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Abstract
We consider the problem of detecting distributional changes in a sequence of high
dimensional data. Our approach combines two separate statistics stemming from L p

norms whose behavior is similar under H0 but potentially different under HA, leading
to a testing procedure that that is flexible against a variety of alternatives. We establish
the asymptotic distribution of our proposed test statistics separately in cases of weakly
dependent and strongly dependent coordinates as min{N , d} → ∞, where N denotes
sample size and d is the dimension, and establish consistency of testing and estimation
procedures in high dimensions under one-change alternative settings. Computational
studies in single and multiple change point scenarios demonstrate our method can
outperform other nonparametric approaches in the literature for certain alternatives
in high dimensions. We illustrate our approach through an application to Twitter data
concerning the mentions of U.S. governors.
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1 Introduction

Detecting changes in a given sequence of data is a problem of critical importance in a
variety of disparate fields and has been studied extensively in the statistics and econo-
metrics literature for the past 40+ years. Recent applications include finding changes
in terrorism-related online content (Theodosiadou et al. 2021), intrusion detection
for cloud computing security (Aldribi et al. 2020), and monitoring emergency floods
through the use of social media data (Shoyama et al. 2021), among many others.
The general problem of change point detection may be considered from a variety
of viewpoints; for instance, it may be considered in either “online” (sequential) and
“offline” (retrospective) settings, under various types of distributional assumptions, or
under specific assumptions on the type of change points themselves. See, for example,
Horváth and Rice (2014) for a survey on some traditional approaches and some of
their extensions.

The importance of traditional univariate and multivariate contexts notwithstanding,
it is increasingly common in contemporary applications to encounter high-dimensional
data whose dimension d may be comparable or even substantially larger than the
number of observations N . Popular examples include applications in genomics (Ama-
ratunga and Cabrera 2018), or in the analysis of social media data (Gole and Tidke
20158),where d can be up to several orders ofmagnitude larger than N . Howevermany
classical inferential methods provide statistical guarantees only in “fixed-d" large-
sample asymptotic settings that implicitly require the sample size N to overwhelm
the dimension d, rendering several traditional approaches to change-point detection
unsuitable formodern applications inwhich N and d are both large. Accordingly, there
has been a surge of research activity in recent years concerning methodology and the-
ory for change-point detection in the asymptotic setting most relevant for applications
to high dimensional data, i.e., where both N , d → ∞ in some fashion; see Liu et al.
(2022) for a survey regarding new developments. Commonly, asymptotic results in
this context require technical restrictions on the size of d relative to N , ranging from
more stringent conditions such as d having logarithmic-type or polynomial growth in
N (Jirak 2012), to milder conditions that permit d to have possibly exponential growth
in N (Liu et al. 2020). However, for maximal flexibility in practice, it is desirable to
have methods that require as little restriction as possible on the rate at which d grows
relative to N .

In this work, we are concerned with change-point detection problem in the “offline”
setting in which a given sequence of historical data is analyzed for the presence of
changes. Specifically, we are concerned with the following: let X1,X2, . . . ,XN be
random vectors in R

d with distribution functions F1(x), F2(x), . . . , FN (x). We aim
to test the null hypothesis

H0 : F1(x) = F2(x) = . . . = FN (x) for all x ∈ R
d

against the alternative

HA : there are 1 = k0 < k1 < k2 < . . . < kR < kR+1 = N

and x1, x2, . . . , xR such that
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Fki−1+1(x) = Fki−1+2(x) = . . . = Fki (x), 1 ≤ i ≤ R + 1 for all x ∈ R
d

and Fki (xi ) �= Fki+1(xi ), 1 ≤ i ≤ R

where R ≥ 1 is unknown. The central contribution of this work is a flexible method for
testing the hypotheses above whose asymptotic properties are supported theoretically
in high dimensions; namely, when d is potentially large relative to N . To accommo-
date this mathematically, we provide asymptotic statements in the asymptotic regime
min{N , d} → ∞. The novelty of our approach lies in combining two separate statis-
tics stemming from L p norms whose behavior is similar under H0 but potentially
different under HA, each individual statistic measuring related but different aspects
of the data, leading to a procedure that that is flexible for testing against a variety of
alternatives. To the best of our knowledge, it is the only method in this setting that
retains relatively standard asymptotic behavior, thereby admitting critical values that
are readily obtained. Ultimately, this leads to a straightforward asymptotic test and
estimation procedure that is easy to implement and requires little restriction on the
size of d relative to N for use in practice.

The problem of testing the hypotheses above has been been studied by several
authors in recent years in both multivariate and high-dimensional settings; e.g., Lung-
Yut-Fong et al. (2011); Chen and Zhang (2015); Arlot et al. (2019); Chu and Chen
(2019), among others. Concerning some approaches related to U-statistics, Matteson
and James (2014) proposed the use of empirical divergence measures based on the
energy distance (Székely and Rizzo 2005) assuming that d is fixed. Though their
method has gained some popularity in applications and can perform quite well in cer-
tain settings, it lacks theoretical support in high dimensions and has some noteworthy
drawbacks. It has recently been shown by Chakraborty and Zhang (2021b) and Zhu
et al. (2020) that such divergence measures are potentially unsuitable for detecting
certain types of changes in data when the dimension d is large, since they capture pri-
marily only second-order structure in the data in certain settings and can be insensitive
to changes beyond first and second moments (see also recent work of Chakraborty
and Zhang (2021a) that addresses some of these issues).

We also note test statistics employed in Matteson and James (2014) are related to
so-named degenerate U-statistics and therefore have a limit distribution that is non-
standard; an explicit expression for the limit (with fixed d) was first given by Biau
et al. (2016) based on an infinite series representation that depends on a sequence of
eigenvalues λ1, λ2, . . . that must be estimated from data for its practical implemen-
tation. Biau et al. (2016) point out that resampling methods for such approaches can
be computationally burdensome over large samples due to quadratic (in N ) computa-
tional cost required by their method, illustrating asymptotic tests for U-statistic-based
approaches can be especially advantageous over larger sample sizes.

Recently, Liu et al. (2020) proposed a flexible framework for detecting change
points based on q-dimensional U-statistics in the settingwhere q, d, N → ∞. Though
theirmethod is quite flexible, the authors do not obtain the limit distribution of their test
statistics and rely on high-dimensional bootstrappingmethods to obtain critical values.
Our detection method is based on somewhat simpler one-dimensional U-statistics
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whose distribution may be explicitly obtained, bypassing the need for bootstrapping,
permutation tests, or similar methods.

This paper is organized as follows. Section2 contains framework, notation, and a
brief discussion regarding the principle behind our approach. Section3 contains our
supporting theory in high dimensions and discussions of practical implementation
of the test statistics. Section4 contains simulation studies, and Sect. 5 contains an
illustration of our method in an application based on Twitter data concerning mentions
of the U.S. governors. Appendix A contains some important examples, and all proofs
are given in Appendices B through D.

2 Framework

In what follows, ‖ · ‖p denotes the vector L p norm in R
d for some arbitrary fixed

1 ≤ p < ∞, and 	x
 denotes the integer part of x ∈ R. For x < 0 we denote
xβ = −(−x)β for any β ∈ R, and for any sequences aN , bN > 0, we write aN � bN
if aNb

−1
N → ∞ as N → ∞. We work with the (idealized) assumption

Assumption 2.1 X1,X2, . . . ,XN are independent random vectors.

Assumption 2.1 is in force throughout the paper.
Our proposedmethod is based onweighted functionals of two processes constructed

from U-statistics. We first define some intermediate quantities. For 2 ≤ k < N − 2,
we set

UN ,d,1(k) = 1(
k
2

) ∑
1≤i< j≤k

‖Xi − X j‖p,

UN ,d,2(k) = 1(
N − k
2

) ∑
k+1≤i< j≤N

‖Xi − X j‖p,

UN ,d,3(k) = 1

k(N − k)

k∑
i=1

N∑
j=k+1

‖Xi − X j‖p,

UN ,d,4 = 1

N 2

N∑
i=1

N∑
j=1

‖Xi − X j‖p. (2.1)

We now proceed to define two processes VN ,d = {VN ,d(t), 0 ≤ t ≤ 1} and ZN ,d =
{ZN ,d(t), 0 ≤ t ≤ 1}, each meant to capture different aspects of the data. They are
constructed based on the differences of the statisticsUN ,d,�(k) (suitably normalized to
account for the differing sample sizes among each statisticUN ,d,�(k) as k runs through
the set 2 ≤ k ≤ N − 2.) For each t ∈ [2/N , 1 − 2/N ], let

VN ,d(t) = t(1 − t)d−1/p[UN ,d,1(	Nt
) −UN ,d,2(	Nt
)],
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Fig. 1 Paths of |Zn,d (t)| and |VN ,d (t)| with w(t) ≡ 1, p = 1 based on a single change at k1 = 	N/3

(vertical line) for independent Gaussian observations, N = d = 500; horizontal dashed line is associated
critical value at size 0.05. In the left figure there is only shift in the mean; on the right, only a change in
scale. Jointly maximizing ZN ,d and VN ,d leads to increased power against a broader array of alternatives
in high dimensions

and for any 0 ≤ β < 1, set

ZN ,d(t) = 2t(1 − t)
(|1 − 2t | + 1√

N

)−β
d−1/p [UN ,d,3(	Nt
) −UN ,d,4

]

and we set VN ,d(t) = ZN ,d(t) = 0 if t /∈ [2/N , 1 − 2/N ]. Our approach is based on
the following test statistic:

TN ,d = sup
0<t<1

max{|VN ,d(t)|, |ZN ,d(t)|}
w(t)

(2.2)

In (2.2),w(t) is aweight function defined on [0, 1] satisfying the following properties:
(i) infδ≤t≤1−δ w(t) > 0 for all 0 < δ < 1/2

(i i) w(t) is nondecreasing in a neighborhood of 0 and nonincreasing in a neighborhood
of 1.

Though tests based on either ZN ,d or VN ,d alone are suitable themselves, use of
both ZN ,d and VN ,d together allows for increased power against a broader array of
alternatives; see Fig. 1. Each is suitable for detecting changes of various types, but VN ,d

is especially sensitive to scale changes, whereas ZN ,d is more sensitive to location
changes, and both take into account information concerning p-th moments in different
capacities. Combining them by jointly maximizing them leads to a testing approach
and estimation procedure that are sensitive to a larger variety of distributional changes
in high-dimensional contexts. (Note TN ,d can be interpreted a test statistic based on a
union-intersection test (Roy 1953) formed from two tests: one based on VN ,d and one
based on TN ,d .) In contrast, both ZN ,d and VN ,d behave somewhat similarly under
H0, and owing to this, the statistic TN ,d in fact enjoys standard limit behavior in high
dimensions under H0, leading to a straightforward asymptotic test.

The use of the parameter β and weight functions w(t) also allows for increased
power against certain alternatives regarding type or location of change point(s). Very
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roughly speaking, the parameter β can be viewed a proxy for the relative importance
of alternatives measured by ZN ,d(t) compared to those measured by VN ,d(t), and the
weight function w(t) can be chosen to boost power when change points may be near
the boundary of an interval. We further discuss the effect of selection of w(t) and the
auxiliary parameter β in Sect. 4.

3 Theoretical results

In the statements that follow, we make use of the integral functional

I (w, c) =
∫ 1

0

1

t(1 − t)
exp

(
− cw2(t)

t(1 − t)

)
dt (3.1)

to determine necessary and sufficient conditions to obtain a finite limit for theweighted
supremum functionals of VN ,d(t) and ZN ,d(t).

3.1 Size

We separately consider two distinct settings concerning possible types of dependence
in the coordinates of the Xi . We defer discussion of implementation of the tests in
practice to Sect. 3.1.3.

3.1.1 Weak dependence

We first turn to the case of weakly dependent coordinates. For the statements below,
we define the functions

g j (x j ) = E |X1, j − x j |p, 1 ≤ j ≤ d, (3.2)

where x1, . . . , xd ∈ R.

Assumption 3.1 For some α > max{p, 10 − 4/p, 14 − 8/p}, and some constant
C > 0 independent of d and N , we have max1≤ j≤d E |X1, j |α ≤ C ,

E

∣∣∣∣
d∑
j=1

[ ∣∣X1, j − X2, j
∣∣p − E

∣∣X1, j − X2, j
∣∣p ]

∣∣∣∣
α

≤ Cdα/2, (3.3)

and

E

∣∣∣∣
d∑
j=1

[
g j (X1, j ) − Eg j (X1, j )

]∣∣∣∣
α

≤ Cdα/2. (3.4)
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Moreover, the limits

a(p) = lim
d→∞

1

d

d∑
j=1

Eg j (X1, j ), τ 2 = lim
d→∞

1

d
E

( d∑
j=1

[g j (X1, j ) − Eg j (X1, j )]
)2

(3.5)
exist.

Expressions (3.3) and (3.4) roughly state that the coordinates ofX1 and ofX1 −X2
behave like weakly dependent random variables. In particular, they are satisfied
for AR(1)-type coordinates (c.f. Example A.2). In Appendix A, we give explicit
examples of settings in which Assumptions 3.1 and 3.2 are satisfied. Note when
g1(X1,1), g2(X1,2), . . . is a wide-sense stationary sequence, a(p) is its mean and
τ 2 is its corresponding long-run variance. Furthermore, note the distribution of X1
depends on d and is also allowed to depend on N , so our assumptions allow for
triangular arrays of random vectors.

Next we define the limiting variance of VN ,d(t) and ZN ,d(t) for the case of weakly
dependent coordinates. Let

σ 2 =
(
2

p
a−1+1/p(p)

)2

τ 2. (3.6)

Note σ 2 is well-defined under Assumption 3.1. Since we will normalize with σ 2, it is
natural to require

Assumption 3.2 σ 2 > 0.

Assumption 3.2 amounts to a high-dimensional non-degeneracy condition. Note
that similar assumptions are typically not met in fixed dimensions when the underlying
U-statistics are of degenerate type.

Theorems 3.1 and 3.2, stated next, are our main results in the context of Assump-
tion 3.1, which provide the asymptotic distribution under of our test statistics under
H0 after appropriate rescaling. This lays the foundation for our asymptotic testing
procedure.

Theorem 3.1 Assume that H0 holds, and Assumptions 2.1, 3.1 and 3.2 are satisfied.
If I (w, c) < ∞ in (3.1) is finite for some c > 0, then as min{N , d} → ∞,

σ−1(Nd)1/2TN ,d
D→ sup

0<t<1

|B(t)|
w(t)

, (3.7)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge.

Theorem 3.1 allows for a variety of possible weight functions w(t); since the limit
in (3.7) is finite with probability 1 if and only if I (w, c) < ∞ with some c > 0, the
conditions on the weight function for Theorem 3.1 are sharp (see Csörgő and Horváth
(1993)), as no other classes of weight functions can lead to such a limit.

