3. D

Database 8.1 contains all Lang—Trotter polygons with m < 7.

Example 4.5 (Polygon 111). This is the polygon A with 7 vertices

6 51 8 0 0 3

1 432670
which appears in Table 4 for m = 7 (where it corresponds to the blue matrix), and we will use
it later in the proof of Theorem 1.2. We claim that A is Lang—Trotter.

First of all, Vol(A) = 49 and |[0A N Z| = 7 (see [15, Computation 10.3]). By [15, Com-
putation 10.4], £ (7) has dimension 0, and the unique curve I' € £ A (7) has equation

—u®v? 4+ 4uv? + 8ubv® — 5uv? — 3ubv — 5uv* — 50u” v + 21U
+ 6u”v + 40utv* + 85u*v3 — 55u*v? — 6ulv — 85ucv* — 40u3v3
+ 56u3v? — 10u3v + 1> + 15u2v° + 80u?v* — 40u%v3 + u?v?
+ 3uv® — 30uv® + 5uv* + 2uv® — v’ + 40° = 0.

The exponents of the red monomials are the vertices of A so that the Newton polygon of " is A.
By [15, Computation 10.5], the curve I' is geometrically irreducible and its strict transform
C C X is a smooth elliptic curve. It has the minimal equation

y24xy=x>—x2—4x+4

by [15, Computation 10.8]. This is the curve labeled 446.al in the LMFDB database [49]. Since
e(C,X) > 1, 1es(C) € Pic®(C) is not trivial. Since the Mordell-Weil group is Z2, res(C) is
not torsion, and therefore A is Lang—Trotter.

Proposition 4.6. There are no Lang—Trotter quadrilaterals A with m = width(A).

Proof. Assume A is a good quadrilateral, and let (C, X o) be the corresponding elliptic
pair. The divisor K 4 C is linearly equivalent to an effective one whose components in the
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support are in C 1. In particular, if C L contains the classes of two negative curves R, Ry,
then, this space being two-dimensional, there are integers a;, with ag # 0, such that

aoC + a1 Ry +az2Ry ~ 0.

Taking restriction to C, one deduces that A is not Lang-Trotter. If K + C ~ «R + BC, with
o, B € Qso and R € C* effective and not containing C in its support, then, after clean-
ing denominators and restricting to C, one again concludes that A is not Lang—Trotter. If
K 4 C ~ 0, then, by considering multiplicities at e, we must have m = 1, which is impossible
since m = |0A N Z?| > 4. It remains to analyze the case K + C ~ nR, with n > 0 and R is
an irreducible curve in CL. Since we are assuming that m = width(A), the class of the one-
parameter subgroup defined by one width direction lies in C* so that R must be this class, and
in particular, its Newton polygon is a segment of lattice length 1. Moreover, by considering
multiplicities at e, it must be that n = m — 1 so that A has m interior lattice points, lying on
a line. If A were Lang—Trotter, Pick’s formula would give m? = 3m — 2, which has integer
solutions m = 1, 2, but this is impossible. |

Remark 4.7. We do not know examples of Lang—Trotter quadrilaterals. While in all
the examples of Lang-Trotter polygons in Section 8 the condition m = width(A) is satisfied,
there are examples in which m is smaller. For instance, one can check as in Example 4.5 that

the pentagon with vertices
0 12 11 9 8
0 4 7 12 12

is Lang-Trotter and it has m = 11 and width(A) = 12. On the other hand, the quadrilateral

with vertices
0 12 14 9
10 4 5 15

satisfies the conditions Vol(A) = 169, |[0A N Z?| = 13 and £ A (13) contains only one curve
I, irreducible. Moreover, 13 = m < width(A) = 14 so that Proposition 4.6 does not apply.
However, in this case, A is not Lang—Trotter since e(C, Xp) = 6.

Remark 4.8. If, in Definition 4.3, we substitute condition (ii) with [0A N Z2| < m, the
curve C will have arithmetic genus p,(C) > 1 so that (C, Xa) is no longer an elliptic pair.
However, if res(C) is not torsion, we can still conclude that Eff(Xa) is not polyhedral by
Proposition 2.3. In the database [5], there are only two polygons satisfying |0A N Z?| < m
together with (i), (iii) and (iv). Both polygons have volume 49 and 5 boundary points so that,
by Proposition 4.2, the corresponding curve C has genus 2. In the first case, we verified that
2C moves [15, Computation 10.4], so res(C) is torsion. The second polygon has the following

vertices:
057 31
0 2 3 8 3/

and we claim that, in this case, res(C) is not torsion. Indeed, the curve C is isomorphic to
a hyperelliptic curve with equation

Y24+ 2+ x4+ D)y =x —3x* +x3—x.
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This is the curve labeled 1415.a.1415.1 in the LMFDB database [49], and the Mordell-Weil
group of the corresponding jacobian surface is isomorphic to Z @ Z/27. By [15, Computa-
tion 10.4], dim|2C| = 0, and we conclude that res(C) is non-torsion.

5. Arithmetic toric elliptic pairs of infinite order

Notation 5.1. Given a lattice polygon A C Z2, let # be the projective toric scheme
over Spec Z given by the normal fan of A, with a relatively ample invertible sheaf &£ given by
the polygon A. Let X be the blow-up of & along the identity section of the torus group scheme.
Let& ~ IP’% be the exceptional divisor. For any field k, we denote by Py, L, Xj, E the corre-
sponding base change (or simply by P, L, X, E if k is clear from the context). We will assume
that A is a Lang—Trotter polygon, i.e., (Cc, X¢) is an elliptic pair of order e(Cc, X¢) = 00
Then (Cc, X¢) is a geometric fiber of an arithmetic elliptic pair (€, X) of infinite order flat
over an open subset U C Spec Z; see Definition 3.19. We assume that C¢ is a smooth ellip-
tic curve. A geometric fiber (C, X) of (€, X) over a prime p € U is an elliptic pair of finite
order e,. There is a morphism of schemes X — ¥ flat over U, inducing a morphism X — Y
to the minimal model for any geometric fiber. Geometric fibers (C,Y) of (€,¥) over U are
minimal elliptic pairs with Du Val singularities and the same root lattice 7', which we call the
root lattice of A. Recall that we call p a polyhedral prime of A if Eff(Y) is a polyhedral cone in
characteristic p. We are interested in the distribution of polyhedral and non-polyhedral primes.
Recall that polyhedrality is governed by Corollary 3.18: p is polyhedral if and only if there
are roots B1,...,Bs—r € Eg \ T, linearly independent modulo T and such that res(B;) = 0in
C(Fp)/ res(C). Here R is the rank of T'.

We will need a lemma on arithmetic geometry of elliptic curves.

Lemma 5.2. Let C be an elliptic curve defined over Q without complex multiplica-
tion over Q. Fix points Xq, ..., xr € C(Q) of infinite order, and suppose that the subgroup
(x1,...,xr) C C(Q) generated by x1,...,xy is free abelian and does not contain a multi-
ple of x¢o. Then the reductions X1, ..., X, modulo p are not contained in the cyclic subgroup
generated by the reduction Xg for a set of primes of positive density.

Remark 5.3. Note that x1,...,x, € C(Q) are not assumed linearly independent.

