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Bison and cattle grazing increase soil nitrogen cycling
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Abstract Nitrogen (N) is a necessary element of soil
fertility and a limiting nutrient in tallgrass prairie but
grazers like bison and cattle can also recycle N. Bison
and cattle impact the nitrogen (N) cycle by digesting
forage that is consumed, and recycled back to the soil
in a more available forms stimulating soil microbial N
cycling activities. Yet we do not know how both graz-
ers comparatively affect N cycling in tallgrass prairie.
Thus, we investigated if bison and cattle had similar
impacts on N cycling in annually burned tallgrass
prairie relative to ungrazed conditions over a 3-year
period (2020-2022) at the Konza Prairie Biological
Station. We examined: soil pH, soil water content,
mineralized N, nitrification potential, denitrification
potential and extracellular enzyme assays. Interannual
variability in precipitation controlled soil water and
N cycling microbial activities but grazing effects had
a stronger influence on N cycling. We found signifi-
cant differences and increased soil pH, nitrification
and denitrification potential and less N limitation in
bison vs cattle grazed soils where bison grazed soils

Responsible Editor: Edith Bai.

N. V. Anguiano - K. M. Freeman - J. D. Figge -

J. H. Hawkins - L. H. Zeglin (<)

Division of Biology, Kansas State University, Manhattan,
KS, USA

e-mail: 1zeglin@ksu.edu

J. H. Hawkins
University of Kansas, Kansas Biological Survey & Center
for Ecological Research, Lawrence, KS, USA

exhibited faster N cycling. Differences between the
grazers may be attributed to the different management
of bison and cattle as both can impact N cycling.
Overall, these data provide some evidence that bison
and cattle affect N cycling differently at this study
site, and improve the ecological understanding of
grazer impacts on N cycling dynamics within the tall-
grass prairie ecosystem.
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Introduction

Nitrogen (N) is a limiting nutrient in many terrestrial
ecosystems, including tallgrass prairies (Blair 1997;
Schlesinger and Bernhardt 2020). In this ecosystem,
frequent fire volatilizes N from plant litter, slowing
the accumulation of soil organic N; therefore, fire
maintains conditions in which N-limited plants and
soil microbes rapidly assimilate and immobilize, and
effectively retain, soil available inorganic N (Dodds
et al. 1996; Dell and Rice 2005; Dell et al. 2005). In
addition, tallgrass prairies were historically grazed by
large mammalian herbivores, which often enhance
soil N cycling rates, N heterogeneity, and soil fertil-
ity (Hobbs 1996; Frank and Evans 1997; Blair et al.
1998; Knapp et al. 1999; Bakker et al. 2003). Bison
grazing can increase soil N cycling rates in areas
managed with annual fire to levels equivalent to areas

@ Springer


http://orcid.org/0009-0002-8199-0730
http://orcid.org/0009-0007-0274-6649
http://orcid.org/0000-0003-2907-0742
http://crossmark.crossref.org/dialog/?doi=10.1007/s10533-024-01144-0&domain=pdf

760

Biogeochemistry (2024) 167:759-773

experiencing infrequent fire (Groffman et al. 1993;
Johnson and Matchett 2001).

Plains bison, also known as the American Buf-
falo (Bison bison), are keystone herbivores that once
ranged across the whole North American continent
(Knapp et al. 1999; Lott 2002; Anderson 2006; List
et al. 2007). However, in the 1880s, extermination
through settler colonization (Dunbar-Ortiz 2014)
decimated bison populations which numbered in
the millions to less than 1000 individuals, driving
societal collapse and negative economic impacts on
Native American communities that remain until this
day (Hornaday, 1913; Flores 1991; Shaw 1995; Lott
2002; Feir et al. 2021). Domesticated cattle (Bos
taurus) now outnumber bison by an estimated 950
million individuals (Samson et al. 2004; Kohl et al.
2013). In the 1980s and 90 s, ecological research-
ers recognized bison as major ecosystem drivers in
maintaining Great Plains grasslands and their nutri-
ent cycles (Hulbert 1986; Vinton et al. 1993; Ojima
et al. 1994; Coppedge et al. 1998a, b; Woodmansee
and Duncan 1980; Risser and Parton 1982; Blair
1997). All things considered, replacement of the key-
stone bison with cattle raises concerns of whether
both animals occupy the same functional roles on the
landscape (Allred et al. 2011; Kohl et al. 2013), mir-
roring global concerns and studies on the alteration of
nutrient cycling following the replacement of native
megaherbivores with domesticated cattle in managed
rangeland (Enquist et al. 2020; Abraham et al. 2023;
Roy et al. 2023).