However, it is sometimes desirable to self-normalize maximally selected statistics,
i.e., to use a weight function that is proportional to the standard deviation of the limit,
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at least in a neighborhood of 0 and 1. In this case, the corresponding weight function is
w(t) = (t(1−t))1/2, but Theorem 3.1 cannot be applied since I ((t(1−t))1/2, c) = ∞
for all c > 0. Thus, Theorem 3.2, stated next, can be regarded as a counterpart to
Theorem 3.1 for the choice of weight functionw(t) = (t(1− t))1/2. It is a nonstandard
Darling–Erdős–type result, showing Gumbel-type limit behavior emerges under the
choice w(t) = (t(1 − t))1/2.

Before giving its statement, we define some auxiliary quantities based on the pro-
jections of U-statistics (e.g., Lee 1990). For x = (x1, x2, . . . , xd), let

H(x) = E

(
1

d

d∑
�=1

|X1,� − x�|p
)1/p

, θ = E[H(X1)].

and
ζi = H(Xi ) − θ, 1 ≤ i ≤ N ; s2(d) = Eζ 2

1 . (3.8)

i.e., ζi are centered projections of the normalized L p norms of the differencesXi −X j

onto the linear space of all measurable functions of Xi .

Theorem 3.2 Define the quantities

a(x) = (2 log x)1/2 and b(x) = 2 log x + 1
2 log log x − 1

2 logπ.

If H0 holds, and Assumptions 2.1, 3.1, and 3.2 are satisfied, then with s(d) as in (3.8)
and the choice w(t) = (t(1 − t))1/2, as min{N , d} → ∞,

P

{
a(log N )N 1/2

2s(d)
TN ,d ≤ x + b(log N )

}
→ exp

(−2e−x) (3.9)

for all x. Furthermore,

s2(d) = σ 2

4d
+ o

(
1

d

)
, d → ∞. (3.10)

Theorems 3.1 and 3.2 together provide the high-dimensional theoretical foundation
for asymptotic tests based on TN ,d , encompassing essentially all possible weight func-
tions of practical interest under the weak-type dependence context of Assumption 3.1.
Upon selection ofw(t), an asymptotic size α test can be conducted simply by rejecting
H0 if TN ,d exceeds the 1−α quantile of the corresponding limit, provided a consistent
estimate of σ is available (on estimating σ , see Sect. 3.1.3.)

Remark 3.1 The processes VN ,d , ZN ,d underlying TN ,d are clearly highly depen-
dent since they are both computed from the same sequence of data. Under
H0, our proofs reveal the joint weak convergence of the R

2-valued process
σ−1(Nd)1/2

(
VN ,d(t), ZN ,d(t)

)� in the spaceD[0, 1] of R2-valued càdlàg functions
on [0,1] to the process

(
B(t), (1 − 2t)1−βB(t)

)�
, 0 ≤ t ≤ 1,
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where B(t) is a standard Brownian bridge, which ultimately drives the asymptotic
behavior of TN ,d under H0.

In the next section, we demonstrate the test can also be used under certain types of
strong coordinate dependence as well.

3.1.2 Strong dependence

Next we consider the setting when the coordinates are potentially strongly dependent,
in the sense that they are discretely sampled observations of random functions Yi =
{Yi (t), 0 ≤ t ≤ 1}, i = 1, . . . , N , i.e.,

Xi = (Yi (t1),Yi (t2), . . . ,Yi (td)) with some 0 < t1 < t2 < . . . < td ≤ 1.

Below is our main assumption in this setting.

Assumption 3.3 (i) Y1, . . . ,YN are independent and identically distributed and have
continuous sample paths with probability 1,

(ii) d max1≤i≤d(ti − ti−1) → 1, t0 = 0, td = 1
(iii) E

∫ 1
0 |Y1(t)|r dt < ∞ for some r ≥ max{4, p},

(iv) and with some ν > 2

E

∣∣∣∣∣∣
1

d

d∑
j=1

|X1, j |p −
∫ 1

0
|Y1(t)|pdt

∣∣∣∣∣∣
ν

→ 0.

The projections H(x) in (3.8) can also be approximated with functionals of Yi (t).
For any measurable function g, we define

H(g) = E

(∫ 1

0
|Y1(t) − g(t)|p dt

)1/p

whenever the expectation exists and is finite. Next we define the asymptotic variance
in the context of strongly dependent coordinates. Let

γ 2 = var (H(Y1)) .

Note γ 2 < ∞ under Assumption 3.3(iii). Since we normalize with γ 2, we naturally
require

Assumption 3.4 γ 2 > 0.

Theorems 3.3 and 3.4, stated next, are our main results in the context of Assump-
tion 3.3.

Theorem 3.3 Assume that H0 holds and Assumptions 3.3 and 3.4 are satisfied. If
I (w, c) < ∞ is finite for some c > 0, then

γ −1N 1/2TN ,d
D→ sup

0<t<1

|B(t)|
w(t)
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The next statement is based on the choice of weight function w(t) = (t(1− t))1/2

and is the analog of Theorem 3.2 in our strong dependence framework.

Theorem 3.4 If H0 holds and Assumptions 3.3 and 3.4 are satisfied, then with s(d) as
in (3.8) and the choice w(t) = (t(1 − t))1/2, as min{N , d} → ∞,

P

{
a(log N )N 1/2

2s(d)
TN ,d ≤ x + b(log N )

}
= exp

(−2e−x)

for all x. Furthermore, s2(d) = γ 2/4 + o(1).

Theorems 3.1 through 3.4 together illustrate our approach is suitable in a variety
of distributional settings concerning the dependence of the coordinates. Though the
scaling factor for TN ,d in Theorems 3.1 and 3.2 is different than in Theorems 3.3 and
3.4 by a factor of d1/2, conveniently, in practice the same implementation can be used
in either case, as we discuss in the next section.

3.1.3 On implementation

Implementation of asymptotic tests based onTheorems3.1–3.4first requires consistent
estimation of the asymptotic variances σ 2 and γ 2 and suitable normalization of the
test statistics. Below we describe one such approach commonly used for U -statistics
via the jackknife (e.g., Lee 1990).

In what follows, letUN ,d denote d−1/pUN ,d,1(N ), and letU (−i)
N−1,d denote the value

analogous toUN ,d but based on the valuesX1, . . . ,Xi−1,Xi+1, . . . ,XN ; i.e.Xi is left
out. Define the so-called pseudo-observations

Ui = NUN ,d − (N − 1)U (−i)
N−1,d

and their corresponding average

ŪN = 1

N

N∑
i=1

Ui .

The jackknife estimator for the variance is defined as

σ̂ 2
N ,d = 1

(N − 1)

N∑
i=1

(Ui − ŪN )2.

Thenext statement shows that the same test statisticmaybeused in practice irrespective
of which set of assumptions among Sects. 3.1.1 and 3.1.2 hold.

Proposition 3.1 Under either the conditions of Theorem 3.1 or of Theorem 3.3, as
min{N , d} → ∞,

N 1/2

σ̂N ,d
TN ,d

D→ sup
0<t<1

|B(t)|
w(t)

.
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To replace the normalizations in the Darling–Erdős–type results of Theorems 3.2
and 3.4, we need an assumption on the rate of convergence of σ̂ 2

N ,d .

Proposition 3.2 Under the conditions of Theorem 3.2, if

d1/2
∣∣∣σ̂N ,d − 2d1/2s(d)

∣∣∣ log log N P→ 0

Then,

P

{
a(log N )N 1/2

σ̂N ,d
TN ,d ≤ x + b(log N )

}
→ exp

(−2e−x) (3.11)

for all x. Under the conditions of Theorem 3.4, the limit (3.11) holds for all x if

∣∣σ̂N ,d − s(d)
∣∣ log log N P→ 0.

Thus, upon choosing the weight function w(t), one can appropriately normalize
TN ,d using σ̂N ,d to obtain the same limit distribution under H0 in either the weak-
or strong- coordinate dependence case. This leads to a testing procedure that, with
regards to its asymptotic size, remains indifferent conercerning which assumption
among these two sets holds.

Critical values of the limiting test statistics in Theorems 3.1 and 3.3may be obtained
through various means. For instance, Franke et al. (2022) provide a fast adaptive
method to approximate the critical values for the supremum of the Brownian bridge
with weight functionw(t) = (t(1− t))κ , 0 ≤ κ < 1/2. Selected critical values for the
weighted Brownian bridge are also tabulated in Olmo and Pouliot (2011). If desired,
resampling methods can also be used to provide critical values; for instance, one can
use the bootstrap as in Gombay and Horváth (1999) and Hušková and Kirch (2008);
permutation-based methods can be also used to obtain critical values (cf. Antoch
and Hušková 2001), though at potentially at a substantial computational cost. This is
discussed toward the end of Sect. 4.3.

3.2 Power

Next we briefly discuss the behavior of the statistics under HA. For simplicity we first
consider the case of a single change point (R = 1) at location k1. Power in both single
and multiple change scenarios is examined numerically in Sect. 4.

The next result provides sufficient conditions for high-dimensional consistency of
the asymptotic tests given in Sect. 3.1. For the statements ahead, define

μ1 = E‖X1 − X2‖p, μ2 = E‖Xk1+1 − Xk1+2‖p

and
μ1,2 = E‖X1 − Xk1+1‖p.
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(N.b.: μ1, μ2, and μ1,2 depend on d and are allowed to depend on N .) Also, set

T̃N ,d =

⎧⎪⎪⎨
⎪⎪⎩

N 1/2TN ,d

s(d)
if I (w, c) < ∞ for some c,

a(log N )N 1/2

s(d)
TN ,d − b(log N ) w(t) = (t(1 − t))1/2.

(3.12)

Note that divergence of T̃N ,d implies the consistency of the associated test in Theo-
rems 3.1–3.4. We also denote 0 < η < 1 as the break fraction, i.e., the change point
k1 is given as k1 = 	Nη
.
Theorem 3.5 Suppose R = 1 and k1 = 	Nη
, for some fixed 0 < η < 1. Let

�N ,d = d−1/p max{|μ1 − μ2|, |μ1 − μ1,2|, |μ2 − μ1,2|}

Then, we have

T̃N ,d
P→ ∞ (3.13)

whenever Assumptions 2.1, 3.1 and 3.2 hold, and

(i) (Nd)1/2�N ,d → ∞, if w is chosen such that I (w, c) < ∞ for some c,
(i) (Nd)1/2 (log log N )−1/2 �N ,d → ∞, if w(t) = (t(1 − t))1/2.

Under Assumptions 3.3–3.4, (3.13) holds whenever

(i’) N 1/2�N ,d → ∞, if w is chosen such that I (w, c) < ∞ for some c,
(ii’) N 1/2 (log log N )−1/2 �N ,d → ∞, if w(t) = (t(1 − t))1/2.

Observe that the hypotheses of Theorem 3.5 require a stronger separation condition
in the context of Assumptions 3.3–3.4 compared to the context of Assumptions 3.1–
3.2. For instance, when �N ,d is held fixed, the conditions in (i) and (i i) suggest
larger values of d lead to improved test power under Assumptions 3.1–3.2, whereas
this is not the case for conditions (i ′) and (i i ′) under Assumptions 3.3–3.4. This can
roughly be seen as a reflection of the fact that a stronger signal is needed to overcome
comparatively stronger coordinate-wise dependence.

It is also worth noting that even if the distributions change at location k1, it is still
possible that μ1 = μ2 holds. For example, under a location shift, μ1 = μ2, but μ1 �=
μ1,2. Therefore, Theorem 3.5 demonstrates our tests are consistent against a variety
of alternatives, encompassing changes in location, scale, and in higher moments.

Though our main focus is testing, the behavior of our test statistics under the
alternative can be used to estimate the change point location. Below we provide one
such possibility that is consistent under mild additional conditions. Let

ZN ,d,0(t) = t(1 − t)d−1/p [UN ,d,3(	Nt
) −UN ,d,4
]
,

and let

kV = argmax
2<k<N−2

∣∣VN ,d
( k
N

)∣∣, kZ = argmax
2<k<N−2

∣∣ZN ,d,0
( k
N

)∣∣,
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where the selection of kV , kZ is arbitrary among the respective maximizers in the case
of ties. Set tV = kV /N and tZ = kZ/N . Our estimator is then defined as

η̂N ,d =
{
tV , |VN ,d(tV )| ≥ |ZN ,d(tZ )|,
tZ , |VN ,d(tV )| < |ZN ,d(tZ )|. (3.14)

The idea behind the estimator is as follows. Though the behavior of ZN ,d and VN ,d

is quite similar under H0, depending on the type of alternative, their paths under HA

can be dramatically different. Selecting the maximizers tZ and tV of the unweighted
ZN ,d,0 and VN ,d is done at the first step so that β does not influence the location of the
estimated change. Then, the change point location is chosen among these candidate
locations based on the associated value of the original processes ZN ,d and VN ,d . (Note
that, in principle, both ZN ,d and VN ,d may exceed the critical value: in these cases,
the break location is simply selected as the larger among the two.)

The following theorem establishes the consistency of η̂N ,d .

Proposition 3.3 Under the hypotheses of Theorem 3.5, for η̂ as in (3.14), we have

η̂N ,d
P→ η (3.15)

in the setting of Assumptions 2.1, 3.1 and 3.2 whenever

(i) μ1,2 � max{μ1, μ2, d1/p−1/2N−1/2},
(ii) |μ1 − μ2| � max{|μ1,2 − μ1|, |μ1,2 − μ2|} � d1/p−1/2N−1/2.

In the setting of Assumptions 3.2–3.3, (3.15) holds whenever

(i’) μ1,2 � max{μ1, μ2, d1/pN−1/2},
(ii’) |μ1 − μ2| � max{|μ1,2 − μ1|, |μ1,2 − μ2|} � d1/pN−1/2.

The conditions for consistency in Proposition 3.3 reflect two qualitatively different
types of possible changes: the divergence (i) (and (i ′)) can occur due to a location
shift, and the divergence (i i) (and (i i ′)) can result from scale changes, among other
possibilities (in particular, the divergence in (i i) cannot occur due to a location shift).

Remark 3.2 Upon rejection of H0, since VN ,d is invariant under location shifts, it may
be desirable to know which among VN ,d and ZN ,d contributed to rejection of H0.
By virtue of the joint maximization of these statistics through TN ,d , one can check
which among sup0<t<1 |VN ,d(t)|/w(t) and sup0<t<1 |ZN ,d(t)|/w(t) has exceeded the
critical value of the test without increasing the overall type I error rate.