Proof. For a fixed integer ¢, let C[¢] € C(Q) be the set of g-torsion points so that
Clq] ~ (Z/q7Z)?* as a group. Let K be the field Q(C|[g]). Since C does not have complex
multiplication,
Gal(K/Q) ~ GL2(Z/qZ)

for almost all primes g by Serre’s theorem [59]. Choose a basis yi,...,ys of {x1,...,xs).
Since x¢ has infinite order, yo = Xo, y1, ..., Vs is a basis of the free abelian group (xo, . .., x,).
Choose points yo/q. ..., vs/q € C(Q). Let Ky,,...,y, be a field extension of K generated by
vo/q,...,Yys/q (any choice of quotients gives the same field). By Bashmakov’s theorem [6],
for almost all primes ¢, we have

Gal(Kyq,...5,/Q) = GLa(Z/qZ) x (Z/qZ)*)**.
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For any x € C(Q), let i (x) denote the index of the subgroup (x) C C(IF,). It suffices to
prove that i (X1), ...,i(X;) are not divisible by g but i (xo) is divisible by ¢ for a set of primes p
of positive density. By [46], i (X) is divisible by ¢ if and only if the Frobenius element (defined
up to conjugacy)

op = (¥p. 7p) € Gal(Kx/Q) ~ GL2(Z/qZ) (Z/qz)z

belongs to one of the following conjugacy classes: either y, = 1 or y, has eigenvalue 1 and
7p € Im(y, — 1). We express

N
Xj = Zaijyj fori =1,...,r,a;; € Z.
Jj=1

To apply the Chebotarev density theorem [66], it remains to note that the subset of tuples
(¥, 70, .- Ts) € GL2(Z/qZ) x (Z/qZ)*)* !

such that y has eigenvalue 1, 79 € Im(y — 1) and ijl aijti ¢ Im(y —1)fori =1,...,ris
non-empty for g > 0. |

Remark 5.4. We were inspired by the following theorem of Tom Weston [68]. Suppose
we are given an abelian variety A over a number field F such that Endg A is commutative,
an element x € A(F) and a subgroup X C A(F). If redyx € red, X for almost all places v
of F,then x € X + A(F)ors-

Here is another variation on the same theme.

Lemma 5.5. Let C be an elliptic curve defined over Q with points x,y € C(Q) of
infinite order such that y = dx for a square-free integer d. Suppose there exists a prime p of
good reduction and coprime to d such that the index of (X) is coprime to d but the index of (V)
is divisible by d. Then x,2X,...,(d — 1)x & (y) for a set of primes of positive density.

Proof.  'We need to prove positive density of primes such that the index of the subgroup
(y) in (X) is equal to d. It is enough to prove positive density for the set of primes such that the
index of (x) in C(IFp) is coprime to d but the index of (y) is divisible by d. Arguing as in the
proof of Lemma 5.2, we can express this condition as a condition that the Frobenius element
0p is contained in the union of certain conjugacy classes in the Galois group Gal L/Q, where
L is obtained by adjoining the d-torsion C[d] and the point x/d. To apply the Chebotarev
density theorem, we need to know that this conjugacy class is non-empty. Arguing in reverse,
it suffices to find a specific p such that the condition holds. |

Theorem 5.6. Consider Lang—Trotter polygons from Table 1 (numbered as in Table 4).
We list the root lattice T, the minimal equation of the elliptic curve C, its Mordell-Weil group
C(Q) and res(C). The set of non-polyhedral primes is infinite of positive density and includes
primes under 2000 from Table 2.

Proof. We first explain an outline of the argument and then proceed case by case. We
compute the normal fan of A and the fan of the minimal resolution Pa of P using [15, Compu-
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N T C MW  res(C)
19 Ay y2 4y =x3 —x% —24x + 54 7Z?> —(1,5)
24 Ag® A Y +y=x3+x2 Z  60,0)
111 A @ A; y?>+xy=x3—x2—4dx+4 7?2 (—1,-2)

128 A3 @ A y2+y=x3+x2—-240x + 1190 73> (15,34)

Table 1

N  Primes

19 11,41, 67,173,307, 317, 347, 467, 503, 523, 571, 593, 631, 677,733, 797, 809,
811, 827,907, 937, 1019, 1021, 1087, 1097, 1109, 1213, 1231, 1237, 1259, 1409,
1433, 1439, 1471, 1483, 1493, 1567, 1601, 1619, 1669, 1709, 1801, 1811, 1823,
1867, 1877, 1933, 1951, 1993

24 29,59,73,137, 157, 163, 223, 257, 389, 421, 449, 461, 607, 641, 647, 673, 691,
743,797, 929, 937, 983, 991, 1049, 1087, 1097, 1103, 1151, 1171, 1217, 1223,
1259, 1279, 1319, 1367, 1399, 1427, 1487, 1549, 1567, 1609, 1667, 1697, 1747,
1861, 1867, 1871, 1913

111 47,71, 103, 197, 233, 239, 277, 313, 367, 379, 409, 503, 563, 599, 647, 677, 683,
691, 719, 727,761, 829,911, 997, 1103, 1123, 1151, 1171, 1187, 1231, 1283, 1327,
1481, 1493, 1709, 1723, 1861, 1907, 1997

128 13,17,23,71, 101, 103, 109, 191, 233, 277, 281, 283, 311, 349, 379, 397, 419, 433,
439, 443, 449, 457, 479, 509, 547, 557, 571, 631, 647, 653, 691, 701, 727, 743, 811,
829, 877, 929, 953, 1021, 1031, 1033, 1097, 1123, 1129, 1151, 1187, 1213, 1237,
1277, 1297, 1423, 1459, 1471, 1483, 1499, 1531, 1549, 1559, 1583, 1621, 1637,
1699, 1753, 1783, 1879, 1889, 1907, 1979

Table 2

tation 10.3]. We use [15, Computation 10.6] to compute the Zariski decomposition of Kx + C,
which by Theorem 3.10 gives curves Cq, ..., Cs contracted by the morphism to the minimal
model Y, and the classes of proper transforms of these curves in PA. Whenever A has lat-
tice width m in horizontal and vertical directions, these curves include 1-parameter subgroups
Ci=@w=1)and C; = (u = 1). We use [15, Computation 10.7] to compute the root lat-
tice T, Clp(Y), and the push-forward map to Clg(Y). Then [15, Computation 10.4] gives the
equation of the unique member I' of the linear system &£ A (m) and its Newton polygon, and
[15, Computation 10.5] shows that the proper transform C of this curve in X is an elliptic
curve. We use [15, Computation 10.8] to compute the minimal equation of C, intersection
points of C with the toric boundary divisors, res(C ) and the images of roots in Eg. Reading off
the Mordell-Weil group of C from the LMFDB database [49], we can deduce that A is Lang—
Trotter. In the same [15, Computation 10.8], we apply Corollary 3.18 to test polyhedrality of
specific primes from Table 2. Finally, we apply Lemma 5.2 or Lemma 5.5 to prove positive
density of non-polyhedral primes. O
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Figure 1. Polygon 19

Example 5.7 (Polygon 19). This polygon has vertices

4 3106 5
(5.1) .
6 52 01 4

The minimal resolution P has the fan from Figure 1, where bold arrows indicate the fan
of Py. Note that PA has a toric map to P! x P! and proper transforms of 1-parameter sub-
groups Cy, C, are preimages of rulings. Thus, they have self-intersection —1 after blowing
up e. The minimal resolution of X contains the configuration of curves from the right of Fig-
ure 1 (toric boundary divisors and curves Cp, C3). Only curves C; and C, contribute to the
Zariski decomposition of K + C and are contracted by the morphism X — Y. Equivalently,
the surface Y is obtained by contracting the chain of rational curves above. After blowing down
(—1)-curves, this is equivalent to contracting a chain of seven (—2)-curves. Thus, ¥ has an A5
singularity and Picard number 3. There are two conjugate classes of root sublattices of type A7
in Eg (see [57, p.85]). In our case, Clg(Y) >~ Z is torsion-free; thus the embedding is prim-
itive. More precisely, we have Clg(Y) = Eg/A~, which corresponds to the Z-grading of the
Lie algebra eg = P gecy,(v)(es) of the form

C8 A2C® A3C® gl A3C® A2C3 C8
8§ 28 5 64 56 28 8.