Cattle and bison have certain redundant roles in eco-
system N-cycling function, but also differ physiologi-
cally in potentially influential ways. They both graze
similar grasses in tallgrass prairie (Allred et al. 2011)
and excrete dung and urine which in turn increases
bioavailable N for soil microorganisms and plants
(McNaughton 1983; Detling 1988; Schlesinger and
Hartley 1992; Anderson 2006). However, bison are
hardier and tolerant of extreme hot and cold weather
temperatures, enabling them to travel and spend more
time grazing away from streams on upland prairie
(Christopherson et al. 1978; Allred et al. 2011; Lar-
son et al. 2013; McMillan et al. 2021; McMillan et al.
2022), while cattle are less weather hardy and tend to
travel infrequently by comparison choosing to spend
more time near riparian areas (Kohl et al. 2013; McMil-
lan et al. 2021). Therefore, the distribution of N across
the landscape by bison and cattle depends on decisions
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to travel and forage and drink water (Plumb and Dodd
1993; Augustine and Frank 2001; Raynor et al. 2021).
Many comprehensive studies in tallgrass prairie focus
on aboveground plant responses to grazing by bison
and cattle, with less emphasis on soil microbial func-
tions that allow N to become available for forage
regrowth (Plumb and Dodd 1993; Coppedge and Shaw
1997; Coppedge et al. 1998a, b; Towne et al. 2005;
McMillan et al. 2011; McMillan et al. 2019; Ratajczak
et al. 2022). To our knowledge, no studies have directly
assessed whether bison and cattle similarly influence N
cycling in tallgrass prairie soils.

Therefore, we investigated soil microbial N
cycling activities in annually burned tallgrass prairie,
in bison grazed, cattle grazed, and ungrazed areas,
focusing on microbially mediated N cycling trans-
formations. We predicted that all soil N cycling rates
would be higher, and that soil microbial N limitation
would be lower, in grazed relative to ungrazed treat-
ments, and that bison and cattle would have similar
magnitudes of influence on soil N cycling. In addi-
tion, we considered that the influence of grazing on
soil N cycling rates may vary due to differences in
soil water availability stemming from precipitation
variability, which is a primary control over ecosystem
and N cycling dynamics in tallgrass prairie and other
grasslands around the world, with higher water gen-
erally promoting more plant production and faster N
cycling (Groffman et al. 1993; Broderick et al. 2022;
Chen et al. 2022). To assess the predictions, we sam-
pled upland soils in annually burned watershed-scale
experimental grazing treatments at the Konza Prairie
Biological Station (KPBS), each summer from 2020
through 2022, and measured resin-bound inorganic
N (a proxy for the amount of mineralized N available
for plant and soil microbial uptake through a growing
season), nitrification potential rates, denitrification
potential rates, denitrification enzyme activity rates,
and hydrolytic extracellular enzyme activity rates
(which were also used to calculate an index of soil
microbial N limitation).

Methods
Study site and sampling design

The KPBS is a 3487-ha tallgrass prairie preserve
located in the Flint Hills region of northeastern
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Kansas near Manhattan, KS, USA (39° 05’ N, 96°
35" W). KPBS is situated on one of the last remain-
ing tracts of tallgrass prairie, was established as a
research station in 1971, and became host to a Long-
Term Ecological Research (LTER) project in 1980.
KPBS maintains watershed scale treatments of differ-
ing fire intervals. Bison were reintroduced to a subset
of these experimental watersheds between 1987 and
1992, and cattle were introduced to another subset of
watersheds in the 1990s. Bison are stocked at 0.4 ha
per animal unit month (AUM: the forage required to
feed a 454 kg animal or its equivalent for 1 month),
or 0.98 acres per animal, reproduce on-site, and are
present year-round (Blair 2023); while cattle graze
annually as cow-calf pairs between May 1 to October
1 and are stocked at 0.7 ha per AUM or 1.7 acres per
cow-calf pair (Olson 2023), but for a shorter period
of the year (April through October). Dominant plants
of this area include Sorghastrum nutans, Andropogon
gerardii, Schizacryum scoparium, Panicum virgatum,
Amorpha canescens and Rhus glabra. Mean annual
precipitation (MAP) at this site is 899 mm and mean
annual temperature (MAT) is 12.5 °C.

For this study, research was restricted to upland
soils, to control for variability in soil type. Samples
were collected on the Florence-Benfield complex
soil map unit (Clayey-skeletal, smectitic, mesic Udic
Argiustolls and Fine, mixed, superactive, mesic Uder-
tic Argiustolls), which is widespread across the Flint
Hills of Kansas. Soil sampling was undertaken once
late in each summer growing season from 2020 to
2022. These years spanned a range of above-average
rainfall (2020) to well below average (2021) and
slightly below average (2022) (Fig. 1). We sampled
along four 10-m transects, parallel to long-term plant
sampling transects in each experimental watershed, in
two bison grazed (N1A and N1B), two cattle grazed
(C1A and C1B), and two ungrazed (1D and SpB)
watersheds, all of which are burned annually. We
acknowledge that landscape-scale replication of graz-
ing treatment is low in this study; however, the field
experimental design provides good standardization of
soil type, which often affects baseline levels of micro-
bial N-cycling (Zeglin et al. 2007).

Each transect covered six sampling points at O,
0.1, 0.5, 1, 5, and 10 m, from which 2-cm diameter
mineral soil samples were collected with an Oak-
field corer (Oakfield, WI, USA), to a depth of up to
15 cm. Sample locations at 0, 1, 5, and 10 m were

2020 2021 2022

Cumulative precipitation (mm)

100 150 200 250 100 150 200 250 100 150 200 250
Days of the Year

Fig.1 Cumulative precipitation on KPBS in the 2020, 2021,
and 2022 growing seasons. Historic (30-year) average precipi-
tation is denoted by a blue line overlaying the gray one stand-
ard deviation boundaries. Accumulated precipitation is denoted
by the red line for each respective year, and dashed vertical
lines indicate soil sampling dates for the year

geolocated using the WGS84 datum with a Garmin
GPSMAP 64x (Garmin, Olathe, KS, USA). Samples
were taken using sterile technique, i.e., while wear-
ing nitrile gloves, and by washing the corer in etha-
nol between each sample. Samples were stored in a
cooler on ice and transported to the lab, where all
samples were aseptically sieved using a No. 4 (4 mm)
sieve, to remove rocks and plant roots while largely
retaining soil aggregate structure. A portion of each
soil sample was frozen and stored at — 20 °C before
soil physical analysis, and the remaining fresh soil
was stored at 4 °C for no more than 48 h before meas-
uring N cycling activity potential rates.