The estimation and testing procedure above can be extended naturally and readily
to estimate multiple changes via recursive procedures such as binary segmentation,
which we illustrate in Sect. 4. Though in principle our estimation procedure can poten-
tially be improved further via wild binary segmentation (Fryzlewicz 2014) or possibly
through customized methods that make separate use of ZN ,d and VN ,d , for the sake
of illustration and simplicity we focus on the case of ordinary binary segmentation in
our numerical study.
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4 Simulation study

To evaluate the numerical performance of our procedure, we examine its behavior in
simulations based on the choice of the weight function

w(u) = 1

(u(1 − u))κ
0 ≤ κ ≤ 1/2, (4.1)

for various values of κ . In all settings, unless otherwise stated, we use β = 0.9. Each
reported estimate is based on 2000 independent realizations. The asymptotic variance
estimates used in each case are based on the jackknife method described in Sect. 3.1.3.

4.1 Size

We examine empirical size of our test at the sample sizes N = 50, 100, 250, 500 with
d = N and d = 2N where Xi are independent copies of X = (X1, . . . , Xn), in the
following settings:

(1) X ∼ N (0, Id);

(2) AR(1) coordinates: Xi = φXi−1 + εi , with φ = 0.9 and εi
i id∼ N (0, 1).

(3) X ∼ Multinomial(5d,p),withp=(p1, . . . , pd),where pi =(1/i)
(∑d

j=1 1/ j
)−1.

For brevitywedisplay results only for p = 1, thoughother cases of p = 2, 3performed
similarly in our simulations. Table 1 contains our results for nominal sizes of 0.01 and
0.05. In general, the test tends to be more aggressive as κ increases, particularly in
the case of κ = 0.45 when it is consistently oversized. (Since the convergence rate
for κ = 0.5 is particularly slow, we do not recommend use of κ = 0.5 at this sample
size.) Generally the size approximation is closest to the nominal value for the case
κ = 0.2 and κ = 0.4 for values of N ≥ 100. There is little difference between the
settings with d = 2N and d = N , or between examples (1)–(3).

4.2 Power

We study power and estimation performance in a variety of settings. For comparison
against other methods suited for general changes, we compare our method with

• (E-div.): the nonparametric E–divisive method (Matteson and James 2014) via the
ecp package in R. This method involves choice of a parameter α ∈ (0, 2); in
our simulations we consider ordinary energy distance (α = 1). Unless otherwise
indicated we use default settings for the e.divisive() method.

• (MEC): The graph-based max-type edge count method (Chu and Chen (2019)) via
the gSeg package in R. This method is suitable for a variety of datatypes and is
demonstrated in theirwork to have some advantages in high dimensions. Following
their simulation examples, we apply their method using the k-minimum-spanning
tree graph based on Euclidean distances with k = 5.

In all of our simulations in this section, we consider tests at the 5% significance level.
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Table 1 Empirical size for nominal size α = 0.01 and α = 0.05 tests with p = 1 in Examples (1)–(3)

κ N = d N = d/2
50 100 250 500 50 100 250 500

Nominal size 0.01

Ex (1) 0 0.007 0.008 0.008 0.010 0.004 0.006 0.006 0.007

0.2 0.005 0.005 0.009 0.009 0.005 0.007 0.011 0.008

0.4 0.013 0.010 0.007 0.011 0.015 0.010 0.009 0.012

0.45 0.024 0.020 0.021 0.017 0.017 0.019 0.016 0.011

Ex (2) 0 0.003 0.003 0.007 0.010 0.005 0.010 0.006 0.007

0.2 0.004 0.005 0.009 0.006 0.004 0.009 0.011 0.008

0.4 0.016 0.011 0.010 0.009 0.014 0.009 0.012 0.009

0.45 0.014 0.017 0.017 0.015 0.023 0.029 0.022 0.020

Ex (3) 0 0.007 0.007 0.009 0.008 0.004 0.005 0.005 0.006

0.2 0.006 0.006 0.008 0.007 0.006 0.010 0.0075 0.006

0.4 0.025 0.014 0.011 0.012 0.024 0.019 0.011 0.010

0.45 0.030 0.027 0.010 0.016 0.034 0.017 0.018 0.016

Nominal size 0.05

Ex (1) 0 0.026 0.032 0.039 0.048 0.028 0.038 0.047 0.046

0.2 0.036 0.044 0.040 0.042 0.037 0.034 0.043 0.044

0.4 0.064 0.054 0.044 0.051 0.053 0.058 0.050 0.044

0.45 0.065 0.069 0.064 0.053 0.061 0.069 0.079 0.069

Ex (2) 0 0.027 0.033 0.036 0.043 0.023 0.035 0.042 0.036

0.2 0.037 0.033 0.039 0.045 0.030 0.040 0.050 0.049

0.4 0.060 0.058 0.049 0.047 0.060 0.063 0.047 0.042

0.45 0.059 0.067 0.061 0.06 0.064 0.071 0.070 0.062

Ex (3) 0 0.034 0.033 0.039 0.041 0.024 0.034 0.036 0.033

0.2 0.044 0.038 0.049 0.046 0.029 0.034 0.035 0.047

0.4 0.070 0.059 0.058 0.052 0.069 0.058 0.058 0.059

0.45 0.072 0.067 0.061 0.069 0.064 0.064 0.066 0.064

4.2.1 Single change setting

We first examine the effect of the various types of distributional changes for a single
change point in high dimensions with N = d at location 	k1/N
 = η ∈ {0.5, 0.75}.
In what follows, we let Y(φ) = (Y1, . . . ,Yd)� denote vector of AR(1) coordinates,

where Yi = φYi−1 + εi and εi
i id∼ N (0, 1). Also, below, t(ν) denotes a Students’ t

random variable with ν degrees of freedom. For the single change-point setting, we
consider:

(4) Location change: X1
d= Y(φ) and Xk1+1

d= Y(φ) + µ, with φ = 0.5, µ =
(0.2, . . . , 0.2)�
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(5) Covariance change: X1
d= Y(φ), and Xk1+1

d= Y(φ′), with φ = 0.5, φ′ = 0.55.
(Note this amounts to a roughly 7.5% gain in variance in addition to correlation
changes.)

(6) Tail change: X1 ∼ N (0, Id), and Xk1+1 = (Xk1+1,1, . . . Xk1+1,d) with Xk1+1,i
i id∼

t(ν)/
√
var(t(ν)), where ν = 7. (Note the first three moments remain constant

throughout.)

For E-div, when N ≤ 100, we set the minimum cluster size to 10; otherwise
we leave it as its default value (30). For MEC, we use the function gSeg1(), as
is recommended in the package documentation (Chen et al. (2021)) for the single
change-point setting.

The results are reported in Table 2. In general we see that E-div performs extremely
well under a mean change as in setting (4), though MEC and our method still have
reasonably good power by comparison for N = d = 200 and larger when η = 0.5.
Rather surprisingly, both E-div andMEC are severely underpowered in setting (5), and
our method substantially outperforms both comparison methods in high dimensions.
In setting (6), the MEC method has good power for smaller d, but ultimately in high
dimensions our method outperforms both MEC and E-div, provided p �= 2. Note
that in (6), both the E-div method and our approach with p = 2 have severe lack
of power, in agreement with the phenomenon concerning limitations of Euclidean
energy distance-related metrics pointed out in Chakraborty and Zhang (2021b). Since
our method with p = 2 is roughly similar to the Euclidean energy distance, this is
somewhat expected.

In general our method has its highest power when η = 0.5, as is expected and
is common in most change-point methods. When η = 0.75, at this sample size our
approach displays a drop in power for mean changes compared to Ediv and MEC,
but retains reasonably good power for settings (6) and (7). Though power certainly
expected to decrease further in these settings as η moves toward the boundary, this is
partly compensated by the choice of weight function w(t) with κ = 0.4. This likely
can be further mitigated by increasing κ , though potentially at the expense of some
control over size in moderately sized samples.

4.2.2 Multiple change setting

In practice, the number of change points R and their locations are unknown. For
illustration, belowwe examine the effect of multiple changes in settings with a random
numberR ∼ 1+Poisson(1) of change points at locations ηi = 	ki/N
 = i/(R+1).
For simplicity of exposition, we consider “switching” scenarios that alternate between
two distributional behaviors analogous to Examples (4)–(6). Specifically, for every
integer j with 0 ≤ 2 j ≤ R, recalling k0 = 1, kR = N , we consider

(7) Location change:Xk2 j
d= Y(φ), and if 2 j < R,Xk2 j+1

d= Y(φ)+μ, withφ = 0.5,
µ = (0.2, . . . , 0.2)�,

(8) Covariance change:Xk2 j
d= Y(φ), and if 2 j < R,Xk2 j+1

d= Y(φ′), with φ = 0.5,
φ′ = 0.55.
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(9) Tail change: Xk2 j ∼ N (0, Id), and if 2 j < R, Xk2 j+1 = (Xk2 j+1,1, . . . Xk2 j+1,d)

with Xk2 j+1,i
i id∼ t(ν)/

√
var(t(ν)), ν = 7. (As in Example (6), the first three

moments remain constant throughout.)

In scenarios (7)–(9), each replication has its own independent realization of R ∈
{1, 2, . . .}. In our simulations, we estimate the unknown number of change points R
and change point locations recursively at the 5% level of significance using ordinary
binary segmentation. To assess estimation performance of both the estimated number
of changes R̂ and the estimated change point locations in high dimensions, in Table
3, we consider the high dimensional setting of N = d, with N = 300, 400, 500, 600,
and report

• The mean and median of the error R̂ − R

• The average Rand index (RI) and average adjusted Rand index (ARI).

The RI and ARI are measures of agreement between two clusterings of data. In each
realization, we compute the RI and ARI based on the estimated partition dictated
by the estimated change point location(s) compared with the true partition for that
realization consisting ofR+ 1 clusters. Values near 1 indicate strong agreement with
the clusterings, i.e., between the estimated number of change points and their true
values, in addition to estimated change point locations and their true values. Values
near 0 indicate strong disagreement. For more details on the Rand and adjusted Rand
indices, we refer to Rand (1971) and Morey and Agresti (1984).

For E-div, we use the same settings as in the Sect. 4.2.1. For MEC, we continue
to use the gSeg1() function with the same settings to accommodate the possibility
of only one change point in each realization; repeated application of this method
is recommended in the gSeg package documentation as an approach for detecting
multiple changes. We implement ordinary binary segmentation to facilitate direct
comparison with applying binary segmentation to our procedure.

In general our method has good estimation accuracy in settings (8) and (9). We
see that in all settings, behavior analogous to the single change-point setting emerges:
except for location changes, our method has dramatically higher performance by com-
parison to Ediv; the same is true in setting (9) compared to MEC, and in setting (8),
our method outperforms both approaches, but MEC retains reasonable estimation per-
formance. For the multiple mean-change setting (7), E-div still dominates for these
parameter choices, followed by MEC, and by comparison to the single change-point
setting, our estimation performance deteriorates though it retains moderate levels of
ARI.

4.3 Discussion

Among the three types of changes considered, our test has reasonably good perfor-
mance across an array of alternatives, and can have high power and good estimation
accuracy in high-dimensional settings settings where other nonparametricmethods are
relatively powerless or have difficulty correctly estimating change points. Though no
single method is expected to uniformly perform best against every type of alternative,
our procedure still displays moderate power and estimation accuracy in high dimen-
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sions even when it is outperformed for location-only alternatives, whereas comparison
methods can be severely underpowered for covariance or tail changes, indicating our
approach may be a suitable for use when little knowledge about the anticipated change
points is to be assumed. In settings in which location changes are of primary interest,
however, likely a procedure suited specifically to location changes would be more
appropriate.

In addition, though not explored in-depth in this study, theremay be possible advan-
tages of increasing p. As evident from Table 2, larger values of p appear to lead to
a decrease in power for the given alternatives in settings (4)–(6). However, for sparse
alternatives in which only a small portion of coordinates change, increasing p may
provide some benefit; unreported simulation studies suggest increasing p can help
with power against sparse location alternatives, in particular, but less so for sparse
covariance or sparse tail changes.

Further, unreported simulation studies suggest in most settings it is best to take β

close to 1; though control over size can degrade when making it extremely close to
1 (e.g., say 0.99) in moderate (N ≤ 500) sample sizes; in general recommend that
β ≤ 0.9 when N ≤ 500, and β ≤ 0.5 for small sample sizes. β also influences the
balance of the two statistics VN ,d and ZN ,d underlying our method; for smaller β,
ZN ,d is somewhat deprioritized and our test sensitivity is altered in a nontrivial way,
partly becoming less sensitive to location alternatives. On the other hand, increasing
β over larger samples can lead to increases in power against location alternatives.
To minimize the choice of tuning parameters in practice, we recommend in general
setting β = 0.9 which seems to work reasonably well in a variety of scenarios.

Our procedure can likely improved in a variety of ways without making significant
changes to the underlyingmethod. For instance, estimation performance in themultiple
change point setting is expected to improvewithwild binary segmentation (Fryzlewicz
2014). Overmoderate and smaller-sized samples in particular, power can likely also be
improved though refined normalization of ZN ,d (t), e.g., replacing (|1−2t |+N−1/2)−β

by (|1− 2t | + hN (t))−β or similar, for a function hN (t) satisfying hN (1/2) ∼ N−1/2

but equal to 1 outside a neighborhood of t = 1/2. Also note in the multiple change
setting, in (3.14), each of tV and tZ may concentrate around different change points, but
only one of tV and tZ are chosen as the segmentation point, which may result in losses
in power in the subsequent iteration of the binary segmention. This could potentially
be improved by running parallel segmentations that take into account which statistic(s)
exceed the critical value,which in principlewould also provide amore detailed analysis
of the observed sequence.

Lastly, in small samples, in lieu of using our asymptotic approach, a standard
permutation-based test for TN ,d can instead be used to retain control over size.However
ourmethod aswell asE-div have quadratic complexity as the sample size increases, and
permutation-based approaches require repeated rearrangements of O(N 2) distances
for each permutation that can be computationally burdensome when N is large (even
when a small number of random permutations are chosen, c.f. Biau et al. (2016)). Our
asymptotic approach has the benefit of avoiding this problem and makes our test suit-
able for testing potentially longer sequences compared with resampling approaches.
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5 Application: mentions of U.S. governors on Twitter

We illustrate our method through an application involving Twitter data concerning
mentions of U.S. governors. The data was collected using the full–archive tweet counts
endpoint in the Twitter Developer API.1 The API allows retrieval of the count by
day of tweets matching any query from the complete history of public tweets. Note
that when using the full-archive tweet counts endpoint in the Twitter API, the fil-
ters -is:retweet -is:reply -is:quote were applied to remove retweets,
replies and quote tweets respectively.

Our dataset consists of matching queries that reference any of the 50U.S. governors
from 1/1/21 to 12/31/21, resulting in a series of length and dimension (N , d) =
(365, 50). Only governors holding office on the date 12/31/21 were included in this
dataset; the full list of queried names is given in Table 4.