Let o be a generator of Clg(Y). The images of the roots of Eg are ko for k < 3. Thus, the
non-polyhedrality condition is that k res(«) ¢ (res(C)) in char p fork = 1,2, 3.
Next we compute res(c) and res(C). The curve I' has equation

f=utv® +6u’v —2utv® — 1400 — 17u*v* — 40P 0° + ubo + 11w 0?
+ 38u*v? + 2603 v* — v — 27utv? — 34uv3 + 22utv + 16u3v?
—10u?v3 — 2413y + 10u%v? + 15020 + 5uv? — 1luv + 1 =0

and passes through e with multiplicity m = 6. When p # 2, 3,5, C has Newton polygon (5.1)
and is isomorphic to an elliptic curve with the minimal equation

y2+y:x3—x2—24x+54.
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Figure 2. Polygon 24

The curve C is labeled 997.al in the LMFDB database [49], and its Mordell-Weil group
C(Q) ~ Z? is generated by Q = (1,5) and P = (6, —10). We have

res(C) = -0, res(a) =P — Q;

in particular, res(C) is not torsion in characteristic 0, and thus A is Lang—Trotter. Thus, Eff(X)
and Eff(Y) are not polyhedral in characteristic 0.

In characteristic p, k P is not contained in the cyclic subgroup of C (Fp) generated by 0
fork = 1,2, 3 for all primes in Table 2. According to the LMFDB database [49], C has no com-
plex multiplication. To prove positive density of non-polyhedral primes, we apply Lemma 5.2
toxo = Q and x; = kP fork = 1,2,3.

Remark 5.8. Empirically, about 18 % of primes are not polyhedral for this polygon. It
would be interesting to obtain heuristics for density of non-polyhedral primes.

Remark 5.9. Since C contains an irrational 2-torsion point, the Lang—Trotter conjec-
ture [46] predicts that Q generates C (Fp) for a set of primes p of positive density. If true,
the Lang—Trotter conjecture implies that Eff(Y') is polyhedral in characteristic p for a set of
primes of positive density. However, the Lang—Trotter conjecture is only known for curves with
complex multiplication [39].

Example 5.10 (Polygon 24). This polygon has vertices

025610

013 46 1]
The minimal resolution Iﬁ’A of Pa has the fan from the left side of Figure 2, where bold arrows
indicate the fan of PA. As for the Polygon 19, the proper transforms of 1-parameter subgroups
C1, C3 in X have self-intersection —1 and are the only curves contracted by the map to Y,

which therefore can be obtained by contracting the configuration of rational curves from the
right of Figure 2. It follows that ¥ has Picard number 3 and singularities A; and Ag. The
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-1

Figure 3. Polygon 111

curve I has a point of multiplicity 6 at e and equation

f=—1+2v+ Tuv —3u?v — 23uv? + 6u?v? + 2u3v? + 18uv® + 201203
—26u3v3 + 10u*v3 — 20703 — 12uv* — 11uv?* + 6uv*
+ 5utv* — 4uv* + ubv* + suv® + 3u?vd — 2ulv’ — uv(’,

which has a required Newton polygon when p # 2, 3. From the Dynkin classification, it fol-
lows that Clg(Y) ~ Z. Let o be a generator. The images of roots of Eg are equal to +ko for
0 < k < 4. Thus, the polyhedrality condition is k res(x) ¢ (res(C)) inchar p fork = 1,2,3,4.
The minimal equation of the elliptic curve C is y? + y = x> + x2. It is the curve 43.al from
the LMFDB database [49] of elliptic curves. Its Mordell-Weil group is Z generated by (0, 0).
We have res(C) = Q = 6(0,0) and res(o) = P = —(0, 0). It follows that res(C) is not tor-
sion, and thus A is Lang-Trotter and Eff(X), Eff(Y) are not polyhedral in characteristic 0.
In characteristic p, k P is not contained in the cyclic subgroup of C (Fp) generated by QO for
k =1,2,3,4 for all prime numbers in the table. Thus, these primes are not polyhedral. The
positive density follows from Lemma 5.5 with p = 223, when the index of P is 1 and the
index of Q is 6.

Example 5.11 (Polygon 111, discussed in Example 4.5, followed through in [15, Compu-
tations 10.3-10.8]). The corresponding curve has the required Newton polygon in all charac-
teristics p # 2, 3, 5. The minimal resolution P has the fan from Figure 3, where bold arrows
indicate the fan of Ps. Note that PA has a toric map to P! x P! and proper transforms of
1-parameter subgroups Ci, Cy are preimages of rulings®; hence they have self-intersection
—1 after blowing up e. The Zariski decomposition of K + C is 2C; + C» + C3, where C3 is
a curve whose image in P has multiplicity 3 at e. The Newton polygon of C3 has vertices

3001
1 320

8) The I-parameter subgroups are in this case {u = 1} and {u = v}.
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Figure 4. Polygon 128

and equation
3

w3v —3u?v —uv? 4+ 5uv —u +ud —2u% = 0.

On X, the curve Cj is disjoint from C; and C,. The minimal resolution of X contains the con-
figuration of curves from the right of Figure 3 (toric boundary divisors and curves C1, C, C3).
The curves C;, C,, C3 are contracted by the morphism X — Y. Equivalently, the surface ¥
is obtained by contracting the chain of rational curves above. It follows that the root lattice is
Ag @ A and the Picard number of Y is 3. From the Dynkin classification, we have

Clo(Y) = ES/AG dA = 7.

Let o be a generator. The images of the roots of [Eg are equal to £k« for 0 < k < 4. Thus, in
characteristic p, the non-polyhedrality condition is that k res(«) ¢ (res(C)) fork = 1,2, 3, 4.
To prove that this holds for a set of primes of positive density, we apply Lemma 5.2 to

x; =res(ia), x9 =res(C), fori =1,2,3,4.

Let us check that the conditions in the lemma are satisfied. Using the minimal equation of the
curve C (see Example 4.5) and [15, Computation 10.8], we find that res(«) = P = (0, 2) and
res(C) = Q = (—1,—-2). The curve C (labeled 446.al in the LMFDB database [49]) has no
complex multiplication and has Mordell-Weil group Z x Z generated by P and —Q = (—1, 3).
Hence, the points P and Q have infinite order, and no multiple of Q is contained in the
subgroup generated by P.

Example 5.12 (Polygon 128). This is a polygon with vertices

01 6 76 31

567750 3|
The minimal resolution P of P has the fan from the left side of Figure 4, where bold arrows
indicate the fan of IP. The proper transforms of 1-parameter subgroups C;, C, are the only
curves contracted by the map X — Y. Here Y can be obtained from Bl, P by contracting

a configuration of rational curves from the right of Figure 4, where we also indicate three
boundary divisors, D,, D¢ and D7 (the only ones in Figure 4 that do not get contracted by
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€1-€2 €2-€3 €3-€4 €5-€6 €6-€7 €7-€8
@ @ l O @ @ @

h-ei-ez2-es3

Figure 5. A3 @ A3 C Eg

the map to Y'). The root lattice is Az & Asz; the Picard number of Y is 4. One of the Aj3’s is
indicated with the chain A, A5, A3 of (—2)-curves (after contracting all (—1)-curves). By the
Dynkin classification, [Eg contains two lattices A3 @ A3, one primitive and one non-primitive.
In our case, Clo(Y) ~ Z? is torsion-free, and therefore we have the primitive one. Next we
describe the images in Clg(Y") of roots in [Eg. In other words, we have a grading of the Lie
algebra eg by the abelian group Clg(Y),

eg = Z (eg) 3.