Soil physical characteristics and N-cycling rates

Soil water content was measured gravimetrically by
drying soil at 105 °C for 24 h. Soil pH was measured
from a 1:3 slurry of field-moist soil and DI H,O, on
samples collected in 2021 and 2022. Soil available N
was measured using ion exchange resin bags installed
from June to September (Baer and Blair 2008; Nie-
land et al. 2021) in 2021 and 2022. Resin bag sorbed
NH,*-N and NO; -N was quantified using a modi-
fied indophenol method and VCl,/Griess reagent
method (Hood-Nowotny et al. 2010), respectively,
and measured spectrophotometrically with a Filter-
max F5 Multimode Microplate Reader (Molecular
Devices, San Jose, CA, USA).

We measured rate potentials of two microbially-
mediated N transformation processes, nitrification
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and denitrification, and we measured denitrification
potential in two ways, to learn about different limit-
ing factors on soil N cycling. Nitrification is the pro-
cess of oxidation of ammonium to nitrate, and is an
important consideration in soil fertility since fewer
types of plant can readily assimilate both ammonium
and nitrate, while nitrate is more easily lost from the
soil due to leaching or denitrification. Denitrification
is the process of reduction of nitrate to dinitrogen gas
or nitrous oxide, atmospheric gases that are not useful
to plants. Nitrification and denitrification processes
bring energy to different types of specialist micro-
organisms, and are thus limited by the abundance of
those organisms, as well as the availability of ammo-
nium and oxygen (for nitrification), and the availabil-
ity of nitrate, dissolved organic carbon, and anoxic
conditions (for denitrification). We assayed both
processes in lab incubations with saturating levels of
substrates and optimal levels of oxygen, effectively
measuring an index of maximum microbial potential
for nitrification and denitrification, and also meas-
ured denitrification rates in assays with no substrate
added to understand process rates under ambient soil
conditions.

Nitrification potential (NP) rates were measured
in an aerobic soil slurry amended with saturating
concentrations (250 uM) of NH,*-N, and shaken at
120 rpm. After 0.25 and 24 h, 1 ml of each soil slurry
sample was transferred into a 1.5 ml tube, centrifuged
at 15,000 rpm, and the supernatant was frozen at -20°
C until measuring NO; N as described above (Tay-
lor et al. 2010). The resulting increase in NO; —N
over time, due to ammonia oxidation by soil microor-
ganisms, was used to calculate the maximum nitrifi-
cation potential rate of each soil sample.

Denitrification potential activity (DNP) and deni-
trification enzyme activity (DEA) were measured in
parallel (Groffman et al. 2009; Nieland et al. 2021).
Both are estimates of the reduction of NO;-N to
N,O-N in an aerobic soil slurry in the presence
of acetylene, which prevents the transformation of
N,O0-N to N,-N. DEA is defined as the maximum
enzymatic potential at which denitrification can occur
over 1 h, measured with the addition of both glucose
and KNOj;, which provides the optimal resources nec-
essary for bacterial denitrification. In contrast, DNP
assays were not amended, reflecting denitrification
rates attainable under levels of nitrate and carbon
availability in the soil sample, and measured over a
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4-h period. The production of N,O-N used to calcu-
late DNP and DEA was measured using a Shimadzu
2014 GC analyzer (Shimadzu Scientific Instruments,
Inc., Columbia, MD, USA).

Soil extracellular enzyme activity (EEA) and
microbial N limitation

The enzymatic hydrolysis of amino acids and amino
sugars from soil organic matter controls soil fertil-
ity by limiting the rate of net N mineralization from
biologically inaccessible soil N into forms that can be
assimilated by plants and microorganisms (Schimel
and Weintraub 2003; Sinsabaugh et al. 2009). The
expression of these enzymes is generally regulated
by product suppression, i.e., if soil N availability is
higher, then N demand is lower, and fewer enzymes
to produce available N are synthesized relative to syn-
thesis of enzymes catalyzing hydrolysis of bioavaila-
ble C or P (Allison and Vitousek 2005; Nieland et al.
2024).