To accommodate variability in the total number of daily mentions among all gov-
ernors, which range from roughly 1,000 to 20,000 mentions in a given day, a subset
of m = 500 observations on each day were randomly sampled without replacement,
resulting in conditionally multivariate hypergeometric observations Xi with parame-
tersm = 500, ri , where the vector ri = (r1,i , . . . , r50,i ) contains the observed number
of daily mentions for each governor based on the random selection for that day. Test
results did not substantially change for other choices of m ≤ 1000, and repeated tests
for different subsets of m gave relatively consistent results.

For our tests and estimation, we use p = 1 and β = 0.9 in accordance with
favorable performance of these choices revealed in Sect. 4. After a change is detected,
we estimate the location of change with η̂N ,d , the estimator of (3.14) with weight
function w(t) = (t(1 − t))κ with for various κ and continue to estimate changes via
binary segmentation and tests were repeated in each subsegment until failure to reject
the null hypothesis. Figure2 contains detected change points for p = 1, which were
identical for choices of κ = 0.0, 0.1, 0.2, 0.25, 0.4 and β = 0.9 at significance level
0.01.

Several detected changes apparently coincide with important dates or events in
the U.S. news cycle. For instance, the date 9/12/21 (adjacent to 9/11) is detected
as a change point, as is the date 11/25/21, coinciding with the weekend following
Thanksgiving; some news events are apparent from other dates. For instance, the
date 5/21/2021 coincides with several news stories following Texas Governor Greg
Abbott’s signing of the controversial Texas Heartbeat Act into law2; the date 8/1/2021
coincides with a news cycle immediately following Florida Governor Ron Desantis’
executive order on 7/30/2021 concerning masking.3 Interestingly, unreported results
from repeated analysis on this dataset across various values of β = 0, 0.1, 0.2, 0.3, 0.4
and κ = 0, 0.2, 0.4 reveals the dates 5/21/21, 8/1/21, and 9/12/2021 are all detected
in nearly every case.

1 https://developer.twitter.com/en/docs/twitter-api/tweets/counts/introduction.
2 https://en.wikipedia.org/wiki/Texas_Heartbeat_Act.
3 https://www.flgov.com/2021-executive-orders/.
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Nov. 27
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Dec. 15

Fig. 2 Change-point detection with size 0.01 tests using p = 1 for Governor dataset from January 1st, 2021
to December 31st, 2021. Bisection conducted until failure to reject null hypothesis. In the figure above,
the top of each tree is the first estimated change point; subsequent estimated change points after bisection
appear along each respective branch in the order of detection, displayed chronologically left-to-right

6 Conclusion

In this paper, we construct an asymptotic testing procedure suitable for high-
dimensional settings based on combining two maximally selected statistics stemming
from L p norms. Ourmethod is theoretically supported in high dimensional asymptotic
settings and displays convenient limit behavior leading to a straightforward asymp-
totic test with readily available critical values. We have demonstrated our test has
reasonably good power against a variety of alternatives, and has especially high power
when there is no change in location by comparison to other nonparametric methods,
making it suited to scenarios when little a priori knowledge is available about the type
of possible change points or when location changes are not expected.

An underlying principle of our approach lies in combining two separate statistics –
each measuring different aspects of the data – that behave similarly under H0, leading
to tractable and convenient limit behavior, but behave differently under HA, thereby
providing increased power. This general principle can likely be used in other high-
dimensional change-point methods, or to develop more discerning change-point tests
and estimation procedures. We leave this open as a topic for future research.

Appendix A. Some examples

In this section, we provide some examples in which the assumptions in Sect. 3 are
satisfied. Throughout, C > 0 denotes a generic constant independent of N , d whose
value may change line-to-line.

Example A.1 (Independent coordinates) Assume X1,1, X1,2, . . . , X1,d are indepen-
dent, and that (3.5) holds. For simplicity write X1 −X2 = (Z1, Z2, . . . , Zd)

�. Using
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Rosenthal’s inequality (Petrov 1995, p. 59) we get for all β ≥ 2

E

∣∣∣∣
d∑
j=1

(|Z j |p − E |Z j |p
)∣∣∣∣

β

≤ C

( d∑
j=1

E
∣∣|Z j |p − E |Z j |p

∣∣β +
[ d∑

j=1

var
(|Z j |p

)]β/2)
,

where C > 0 depends only on p. Similarly,

E

∣∣∣∣
d∑
j=1

[
g j (X1, j ) − Eg j (X1, j )

]∣∣∣∣
β

≤ C

( d∑
j=1

E
∣∣g j (X1, j ) − Eg j (X1, j )

∣∣β +
[ d∑

j=1

var
(
g j (X1, j )

)]β/2)
.

Note for all β ≥ 1, E |g j (X1, j )|β ≤ CE |X1, j |pβ . Hence conditions (3.3) and (3.4) in
Assumption 3.1 are satisfied if

lim sup
d→∞

1

d

d∑
j=1

E |X1, j |2p < ∞

and

lim sup
d→∞

1

dα/2

d∑
j=1

[
E |X1, j |pα + (E |X1, j |p)α

]
< ∞.

Next we extend Example A.1 to dependent coordinates.

Example A.2 (Linear process coordinates) Suppose for eachd,Xi = (Xi,1, . . . , Xi,d)
�

are given by Xi,� = ∑∞
j=−∞ a�− jε

(i)
j , where ε

(i)
j are independent identically dis-

tributed variables with Eε
(i)
j = 0, E(ε

(i)
i )2 = 1, E |ε1|pα < ∞, and the coefficients

ak satisfy
|ak | ≤ c1 exp(−c2|k|)

with some 0 < c1, c2 < ∞. First we show (3.3) holds, i.e., that

E

∣∣∣∣
d∑
j=1

[|Z j |p − E |Z j |p
] ∣∣∣∣

α

≤ Cdα/2 (A.1)
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where (Z1, Z2, . . . , Zd)
� = X1 − X2. For notational simplicity let ε j = ε

(1)
j − ε

(2)
j ,

and for c3 > 0, define

Z̄ j =
∑

| j−�|≤c3 log d

a�− jε� +
∑

| j−�|>c3 log d

a�− j ε̃�,

where the sequence {̃ε j }∞j=−∞ is an independent copy of {ε j }∞j=−∞. Let q ≥ 1 be

such that q−1 + r−1 = 1, and take any s > 1
r . The decay of a j,k implies we can

choose c3 = c3(α) large enough so that

E |Z j − Z̄ j |r = E

∣∣∣∣
∑

| j−�|>c3 log d

a�− j ε̃�

∣∣∣r

≤
( ∑

| j−�|>c3 log d

| j − �|sq |a�− j |q
) r

q
( ∑

| j−�|>c3 log d

| j − �|−sr E |̃ε�|r
)

≤ C

( ∑
| j−�|>c3 log d

| j − �|sq | exp{−qc2| j − �|}
) r

q

≤ Cd−α/2.

Using the inequality ||x |p − |y|p| ≤ Cp(|x |p−1 + |y|p−1)|x − y|, this gives

E

∣∣∣∣
d∑
j=1

∣∣Z j |p − |Z̄ j
∣∣p∣∣∣∣

α

≤ CE

( d∑
j=1

(|Z j |p−1 + |Z̄ j |p−1)|Z j − Z̄ j |
)α

≤ Cdα−1
d∑
j=1

E
(
(|Z j |p−1 + |Z̄ j |p−1)|Z j − Z̄ j |

)α

≤ dα−1C
d∑
j=1

(
E |Z j |pα

) p−1
p
(
E |Z j − Z̄ j |pα

)1/p ≤ Cdα/2.

Thus, it suffices to establish (A.1) for the variables Z̄ j in place of Z j . Note that by
definition, Z̄1, Z̄2, . . . , Z̄d are c3 log d–dependent random variables. For simplicity,
for each d we set Z̄� = 0 whenever � > d. Now define nk = (k − 1)	(log d)2
,
ζ j = |Z̄ j |p − E |Z̄ j |p. Let

Qk,1 =
nk∑

�=nk−1+1

ζ�, k = 1, 3, . . . , k∗
1 , Qk,2 =

nk∑
�=nk−1+1

ζ�, k = 2, 4, . . . , k∗
2 ,

where k∗
1 , and k

∗
2 are the smallest odd and even integers, respectively, such that nk∗

i
≥

d. (Note the quantities Qk∗
1 ,1 and Qk∗

2 ,2 respectively may contain fewer than nk∗
1

−
nk∗

1−1 and nk∗
2

− nk∗
2−1 terms.) By construction, the variables Qk,1, k = 1, 3, . . . , k∗

1
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are independent and similarly Qk,2, k = 2, 4, . . . , k∗
2 are independent. Thus, using

Rosenthal’s inequality again, we obtain

E

∣∣∣∣
∑

k=1,3,...,k∗
1

Qk,1

∣∣∣∣
α

≤ C

⎛
⎝ ∑

k=1,3,...,k∗
1

E |Qk,1|α +
( ∑
k=1,3,...,k∗

1

E(Qk,1)
2
)α/2

⎞
⎠
(A.2)

and similarly for Qk,2. We proceed to bound E |Qk,1|α and E |Qk,1|2 separately. For
E |Qk,1|α , we have

E |Qk,1|α ≤ (nk−nk−1)
α−1

nk∑
�=nk−1+1

E |ζ�|α ≤ C(nk−nk−1)
α ≤ C(log d)2α. (A.3)

For E |Qk,1|2, we need a sharper bound. For each j , set

ε̄
( j)
� =

{
ε� |� − j | ≤ c3 log d

ε̃� |� − j | > c3 log d

so that Z̄ j = ∑∞
�=−∞ a�− j ε̄

( j)
� . Now, for each 1 ≤ �, j ≤ d, j �= �, set I j,� =(

j − 	| j − �|/2
, j + 	| j − �|/2
], and define

Z̄ j,� =
∑
i∈I j,�

ai−�ε̄
( j)
i +

∑
i /∈I j,�

ai−�ε̄
( j,�)
i

where ε̄
( j,�)
i , i /∈ I j,� are independent copies of ε̄

( j)
i . By construction, for each pair

( j, �), j �= �, we have Z̄�, j
D= Z̄ j , and the variables Z̄�, j and Z̄�, j are independent,

since I j,� ∩ I�, j = ∅. Further, if we define

ζ j,� = |Z̄ j,�|p − E |Z̄ j,�|p

we clearly have, for some constants c11, c12 > 0 independent of d,

E |ζ j − ζ j,�|2 =
∑
i /∈I j,�

a2i, j ≤ c11 exp(−c12| j − �|).

Therefore, from the decomposition E |Qk,1|2 = ∑nk
�=nk−1+1 Eζ 2

� +2
∑

nk−1+1≤ j<�≤nk
Eζ�ζ j , using Eζ j,�ζ�, j = 0, we obtain

∣∣∣ ∑
nk−1+1≤ j<�≤nk

Eζ�ζ j

∣∣∣ =
∣∣∣ ∑
nk−1+1≤ j<�≤nk

E
[
(ζ� − ζ�, j )ζ j

]+ E
[
(ζ j − ζ j,�)ζ�, j )

]∣∣∣
≤

∑
nk−1+1≤ j<�≤nk
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((
E(ζ� − ζ�, j )

2Eζ 2
j )
)1/2 + (

E(ζ j − ζ j,�)
2Eζ 2

�, j

)1/2)
≤ C(nk − nk+1).

Thus,
E |Qk,1|2 ≤ C(nk − nk+1). (A.4)

Combining (A.3) and (A.4) with (A.2), we obtain E
∣∣∑

k=1,3,...,k∗
1
Qk,1

∣∣α ≤ Cdα/2.
The same arguments apply to Qk,2, which establishes (A.1), i.e. (3.3) holds.

Turning to (3.4), observe

|g j (x) − g j (y)| ≤ C(|x |p−1 + |y|p−1)|x − y|.

Thus, (3.4) can be established using the same arguments leading to (A.1) with minor
adjustments.

For (3.5), note the sequence g1(X1), g2(X2), . . . is stationary and thus a(p) =
Eg1(X1) and the existence of τ 2 follows, showing that Assumption 3.3 holds.

Example A.3 (Multinomial coordinates) We assume that X1 has a multinomial dis-
tribution with parameter (γ1/d, γ2/d, . . . , γd/d,Cd), where C is a positive integer,
0 < c1 ≤ γi ≤ c2, 1 ≤ i ≤ d, γ1 + γ2 + . . . + γd = d. Under these assumptions,
the coordinates of X1 are approximately independent Poisson random variables (cf.
McDonald 1980; Deheuvels and Pfeifer 1988) and the conditions of Theorems 3.1
and 3.2 are satisfied.

Appendix B. Preliminary lemmas

In all asymptotic statements, OP (1) and oP (1) denote terms which are bounded in
probability and tend to zero in probability, respectively, in the limit min{N , d} → ∞.
Throughout, we continue to write C > 0 to denote a generic constant, independent of
N , d whose value may change line-to-line.

Recall the independent and identically distributed random variables ζi , 1 ≤ i ≤ N
defined in (3.8). Let

ψi, j =
(
1

d

d∑
�=1

|Xi,� − X j,�|p
)1/p

− θ. (B.1)

First we provide a bound for the distance between the underlying U-statistics and their
projections in terms of the (dimension-dependent) quantities Eψ2

1,2 and Eζ 2
1 .

Lemma B.1 For each pair 1 ≤ i �= j ≤ N, let yi, j = ψi, j − (ζi + ζ j ). Under either
the conditions of Theorem 3.1 or 3.2 or under Theorem 3.3 and 3.4, for any ᾱ > 0

max
1≤k≤N

1

k1+ᾱ

∣∣∣∣
∑

1≤i< j≤k

yi, j

∣∣∣∣ = OP

((
Eψ2

1,2 + Eζ 2
1

)1/2)
, (B.2)
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max
1≤k≤N−1

1

(N − k)1+ᾱ

∣∣∣∣
∑

k+1≤i< j≤N

yi, j

∣∣∣∣ = OP

((
Eψ2

1,2 + Eζ 2
1

)1/2)
, (B.3)

and for any β ≥ 0,

max
1≤k≤N−1

(∣∣∣∣1 − 2k

N

∣∣∣∣+ 1√
N

)−β

[k(N − k)] 12+ᾱ

∣∣∣∣
k∑

i=1

N∑
j=k+1

yi, j

∣∣∣∣

= OP

((
log(N )N−ᾱ + log2(N )N

β
2 −2ᾱ)

) (
Eψ2

1,2 + Eζ 2
1

)1/2)
. (B.4)

Proof We write

∑
1≤i< j≤k

[
ψi, j − (ζi + ζ j )

] =
k∑
j=2

ξ j ,

where

ξ j =
j−1∑
�=1

[
ψ�, j − (ζ� + ζ j )

]
, 2 ≤ j ≤ N ;

for convenience we set ξ1 = 0. Using the definition of ζi , we have

Eξi = 0, Eξiξ j = 0, if i �= j and Eξ2i ≤ 9i
(
Eψ2

1,2 + 2Eζ 2
1

)
.