BeClo(Y)

and we need to describe the subset of non-empty weight spaces 8 C Clg(Y). A convenient
interpretation of the lattice Eg is the lattice K Lc Pic(Blg IP?) with standard basis &, ey, . . ., eg.
The positive roots are

ej —ej fori < j,

h—ei —ej —eg,

Dh—eg— o — 8 — e — 0 — e —eg,

3h—eg —---—2e; —---—eg.

The primitive sublattice A3 @ A3 is generated by simple roots marked black on Figure 5.
It follows that the Z? grading on Eg is obtained by pairing with fundamental weights / and
es + eg + e7 + eg that correspond to white vertices of the Dynkin diagram. The Z? grading
of eg has the following non-empty weight spaces (in coordinates given by pairing with 4 and
es + e¢ + e7 + eg, respectively), where we also indicate dimensions:
¥ 6
7 <z
9% > o ° % c w
7 6 o
It follows that the subset B C Clg(Y) is given by the &+ columns of the matrix

1 o1 1122233
(5.2)
01 12323 4435

in the basis u, v, where u and v are the images of the simple roots 7 — e¢; — e — e3 and eq4 — e3,
respectively. Next we compute vectors u and v in Clg(Y). By inspecting Figure 4, one can
prove that, in the minimal resolution Z of Y, h — e; — e5 — e3 corresponds to the (—2)-class
Dy — D7andeq —e5to Dy — Dg — A1 — Az — A3, which has push-forward D, — Dg on X.
Next we compute res(C), res(u) and res(v).

The curve I" has a point of multiplicity 7 at e, and its Newton polygon is A for any prime
p # 2,3,7,11. The minimal equation of the elliptic curve C is

y2 +y = x3 4+ x% —240x + 1190,
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which is the curve 29157b1 from the LMFDB database of elliptic curves. It has Mordell-Weil
group Z3 generated by P = (12,13), R = (—6,49) and Q = (—15, 40). We have

res(C) = (15,-35) =P — Q — R,
res(u) = (120, 1309) = Q — R,
res(v) = (—6,49) = R.

We see that res(C) is not torsion in characteristic 0, and thus Eff(Y') is not polyhedral. In
characteristic p, the condition of polyhedrality is that there exist two linearly independent
column vectors of the matrix (5.2) which, when dotted with the row vector (res(u), res(v)), are
contained in the cyclic subgroup of C(IF,) generated by res(C). This gives the list of non-poly-
hedral primes in the table. To prove the positive density, we apply Lemma 5.2 (with r = 10).

Remark 5.13. In Example 5.12, by Lemma 5.2, we get positive density not only for
the set of non-polyhedral primes but also for the set of primes p such that the Halphen pencil
lep,C| on Y has only irreducible fibers. For example, res(C) has order 2 in characteristic 23
and none of the elements of 8, when restricted to C, are contained in the cyclic subgroup of
C(IF23) generated by res(C). It follows that |2C | on Y is a Halphen pencil with only irreducible
fibers. This property is stronger than non-polyhedrality: in characteristic 13, res(C) has torsion
5 and res(u + v) is contained in the cyclic subgroup generated by res(C) but no other linearly
independent vector in B is. It follows that Eff(Y) is not polyhedral, but the Halphen pencil
|5C| on Y contains a reducible fiber with two components and no other reducible fibers.

Remark 5.14. There is an infinite sequence of Lang—Trotter pentagons A with vertices

{0 2% 2% +4 2k +2 2k+1}
0 O 1 2k +4 2k +3
for k > 1. Indeed, consider an elliptic curve C C P2 with the Weierstrass equation
y2 = x(x? +ax +b),
where a = —(12k? + 24k + 11) and b = 4(k + 1)>(3k + 2)(3k + 4). Let
xo =2k +1)3k+2), x13=2k+1)3k +4),

and consider the points dy = [0:1: 0], d2 = [x¢ : —x0 : 1] on C in homogeneous coordinates.
Let¢p = (f,g) : C -—> G, x Gy, be the map given by the rational functions

B xk+1(x —) B (x — xO)(xk—H _ xky _ 2x§+1)
f(x,J’)—W, glx,y) = Fx—y) .

Then ¢ induces a morphism C — PP, , birational onto its image I" with equation
(MU + 2X(]§+2)(M _ 2x(]§+1)m—1 _ 2uk+1(v + xo)k+2(u _ 2x(])€+1)k+2
— U3 (v 4 x0)™ T (wv + uxo — x1) + 2x1 x5 1) =0,

where m = 2k + 4. Let g € P, be a point with coordinates u = 2x§ 1 v = —xo. An explicit

calculation shows that the induced map C — Bl; IPa, is an embedding and the linear system
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LA, (m) has C as an irreducible member. Furthermore, (C,Bl, IPp, ) is a toric elliptic pair,
and we have
OC)|c = Oc(2dy —2d»).

We claim that this line bundle is not torsion. We choose d; as the identity element of the
Mordell-Weil group C(Q). By Mazur’s theorem [51], it suffices to prove that nd, # 0 for
1 < n < 12. We check this in [15, Computation 10.9]. Hence, A is a Lang—Trotter polygon.
One can also view the curves Cy as fibers of an elliptic fibration € — P! (where the field
of rational functions on P! is the field of rational functions in variable k). By [15, Computa-
tion 10.9], this is a rational elliptic fibration of Kodaira type /41 269 31 169 2. One can compute the
Neron-Tate height of the section of this fibration corresponding to d» to conclude that it is not
torsion in the Mordell-Weil group of the elliptic fibration. This shows that d5 is not torsion in
a fiber Cy, for almost all k by Silverman’s specialization theorem [60]. Mazur’s theorem gives
a more precise statement for every k as above.

Remark 5.15. For pentagons of Remark 5.14, one can show that all primes are polyhe-
dral. But we also found an infinite sequence of Lang—Trotter heptagons A such that, for all
but finitely many k, the set of non-polyhedral primes of Ay has positive density. The vertices
are

0 1 2k+4 2k+4 2k+3 2k+2 k
0 0 2 2k 2k+4 2k+4 k+1]|

To see this, we use the same strategy as above. The elliptic curve C is given by the equation
y2 4 exy + by = x3 + ax?, where

_kQk+1) tw—4uk+1ﬁgk+l)

= _(4k+2), a=-"K*TD
e=—(4k+2), a Kt2 k1220 — 1)

Let us consider the points d; = [0:1:0],d, =[0:0: 1] and d3 = [xo : yo : 1], where

o 2k(k + 1)? _ 2k(k + 1)*(5k + 3)
T Uh—Dk+2 T T T2k t2)
Thereisamap ¢ = (f, g) : C --> G, x G, given by rational functions
k+1
_ X y _ x+a
f(x’y)_a(x—xo—l)—{—ﬂ(x—l—a)’ g(x7y)_xk(x_x0)y’
where k(5K +3)
_ _ KT3I _ k+1
a—xo+a—(k_1)(k+2), B =xy"" yo.