For this study, we measured the activity poten-
tial of two common N acquiring enzymes, [-N-
acetylglucosaminidase (NAG; EC 3.2.1.14,
4-MUB-N-acetyl-p-D-glucosaminide) and leucyl
aminopeptidase (LAP; EC 3.4.11.1, L-leucine-
7-amido-4-MC), as well as one carbon acquiring
enzyme, f-glucosidase (fG; EC 3.2.1.21, 4-MUB-f-
D-glucoside). Hydrolytic enzyme activity rates were
measured using fluorometric substrates (methylum-
belliferone (MUB) for NAG and BG, and methyl-
coumarin (MC) for LAP). Soil samples were thawed
and 1 g of each soil sample was added to a solution of
100 ml 50 mM sodium acetate buffer (pH 5), form-
ing a slurry. We combined 200 pl of soil slurry and
50 ul of the target substrate in 96 well assay plates,
with six analytical replicates and triplicate quench
standards per sample and replicate blanks, negative
controls, and 200 pM reference standards. Assays
for NAG were incubated for 3.5 h, LAP for 16 h, and
BG for 2 h. After incubations, reactions were halted
with the addition of 10 ul of 0.5 M NaOH, raising the
pH to> 8. Fluorescence of hydrolyzed substrate was
measured at excitation/emission of 360/450 nm with a
Filtermax F5 Multimode Microplate Reader (Molecu-
lar Devices, San Jose, CA, USA). Finally, we calcu-
lated indices of soil microbial N limitation: (In(fG))/
(In(NAG + LAP)), which decreases under conditions
of higher N- than C-limitation, and ((In(NAG + LAP)/
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In(Phos)), which increases under conditions of higher
N- than P-limitation (Sinsabaugh and Shah 2012).

Data analysis

All statistical analysis was done using the R program-
ing language in the R studio interface for statistical
analysis (R Core Team 2022). While sampling was
performed using a log-distance design to assess spa-
tial heterogeneity patterns, this structure was surpris-
ingly weak, so we proceeded with a standard statis-
tical approach. To test for the direct and interactive
effects of grazing treatment and year on soil charac-
teristics and N cycling rates, we used two-way anal-
ysis of variance (ANOVA) models, with post-hoc
Tukey’s honest significant difference (HSD) tests for
pairwise comparisons of within-group differences.
Coefficient of correlation (R?) was used to assess
linear relationship strength between soil character-
istics, N cycling rates, and EEAs. For each variable,
diagnostic Q-Q plots and histograms were used to
assess assumptions of statistical normality; if these
assumptions were not met, a square root or natural
log transformation was used to shift the data distribu-
tion to better satisfy normality assumptions. Statisti-
cal results with a P-value of <0.05 are reported in the
text.

Results
Soil water content, pH, and available N

Soil gravimetric water content and pH varied with
both grazing treatment and year, independently of
one another (Table 1). Mean soil water content at
the time of sampling was highest in 2020 and low-
est in 2022, and was also higher in ungrazed soils
than in bison or cattle grazed soils (Fig. 2). Soil pH
was measured higher in 2022 than 2021, and was
also consistently higher in bison grazed soils than
in cattle grazed or ungrazed soils (Table 1, Fig. 2).
Resin-sorbed N responses to grazing and year were
also independent of one another (Table 1): In 2022,
resin-sorbed NH4+—N, NO;™—N, total inorganic N,
and NO; -N:NH,"-N were all higher than in 2021
(Fig. 3); also, bison grazed treatments had higher
resin-sorbed nitrate and total inorganic N than
ungrazed and cattle treatments, but resin-sorbed
NH,*-N and the ratio of NO; —N:NH,*-N did not
respond to grazing (Fig. 3).

Nitrification and denitrification potentials
Soil nitrification potential (NP) responded to graz-

ing and year independently, such that NP was
lower in 2022 than in 2020 or 2021, and was also

Table 1 Two-way ANOVA
results (F statistic and P

values) showing the direct
and interactive effects

of grazing and sampling
year on soil GWC and
pH, resin-bound N,
N-cycling potential rates,
and extracellular enzyme
activities

Bolded values indicate
P<0.05

Sqrt denotes square
root transformation and
In denotes natural log
transformation

Response variable Graze Year Graze * Year
F, P F, P F, P

GWCSat 16.0,<0.001 83.1,<0.001 1.17,0.32
pH 22.3,<0.001 6.52,0.012 2.36,0.10
NH,*-NP" 1.32,0.27 262.2,<0.001 1.18,0.31
NO; N 12.8,<0.001 24.9,<0.001 2.37,0.10
NO;-N+NH,-N" 13.1,<0.001 34.3,<0.001 2.16,0.12
NO;-N: NH,*-N" 2.49, 0.086 84.2,<0.001 0.37,0.69
I\ 20.4,<0.001 6.36, 0.002 0.37,0.83
DNP™" 2.29,0.11 36.8,<0.001 1.35,0.25
DEA®" 13.7,<0.001 28.6,<0.001 1.35,<0.001
BG" 2.20,0.11 62.5,<0.001 0.67,0.62
CBH" 3.03, 0.050 47.6,<0.001 1.72,0.15
NAG™ 5.70, 0.004 60.1,<0.001 2.72,0.030
LAP™" 14.5,<0.001 138.2,<0.001 9.41,<0.001
Phos™ 2.21,0.11 47.4,<0.001 2.37,0.053
InBG:In(NAG +LAP) 11.0,<0.001 4.03, 0.019 2.93,0.021
In(NAG + LAP):In(Phos) 6.90, 0.001 1.89,0.15 3.23,0.013
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Fig.2 A Soil gravimetric water content over a 3-year period
in grazed and ungrazed soils and B soil pH over a 2-year
period. Tukey’s HSD post-hoc results are shown with different
letters indicating years (top) or grazing treatments (x-axis) that
differed from each other at P <0.05