Hence by Menshov’s inequality (cf. Billingsley 1968, p. 102)

E max
1≤k≤m

(
k∑

i=1

ξi

)2

≤ (
log2(4m)

)2 m∑
i=1

9i
(
Eψ2

1,2 + 2Eζ 2
1

)

≤ Cm2(logm)2
(
Eψ2

1,2 + Eζ 2
1

)
. (B.5)

Using (B.5) we get

P

{
max

1≤k≤N

1

k1+ᾱ

∣∣∣∣
k∑

i=1

ξi

∣∣∣∣ > x
(
Eψ2

1,2 + Eζ 2
1

)1/2 }

≤ P

{
max

1≤ j≤log N
max

e j−1≤k≤e j

1

k1+ᾱ

∣∣∣∣
k∑

i=1

ξi

∣∣∣∣ > x
(
Eψ2

1,2 + Eζ 2
1

)1/2}

≤
log N∑
j=1

P

{
max

e j−1≤k≤e j

1

k1+ᾱ

∣∣∣∣
k∑

i=1

ξi

∣∣∣∣ > x
(
Eψ2

1,2 + Eζ 2
1

)1/2 }
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≤
log N∑
j=1

P

{
max

e j−1≤k≤e j

∣∣∣∣
k∑

i=1

ξi

∣∣∣∣ > xe( j−1)(1+ᾱ)
(
Eψ2

1,2 + Eζ 2
1

)1/2 }

≤ C

x2

log N∑
j=1

e−2 j(1+ᾱ)e2 j j2

≤ C

x2
,

completing the proof of (B.2). By symmetry, (B.2) implies (B.3). We now show (B.4).
First, by Lemma D.1, for each fixed 1 ≤ m1 < m2 ≤ N − 1,

E max
m1≤k≤m2

( k∑
i=1

N∑
j=k+1

yi j

)2

≤ [
log2(4m1) log2(4(N − m1)

]2
m2(N − m1)

(
Eψ2

1,2 + Eζ 2
1

)
. (B.6)

For any x > 0, let x ′ = x log(N )N−ᾱ . Using (B.6), over the range 1 ≤ k < N/4, for
all large N , we have

(∣∣1 − 2k
N

∣∣+ 1
N

)−β ≤ 2, and thus

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
1≤k≤N/4

(∣∣∣∣1 − 2k

N

∣∣∣∣+ 1√
N

)−β

[k(N − k)] 12+ᾱ

∣∣∣∣
k∑

i=1

N−k∑
j=1

yi j

∣∣∣∣ > x ′ (Eψ2
1,2 + Eζ 21

)1/2
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ P

{
max

1≤ j≤log(N/4)
max

e j−1≤k≤e j−1

1

k
1
2+ᾱ

∣∣∣∣
k∑

i=1

N−k∑
j=1

yi j

∣∣∣∣ > Cx ′N
1
2+ᾱ

(
Eψ2

1,2 + Eζ 21

)1/2 }

≤
log(N/4)∑

j=1

P

{
max

e j−1≤k≤e j−1

∣∣∣∣
k∑

i=1

N−k∑
j=1

yi j

∣∣∣∣ > x ′Ce
( j−1)

(
1
2+ᾱ

)
N

1
2+ᾱ

(
Eψ2

1,2 + Eζ 21

)1/2 }

≤ C

(x ′)2
log(N/4)∑

j=1

e−(1+2ᾱ) j N−(1+2ᾱ)e j (N − e j−1)
[
log(4(N − e j−1)) log(4e j )

]2

≤ C

(x ′)2 [log(N )]2N−2ᾱ
log(N/4)∑

j=1

j2e− j2α

≤ C

x2
. (B.7)

Over the range N/4 ≤ k ≤ N/2, [k(N − k)]ᾱ/2 ≥ CN ᾱ , and applying (B.6) again,

P

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
N/4≤k≤N/2

(∣∣∣∣1 − 2k

N

∣∣∣∣+ 1√
N

)−β

[k(N − k)] 12+ᾱ

∣∣∣∣∣∣
k∑

i=1

N−k∑
j=1

yi j

∣∣∣∣∣∣ > x
(
Eψ2

1,2 + Eζ 2
1

)1/2
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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≤ P

⎧⎨
⎩ max

N/4≤k≤N/2

∣∣∣∣∣∣
k∑

i=1

N−k∑
j=1

yi j

∣∣∣∣∣∣ > x ′CN 1+2ᾱ− β
2

(
Eψ2

1,2 + Eζ 2
1

)1/2⎫⎬
⎭

≤ C

x2
(
Nβ−4α[ log N]4) (B.8)

By (B.7) and (B.8),

max
1≤k≤N/2

(∣∣∣1 − 2k

N

∣∣∣+ 1√
N

)−β

[k(N − k)] 12+ᾱ

∣∣∣∣
k∑

i=1

N∑
j=k+1

yi, j

∣∣∣∣

= OP

((
log(N )N−ᾱ + [log(N )]2N β

2 −2ᾱ
) (

Eψ2
1,2 + Eζ 2

1

)1/2)
.

By symmetry, the same bound holds for the maximum taken over N/2 < k ≤ N ,
completing the proof of (B.4). ��

Next we consider approximations for the sums of the projections. Let

s2(d) = Eζ 2
1 and m(d, ν) = E |ζ1|ν.

Lemma B.2 Suppose m(d, ν) < ∞. If either the conditions of Theorem 3.1 or 3.2
or those of Theorem 3.3 and 3.4, are satisfied, then for each N and d we can define
independent Wiener processes {WN ,d,1(x), 0 ≤ x ≤ N/2} and {WN ,d,2(x), 0 ≤ x ≤
N/2} such that,

sup
1≤x≤N/2

1

x ᾱ

∣∣∣∣∣∣
1

s(d)

	x
∑
i=1

ζi − WN ,d,1(x)

∣∣∣∣∣∣ = OP (1),

and

sup
N/2≤x≤N−1

1

(N − x)ᾱ

∣∣∣∣∣∣
1

s(d)

N∑
i=	x
+1

ζi − WN ,d,2(N − x)

∣∣∣∣∣∣ = OP (1)

for any ᾱ > max{1/4, 1/ν}.
Proof Using the Skorokhod embedding scheme (e.g., Breiman 1968) we can define
Wiener processes WN ,d,3(x) such that

k∑
i=1

ζi = WN ,d,3 (ti ) , ti = r1 + r2 + · · · + ri ,

where for each N and d the random variables r1,r2. . . . ,rN/2 are independent and
identically distributed with
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Er1 = s2(d) and Erν/2
1 ≤ c1m(d, ν).

We can assume without loss of generality that 2 < ν < 4. Using the Marcinkiewicz–
Zygmund and von Bahr–Esseén inequalities (Petrov 1995, p. 82) we get

E max
1≤ j≤k

∣∣∣∣∣∣
j∑

i=1

(ri − s2(d))

∣∣∣∣∣∣
ν/2

≤ Ck
(
Erν/2

1 + (s2(d))ν/2
)

≤ Ck
(
m(d, ν) + (s2(d))ν/2

)
.

We get for all ν/2 < λ that

P

⎧⎨
⎩ max
1≤k≤N/2

1

kλ

∣∣∣∣∣∣
k∑

i=1

(ri − s2(d))

∣∣∣∣∣∣ > x
(
m(d, ν) + (s2(d))ν/2

)2/ν
⎫⎬
⎭

≤ P

⎧⎨
⎩ max
1≤ j≤log(N/2)

max
e j−1≤k≤e j

1

kλ

∣∣∣∣∣∣
k∑

i=1

(ri − s2(d))

∣∣∣∣∣∣ > x
(
m(d, ν) + (s2(d))ν/2

)2/ν
⎫⎬
⎭

≤ P

⎧⎨
⎩ max
1≤ j≤log(N/2)

max
e j−1≤k≤e j

∣∣∣∣∣∣
k∑

i=1

(ri − s2(d))

∣∣∣∣∣∣ > xe( j−1)λ
(
m(d, ν) + (s2(d))ν/2

)2/ν
⎫⎬
⎭

≤
log(N/2)∑

j=1

P

⎧⎪⎨
⎪⎩ max
e j−1≤k≤e j

∣∣∣∣∣∣
k∑

i=1

(ri − s2(d))

∣∣∣∣∣∣
ν/2

> xν/2e( j−1)λν/2
(
m(d, ν) + (s2(d))ν/2

)
⎫⎪⎬
⎪⎭

≤ C

xν/2

log(N/2)∑
j=1

e j e−( j−1)λν/2

≤ C

xν/2 . (B.9)

For s > 0, and any c1 > 0, let

h(s, d) = c1s
λ
(
m(d, ν) + (s2(d))ν/2

)2/ν

The bound (B.9) implies

lim
c1→∞ lim inf

N→∞ P
{
t	x
 ∈ {y > 0 : |y − xs2(d)| ≤ h(x, d)

}
, 1 ≤ x ≤ N/2

}
= 1.

In turn, this implies

lim
c1→∞ lim inf

N→∞ P

{
max

1≤x≤N/2

1

s(d)x ᾱ

∣∣∣WN ,d,3
(
t	x


)− WN ,d,3

(
s2(d)x

)∣∣∣
≤ sup

1≤x≤N/2
sup

{y>0:|y−s2(d)x |≤h(x,d)}
1

s(d)x ᾱ

∣∣∣WN ,d,3 (y) − WN ,d,3

(
s2(d)x

)∣∣∣
}
= 1.
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By the scale transformation of the Wiener process

sup
1≤x≤N/2

sup
{y>0:|y−s2(d)x |≤h(x,d)}

1

s(d)x ᾱ

∣∣∣WN ,d,3 (y) − WN ,d,3

(
s2(d)x

)∣∣∣
D= sup

1≤x≤N/2
sup

{z>0:|z−x |≤h(x,d)/s2(d)}
1

x ᾱ
|W (z) − W (x)|

≤ sup
1≤x≤N/2

sup
{z>0:|z−x |≤c2xλ}

1

x ᾱ
|W (z) − W (x)| , (B.10)

where we used that supd≥1
(
m(d, ν) + (s2(d))ν/2

)2/ν
/s2(d) ≤ c2 < ∞ for some

c2 > 0 by Lemma D.3. Recall (e.g., Csörgő and Révész 1981, p. 24) for every ε > 0
there exists a c0(ε) such that

P
{

sup
0≤x≤T

sup
{z>0:|z−x |≤h}

|W (z) − W (x)| > h1/2y
}

≤ c0(ε)T

h
exp

(
− y2

2 + ε

)
,

for any T > 0 and 0 < h < T . Therefore, for any M > 0, c > 0, and λ < 2ᾱ, we
have

P
{

sup
1≤x≤N

sup
{z>0:|z−x |≤cxλ}

1

x ᾱ
|W (z) − W (x)| > M

}

≤
log N∑
j=1

P
{

sup
e j−1≤x≤e j

sup
{z>0:|z−x |≤cxλ}

1

x ᾱ
|W (z) − W (x)| > M

}

≤
log N∑
j=1

P
{

sup
e j−1≤x≤e j

sup
{z>0:|z−x |≤cxλ}

|W (z) − W (x)| > Meᾱ( j−1)
}

≤
log N∑
j=1

P
{

sup
0≤x≤e j

sup
{z>0:|z−x |≤ce jλ}

|W (z) − W (x)|>c−1e−ᾱ(ce jλ/2) · Me j(ᾱ−λ/2)
}

≤ C
log N∑
j=1

e j(1−λ) exp
(

− c3M
2e j(2ᾱ−λ)

)

≤ C
∞∑
j=1

e j(1−λ) exp
(

− c3M
2e j(2ᾱ−λ)

)

= CG(M).

Note G(M) < ∞ since λ < 2ᾱ, and clearly G(M) → 0 as M → ∞. Returning to
(B.10), this implies

sup
1≤x≤N/2

sup
{z>0:|z−x |≤c2xλ}

1

x ᾱ
|W (z) − W (x)| = OP (1), N → ∞,
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which establishes the result. ��

Appendix C. Proofs of theorems 3.1–3.4

Proof of Theorem 3.1 Let 2/N ≤ t ≤ 1−2/N . With k = 	Nt
, and k∗ = N − k, note

σ−1(Nd)1/2VN ,d(t)

= N 1/2 k

N

k∗

N

2d1/2

σ

(
1

k(k − 1)

∑
1≤i< j≤k

ψi, j − 1

k∗(k∗ − 1)

∑
k+1≤i< j≤N

ψi, j

)

= N 1/2 k

N

k∗

N

2d1/2

σ

(
1

k

k∑
i=1

ζi − 1

k∗
N∑

i=k+1

ζi

)
+ RV

N ,d(t)

= N−1/2 2d
1/2

σ

( k∑
i=1

ζi − k

N

N∑
i=1

ζi

)
+ RV

N ,d(t), (C.1)

where, letting yi j = ψi, j − ζi − ζ j ,

RV
N ,d(t) = N 1/2 k

N

k∗

N

2d1/2

σ

( 1

k(k − 1)

∑
1≤i< j≤k

yi j − 1

k∗(k∗ − 1)

∑
k+1≤i< j≤N

yi j
)
.

For ᾱ > 0, observe

N 1/2−ᾱ |RN ,d (t)|
(t(1 − t))ᾱ

= 2d1/2

σ

( (1 − t)1−ᾱ

kᾱ(k − 1)

∑
1≤i< j≤k

yi j − t1−ᾱ

(k∗)ᾱ(k∗ − 1)

∑
k+1≤i< j≤N

yi j
)
.

Thus, if 0 < ᾱ < 1, Lemmas B.1 and D.3 imply

N 1/2−ᾱ sup
2/N≤t≤1−2/N

|RN ,d(t)|
(t(1 − t))ᾱ

= OP (1).

Similarly, writing gN (t) = (|1 − 2t | + 1√
N

)−β , we have

σ−1(Nd)1/2ZN ,d(t)

= gN (t)

N 3/2

2d1/2

σ

( k∑
i=1

N∑
j=k+1

ψi, j − kk∗

N 2

N∑
i=1

N∑
j=1

ψi, j

)

= gN (t)

N 3/2

2d1/2

σ

( k∑
i=1

N∑
j=k+1

(ζi + ζ j ) − kk∗

N 2

N∑
i=1

N∑
j=1

(ζi + ζ j )

)
+ RZ

N ,d(t)

123



B. C. Boniece et al.

= gN (t)

(
1 − 2k

N

)
N−1/2 2d

1/2

σ

( k∑
i=1

ζi − k

N

N∑
i=1

ζi

)
+ RZ

N ,d(t), (C.2)

where

RZ
N ,d(t) = σ−1(Nd)1/2t(1 − t)

(
gN (t)

kk∗
k∑

i=1

N∑
j=k+1

yi j − gN (t)

N 2

N∑
i=1

N∑
j=1

yi j

)
.