The image I' = ¢(C) has equation

((@B)uv + (axo)u — a)ha(u, V)" — by (u, v)™ 2 hs(u, v)?0?
+ (,B(b + exo)uv + (exo)u — b)hl(u, v)khz(u, v)k+2h3(u, v)v =0,

where
hi(u,v) = (xoB)uv + (xoo)u,
ha(u,v) = (B)uv — 1,

h3(u,v) = (xoa)u + xp.
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A calculation shows that (C, Bl Pa, ) is a toric elliptic pair, and [15, Computation 10.9] (based
on Mazur’s theorem) shows that O (C)|c = O(2d3 — d> — dy) is not torsion for k > 2. The
point p € C such that O(2ds — dy — d1) = O(p — dy) is given by

_ 4k(k+ 1?2k +1) 4k (k 4+ 122k + DBk + 1)

T k-D2k+2 T (k — 1)2(k —2) ‘

In particular, Ay is a Lang—Trotter polygon for k > 3. The root lattice is

T=A3€BA2€BA%

and has rank 7. In order to prove that res(y) # O for any root y € Eg \ T for a set of primes
p of positive density, first of all, we compute the possible restrictions of these roots, showing
that these are i (d] — d3) fori € {+1, £2, £3}. Then we apply Lemma 5.2 to

1
xi = res(y) = Oc(idy —id3), xo = res(EC) — O(d; + d» — 2d3)

fori = 1,2, 3. We check that the conditions in the lemma are satisfied. The curve C does not
have complex multiplication because its j-invariant is not an integer (see [61, Theorem I1.6.1]).
We already proved that xq is not torsion in Pic®(C). It remains to prove that O¢ (d, — d3)
and O¢ (d» — d3) are linearly independent for almost all k. By [15, Computation 10.9], the
elliptic fibration with fibers Cy is a K3 elliptic fibration of Kodaira type / fa 31V®3, Using
Silverman’s specialization theorem [62, Appendix C, Theorem 20.3], it suffices to prove linear
independence for a specific k, which we check by a computer calculation.

Remark 5.16. Consider a smooth lattice polygon A with m = 30 and with vertices

36 8 23 27 30 30 29 21 18 16 13 12 11 9 7 1 0 O
0 1 2 12 15 18 19 20 26 28 29 30 30 29 25 20 4 1 0Of

A computation shows that A is a good polygon. Observe that X = Bl Pp is smooth of Picard
rank 18. The linear system | Kx + C| contains eight disjoint (—1)-curves, three of which come
from the one-parameter subgroups defined by the width directions of A, while the remaining
ones come from curves of multiplicity 2, 3, 5, 5, 11 at (1, 1). Contracting them gives a smooth
minimal elliptic pair (C,Y).

The toric boundary divisors D5, D5 and D, of X are (—1)-curves disjoint from the
curves in |[Kx + C|. As a consequence, each of the three divisors remains a (—1)-curve in Y.
The linear system |C + D, + D5 + Dj2| on X defines a rational map which factors through
Y, and there, it is defined by |- Ky + D2 + D5 + Dq3]|. The image of Y via this linear system
is a smooth cubic surface of P3 whose equation can be calculated by determining the unique
cubic relation between the elements of a basis of H O(X ,C + Dy + D5 + Dj5). This allows
us to find an equation of C as an explicit hyperplane section of the cubic surface and convert it
to the Weierstrass equation which is

y2 = x3 4 x2 — 7860946299156x + 8357826814810214400.

The curve C has Mordell-Weil group of rank 9. Ordering counterclockwise the facets
of A, starting from the facet (0, 0)—(3, 0), the indices of facets of integer length one are

{2,3,5,7,8,10,11,12,13, 14,16, 18, 19}.
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For each such index, one can compute the point d; € C(Q) cut out by the corresponding toric
invariant divisor D;. This information is then used to compute the images of the 240 roots and
to determine the non-polyhedral primes of X. Using [15, Computation 10.10], we found 85
non-polyhedral primes in the interval [1, 2000], or 28 %.

6. Halphen polygons
We consider a variant of the notion of arithmetic elliptic pairs as follows.

Definition 6.1. Let (C, X) be an elliptic pair with e := e(C, X) < oo, defined over
a finite extension K of Q. Let R C K be its ring of algebraic integers. There exist a dense open
subset U C Spec R and a pair of schemes (€, X) flat over U, which we call an arithmetic
elliptic pair of finite order e < 00, such that the following holds.

» Each geometric fiber (C, X) of (€, X) is an elliptic pair of order e.

* The contraction morphism X — Y to the minimal elliptic pair extends to the contraction
of schemes X — ¥ flat over U.

We call (€, ¥Y) the associated minimal arithmetic elliptic pair. Let X, Y be geometric fibers
over a place b € U, b # 0. As before, we call b a polyhedral prime if Eff(Y) is polyhedral. If
b is not polyhedral, then Eff(X) is also not polyhedral.

Since, over C, the subgroup (res(C)) C Pic®(C) is finite of order e < 0o, the order of the
elliptic pair given by each geometric fiber of (€, X)) stays constant on an open set in Spec R,
as it is defined by the condition that i res(C) # Ofori =1,...,e — 1.

Proposition 6.2. Let (€, X)) be an arithmetic elliptic pair of finite order e < o0 over
some open set U C Spec R. Let (€,¥Y) be the associated minimal arithmetic elliptic pair.
Assume that

o the geometric fiber Yc of ¥ has Du Val singularities,
e the cone Eff(Yc) is not polyhedral.
Then all but finitely many primes b € U are non-polyhedral.

Proof. If the minimal elliptic pair (Cc, Yc) has Du Val singularities, by replacing U
with a smaller open set, we may assume that all geometric fibers (C, Y) of (€, ¥) over U are
minimal elliptic pairs of order e, with Du Val singularities and the same root lattice 7 C Eg.
Indeed, there exist a scheme Z, smooth over (a possibly smaller) U, and a morphism : Z — ¥,
flat over U, such that, on geometric generic fibers Z and Y, of Z and ¥, this gives the
minimal resolution Z — Y. We may assume that the exceptional locus of = has geometric
irreducible components &1, ..., &, C Z, smooth over U, such that the geometric generic fibers
Eq, ..., E, are the exceptional (—2)-curves of the resolution Z — Y. Aseach &; is flat over U,
intersection numbers E; - E; of the geometric generic fibers do not depend on b € U. In par-
ticular, the root lattice is the same for all b € U, and all geometric fibers of ¥ — U have Du
Val singularities.



30 Castravet, Laface, Tevelev and Ugaglia, Blown-up toric surfaces

Consider now any geometric fiber (C,Y) of (€, ¥Y), and let Z — Y be its minimal res-
olution. Recall that, by Lemma 3.14 and Corollary 3.18, the cone Eff(Y) is polyhedral if and
only if Eff(Z) is polyhedral, or equivalently, the kernel of the map

fes: Clo(X) := C*/(K) — Pic®(C)/(res(K))

contains 8 linearly independent roots of Eg = Clg(Z). By assumption, the subgroup (res(C))
of Pic®(C) is finite of fixed order e < oo for all geometric fibers. By Theorem 3.8, C ~ n(—K)
for some integer n. It follows that the subgroup (res(K)) of Pic®(C) is finite of order at most e
for every geometric fiber. Since there are finitely many roots in Eg, it follows that, by eventually
discarding a finite set of places b € U, b # 0, the maximum number of linearly independent
roots of Eg = Clg(Z) contained in Ker(res) is constant. This finishes the proof. ]

Asin Notation 5.1, we may consider arithmetic foric elliptic pairs of finite order. Consider
a lattice polygon A C Z2, and let 2 be the projective toric scheme over Spec Z given by the
normal fan of A. Let X be the blow-up of & along the identity section of the torus group
scheme. We will assume that A is a good but not Lang—Trotter polygon, a so-called Halphen
polygon (Definition 4.3). Then (Cc, X¢) is an elliptic pair of finite order ¢ := ¢(Cc, X¢) < 00
and (€, X) an arithmetic elliptic pair of finite order, flat over an open subset U C Spec Z
(Definition 6.1). Let X — ¥ be the morphism inducing the map to the minimal model on each
geometric fiber.

Definition 6.3. A polygon A C Z? such that the associated toric arithmetic elliptic pair
(€, X) satisfies the conditions in Proposition 6.2 will be called a Halphen™ polygon.

Theorem 6.4. Let A be a Halphen* polygon. Then Eff(X o) is not polyhedral in char-
acteristic 0 and characteristic p, for all but finitely many primes p.

