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Complete genome sequences of cluster F1 and cluster B1 
Mycobacterium smegmatis phages Karhdo and Basato
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ABSTRACT We present the complete genome sequences of Mycobacterium smegmatis 
phages Karhdo and Basato, isolated in Clark County, Nevada. The phages were isola­
ted and annotated by students enrolled in undergraduate research courses over two 
semesters at the University of Nevada, Las Vegas.

KEYWORDS mycobacteria, bacteriophages, actinobacteriophage

K arhdo (36.131376 N, 115.240078 W) was isolated from compost, and Basato 
(35.985570 N, 115.123587 W) from a basil and tomato planter, both at private 

residences. Soil samples were incubated with enrichment broth, shaken (250 rpm, 
2 h) at room temperature, followed by centrifugation and filter sterilization (0.22 µm) 
of the supernatant. Using Mycobacterium smegmatis mc2 155 as the host, phages 
were considered pure after three rounds of plaque assays produced consistent plaque 
morphologies (1). Genomic DNA was isolated (Phage DNA Isolation Kit, Norgen Biotek), 
and samples were sequenced using the Illumina MiSeq System (v3 reagents) to yield 
150 bp single-end reads with the reported coverage (Table 1). The total reads for Kardho 
and Basato were 1,205,997 and 210,277, respectively. The reads were quality trimmed 
and assembled de novo using Newbler (v. 2.9, 454 Life Science) to generate a single 
contig. Consed (v. 29) assessed accuracy, sequence completion, and phage genomic 
termini (2). For Transmission Electron Microscopy (TEM), 10 µLl of high titer (~1010) lysate 
was added to copper 300 mesh grids (Ted Pella, Inc.) and stained with 1% phospho­
tungstate (Electron Microscopy Services). TEM was performed at 120 keV with a JEOL 
JEM-1400 Plus. Images were obtained with DigitalMicrograph with a Gata Orius SC1000 
CCD camera.

The putative genes of Karhdo and Basato were identified from FASTA files using DNA 
Master (v5.38.8) and Phage Commander, which retrieves query results from Glimmer 
(v3.02b), GeneMark (v2.5), GeneMark.hmm (v3.25), GeneMarkS (v4.28), GeneMark with 
Heuristics (v3.25), GeneMarkS2, RAST (v2.0), MetaGene, and Aragorn for tRNAs (3–13). 
The annotation program Prokka (v1.14.6), which uses Prodigal (v2.6.3), was also used (14, 
15). The putative genes and start codons were evaluated as described (16). The putative 
protein functions were assigned using Protein BLAST, CD-Search, and HHpred, with the 
E-value cutoffs of 10−7, 0.001, and 0.001, respectively (17–19). Deep TMHMM (v1.0.24) 
and SOSUI were used to identify transmembrane domains (20, 21). Phage clusters and 
subclusters were determined with Phamerator (22), following protocols in reference (23). 
The default settings were used for all the software listed unless specified otherwise.

Kardho plaques were 0.5 cm in diameter, while Basato plaques varied in diameter 
from 0.04 to 0.4 cm. Karhdo and Basato both display siphovirus morphology with 
recorded capsid diameters and tail lengths of 83 nm and 316 nm for Karhdo, and 73 nm 
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and 306 nm for Basato, respectively (Fig. 1). Accession numbers and genome assembly 
results are listed in Table 1. Karhdo (cloudy temperate plaques), belongs to subcluster 
F1, while the Basato (clear lytic plaques) belongs to subcluster B1. Both phages have 100 
genes. Karhdo has 41 genes with assigned protein functions, including a glycosyltrans­
ferase (genes 97 and 99), which has only been identified in cluster F phages. Basato 
has 29 genes with assigned protein functions. A programmed translational +1 frameshift 
in the tail assembly chaperone was found in Karhdo, and was annotated appropriately 
(3). Basato lacked a programmed translational frameshift. A complete list of genes and 
functions for both phages is available at The Actinobacteriophage Database (https://
phagesdb.org).
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FIG 1 Transmission electron microscopy (TEM) of Mycobacterium smegmatis mc2 155 bacteriophages Karhdo (left panel) and Basato (right panel). Samples 

were negatively stained with 10 mL of 1% phosphotungstate. Imaging was performed at 120 keV on JEOL-JEM-1400 Plus, Electron Microscopy Core Laboratory, 

University of Utah. Images captured by DigitalMicrograph with Gatan Orius SC1000 CCD camera.

TABLE 1 Phage GenBank and SRA accession numbers and genome assembly results

Phage name GenBank 
accession no.

SRA accession no. Average coverage 
(✕)

Cluster and 
subcluster

Genome length 
(bp)

GC content (%) No. of genes

Basato OR159661.1 SRX21748117 439✕
B
B1 68,518 66.5% 100

Karhdo OR159669.1 SRX21748113 3421✕
F
F1 55,379 61.5% 100
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