Now, for every 0 < δ < 1/2,

N 1/2−ᾱ |RN ,d(t)Z |
(t(1 − t))ᾱ

= d1/2

σ

⎛
⎝(t(1 − t))

1
2−δ N

ᾱ−2δgN (t)

(kk∗) 1
2+ᾱ−δ

k∑
i=1

N∑
j=k+1

yi j

−[t(1 − t)]1−ᾱgN (t)

N
3
2+ᾱ

N∑
i=1

N∑
j=1

yi j

⎞
⎠ .

Applying Lemmas B.1 and D.3, provided ᾱ > δ, we obtain

N 1/2−ᾱ sup
2/N≤t≤1−2/N

|RZ
N ,d(t)|

(t(1 − t))ᾱ

= OP

(
N−δ log N + (log N )2N

β
2 −ᾱ

)
+ OP (N

β
2 −ᾱ− 1

2
)
.

Now, let

BN ,d (t) =
{
N−1/2 [WN ,d,1(Nt) − t

(
WN ,d,1(N/2) + WN ,d,2(N/2)

)]
, 0 ≤ t ≤ 1/2

N−1/2 [−WN ,d,2(N − Nt) + (1 − t)
(
WN ,d,1(N/2) + WN ,d,2(N/2)

)]
, 1/2 ≤ t ≤ 1.

(C.3)

The process {BN ,d(t), 0 ≤ t ≤ 1} is Gaussian, and a straightforward computation of
its covariance function shows it is a Brownian bridge in law for all N and d. By (C.1)
and (C.2),

σ−1(Nd)1/2ZN ,d(t) − RZ
N ,d(t) = (1 − 2t)gN (t)

[
σ−1(Nd)1/2VN ,d(t) − RV

N ,d(t)
]
.

Observe 2d1/2/σ = (1/s(d))
(
1 + o(1)

)
by Lemma D.3. Thus, based on expressions

(C.1) and (C.2), using that |(1 − 2t)gN (t)| ≤ 1, Lemma B.2 implies

sup
2/N≤t≤1−2/N

|σ−1(Nd)1/2ZN ,d(t) − RZ
N ,d(t) − gN (t)(1 − 2t)BN ,d(t)|

(t(1 − t))ᾱ

≤ sup
2/N≤t≤1−2/N

gN (t)|1 − 2t ||σ−1(Nd)1/2VN ,d(t) − RV
N ,d(t) − BN ,d(t)|

(t(1 − t))ᾱ
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≤ sup
2/N≤t≤1−2/N

|σ−1(Nd)1/2VN ,d(t) − RV
N ,d(t) − BN ,d(t)|

(t(1 − t))ᾱ

= OP (N ᾱ−1/2) + oP (1)

for all ᾱ > 1
4 . Thus, putting together Lemmas B.1 and B.2, taking ᾱ and δ so that

δ <
β
2 < ᾱ ≤ 1/2,

sup
2/N≤t≤1−2/N

1

(t(1 − t))ᾱ

∣∣∣σ−1(Nd)1/2ZN ,d(t) − gN (t)(1 − 2t)BN ,d(t)
∣∣∣

+ sup
2/N≤t≤1−2/N

1

(t(1 − t))ᾱ

∣∣∣σ−1(Nd)1/2VN ,d(t) − BN ,d(t)
∣∣∣

= OP (N ᾱ−1/2) + oP (1). (C.4)

Using that
∣∣gN (t)(1− 2t)− (1− 2t)1−β

∣∣ ≤ C(N
β−1
2 1{|u|≤2N−1/2} + u−βN−1/21{|u|>

2N−1/2}) ≤ CN
β−1
2 ,

sup
2/N≤t≤1−2/N

1

(t(1 − t))ᾱ

∣∣∣gN (t)(1 − 2t)BN ,d(t) − (1 − 2t)1−βBN ,d(t)
∣∣∣

= OP

(
N

β−1
2

)
= oP (1).

Hence for 0 < z < 1/2,

(Nd)1/2

σ

(
sup

z≤t≤1−z

|VN ,d(t)|
w(t)

, sup
z≤t≤1−z

|ZN ,d(t)|
w(t)

)

D→
(

sup
z≤t≤1−z

|B(t)|
w(t)

, sup
z≤t≤1−z

|1 − 2t |1−β |B(t)|
w(t)

)

where B(t) is a Brownian bridge. Using again (C.4) we get

sup
2/N≤t≤z

1

w(t)

∣∣∣ (Nd)1/2

σ
VN ,d(t) − BN ,d(t)

∣∣∣
+ sup

2/N≤t≤z

1

w(t)

∣∣∣ (Nd)1/2

σ
ZN ,d(t) − (1 − 2t)1−βBN ,d(t)

∣∣∣

≤ sup
0<s≤z

s1/2

w(s)

(
sup

2/N≤t≤z

1

t1/2

∣∣∣ (Nd)1/2

σ
VN ,d(t) − BN ,d(t)

∣∣∣
+ sup

2/N≤t≤z

1

t1/2

∣∣∣ (Nd)1/2

σ
ZN ,d(t) − (1 − 2t)1−βBN ,d(t)

∣∣∣
)

≤ sup
0<s≤z

s1/2

w(s)

(
2

N

)ᾱ− 1
2
(

sup
2/N≤t≤z

1

t ᾱ

∣∣∣ (Nd)1/2

σ
VN ,d(t) − BN ,d(t)

∣∣∣
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+ sup
2/N≤t≤z

1

t ᾱ

∣∣∣ (Nd)1/2

σ
ZN ,d(t) − (1 − 2t)1−βBN ,d(t)

∣∣∣
)

= sup
0<s≤z

s1/2

w(s)

(
OP (1) + OP

(
N

β
2 −ᾱ− 1

2

) )
. (C.5)

It is shown inCsörgő andHorváth (1993, p. 179) that limz→0 t1/2/w(t) = 0.Moreover,
according to Csörgő and Horváth (1993, p. 179)

sup
0<t≤z

|B(t)|
w(t)

P→ c1, z → 0,

for some 0 ≤ c1 < ∞. Therefore, by (C.5)

lim
z→0

lim sup
N→∞

P

{∣∣∣∣∣ sup
2/N≤t≤z

1

w(t)

∣∣∣σ−1(Nd)1/2VN ,d(t)
∣∣∣− c1

∣∣∣∣∣ > x

}
= 0

for all x > 0. The same arguments give sup1−z≤t<1
|B(t)|
w(t)

P→ c2, as z → 0 for some
c2 ≥ 0, and

lim
z→0

lim sup
N→∞

P

{∣∣∣∣∣ sup
1−z≤t≤1−2/N

1

w(t)

∣∣∣σ−1(Nd)1/2VN ,d(t)
∣∣∣− c2

∣∣∣∣∣ > x

}
= 0

for all x > 0; similar arguments apply to ZN ,d . Since

sup
0<t<1

max{|B(t)|, |1 − 2t |1−β |B(t)|}
w(t)

= sup
0<t<1

|B(t)|
w(t)

,

the proof of (3.7) is complete. ��
Proof of Theorem 3.2 Following arguments leading to (C.4), using Lemmas B.1 and
B.2, with BN ,d(t) as in (C.3), we obtain

sup
2/N≤t≤1−2/N

1

(t(1 − t))1/2

∣∣∣∣ N
1/2

2s(d)
ZN ,d(t) − (1 − 2t)1−βBN ,d(t)

∣∣∣∣
+ sup

2/N≤t≤1−2/N

1

(t(1 − t))1/2

∣∣∣∣ N
1/2

2s(d)
VN ,d(t) − BN ,d(t)

∣∣∣∣ = OP (1). (C.6)

For t in the range 2/N < t < 1/2, it follows from Csörgő and Horváth (1993, p.
256)

1

(2 log log N )1/2
max

2/N<t<1/2

1

t1/2
∣∣BN ,d(t)

∣∣
= 1

(2 log log N )1/2
max

2<u≤N/2

1

u1/2
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∣∣∣WN ,d,1(u) − u
N

(
WN ,d,1(N/2) + WN ,d,2(N/2)

)∣∣∣
P→ 1, max

1/N≤t≤(1/N )(log N )4

1

t1/2
∣∣BN ,d(t)

∣∣ = OP

(
(log log log N )1/2

)
.

and

max
1/(log N )4≤t≤1/2

1

t1/2
∣∣BN ,d(t)

∣∣ = OP

(
(log log log N )1/2

)
.

For convenience write SN ,d(t) = (2s(d))−1N 1/2 max{|VN ,d(t)|, |ZN ,d(t)|}. Since

max{|BN ,d(t)|, |1 − 2t |1−β |BN ,d(t)|} = |BN ,d(t)|,

by (C.6)

sup
0<t<1/2

|BN ,d(t)| − OP (1) ≤ sup
0<t<1/2

SN ,d(t) ≤ sup
0<t<1/2

|BN ,d(t)| + OP (1), (C.7)

and we obtain

sup0<t<1/2 SN ,d (t)

(2 log log N )1/2
P→ 1, max

1/N≤t≤(1/N )(log N )4
SN ,d (t) = OP

(
(log log log N )1/2

)
, (C.8)

and
max

1/(log N )4≤t≤1/2
SN ,d(t) = OP

(
(log log log N )1/2

)
. (C.9)

Putting together (C.8)–(C.9) we conclude

lim
N ,d→∞ P

{
sup

0<t≤1/2
SN ,d(t) = sup

N−1(log N )4≤t≤1/(log N )4
SN ,d(t)

}
= 1.

By (C.7) we obtain

max
(log N )4≤k≤N/(log N )4

∣∣∣∣SN ,d(k/N ) − 1

k1/2
WN ,d,1(k)

∣∣∣∣ = oP
(
(log log N )−1/2

)
.

The classical Darling–Erdős limit result yields (cf. Csörgő and Horváth 1993, p. 256)

lim
N→∞ P

{
a(log N ) max

(log N )4≤k≤N/(log N )4

1

k1/2
∣∣WN ,d,1(k)

∣∣ ≤ x + b(log N )

}
= exp(−e−x )

for all x , implying

P

{
a(log N ) sup

0≤t≤1/2
SN ,d(t) ≤ x + b(log N )

}
→ exp(−e−x ). (C.10)
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Analogously, since

max
N−N/(log N )4≤k≤N−(log N )4

∣∣∣∣SN ,d(k/N ) − 1

(N − k)1/2
WN ,d,2(N − k)

∣∣∣∣
= oP

(
(log log N )−1/2

)
.

then (C.10) holds when the sup instead taken over 1/2 < t ≤ 1, and (3.9) follows
from the independence of WN ,d,1 and WN ,d,2. ��
Proof of Theorems 3.3 and 3.4 In Lemma D.4, the orders of m(d, ν) and s(d) are
established under Assumption 3.3. Combining this with Lemmas B.1 and B.2, the
proofs of Theorems 3.1 and 3.2 can be repeated with minor modifications to establish
the result. ��
Proof of Propositions 3.1 and 3.2 Define, for c = 0, 1, 2,

Uc =
((

N

c

)(
N − c

2 − c

)(
N − 2

2 − c

))−1∑
c

ψi, jψk,�

where
∑

c denotes the sum over pairs (i, j), i �= j and (k, �), k �= � in {1, . . . , N }
with c indices in common.Using 1

N

∑N
i=1U

(−i)
N−1,d = UN ,d , we can reexpress (Arvesen

(1969), p. 2081)

σ̂ 2
N ,d = (N − 1)

N∑
i=1

(U (−i)
N−1,d −UN ,d)

2

= (N − 1)

N

(
N − 1

2

)−2 2∑
c=0

(cN − 4)

(
N

c

)(
N − c

2 − c

)(
N − 2

2 − c

)
Uc

= O(1)U0 + (4 + o(1))U1 + O(N−1)U2. (C.11)

Applying Theorem 1.3.3 in Lee (1990), we obtain Var(Uc) ≤ O(N−1Eψ4
1,2), c =

0, 1, 2, so under the conditions of Theorem 3.1 or of Theorem 3.3,

Uc = EUc + OP (N−1/2(Eψ4
1,2)

1/2), c = 0, 1, 2. (C.12)

Note EU0 = 0, EU1 = Eψ1,2ψ1,3 = E
[
EX1ψ1,2EX1ψ1,3

] = Eζ 2
1 = s2(d),

and EU2 = Eψ2
1,2. Thus, under the conditions of Theorem 3.1, Lemma D.3 shows

Eψ4
1,2 = O(d−2), and using (C.11), we get

σ̂ 2
N ,d = OP (d−1N−1/2) + (4 + o(1))

[
s2(d) + OP (N−1/2d−1)

]+ OP (N−1d−1)

which, by (3.10), implies dσ 2
N ,d = 4ds2(d) + oP (1)

P→ σ 2.
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On the other hand, under the conditions assumed in Theorem 3.3 we have Eψ4
1,2 =

O(1), so by (C.11) and (C.12),

σ̂ 2
N ,d

P→ γ 2, as min{N , d} → ∞.

The proof of Proposition 3.2 is similar and is omitted. ��
Proof of Proposition 3.3 Define

qV (t) =

⎧⎪⎪⎨
⎪⎪⎩

(
1 − η

1 − t

)2 (
μ1 − μ2

)− 2

(
1 − η

1 − t

)(
1 − 1 − η

1 − t

) (
μ12 − μ1

)
t ≤ η,

(η

t

)2 (
μ1 − μ2

)− 2
(η

t

) (
1 − η

t

) (
μ12 − μ2

)
t > η,

(C.13)
and

qZ (t) =
[
η2 − 1{t≤η}

(
1 − 1 − η

1 − t

)](
μ1,2 − μ1

)+
[
(1 − η)2 − 1{t>η}

(
1 − η

t

) ](
μ1,2 − μ2

)
(C.14)

We first consider (i i). For 0 ≤ t ≤ η, with u = 1−η
1−t ∈ [1 − η, 1], observe

|qZ (t)|
|μ1 − μ2| = ∣∣u2 − 2u(1 − u) × o(1)

∣∣

is eventually increasing for all 1 − η ≤ u ≤ 1, i.e., for all 0 ≤ t ≤ η, so
argmax0≤t≤η|qZ (t)| = η for all large N , d. Arguing analogously for η ≤ t ≤ 1,
we therefore obtain argmax0≤t≤1|qZ (t)| = η for all large N , d, i.e., η is the unique
maximizer of qZ (t) for all large N , d. Now, applying Lemma D.2,

|qV (t)|
|μ1 − μ2| − oP (1) ≤ |VN ,d(t)|

d−1/p|μ1 − μ2| ≤ |qV (t)|
|μ1 − μ2| + oP (1), (C.15)

for all 2/N < t < 1 − 2/N . This gives

|qV (η)|
|μ1 − μ2| − oP (1) ≤ |VN ,d(η)|

d−1/p ≤ |VN ,d(tV )|
d−1/p ≤ |qV (tV )|

|μ1 − μ2| + oP (1).