Proof. This is an immediate consequence of Proposition 6.2. O

Theorem 6.5. Consider the polygon A with vertices
016 8 7 51
0012582
Then A is a Halphen* polygon and Eff(X ) is not polyhedral in characteristic 0, and in
characteristic p for all primes p # 2,3,5,7,11,19,71.

We will use this polygon later in the proof of Theorem 1.2.
Proof. We have

Vol(A) =64 and [9ANZ| =8

(see [15, Computation 10.3]). By [15, Computation 10.4], in characteristic 0, the linear system
£ A (8) has dimension 0 and the unique curve I' € £ A (8) has equation

4uBv? + 24u"v° — 61u"v* + 58u”v3 — 53u”v? + 10u®v® — 126u%v° + 244uCv*
—186u%v3 + 150uv? + 2008y — 2 v® + 8u”v” — 48u”v° + 230u°v°
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—286u” vt + 120u°v3 — 159u°v? — 88u v + 10u*v® — 66u*v> — S6u*v*
+ 144u*y3 + 94y *v? + 154u*y — 6u3v° + 89u3v* — 26u3v3 — 1351302
— 146u3v — 54u%v3 + 52u2v? + 114u?v + 19uv? — 46uv — 5u + 4 = 0.

The exponents of the red monomials are the vertices of A so that the Newton polygon of I" is
A in characteristic 0 and characteristic p # 2, 3,5, 19. By [15, Computations 10.5 and 10.8],
the curve I' is irreducible and its strict transform C € XA is a smooth elliptic curve in charac-
teristic 0, with minimal equation

(6.1) y2 4+ xy +y = x> 4+ x? — 520x + 4745.

This is the curve labeled 2130.j4 in the LMFDB database [49]. The Mordell-Weil group is
Z x 7./AZ. By [15, Computation 10.4], in characteristic 0, the linear system £z (8k) has
dimension 0 if k = 2,3 and dimension 1 if k = 4. It follows that res(C) € Pic®(C)(Q) is
torsion, of order e = 4. Hence, A is a Halphen polygon.

The theorem now follows from [15, Computation 10.11], and we give the details. By
[15, Computation 10.11], the curve C is irreducible and smooth in characteristic O or charac-
teristic p # 2,3,5,7,11,19,71. Unless otherwise specified, we will from now on assume we
are in one of these situations.

The normal fan of A has rays v; = (0, 1), v = (—1,5), v3 = (—1,2), v4 = (=3,-1),
vs = (—3,-2), v6 = (3,-2), v7 = (2,—1). We denote Dy, ..., D7 the corresponding torus
invariant divisors in PA and, abusing notations, also their pull-backs to Xa. The divisors
D1,..., D5, E form a basis for Cl1(X), and we have

Dg ~ 2D + 9D, +3D3 — 5D4 — 7Ds,
D7~ —3Dy — 13Dy —4D3 + 9D4 + 12Ds,
Kx ~ 3Dy —5D4 —6Ds + E,
C ~ 2D + 10D + 7D3 + 21Dy + 24D5 — 8E.

Note that the class of C is independent of the characteristic if the Newton polygon stays the
same. Since A has lattice width 8 in the horizontal and vertical direction, the proper transforms
Cy and C; on Xp of the 1-parameter subgroups (# = 1) and (v = 1) are among the curves
that must be contracted by the morphism X — Y to the associated minimal elliptic pair. Using
[15, Computation 10.6], we find that Ky + C = 2C; + 2C, + Cs, with curves C; with classes

Ci~Dy+ D3+3D4+3D5—E,
Cy~D1+5Dy,+2D3— E,
C3~Dy+ D3+ 10D4 +12D5 — 3E.

Then [15, Computation 10.6] gives that the curve C3 has equation
wdv —u?vd +3u0? —5uPv +uv +2u — 1 =0,

and so its Newton polygon has vertices (0, 0), (1,0), (3, 1), (2, 3) in all characteristics other
than 2. This polygon has no non-trivial Minkowski decompositions, so the curve Cs is irreduc-
ible in the situations we consider. The curves Cq, C, are irreducible in all characteristics, as
they are proper transforms of 1-parameter subgroups.


https://www.lmfdb.org/EllipticCurve/Q/2130/j/4
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From the intersection numbers D; - D;j on PA (or using [15, Computation 10.7]), we

find that CZ = —%, C3 =—2, C?=-% and C; - C; =0 for all i # j. Since the inter-

section matrix (C; - C;);,; is negative definite, it follows that the Zariski decomposition of
Kx + C = N + P has the positive part P ~ 0. By Theorem 3.10, the minimal model Y has
Du Val singularities. Denote D the class of a divisor D in CI(Y). Setting the classes of Cy, C,
C3 to zero, we obtain that C1(Y) is freely generated by D,, D3 and D5 and

Dy ~2Dy +5D3—6Ds, D4 ~2Dy +2D3—3Ds,
E~71Dy+7D3—6Ds, Cy =C ~3D3—3Ds.
We consider o := D5 — Ds, f:= D3 — D5 in CI(Y). Then C;+ = Z{a, B} and
Clo(Y) = Z{a, B}/ Z{3B) = 7 x 7./31.

By [15, Computation 10.7] or using a minimal resolution of Px, it follows that the root lattice
isT = Ag @® A and p(Y) = 3. By Corollary 3.18, the cone Eff(Y) is non-polyhedral if and
only if res(y) # 0 for all roots y € Eg \ T. There is a unique way to embed A% @ A in Eg
(see [57, p. 86]). There are generators a, b of Eg/T with ord(a) = oo, ord(h) = 3 such that
the images of the roots of Eg in Clg(Y) = Eg/T are

+ ka (k =0,1,2,3,12),
+ (ka—b) (k=2,3,4,56),
+ (ka —2b) (k =6,7,8,9,10).

The sets of generators {a, b}, {«, B} of Clo(Y) are related by b € {£8}, a € {£«a, Lo £ B}.
The images of the roots of [Eg in Clg(Y'), in terms of «, 3, are

tha (k =0,1,2,3,4,5,7,8,10,12), *ka+B (k=1,...,10).

We denote d; the effective divisor on C such that O(d;) = O(D;)|c. For every i # 6,
we have d; € C(Q). It follows that, in Pic®(C), we have

res(a) = Oc(dz — ds), res(f) = Oc(ds —ds).

Using [15, Computation 10.8] and (6.1), the points d», d3, d5 € Pic®(C)(Q) are dr = (9, 25),
ds = (23,63), ds = (53, —387). Using Magma, we compute

res(a) = (—7,93), res(B) = (13,13), res(2B) = (—27,13), res(38) = (13,-27),

and the order of res(B) in Pic®(C)(Q) is 4. As C has class 38 in Clo(Y), it follows that Eff(Y)
is non-polyhedral (in some characteristic) if and only if none of

res(ka) (k =1,2,3,4,5,7,8,10,12), res(ka = B) (k=1,...,10)

belong to {0, res(B), res(28),res(38)} of Pic®(C), which is the subgroup generated by res(8)
(from the above formulas, one can see that the order of res(f) is 4 in characteristic O or
p # 2,5). Clearly, this is equivalent to res(kf) for all k = 7,8,9, 10, 12, not belonging to
this subgroup. This is done within [15, Computation 10.11], which gives that this is the case
for all primes p # 2,3,5,7,11,19,71. D
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7. On the effective cone of Mg,

For any toric variety X, we denote by Bl, X the blow-up of X at the identity element
of the torus. Let LM,, be the Losev—Manin moduli space [50], which is also a toric variety. Its
curious feature, noticed in [18], is that LM,, is “universal” among all projective toric varieties.
Moreover, Bl, LM}, is universal among Bl, X . Here we make this philosophical statement very
precise.