consistently higher in bison grazed soils than cattle
grazed or ungrazed soils (Table 1; Fig. 4). Soil den-
itrification potential (DNP) did not respond to graz-
ing treatment, but was higher in 2020 than in 2021
or 2022 (Table 1; Fig. 4). Notably, DNP rates were
only 14% (on average) of the denitrification enzyme
activity (DEA) when detectable, and were below
detectable limits in 2022 and in cattle and ungrazed
treatments in 2021. DEA responses to grazing var-
ied interannually (Table 1). In 2020, soil DEA in
bison grazed treatments was greater than in both
cattle grazed and ungrazed treatments; in 2021,
DEA was higher in cattle grazed than in ungrazed
soils, and intermediate in bison grazed soils; and
in 2022, DEA was higher in bison grazed than in
ungrazed soils, and intermediate in cattle grazed
soils (Fig. 4).
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Soil extracellular enzyme activities and relative N
limitation

Extracellular enzyme activity potentials varied inter-
annually, tending to be highest in 2022 and lowest
in 2020 (Table 1; Fig. 6). Only N-acquiring enzyme
activities (NAG and LAP) and the indices of N
demand relative to C demand (InBG:In(NAG + LAP))
and relative to P demand (In(NAG +LAP):InPhos)
responded to grazing treatment (Table 1; Figs. 5,
6). In 2020, the ungrazed treatment soils were most
N-limited relative to C and P, cattle grazed soils were
least, and bison grazed soils were intermediate; in
2021, bison grazed soils were less N limited relative
to C and P than either cattle grazed or ungrazed soils;
and in 2022, bison grazed soils were less N limited
relative to C than either cattle grazed or ungrazed
soils, and less N limited relative to P than ungrazed
soils (Fig. 5).

Correlations

Many linear model correlations among soil charac-
teristics and N cycling parameters were statistically



Biogeochemistry (2024) 167:759-773

765

(A) 2020 b 2021 b 2022 a

08

o
o

b a a b a a b a a

iﬁ; N P

Bison  Cattle Ungrazed Bison  Cattle Ungrazed Bison Cattle Ungrazed

o
a~

Nitrification potential mg N g dry soil h-"
=)
o

o
o

—_

B) 2020 b 2021 a 2022 a

20

Denitrification potential mg N kg™ dry soil h-"'
3

5 .
.
.
Y a °
& 2 -
0 —— —— ——— — = ——
Bison  Cattle Ungrazed Bison  Cattle Ungrazed Bison  Cattle Ungrazed
(C) 2020 2021 2022
- °
< 300
] b a a b ab a
> °
el
o
z
o
£ 200
2
= o
o -
© -
)
£
& 100 ®
[0
c
2
w
g s
£ a i o
c
8 o

Bison  Cattle Ungrazed Bison  Cattle Ungrazed Bison Cattle Ungrazed

Fig. 4 A NP, B DNP, and C DEA in soils from different graz-
ing treatments over 3 years. Tukey’s HSD post-hoc results are
shown with different letters indicating years (top) or grazing
treatments (center) that differed from each other at P <0.05

significant, but none had an R? value higher than
0.15 (Table 2). Soil water content was positively
correlated with DNP and negatively correlated with
DEA, and DNP and DEA were negatively cor-
related with one another. Soil pH was positively

(A) 2020 2021 2022

1.3

In(BG):In(NAG:LAP)

0.9

Bison Cattle Ungrazed Bison  Cattle Ungrazed Bison  Cattle Ungrazed

(B) 2020 2021 2022
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L]

09 !
0.8

%
07
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Fig. 5 A In(BG):In(NAG:LAP) and B In(NAG:LAP):In(Phos),
indicators of relative soil microbial demand for C and N, and N
and P, respectively, in soils from different grazing treatments
over 3 years. Tukey’s HSD post-hoc results are shown with dif-
ferent letters indicating grazing treatments that differed from
each other at P <0.05 level each year

correlated with resin-sorbed NO;™-N, NP, and
InBG:In(NAG + LAP). Resin-sorbed NH,*-N was
positively correlated with resin-sorbed NO; N, but
negatively correlated with NP. Microbial N-limita-
tion index values (InBG:In(NAG + LAP)), which are
higher in less N-limited conditions, were positively
correlated with both NP and DNP.

Discussion

We wanted to learn whether bison and cattle influ-
ence soil microbial N cycling activities in tallgrass
prairie similarly, and investigated this question over
a three-year period. Our results show that bison
and cattle grazing have qualitatively similar but
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soil h™!) through the summer growing season in 3 sampling

years. Tukey’s HSD post-hoc results are shown with different
letters indicating years or grazing treatment units within year
that differed at the P <0.05 level

Table 2 Correlation test results (r statistic and P values) among soil GWC and pH, N-cycling rates, and the microbial N limitation

index

1, P GwW(CSat pH resin-NH,*-N"  resin-NO,-N" NpI" DNP'® DEA#
pH —0.06,0.44

resin-NH,*-N" -0.17,0.12 0.01,0.96

resin-NO, —N'" —0.14,0.20 0.27,0.013  0.35, <0.001

NP —0.02,0.80 0.36,0.002 —0.27,0.031  0.15,0.25

DNP® 0.23, 0.005 0.15,020 —0.24,0.050  0.11,0.35 0.14,0.09

DEAS —0.34, <0.001 0.09,047 —0.02,0.89 0.03,0.81 0.13,0.11  —0.24,0.004
InBG:In(NAG+LAP)  0.02, 0.74 0.28,0.001 0.08, 0.46 0.12,0.30 0.24,0.004 0.39,<0.001 0.02, 0.86