Thus, for every small δ > 0,

P
(
|tV − η| > δ

)
≤ P

( |qV (η)|
|μ1 − μ2| − oP (1) ≤ supt :|t−η|≥δ |qV (t)|

|μ1 − μ2| + oP (1)

)
→ 0.

(C.16)

Further, since MN ,d = max{|μ1,2 − μ1|, |μ1,2 − μ2|} � d
1
p − 1

2 N−1/2 applying
Lemma D.2 again we have |ZN ,d,0(t)|/MN ,d = oP (1)+|qZ (t)|/MN ,d for all 2/N <

t < 1 − 2/N . It is easily seen argmaxt |qZ (t)| ⊆ {0, η, 1} for all large N , d (its exact
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values depending on the magnitude and signs ofμ1,2−μ1 andμ1,2−μ2), and arguing
in a similar fashion as for (C.16), for each N , d

P
(
|tZ | > δ, |tZ − η| > δ, |tZ − 1| > δ

)

≤ P

( |qZ (t∗Z )|
MN ,d

− oP (1) ≤ supt :max{|t−η|,t,1−t}≥δ |qZ (t)|
MN ,d

+ oP (1)

)
→ 0.

Thus, may pick a sequence t∗Z ∈ argmaxt |qZ (t)| such that

|t∗Z − tZ | = oP (1). (C.17)

Further, clearly, by condition (i i),

sup0<t<1 |ZN ,d,0(t)|
d−1/p|μ1 − μ2| ≤ sup0<t<1 |qZ (t)|

d−1/p|μ1 − μ2| + sup0<t<1 |ZN ,d,0(t) − qZ (t)|
d−1/p|μ1 − μ2| = oP (1),

whereas by (C.15), and the definition of qV , sup0<t<1 |VN ,d(t)|/(d−1/p|μ1−μ2|) P→
1, showing |ZN ,d,0(tZ )| = oP (|VN ,d,0(tV )|). In turn, this implies, in the case that
η �= 1/2,

|ZN ,d(tZ )| = OP (1)|ZN ,d,0(tZ )| = oP (|VN ,d(tV )|). (C.18)

This gives η̂N ,d = tV with probability tending to 1, which together with (C.16) gives

η̂N ,d
P→ η. If η = 1/2, on the event {ω : t∗Z ∈ {0, 1}}, (C.18) still holds, again implying

η̂N ,d
P→ η, and clearly on the event {ω : t∗Z = 1/2}, we have tZ P→ 1/2. Since we also

have tV
P→ η = 1/2 then η̂N ,d

P→ 1/2 and the result is proven under condition (i i).
For condition (i), noteμ1,2−min{μ1, μ2} ≥ μ1,2−max{μ1, μ2} � max{μ1, μ2}−

min{μ1, μ2} = |μ1−μ2|. From this it is readily seen under (i) that argmax|qZ (t)| = η

for all large N , d, and arguing similarly as in the case of VN ,d , we have

tZ
P→ η. (C.19)

Now, observe, for 0 ≤ t ≤ η,

|qV (t)|
μ1,2

= 2

(
1 − η

1 − t

)(
1 − 1 − η

1 − t

)
+ o(1) ≤ 1

2
+ o(1).

Arguing analogously for η ≤ t ≤ 1, we have |qV (t)|/μ1,2 ≤ 1
2 + o(1), giving

lim supN ,d→∞ sup0≤t≤1 |qV (t)|/μ1,2 ≤ 1
2 , which implies

|VN ,d(tZ )|
d−1/pμ1,2

= oP (1) + sup0≤t≤1 |qV (t)|
μ1,2

≤ 1

2
+ oP (1).
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On the other hand, by (C.19),

sup0<t≤1 |ZN ,d,0(t)|
d−1/pμ1,2

= oP (1) + sup0<t≤1 |qZ (t)|
μ1,2

P→ η2 + (1 − η)2 ≥ 1

2

so

|ZN ,d(tZ )|
μ1,2

P→ η2 + (1 − η)2

|1 − 2η|β >
1

2
+ δ,

for some δ > 0. In other words,

P(|ZN ,d(tZ )| > |VN ,d(tV )|) = P

( |ZN ,d(tZ )|
μ1,2

≥ |VN ,d(tZ )|
μ1,2

)

≥ P

(
1

2
+ δ + oP (1) ≥ 1

2
+ oP (1)

)
→ 1,

which gives the result under condition (i). Cases (i ′), (i i ′) can be established arguing
analogously to (i), (i i) with minor changes. ��
Proof of Theorem 3.5 We provide proofs for (i) and (i i) under Assumptions 3.1–3.2,
since cases (i ′), (i ′′) follow from a similar argument. First we consider (i) in the case
that (Nd)1/2d−1/p|μ1 − μ2| → ∞. Observe that

d−1/pUN ,d,1(k1) = d−1/pμ1 +
(
k

2

)−1 ∑
1≤i< j≤k

ψi, j

= d−1/pμ1 + 2
1

k

k∑
i=1

ζi +
(
k

2

)−1 ∑
1≤i< j≤k

yi j

= d−1/pμ1 + OP (N−1/2s(d)) + OP
(
N−1

(
Eψ2

1,2 + Eζ 2
1

)1/2 )
= d−1/pμ1 + OP ((Nd)−1/2),

where we used Lemma D.3 on the last line. Analogously, UN ,d,2(k1) = μ2 +
OP

(
d1/p−1/2/N 1/2

)
. Thus, for some c0, c1 > 0,

TN ,d ≥ c0|VN ,d(k1/N )| ≥ c1d
−1/p|UN ,d,2(k1) −UN ,d,2(k1)|

≥ c1d
−1/p|μ1 − μ2| + OP

(
(Nd)−1/2). (C.20)

Thus, for T̃N ,d as in (3.12), we obtain T̃N ,d ≥ c1(Nd)1/2d−1/p|μ1 −μ2|+OP (1)
P→

∞, giving (i) whenever (Nd)1/2d−1/p|μ1 − μ2| → ∞. If (Nd)1/2d−1/p|μ1,2 −
μ2| → ∞ but (Nd)1/2d−1/p|μ1 −μ2| = O(1), applying Lemma D.2, we obtain, for
some δ > 0,

(Nd)1/2TN ,d ≥ C(Nd)1/2|VN ,d(η − δ)|
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≥ C(Nd)1/2d−1/p|qZ (η − δ)| + OP (1)

≥ C(Nd)1/2d−1/p|μ1,2 − μ1| + OP (1),

showing T̃N ,d
P→ ∞. An analogous argument shows T̃N ,d

P→ ∞when (Nd)1/2d−1/p

|μ1,2 − μ2| → ∞ but (Nd)1/2d−1/p|μ1 − μ2| = O(1), giving (3.13) in case (i).
For (i i), arguing as in (C.20) we have

a(log N )(Nd)1/2TN ,d ≥ C[log log N ]1/2N 1/2d
1
2− 1

p |μ1 − μ2| + OP
(
log log(N )

)
= C log log N

(
[log log N ]−1/2N 1/2d

1
2− 1

p |μ1 − μ2| + OP (1)
)
,

which, since (Nd)1/2 (log log N )−1/2 d−1/p|μ1 − μ2| → ∞, implies T̃N ,d
P→ ∞. If

(Nd)1/2 (log log N )−1/2 d−1/p|μ1 − μ2| − 2 log log N = O(1) but (Nd)1/2 (log log
N )1/2 d−1/p|μ1,2 − μi | → ∞, we may apply Lemma D.2 as in the case of (i) to

again obtain T̃N ,d
P→ ∞, giving (3.13) in case (i i). ��

Apeendix D. Auxiliary lemmas

Lemma D.1 Expression (B.6) holds.

Proof Note the variables yi, j = ψi, j − ζi − ζ j are uncorrelated for every pair (i, j) �=
(i ′, j ′). For each fixed integer k ∈ [m1,m2], define

ỹ(i, j) = yi,N− j+1 I {i ≤ m2, j ≤ N − m1}.

By considering the binary expansions k = ∑ν1
i=0 ai2

ν1−i and N −k = ∑ν2
j=0 b j2ν2− j

(ai , b j ∈ {0, 1}), we may rewrite

k∑
i=1

N∑
j=k+1

yi j =
k∑

i=1

N−k∑
j=1

yi,N− j+1 =
ν1∑
i=0

ν2∑
j=0

ηi j

where ηi j = 0 when aib j = 0, and for ai = b j = 1,

ηi, j =
2(ν1−i)∑
s=1

2(ν2− j)∑
t=1

ỹ(Ai + s, Bj + t)

with Ai = ∑i−1
�=0 a�2ν1−� and Bj = ∑ j−1

�=0 b�2ν2−�. Thus, by Cauchy–Schwarz,

( k∑
i=1

N∑
j=k+1

yi j

)2

≤ (ν1 + 1)(ν2 + 1)
ν1∑
i=0

ν2∑
j=0

η2i j
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We now provide an a.s. uniform bound for η2i, j . Let r1, r2 be the unique integers such
that

2r1 < N − m1 ≤ 2r1+1 = L, 2r2 < m2 ≤ 2r2+1 = M .

And define

Si, j =
M/2i−1∑

�=0

L/2 j−1∑
�′=0

( 2i∑
s=1

2 j∑
t=1

ỹ(s + �2i , t + �′2 j )

)2

Since ỹ(�, �′) = 0 for � > m2 and �′ > N −m2, we have, by orthogonality of ỹ(�, �′),

ESi, j =
M/2i−1∑

�=0

L/2 j−1∑
�′=0

2i∑
s=1

2 j∑
t=1

E ỹ(s + �2i , t + �′2 j )2

=
m2∑
�=1

N−m1∑
�=1

E ỹ(�, �′)2 = m2(N − m1)Ey
2
1,2.

So that E
∑r1+2

�=0

∑r2+2
�′=0 S�,�′ ≤ (r1 + 1)(r2 + 1)m2(N − m1)Ey21,2. Notice for each

pair (i, j) with 1 ≤ i ≤ m2 and 1 ≤ j ≤ N − m1, η2i, j appears as a summand

in Sν1−i,ν2− j , implying η2i, j ≤ ∑r1+1
�=0

∑r2+1
�′=0 S�,�′ for every such i, j . Putting this

together with the above, we obtain

E max
m1≤k≤m2

⎛
⎝ k∑

i=1

N∑
j=k+1

yi j

⎞
⎠

2

≤ (r1 + 2)2(r2 + 2)2m2(N − m1)Ey
2
1,2,

which gives the desired bound. ��
Lemma D.2 Suppose the hypotheses of Theorem 3.5 hold. Let η = k1/N . Then,

sup
2/N<t<1−2/N

∣∣VN ,d(t) − d−1/pqV (t)
∣∣ = OP ((Ns(d)2)−1/2)

and

sup
2/N<t<1−2/N

∣∣ZN ,d,0(t) − d−1/pqZ (t)
∣∣ = OP ((Ns(d)2)−1/2),

where qV (t) and qZ (t) are defined as in (C.13) and (C.14).

Proof We first turn to VN ,d . A straightforward computation shows E[VN ,d(t)] =
d−1/pqV (t), and we can reexpress

(Nd)1/2
(
VN ,d(t) − d−1/pqV (t)

)
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= N 1/2 k

N

k∗

N
2d1/2

(
1

k(k − 1)

∑
1≤i< j≤k

ψi, j − 1

k∗(k∗ − 1)

∑
k+1≤i< j≤N

ψi, j

)

Hence, using arguments along the lines of those in Theorem 3.1, we obtain

(Ns2(d))1/2 sup
2/N≤t≤1−2/N

|VN ,d(t) − d−1/pqV (t)
∣∣ = OP (1).

A similar reasoning applies to ZN ,d , establishing the claim. ��
The proofs in Sections B and C use the following lemma when the coordinates

satisfy the weak dependence assumption.

Lemma D.3 If Assumptions 3.1–3.2 hold, then,

Eψ4
1,2 ≤ c

d2
, (D.1)

s2(d) =Eζ 2
1 = σ 2

4d
(1 + o(1)) d → ∞. (D.2)

Also,

E |ζ1|4 ≤ c

d4
, (D.3)

with σ 2 in (3.6), ψ1,2 and ζ1 are defined in (B.1).

Proof We first establish (D.1). Let Z = X1 − X2 = (Z1, Z2, . . . , Zd)
�, so

ψ1,2 =
[(

1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p]

+
[(

1

d

d∑
j=1

E |Z j |p
)1/p

− E

(
1

d

d∑
j=1

|Z j |p
)1/p]

= T1 + T2.

By the mean value theorem,

T1 =
(
1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p

= 1

p
ξ−1+1/p 1

d

d∑
j=1

[|Z j |p − E |Z j |p], (D.4)
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where ξ lies between (1/d)
∑d

j=1 |Z j |p and (1/d)
∑d

j=1 E |Z j |p, i.e.,

∣∣∣∣ξ − 1

d

d∑
j=1

E |Z j |p
∣∣∣∣ ≤

∣∣∣∣ 1d
d∑
j=1

[|Z j |p − E |Z j |p]
∣∣∣∣. (D.5)

By Markov’s inequality we have for all α > 0 as in Assumption 3.1,

P

{∣∣∣∣ξ − 1

d

d∑
j=1

E |Z j |p
∣∣∣∣ >

1

2d

d∑
j=1

E |Z j |p
}

≤ P

{∣∣∣∣ 1d
d∑
j=1

[|Z j |p − E |Z j |p]
∣∣∣∣ >

1

2d

d∑
j=1

E |Z j |p
}

≤
(

1

2d

d∑
j=1

E |Z j |p
)−α

E

∣∣∣∣ 1d
d∑
j=1

[|Z j |p − E |Z j |p]
∣∣∣∣
α

≤ c1d
−α/2

by Assumptions 3.1 and 3.2 with some c1. Since 1
d

∑d
j=1 E |Z j |p → a(p) > 0 there

are constants c2 > 0 and c3 > 0 such that

P{A} ≤ c2d
−α/2, where A = {ω : ξ ≤ c3} . (D.6)

Since p ≥ 1 we get (cf. Hardy et al. 1934, p. 44)

( d∑
j=1

|Z j |p
)1/p

≤
d∑
j=1

|Z j | and

( d∑
j=1

E |Z j |p
)1/p

≤
d∑
j=1

(E |Z j |p)1/p,

and therefore Hölder’s inequality with r = α/4, r ′ = r/(r − 1) = α/(α − 4) yields

E

(
T1 I {A}

)4

≤ 1

d4/p
E

⎡
⎢⎣
⎛
⎝ d∑

j=1

|Z j | +
d∑
j=1

(E |Z j |p)1/p
⎞
⎠

4

I {A}
⎤
⎥⎦

≤ 1

d4/p

{
E

( d∑
j=1

|Z j | +
d∑
j=1

(E |Z j |p)1/p
)4r}1/r

(P{A})1/r ′

≤ c4d
4−(4/p)−(α−4)/2

= o(d−1), (D.7)
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since 6 − (4/p) − α/2 < −1 by Assumption 2.1. By (D.4) we obtain

E

⎡
⎢⎣
⎛
⎜⎝
⎛
⎝ 1

d

d∑
j=1

|Z j |p
⎞
⎠

1/p

−
⎛
⎝ 1

d

d∑
j=1

E |Z j |p
⎞
⎠

1/p
⎞
⎟⎠

2

I { Ā}
⎤
⎥⎦

≤ c5E

⎛
⎝ 1

d

d∑
j=1

[|Z j |p − E |Z j |p]
⎞
⎠

4

≤ c6
d2

. (D.8)

Thus,

E

[(
1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p]2

≤ cd−1.