Theorem 7.1. Let X be a projective toric variety. For any n large enough (see the proof
for an effective estimate), there exist a sequence of projective toric varieties

LM, = X1,....Xs =X
and rational maps induced by toric rational maps
Bl, LM,, = Bl, X; --> Bl X5 --> --+ --> Bl, X5 = Bl X.

Every map
Ble Xi --> Ble Xg 41

decomposes as a small Q-factorial modification (SOM) Bl, Xy --> Z} and a surjective mor-
phism Zj — Ble Xg 1. If the cone Eff(Bl, LM,,) is (rational) polyhedral, then Eff(Bl, X) is
also (rational) polyhedral.

Remark 7.2. In [18], we used an analogous implication that if E_ff(Ble m,,) is a Mori
Dream Space, then Eff(Bl, X) is a Mori Dream Space.

The second statement in Theorem 7.1 follows from the first, using Lemma 2.2 and
the fact that if Z --> Z’ is an SQM, then we can identify Num!(Z)g = Num!(Z’)r and
Eff(Z) = Eff(Z’). The proof of the first statement in Theorem 7.1 is based on the main tech-
nical result of [18], which we give here in a slightly reformulated form.

Lemma 7.3 ([18, Proposition 3.1]). Let w: N — N’ be a surjective map of lattices with
kernel of rank 1 spanned by a vector vg € N. Let " be a finite set of rays in Ng spanned by
elements of N, which includes both rays + Ro spanned by +vq. Let ' C N]I/& be a complete
simplicial fan with rays given by n(I') (ignore two zero vectors in the image). Suppose that
the corresponding toric variety X' is projective (notice that it is also Q-factorial because F'
is simplicial). Then there exists a complete simplicial fan ¥ C Ng with rays given by I" and
such that the corresponding toric variety X is projective. Moreover, there exists a rational map
Ble X --> Bl X’ which decomposes into an SOM Bl, X --> Z and a surjective morphism
Z — Bl X' (of relative dimension 1).

Corollary 7.4. Let m: N — N’ be a surjective map of lattices with kernel spanned by
vectors v1,...,Vs € N. Let I' be a finite set of rays in Nr spanned by elements of N, which
includes the rays + R; spanned by +v; fori = 1,...,s. Let ¥’ C Nﬂ/{ be a complete simplicial
fan with rays given by w(I") (ignore zero vectors in the image). Suppose that the corresponding
toric variety X' is projective (notice that it is also Q-factorial because ¥ is simplicial). Then
there exists a complete simplicial fan ¥ C Ng with rays U U{£R;} U --- U {£ R} and such
that the corresponding toric variety X is projective. Moreover; there exists a sequence of toric
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varieties X = X1, ..., Xy = X’ and rational maps induced by toric rational maps
Bl X =Bl X; --> Bl, X5 ——> --- ——> Bl Xy = Bl X’

such that every map Ble Xy ——> Ble Xy 41 decomposes as an SOM Bl Xy --> Zj and a sur-
Jjective morphism Zy — Ble Xj41.

Proof. 'We argue by induction on s; the case s = 1 is Lemma 7.3. We can assume v
is a primitive vector. Let N” = N/(v1). We have a factorization of 7 into 79: N — N’ and
7' N” — N’.Let I'” be the image under m( of I (ignore zero vectors in the image). Then we
are in the situation of Lemma 7.3. For the map 7/, we use the step of the induction. O

Proof of Theorem 7.1.  'We follow the same strategy as [18].
Applying Q-factorialization, we can assume that X is a Q-factorial toric projective
variety of dimension r. The toric data of LM,, is as follows. Fix general vectors

€1,...,en— € R"3 suchthat ey +---+ ep_n = 0.
The lattice N is generated by e1, . . ., en—3. The rays of the fan of LM,, are spanned by the prim-
itive lattice vectors ) ;; e; for each subset I of S :={l,...,n —2} with 1 <|I| <n —3.

Notice that rays of this fan come in opposite pairs. We are not going to need cones of higher
dimension of this fan. We partition S = §; LI --- LT S, 4 into subsets of equal size m > 3 (so
that n = m(r + 1) + 2). We also fix some indices n; € S; fori =1,...,r +1.Let N C N
be a sublattice spanned by the following vectors:

en;, +ej forjeSi\{ni},i=1....r+1
Let N’ = N/N" be the quotient group and let 7 be the projection map. Then we have the
following:
(1) N'is alattice;
(2) N'is spanned by the vectors m(ey,;) fori = 1,...,r + 1;

(3) m(en,) + -+ + m(en,,) = Ois the only linear relation between these vectors.

Then the toric surface with lattice N’ and rays spanned by m(ep,) fori =1,...,r + 1 is
a projective space P”. Choose a basis f1,..., f; for the lattice N’ so that

m(en)) = —J1.....7w(en,) = — fr.
Fix one of the indices 1,...,r + 1 (we start with r + 1), and choose e = Zie[ e; such that

ny,....np €L, INS) | =ky,....,[ I NSp| =krand |I| =k +--- + k;. Then
we)=kifi+--+krfr and me+en. )=k +1)fi+-+(k+1)f.

It follows that images of the rays of LM,, contain all points with non-zero coordinates bounded
by m. Repeating this for all  + 1 octants shows that the images of the rays of LM,, span all
lattice points within the region illustrated in Figure 6 for r = 2, which contains all rays of X if
m is large enough. To be precise, for each i € {1, ..., r}, in the octant spanned by

fiooo fion fivr o frr (i i=w(=en ) = —fi— = fr)s
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(1.0

=11

(l,-1)

(=1.=D)

Figure 6

the region containing all the images of rays of LM,, is determined by

mfi,...,mfi—y,mfix1,...,mfry1 = —mfy —---—mf.

It remains to notice (see [56], [18, Proposition 3.1]) that there exists a Q-factorial pro-
jective toric variety W with rays given by the images of the rays of LM,, and that the toric
birational rational map W --» X is a composition of birational toric morphisms and toric
SQMs. Thus, we are done by Corollary 7.4. ]

Corollary 7.5. Let Y be a projective toric surface with lattice Z* and with fan spanned
by rays contained in the polygon with vertices

(£m, £m), (0, £m), (£m,0)

for some m > 3 (see Figure 6 on the left form = 3). If Eff(Bl, Y) is not (rational) polyhedral,
then Eff(M o,3m+2) is not (rational) polyhedral.

Proof. We argue by contradiction. If E_ff(ﬁoﬁn) is (rational) polyhedral, then the pseudo-
effective cone E_ff(Ble m,,) is also (rational) polyhedral by Lemma 2.2 and [18, Theorem 1.1].
In this case, Eff(Bl Y) is (rational) polyhedral by Theorem 7.1 (and effective estimates in its

proof). |

Variations in the choice of projections used in the proof of Theorem 7.1 can lead to further
variations and improvements, such as the following.

Corollary 7.6. Let Y be a projective toric surface with lattice 7> and with fan spanned
by rays contained in the polygon with vertices

(7.1) (£1, £0), (£1,FD), (£1,F1), (£, F1)

for some | > 2 (see Figure 6 on the right for | = 3). If Eff(Bl, Y) is not (rational) polyhedral,
then ﬁ(ﬁo,zwrs) is not (rational) polyhedral.

Proof. Similarly, we argue by contradiction. If E_ff(ﬁo,n) is (rational) polyhedral, the
pseudo-effective cone Eff(Bl, LM,,) is also (rational) polyhedral by Lemma 2.2 and [18, Theo-
rem 1.1]. In this case, Eff(Bl, Y) is (rational) polyhedral using the same idea as in the proof of
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Theorem 7.1. It suffices to prove that one can project in such a way that the images of the rays
of the fan of LM, are contained in the polygon given by (7.1).