Bolded values indicate P < 0.05

Sqrt denotes square root transformation and In denotes natural log transformation

quantitatively different effects: Bison and cattle both
tended to increase N availability and N cycling activi-
ties in comparison to ungrazed soils, but the influence
of bison tended to be stronger than that of cattle. Spe-
cifically, soil pH, resin-sorbed nitrate and nitrification
potentials (NP) were consistently highest in bison-
grazed soils, and microbial N-limitation was lowest
in bison-grazed soils in two of the three sampling
years. Also, despite interannual variability in cattle
versus bison responses, microbial N-limitation was
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always highest, and denitrification enzyme activity
(DEA) was always lowest, in ungrazed soils relative
to both cattle- and bison-grazed soils. However, the
magnitude of temporal variation was stronger than
grazing effects for soil water content, resin-sorbed
N, nitrification potential (NP), and denitrification
potentials (DNP). Resin-sorbed N was lowest in the
driest year of the study, and both NP and DNP were
highest, while DEA was lowest, in the wettest year of
the study. Finally, while coarse relationships among
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measured variables support mechanistic discussion
points at the interannual and grazing treatment scale,
correlations were not strong enough to suggest pre-
dictive relationships among soil water content, pH,
and microbial N-cycling variables at the soil sample
scale.

Interannual variation in soil water and microbial N
cycling

Soil water content at the time of sampling was higher
in 2020 than in 2021 and 2022, while summer precipi-
tation was within the historic 95% confidence interval
range in 2020 and 2022, but not in 2021, which was
notably dry (Figs. 1, 2). Levels of NO; N, NH4+—N,
and NH,*-N+NO;™-N sorbed to resin bags coin-
cided with this variability in water, such that with less
than average precipitation there was less mineralized
inorganic N (Fig. 3). In 2020, both NP and DNP were
highest in magnitude, suggesting that wetter soil con-
ditions supported higher mineralization and mobili-
zation of the ammonium and nitrate substrates driv-
ing these two microbial metabolic activities (Fig. 4).
Furthermore, extracellular enzyme activities (particu-
larly N-acquiring activities) were lowest, indicating
greater product availability (particularly of soluble
nitrogenous compounds) and lower investment into
enzyme production acquisition (Sinsabaugh and Foll-
stad Shah 2012; Burns et al. 2013), during the wet
year (Figs. 5, 6). The resin-sorbed N and microbial
N-cycling datasets support the conclusion that inter-
annually, N availability and N-cycling rates are posi-
tively associated with seasonal precipitation and soil
water content.

The process of denitrification has complex con-
trols, including limitation by nitrate availability, C
availability, or low anoxia (Wallenstein et al. 2006;
Robertson and Groffman 2014), and because DNP
rates never reached DEA rate potential levels (Fig. 4),
at least one of these factors must have limited the pro-
cess. Anoxic conditions would have been highest in
the wettest year, when oxygen diffusion into the soil
pore space was most restricted. While we did not
measure soil C availability, at the landscape level,
growing season precipitation has a stronger effect
than grazing on annual forage growth measured as
aboveground net primary productivity (ANPP), as
well as on root production (Johnson and Matchett
2001; Fay et al. 2003), so C availability from plant

production should also have been highest in the wet-
test year. However, DNP rates remained only 9% (on
average) of DEA rate potentials in the 2020 sam-
pling year. Further, while DEA rate potentials did not
decrease during the dry year of 2021, DNP dropped
substantially, and was only detectable in bison-grazed
soils where N availability was highest. Based on these
observations, denitrification in this system is likely
more limited by nitrate than by water, anoxia, or car-
bon, and only conditionally high, in agreement with
conclusions made using the in situ amended core
incubation technique by Groffman et al. (1993). The
lack of recovery of DNP in 2022, despite a wetter
summer overall, could be related to the long period
of time following a precipitation event preceding
the sampling time (Fig. 1), since as soils dry, solu-
ble nutrient availability also declines, until rewet-
ting stimulates pulses of microbial activity (Schimel
2018).

Grazing and N availability

Mineralization of N from soil organic matter is a pri-
mary microbial mechanism that makes N available
for plant and microbial uptake, and is controlled by
microbial enzyme activity (Tabatabai et al. 2010).
Resin bags are an index, not an in situ measure of
mineralization, yet they can provide a reliable indica-
tor of N mineralized during the growing season (Baer
and Blair 2008; Nieland et al. 2021). Further, ratios
of extracellular enzyme activities are indicative of
relative microbial investment in N acquisition (Sin-
sabaugh and Follstad Shah 2012). N availability was
higher in bison-grazed soils than ungrazed soils using
both of these indicators in 2021 and 2022 (Figs. 3, 5).
It is plausible that higher water availability was con-
nected to the weaker bison effect on soil microbial
N limitation in 2020, if wetter conditions supported
greater inorganic N mineralization and lower N limi-
tation overall, but unfortunately, we do not have resin-
sorbed N data from 2020 to corroborate this inter-
pretation. Still, the evidence points to increased N
availability in bison treatments for microbial immobi-
lization and plant assimilation, relative to both cattle
grazed and ungrazed treatment soils.