Next we show

(T2)
2 =

(
E

(
1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p)2

≤ c7
(
d−1−α/2 + d2−(2/p)−(α/2)

)
(D.9)

which together with (D.7) and (D.8) will imply (D.1) since max{−1−α/2, 2−2/p−
α/2} < −1 giving (T2)4 = O(d−2). So, a Taylor expansion gives

(
1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p

= 1

p

(
1

d

d∑
j=1

E |Z j |p
)−1+1/p 1

d

d∑
j=1

[|Z j |p − E |Z j |p]

+ 1

p

(
− 1 + 1

p

)
ξ−2+1/p

(
1

d

d∑
j=1

[|Z j |p − E |Z j |p]
)2

,

where ξ satisfies (D.5). Similarly to our previous arguments, with A as in (D.6), we
have

E

(
ξ−2+1/p

(
1

d

d∑
j=1

[|Z j |p − E |Z j |p]
)4

I { Ā}
)

≤ c8
d4

E

( d∑
j=1

[|Z j |p − E |Z j |p]
)4

≤ c9
d2

.
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By the Cauchy–Schwarz inequality and (D.6) we conclude

∣∣∣∣E 1

d

d∑
j=1

[|Z j |p − E |Z j |p]I { Ā}
∣∣∣∣ ≤

∣∣∣∣E 1

d

d∑
j=1

[|Z j |p − E |Z j |p]I {A}
∣∣∣∣

≤
[
E

(
1

d

d∑
j=1

[|Z j |p − E |Z j |p]
)2]1/2

(P{A})1/2

≤ c10d
−1/2−α/4.

Using again (D.6) we obtain via the Cauchy–Schwarz inequality

∣∣∣∣E
([(

1

d

d∑
j=1

|Z j |p
)1/p

−
(
1

d

d∑
j=1

E |Z j |p
)1/p]

I {A}
)∣∣∣∣

≤ 1

d1/p

[
E

( d∑
j=1

|Z j |p +
d∑
j=1

(
E |Z j |p

)1/p )2]1/2
(P{A})1/2

≤ c11d
1−(1/p)−(α/4).

This establishes (D.9), and thus (D.1) is proven.
We now turn to (D.2). Let EX1 denote the conditional expected value, conditioning

with respect to X1. We write

ζ1 = EX1

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

− E

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

= EX1

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p

+
(
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

E |X1, j − X2, j |p
)1/p

+
(
1

d

d∑
j=1

E |X1, j − X2, j |p
)1/p

− E

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

. (D.10)

Recall g j as defined in (3.2), and note g j (X1, j ) = EX1 |X1, j − X2, j |p. For the first
term in (D.10), using a two term Taylor expansion, we get

EX1

⎛
⎝ 1

d

d∑
j=1

|X1, j − X2, j |p
⎞
⎠

1/p

−
⎛
⎝ 1

d

d∑
j=1

g j (X1, j )

⎞
⎠

1/p
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= 1

p

(
1

d

d∑
j=1

g j (X1, j )

)−1+1/p 1

d

d∑
j=1

[EX1 |X1, j − X2, j |p − g j (X1, j )]

+ 1

p

(
−1 + 1

p

)
EX1

[
ξ−2+1/p

(
1

d

d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
)2]

= 1

p

(
−1 + 1

p

)
EX1

[
ξ−2+1/p

(
1

d

d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
)2]

,

(D.11)

where the random variable ξ now satisfies

∣∣∣∣ξ − 1

d

d∑
j=1

g j (X1, j )

∣∣∣∣ ≤
∣∣∣∣ 1d

d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
∣∣∣∣. (D.12)

We define again, as in (D.6),

A = {ω : ξ ≤ c12}

but now ξ is from (D.11) and (D.12). Following the proof of (D.6), we can choose c12
such that with some c13

P{A} ≤ c13d
−α/2. (D.13)

Squaring (D.11) and the using Minkowski’s inequality we have

(
EX1

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p)2

≤ 4

(
1

d1/p

d∑
j=1

EX1 |X1, j − X2, j |
)2

+ 4

(
1

d1/p

d∑
j=1

(EX1 |X1, j − X2, j |p)1/p
)2

.

(D.14)

The upper bound in (D.13) and the Cauchy–Schwarz inequality yield

E

[(
1

d1/p

d∑
j=1

EX1 |X1, j − X2, j |
)2

I {A}
]

≤ 1

d2/p

(
E

( d∑
j=1

EX1 |X1, j − X2, j |
)4)1/2

(P{A})1/2

≤ 1

d2/p
(
c13d

−α/2)1/2 (E
( d∑

j=1

EX1 |X1, j − X2, j |
)4)1/2

.
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Applying Cauchy’s inequality (cf. Abadir and Magnus 2005, p. 324), we get

( d∑
j=1

EX1 |X1, j − X2, j |
)4

≤
(
d

d∑
j=1

(EX1 |X1, j − X2, j |)2
)2

≤ d3
d∑
j=1

(EX1 |X1, j − X2, j |)4

≤ 24d3
d∑
j=1

(
|X2, j |4 + (E |X1, j |)4

)

= O(d4).

Hence for the first term on the right-hand side of (D.14), on the set A, we obtain

E

[(
1

d1/p

d∑
j=1

EX1 |X1, j − X2, j |
)2

I {A}
]

≤ c14d
2−2/p−α/4 = o(d−1)

For the second term on the right-hand side of (D.14) we have by Jensen’s inequality

E

(
1

d1/p

d∑
j=1

(EX1 |X1, j − X2, j |p)1/p
)4

= d4−4/p E

[
1

d

d∑
j=1

(
EX1 |X1, j − X2, j |p

)1/p ]4

≤ d4−4/p 1

d

d∑
j=1

E
(
EX1 |X1, j − X2, j |p

)4/p

≤ 2pd4−4/p 1

d

d∑
j=1

(
E |X1, j |4 + (

E |X2, j |p
)4/p) = O

(
d4−4/p) .

Thus we get

E

[(
1

d1/p

d∑
j=1

(EX1 |X1, j − X2, j |p)1/p
)2

I {A}
]

≤
(
E

(
1

d1/p

d∑
j=1

(EX1 |X1, j − X2, j |p)1/p
)4)1/2

(P{A})1/2 = O
(
d2−2/p−α/4

)

= o(d−1)

We now turn to estimates of (D.11) on the set Ā. By the definition of A in (D.13), and
using that α > 4, we obtain

E

(
EX1

[(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

g j (X1, j )

)1/p

I { Ā}
])2
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≤ c15E

(
EX1

(
1

d

d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
)2)2

.

≤ c15E

(
EX1

∣∣∣∣ 1d
d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
∣∣∣∣
α)4/α

≤ c15

(
E

∣∣∣∣ 1d
d∑
j=1

[|X1, j − X2, j |p − g j (X1, j )]
∣∣∣∣
α)4/α

≤ c16d
−2.

where we used Assumption 3.1 on the last line. This completes the proof of

E

(
EX1

(
1

d

d∑
j=1

|X1, j −X2, j |p
)1/p

−
(
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p)2

=o

(
1

d

)
,

as d → ∞. For the second term in (D.10), similar arguments give

((
1

d

d∑
j=1

E |X1, j − X2, j |p
)1/p

− E

(
1

d

d∑
j=1

|X1, j − X2, j |p
)1/p)2

= o

(
1

d

)
,

as d → ∞. Now, for the third term in (D.10), it follows from the definition of g j and
from a Taylor expansion

(
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

E |X1, j − X2, j |p
)1/p

=
(
1

d

d∑
j=1

g j (X1, j )

)1/p

−
(
1

d

d∑
j=1

Eg j (X1, j )

)1/p

= 1

p

(
1

d

d∑
j=1

Eg j (X1, j )

)−1+1/p 1

d

d∑
j=1

[g j (X1, j ) − Eg j (X1, j )]

+ 1

p

(
1 − 1

p

)
ξ−2+1/p

(
1

d

d∑
j=1

[g j (X1, j ) − Eg j (X1, j )]
)2

,

where ξ satisfies

∣∣∣∣ξ − 1

d

d∑
j=1

Eg j (X1, j )

∣∣∣∣ ≤
∣∣∣∣ 1d

d∑
j=1

[g j (X1, j ) − Eg j (X1, j )]
∣∣∣∣.
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Repeating our previous arguments we get

E

((
1

d

d∑
j=1

EX1 |X1, j − X2, j |p
)1/p

−
(
1

d

d∑
j=1

E |X1, j − X2, j |p
)1/p)2

= 1

p2

(
1

d

d∑
j=1

Eg j (X1, j )

)−2+2/p

E

(
1

d

d∑
j=1

[g j (X1, j ) − Eg j (X1, j )]
)2

+ o

(
1

d

)
,

completing the proof of (D.2). (D.3) follows from (D.1). ��
We use the following lemma in the proofs in Sections B and C; it is analogous to

Lemma D.3 for the case of strongly dependent coordinates.

Lemma D.4 If Assumptions 3.3 and 3.4 hold, then, as d → ∞

Eψ4
1,2 ≤ c, (D.15)

Eζ 2
1 = γ 2(1 + o(1)) (D.16)

and

E |ζ1|4 ≤ c (D.17)

with some c.

Proof Statements (D.15) and (D.17) are straightforward consequences of Assump-
tion 3.3. To establish statement (D.16), for a given function Y = {Y (t), 0 ≤ t ≤
1}, we write ‖Y‖p = ( ∫ 1

0 |Y (t)|pdt)1/p. Let Y�,d(t) = ∑d
i=1 1(ti−1,ti ](t)X�,i =∑d

i=1 1(ti−1,ti ](t)Y�(ti ), and recall ζ1 = H(X1) − θ . Reexpress

H(X1) = [H(X1) − EX1‖Y1,d − Y2,d‖p] + [EX1‖Y1,d − Y2,d‖p −H(Y1,d)]
+ [H(Y1,d) −H(Y1)] +H(Y1) (D.18)

With Z j = X1, j − X2, j , for the first term in (D.18), observe

E
∣∣H(X1) − EX1‖Y1,d − Y2,d‖p

∣∣2

= E

∣∣∣∣
( d∑

�=1

|Z�|pd−1
)1/p −

( d∑
�=1

|Z�|p(t� − t�−1)
)1/p∣∣∣∣

2

≤ E

( d∑
�=1

|Z�|p
∣∣∣∣ 1

d1/p
− 1

(t� − t�−1)1/p

∣∣∣∣
p)2/p

≤ max
1≤i≤d

∣∣∣∣1 − d1/p

(ti − ti−1)1/p

∣∣∣∣
2

E
( 1
d

d∑
�=1

|Z�|p
)2/p → 0,
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since max1≤i≤d
∣∣1 − d1/p/(ti − ti−1)

1/p
∣∣ → 0 by Assumption 3.3(ii), and

E
(
d−1

d∑
�=1

|Z�|p
)2/p ≤ CE

(
d−1

d∑
�=1

|X1,�|p
)2/p = O(1)

due to Assumption 3.3(iv). For the second term in (D.18), note

∣∣EX1‖Y1,d − Y2,d‖p −H(Y1,d)
∣∣

= ∣∣EX1

(‖Y1,d − Y2,d‖p − ‖Y1,d − Y2‖p
)∣∣ ≤ E‖Y2,d − Y2‖p.

ByAssumption 3.3(iv), E‖Y2,d‖p → E‖Y2‖p, and also ‖Y2,d−Y2‖p → 0 a.s., which
together imply E‖Y2,d −Y2‖p → 0. Thus, E[H(X1)−H(Y1,d)]2 → 0. For the third
term in (D.18), a similar argument shows E[H(Y1,d) − H(Y1)]2 → 0, implying
E[H(X1) −H(Y1)]2 → 0, which gives (D.16). ��

References

Abadir K, Magnus J (2005) Matrix Algebra. Cambridge University Press, Cambridge
Aldribi A, Traoré I, Moa B, Nwamuo O (2020) Hypervisor-based cloud intrusion detection through online

multivariate statistical change tracking. Comput Secur 88:101646
Amaratunga D, Cabrera J (2018) High-dimensional data in genomics. In: Peace KE, Chen D-G, Menon

S (eds) Biopharmaceutical applied statistics symposium volume 3: Pharmaceutical applications.
Springer, Berlin, pp 65–73

Antoch J, Hušková M (2001) Permutation tests in change point analysis. Stat Probab Lett 53:37–46
Arlot S, Celisse A, Harchaoui Z (2019) A kernel multiple change-point algorithm via model selection. J

Mach Learn Res 20:1–56
Arvesen JN (1969) Jackknifing U-statistics. Ann Math Stat 40(6):2076–2100
Biau G, Bleakley K, Mason DM (2016) Long signal change-point detection. Electron J Stat 10(2):2097–

2123
Billingsley P (1968) Convergence of probability measures. Wiley, New York
Breiman L (1968) Probability. Addison-Wesley, Boston
Chakraborty S, Zhang X (2021a) High-dimensional change-point detection using generalized homogeneity

metrics. arXiv e-print arXiv:2105.08976
Chakraborty S, ZhangX (2021) A new framework for distance and kernel-basedmetrics in high dimensions.

Electron J Stat 15(2):5455–5522
Chen H, Zhang N (2015) Graph-based change-point detection. Ann Stat 43(1):139–176
Chen H, Zhang NR, Chu L, Song H (2021) gSeg: Graph-based change-point detection. R package version

1.0
Chu L, Chen H (2019) Asymptotic distribution-free change-point detection for multivariate and non-

Euclidean data. Ann Stat 47(1):382–414
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