The rays of the fan of LM,, are spanned by the primitive lattice vectors Y ;e i for each
subset I of S :={1,...,n —2} with 1 < |I| <n — 3. We partition

S=851US IS [Si|=[S=1+1|[S3]=1

We fix some indices n; € S; fori = 1,2 and let S3 = {n3}. Let N C N be a sublattice
spanned by the following vectors:

en; +e; forjeS\{ni},i=12
Let N’ = N/N” be the quotient group and let 7 be the projection map. Then we have the
following:
(1) N'is alattice;
(2) N'is spanned by the vectors n(ep,) fori = 1,2, 3;

(3) the only linear relation between these vectors is
—(I = D(en,) + = — D(eny) + 7(ens) = 0.
Choose a basis f1, f> for the lattice N’ given by 7(e,,) = f1, 7(en,) = f2. Then

mlens) = (-1 fi+U—-1fa

We calculate the images () _;<; e;) of the rays of the fan of LM,,. Consider the case when
ni,na,n3 ¢ 1.1 |1 NSy =i, |l NS, = j, then clearly the images of such rays are given
by —if1 — jf> and all values 0 < i, j <[ are possible. This gives a square P which, in the
given basis, has coordinates

(—=1,=1), (<1,0), (0,=I), (0,0).

If ny €I, ny,n3 ¢ I, the images () _;<; e;) will be contained in the translation of P by
S1 = (1,0). Similarly, if n3 ¢ I, then 7(}_;; e;) is contained in the union of P with its trans-
lates by f1 = (1,0), fo = (0,1) and f1 + f» = (1, 1), i.e., the square Q with sides (—/, —/),
(—1,1),(1,—1), (1, 1). Finally, if n3 € I, then 7(}_;; e;) will be contained in the translate Q'
of Q by f3 = (I — 1,1 — 1). Hence, all images of rays are contained in the sum of Q and Q’,
i.e., the polygon given in (7.1). m]

Corollary 7.7. Let Y be a projective toric surface with lattice Z* and with fan spanned
by rays contained in the polygon with vertices (Figure 7)

(£3, £1), (£3, £5), (£2, £6), (1, £6), (£1, F3).

If Eff(Bl, Y) is not (rational) polyhedral, then E_ff(ﬁo,m) is not (rational) polyhedral.

Proof. 1t suffices to prove that Eff(Bl, LM ) is not (rational) polyhedral. We do a vari-
ation of the method in the proof of Theorem 7.1, projecting the lattice Z’ of the Losev—Manin
space LMy (spanned by {ey,...,eg} and subject to the relation Zf.;:l e; = 0) from the fol-
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Figure 7

lowing rays of the fan of LMjg: e] 4 €2 + e4 + e, €1 + €2 + e5 + e7, e1 + eq + eg + e7,
es5 + eg and e; + es + eg. These vectors generate the kernel of the map 7: Z7 — 72 given by

1o 1 -2 —-110
01 -1 -3 =22 1)
We conclude observing that the images of the rays of LMq via f are the points of Figure 7. o

Proof of Theorem 1.2. 1f the characteristic is 0 or any prime p # 2,3,5,7,11,19,71,
one can use the Halphen* polygon A from Theorem 6.5. Indeed, after the shear transformation
(x,y) — (x,x — ), the rays of the normal fan of A are

(0’_1)v (_17_6)7 (_17_3)’ (_3’_2)v (_37_1)7 (375)7 (273)7

which are among the points of Figure 7 so that we can apply Corollary 7.7.

In order to conclude, we are going to produce, for any p € {2,3,5,7,11,19,71}, a suit-
able good lattice polygon A, whose normal fan has rays among the points of Figure 7. In
particular, since the characteristic is positive, A is Halphen, with e := e(C, Xp) < oo. The
pencil |eC| defines a fibration 7: X — P!. Let us denote by S; := 7~ !(g;) fori =1,...,A
the reducible fibers and by u; the number of irreducible components of S;. It is not hard to
see that any such irreducible component is defined over the field IF,,, so we only have to check
a finite family. We then conclude showing that

A
> (ui — 1) < Rank(Pic(X)) — 2 = # Vertices(A) — 3,
i=1
which, by Remark 2.4, implies that the effective cone is not polyhedral.
In [15, Computation 10.12], we analyze in detail the case p = 2, while in Table 3, we
list, for any p € {2,3,5,7,11,19,71}, the polygon A, the corresponding e(C, Xa) and the
cardinality of the reducible fibers. |
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p Vertices e(C,XA) M1, 1]
2 [8529%104] 1 2, 3]

3 [8339¥ItEGe] 2 2, 5]

5 817V nn] 2 3. 4]

7 [8618% 1633] 2 2.4]

1 [P SiTnhs] 2 3.3]

19 [8188 03] 2 2,2]
1[31EF Y Riisk] 3 2,2.4]

Table 3

Remark 7.8. By [15, Computation 10.3], the rays of the normal fan of Polygon 111
are among the points in Figure 7. By Example 4.5, A is a Lang—Trotter polygon so that, by
Theorem 4.4, we have another proof that ﬁf(ﬁo,lo) is not polyhedral in characteristic 0.
Moreover, in Database 8.2, we collect many more Lang—Trotter polygons such that their normal
fans (sometimes after a shear transformation) fit into Figure 7. So one can also use Lang—Trotter
polygons to show that E_ff(ﬁoylo) is not polyhedral in characteristic p < 2000.

8. Databases

Database 8.1. We give in Table 4 the list of all Lang—Trotter polygons withm < 7. Itis
obtained as follows. We consider all lattice polygons of volume up to 49 (modulo equivalence)
appearing in the database [5]. We impose the conditions of Definition 4.3 using our Magma
package. In particular, [15, Computation 10.3] gives (i) and (ii), while [15, Computations 10.4
and 10.5] give (iii), (iv) and the equation of I'. This leaves 184 lattice polygons, and in all the
cases, the curve C turns out to be smooth by [15, Computation 10.5]. Furthermore, for all but
one polygon in this list, we also have that the point e is an ordinary multiple point of I". The
exceptional case is Polygon 23, in which case the tangent cone to the curve I" at e contains
a double line. The curve C turns out to be tangent to the exceptional divisor at the correspond-
ing point so that, also in this case, C is smooth. Therefore, for any polygon in the list, C is
a smooth genus 1 curve, and moreover, since A has at least 4 vertices and [0A N Z2%| =m < 7,
we also have that at least one edge F of A has lattice length 1. By Proposition 4.2, we con-
clude that the curve C has a rational point pr that we can chose as the origin so that, in what
follows, we can treat C as an elliptic curve. This fact allows to check the last condition of the
definition of a Lang—Trotter polygon, i.e., that Ox (C)|c = res(C) is non-torsion. Indeed, we
can compute the minimal equation of the elliptic curve C using [15, Computation 10.8]. We
are then able to compute the order d of the torsion subgroup of the Mordell-Weil group of
the elliptic curve, and we have that res(C) is not torsion if and only if res(d C) is non-trivial.
By Definition-Lemma 3.2, this is equivalent to hO(X ,dC) = 1, and the latter condition can be
checked by [15, Computation 10.4].
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Another approach is to find a multiple of d using the Nagell-Lutz Theorem [63]: if p is
a prime of good reduction for C, then the specialization map induces an injective homomor-
phism of abelian groups C(Q)iors — C(Ip). Therefore, the torsion order d of C(Q) divides
the order of C(IF,) for any prime p of good reduction, which is easy to compute from the
defining equation of I". We then find a multiple of d by taking the greatest common divisor of
the orders of C(IF,) as p varies.

Database 8.2. A database of Lang—Trotter polygons that can be used to show that every
prime p < 2000 is not polyhedral for some Lang—Trotter polygon (see also Remark 7.8). For
each polygon, its non-polyhedral primes are displayed in Table 5.
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