Despite the general bison grazing effect on N
availability, specific N-cycling enzyme activities
did not all respond the same. For example, in cattle
and ungrazed treatments, polypeptide-decomposing
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(LAP) activity supported higher N demand in 2021,
while microbial cell wall-decomposing (NAG) activ-
ity did in 2022, suggesting that different components
of the soil organic N pool were microbial N sources
in each year (Fig. 6). Also, nitrate—N rather than
ammonium-N responded to grazing treatment, sug-
gesting that either ammonium uptake was lower, or
nitrification was higher, in bison grazed soils (Fig. 3).
Notably, despite interannual variation, bison grazed
soils maintained a higher (less acidic) pH than cat-
tle grazed soils (Fig. 2). Soil pH broadly constrains
soil chemical transformations and the microbial
enzymatic activities which drive N cycling, such that
different N sources may support soil microbial N
demand under different pH conditions due to changes
in available N and microbial enzyme production
(Sharpley 1991; Zeglin et al. 2007; Sinsabaugh et al.
2008; Nannipieri et al. 2018; Barber et al. 2023). In
this study, soil pH was likely affected by bison graz-
ing activity through urine and dung inputs, which add
alkalinity to the soil (Somda et al. 1997; Hong et al.
2021).

Grazing and nitrification potential

Both NP and resin-sorbed NO;™—N were consistently
higher in bison treatments (Figs. 3, 4), suggesting that
under bison grazing, there is a higher likelihood of
NO; N becoming mobile in soil solution, and sub-
sequently being taken up by plants or microorgan-
isms, reduced by microorganisms and denitrified, or
leached out of the soil. Overall, even though nitrifi-
cation is a precursor for N loss through either nitrate
leaching or denitrification, lower denitrification rates
relative to nitrification rates suggest loss of soil N to
the atmosphere in tallgrass prairie is a comparatively
small factor in the N cycle at this site (Groffman
et al. 1993; Blair et al. 1998). While nitrate leaching
has not been constrained, we do know that stream
water nitrate concentrations are low in this water-
shed despite the long-term grazing pressure (Dodds
et al. 1996), and that local grasses can rapidly assimi-
late nitrate (Dell and Rice 2005); so while possible,
nitrate production is not necessarily strongly tied to N
leaching losses at the study site.

In addition to higher inorganic N availability
overall, the consistently higher pH in bison grazed
soils may boost NP through direct effects on ammo-
nium availability. Chemically, soil pH controls the
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proportion of ammonia (NH;) in soil solution as
ammonium (NH,*), which in turn affects N avail-
ability for the process of nitrification (Kemmitt et al.
2006; Sahrawat 2008): With a higher pH, the non-
protonated form (ammonia) is favored, which supplies
more of the substrate for ammonia monooxygenase,
the rate limiting enzyme of nitrification found in both
ammonia oxidizing bacteria and archaea (Nicol et al.
2008). This could help explain the positive relation-
ships between pH and NP, and pH and resin-bound
nitrate (Table 2). This finding is notable because nitri-
fier metabolism is the least functionally redundant in
soils of all of the N-cycling processes measured in
this study (Prosser and Nicol 2012) suggesting in turn
that bison treatments could have higher abundance
and/or a pH-specialized population of soil nitrifiers
(Prosser and Nicol 2012), or a higher NP due to a
more optimal soil pH.

Grazing and denitrification potential

Denitrification, the process of NO; —N reduction
to gaseous form, was measured in two ways: Under
in situ soil N and C availability conditions (DNP) and
with nitrate and DOC added to the assay to measure
maximum denitrification enzyme activity (DEA). We
found that DNP was much lower than DEA, espe-
cially in the drier years of 2021 and 2022 (Fig. 4).
This indicates that while microbial biomass with
enzymatic potential for denitrification exists, because
either soil N or C substrate was limiting, little denitri-
fication potential was realized. Only in bison grazed
soils, where NP and nitrate availability was higher,
was any DNP detected in 2021. In contrast, DEA
was not different between bison and cattle treat-
ments in 2021 or 2022, despite differences in NP and
nitrate availability, while ungrazed treatments exhib-
ited consistently lower NP, resin-sorbed nitrate, and
DEA (Figs. 3, 4). This suggests that grazing inten-
sity in general impacts soil DEA in some biologically
similar way. Because many bacterial taxa carry the
genetic potential to produce enzymes in the denitri-
fication pathway (Nelson et al. 2016), whether or not
conditions allow these enzymes to be used, general
changes in the soil microbial community are more
likely to affect DEA than the substrate-limited DNP
(Wallenstein et al. 2006). At the same tallgrass prai-
rie field site, bison dung is a microbial dispersal vec-
tor that increases soil microbial diversity and changes
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microbial community composition (Hawkins and
Zeglin 2022), and other investigations show that graz-
ing by cattle, sheep, and goats can affect soil micro-
bial composition (Clegg 2006; Eldridge et al. 2017,
Wang et al. 2019). However, the redundancy of bison
and cattle effects on the soil microbiome, and impli-
cations for denitrification, are not yet understood.

Grazing and grassland soil N cycling

Bison grazing substantially increased soil N-cycling
rate potentials at this site in the North American Great
Plains, and these elevated rates (NP of 0.05-0.5 ug N
g~ ! dry soil h™!, DEA of 30-100 pg N kg™! dry soil
h~!) were similar to those measured in other grazed
grasslands worldwide. In Mongolia, grasslands
that were grazed by sheep had an estimated NP of
0.5-1 ug N g~! dry soil h™! and DEA of 400-700 pg
N kg™! dry soil h™! (Yingjin et al. 2022); in tropi-
cal savanna in the Ivory Coast, NP was 0-10 ug N
g~ dry soil h™'and DEA was 0-100 ug N kg~! dry
soil h™! (Srikanthasamy et al. 2018). In cattle grazed
Australian grasslands, NP was 0-0.5 ug N g~! dry
soil h™! and DEA was 2040 ug N kg~! dry soil h™!
(Mehnaz and Dijkstra 2016). Comparatively, our N
cycling rates were close to those estimated in Aus-
tralian grasslands but a bit lower than those estimated
in Mongolia or West African savanna, suggesting
that higher grazing intensity and more N recycling is
occurring at those two sites and/or the physical and
chemical soil properties and biological conditions
for NP or DEA were different in the other grassland
types. Historically, at the same tallgrass prairie site
that we studied, but using different methods, rates
were in a similar range as currently estimated: NP
was 0.17-0.23 ug N g~! dry soil h™! and DEA was
180-286 ug N kg~! dry soil h™! (Groffman et al.
1993). Comparatively, given the three decades of
additional grazing pressure between these two stud-
ies, it is somewhat surprising that rates are so similar.
However, because variable precipitation mediates the
magnitude of N-cycling, rates could be more strongly
linked to the direct and indirect effects of soil water
than to grazing intensity over time.

This tallgrass prairie region and world as a whole
is predicted to have more variable climactic condi-
tions in the future (IPCC 2022) impacting soil water
and thus large grazers and microbial N cycling activi-
ties in this region and many others (Nippert et al.

2022; Abraham et al. 2023). Our nitrification poten-
tials and denitrification estimates suggest losses of
N from the soil are possible, and that higher losses
are possible in bison-grazed areas. A recent meta-
analysis of greenhouse gas emissions on grasslands
showed that heavy grazing intensity did not increase
N,O-N emissions, but instead overgrazing severely
degraded rangeland habitat leading to soil runoff
(Tang et al. 2019). This result suggests that manage-
ment is the key to mitigating grazing animal effects
on N loss from rangelands, specifically, maintaining
proper stocking densities based on set carrying capac-
ity (Holechek et al. 2011) and considering how the
physical movement of animals controls N export and
spatial heterogeneity (Coetsee et al. 2023).

Despite the clear enhancement of soil N-cycling
rates, particularly nitrification potential, by bison
grazing in this study, we do not know whether nitrate
was subsequently leached out, assimilated by plants,
or immobilized by microorganisms and retained in
soil organic matter. Because the physical properties
of these soils promote the retention of N in mineral-
associated fractions (Soong and Cotrufo 2015) and
the native biota conserve N tightly in both soil micro-
bial biomass and plant tissue (Dell et al. 2005), ele-
vated internal cycling rates may be coupled with N
turnover through biotic pools, rather than linked to
N losses from the ecosystem. Compared to ungrazed
and annually burned tallgrass prairie, N cycling is not
as “open” i.e., N recycling is slower and more closed
in ungrazed tallgrass prairie even though there are
larger inorganic N pools then grazed prairie (Connell
et al. 2020). As such, ecosystem N retention may be
high in all treatments of this study because they are
burned annually (Dell et al. 2005). However, addi-
tional research is necessary to directly measure graz-
ing effects on soil and ecosystem N retention.

Conclusion

We found that, despite interannual variability, bison
impacted nitrification differently than cattle because
of greater available soil inorganic N, higher soil pH
and less N limitation. Also, annual variation in N
cycling was apparent because of variability in sum-
mer precipitation and soil water availability control-
ling N cycling. As such, tracking soil characteristics
and N cycling activities over time gives primary
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diagnostic information of N recycling and should
strongly be considered in rangeland monitoring
health assessments, as it is currently lacking (Pellant
et al. 2020). However, due to concomitant differences
in bison and cattle behavior (e.g., bison tendency to
maintain grazing lawns) with differences in manage-
ment (i.e., bison graze year-round while cattle are on
pasture May—October), we cannot discern whether N
cycling effects are inherent to the different grazers per
se or to the human-grazer interaction. Human socie-
ties past and present around the world have always
depended on large grazing animals, in particular
the bison, and more recently cattle, in North Amer-
ica. Bison are tied to the existing cultural identity
of tribal nations that have lived on grasslands for at
tens of thousands of years (Kornfeld et al. 2016), and
while in the past bison movement was not directly
constrained by humans, bison numbers were orders
of magnitude higher across their continental range.
Thus, it is also difficult to speculate the extent to
which soil fertility changed following the replacement
of bison with cattle; however, our data suggest that a
significant change was possible. Also knowing that
bison grazing can dramatically shift grassland plant
diversity (Ratajczak et al. 2022), it is further possi-
ble that the interactions between grazers, soils, and
plants that maintained Great Plains grassland eco-
systems pre-colonialization may have been different
from what we understand today. Long term data on N
cycling activities are sparse, and considering the data
here in the context of grazer management and chang-
ing climate will provide useful information for future
N cycling and budgeting in grassland ecosystems.
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