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A B S T R A C T

Many material properties can be traced back to properties of their grain boundaries. Grain boundary
energy (GBE), as a result, is a key quantity of interest in the analysis and modeling of microstructure. A
standard method for calculating grain boundary energy is molecular dynamics (MD); however, on-the-fly MD
calculations are not tenable due to the extensive computational time required. Lattice matching (LM) is a
reduced-order method for estimating GBE quickly; however, it has only been tested against a relatively limited
set of data, and does not have a suitable means for assessing error. In this work, we use the recently published
dataset of Homer et al. (2022) to assess the performance of LM over the full range of GB space, and to equip
LM with a metric for error estimation. LM is used to generate energy estimates, along with predictions of facet
morphology, for each of the 7,304 boundaries in the Homer dataset. The relative and absolute error of LM,
based on the reported MD data, is found to be 5%–8%. An essential part of the LM method is the faceting
relaxation, which corrects the expected energy by convexification across the compact space (S2) of boundary
plane orientations. The original Homer dataset did not promote faceting, but upon extended annealing, it is
shown that facet patterns similar to those predicted by LM emerge.

1. Introduction

The interface energy in crystalline materials is influential in a range
of applications, such as thermal materials [1], semiconductors [2],
large-scale manufacturing [3]. Specifically, interfaces between like
species and phases, i.e., grain boundaries (GB) influence phenomena
including short-term failure based on charge transport properties [4]
and failure in blister steel [3]. The study of grain boundaries has existed
for many decades, with a resurgence in popularity in recent years due
to the increasing importance of GBs at small scales. Study of grain
boundaries dates back to the seminal work of Read and Shockley [5],
with a variety of analytical and numerical models proposed since then.
For a comprehensive overview of grain boundary modeling efforts, the
reader is referred to [6].

Grain boundary energy is uniquely tied to the crystallographic
structure of the material, with substantially varying results depending
on the lattice type [7–17]; although, for simple crystal structures,
the GB energy has been observed to be consistent between species
up to a scaling factor [18]. GBs are often thought to be the least
understood of all material defects due to the enormous space over
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which their character is defined: three degrees of freedom controlling

the orientation relationship between grains, and two more to define

the orientation of the interface between them. Even accounting for

crystallographic symmetry, this five dimensional space is difficult to

thoroughly explore and parameterize. Historically, the coincident site

lattice (CSL) � value, defined as the ratio of the CSL unit cell to that

of the bicrystal, has been used as a proxy for grain boundary energy.

While the term ‘‘low-� boundary’’ is often used synonymously with

‘‘low-energy boundary’’, there is evidence against the notion that low

� is either a sufficient or necessary condition for low energy [19,20].

More importantly, boundary plane orientation plays a decisive role in

the energy of low- and high-� boundaries alike [21,22]. In fact, it is

impossible to properly ascertain the correct boundary energy without

full knowledge of all five GB degrees of freedom.

Because of the significant role played by GB energy, it is essential

to be able to quickly and accurately determine GB energy for bound-

aries with arbitrary character. Experimental methods have been used

to obtain estimates of GB energy directly, or to infer energy from

GB populations, in a variety of metals and ceramics [23–31]. These
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match well with atomistic simulations [25,26,32–34], which provide a
reliable means to estimate energy for specific GBs. However, atomistic
simulations remain a costly method of calculating the energy of a
GB with arbitrary character. Reduced-order models can accelerate our
understanding and the development of materials. A variety of models
have been proposed, ranging from the original model of Read and
Shockley for low angle boundaries [5], to machine learning models
based on MD datasets [35,36].

The lattice matching (LM) approach for GB energy is a semi-
analytical method that is able to rapidly calculate grain boundary
energy for arbitrary crystals and orientations. LM has been shown to
accurately reproduce energy cusps for a wide range of boundaries [37],
and has been successfully used in mesoscale simulations [38]. One
of the key advantages of LM is the minimal number of parameters
required: other than the crystal structure and bicrystal configuration,
LM relies on only three model parameters, one of which is a scaling
constant. The ability of LM to calculate energy accurately with a
minimal number of model parameters builds confidence in its ability
to predict GB energy in regions where little or no information is
available from MD or experiment. LM has also been used in conjunction
with grain boundary relaxation to simultaneously improve the LM
energy estimate, while providing predictions about faceting behavior
in the boundary. It has been shown that, even if faceting does not
actually occur, the relaxation method substantially improves the LM
prediction [39]. In other cases, LM has been shown to correctly predict
microfacets in agreement with experimental observation [40].

A perennial limitation in GB modeling has been the lack of available
atomistic data for comparison. The survey of Olmsted et al. [41]
has been used for nearly 15 years, but is not exhaustive enough to
ensure sufficient and uniform coverage over GB space. Recent work
by Homer et al. has resulted in a comprehensive GB dataset that
semi-uniformly spans GB space using a single potential and consistent
methodology [22,42]. 7304 unique aluminum GBs were selected to
provide comprehensive coverage the full 5D disorientation space. More
than 43 million GB structures were considered to find the minimum
energy for each GB as well as the corresponding atomic structure.
Because this work focused on retaining near-planar boundaries; the GB
construction process only used conjugate gradient minimization and
did not heat the atomic structure, thereby minimizing the amount of
faceting that occurred. (Note: this does not mean the structures did
not facet at all, just that it was not promoted.) This kind of dataset
is therefore better suited for testing the LM method and providing a
reliable error estimate for LM predictions.

The contribution of this work is twofold. First, the overall perfor-
mance of LM (with and without faceting relaxation) is examined over
the full range of GB space, and compared to the energies reported
in [22,42]. This comparison allows the reliability of LM to be estab-
lished, along with estimates of error in LM predictions. Second, facet
patterns as predicted by LM are considered, in order to determine the
likelihood of faceting and the expected impact on the energy estima-
tion. The LM facet patterns are compared to the boundary morphologies
in the MD dataset, as well as some new annealed MD simulations.

The remainder of the paper is structured in the following way.
Section 2 provides an overview of the MD and LM methodologies and
algorithms. The LM data is presented in Section 3, and compared to the
MD results (from the dataset and newly computed annealed structures)
for grain boundary energy, error estimation, and facet morphology.
Section 4 contains a discussion on some of the insights and perspectives
of the two GB modeling approaches.

2. Methods

This work aims to synthesize the lattice-matching model with a
very large MD dataset of grain boundary energies and structures. Here,
we provide a brief overview of the methods used in this work: MD,
LM, facet relaxation, and thermalization of selected MD boundaries to
encourage faceting.

2.1. Generation of molecular dynamics dataset

The creation of the computed aluminum grain boundary dataset
used in this work is described in detail in [22] and is available for
download [42]. In short, coincidence site lattice (CSL) theory was
used to select the points in the 5D disorientation space to provide
comprehensive, but not uniform, coverage. With the crystallographic
character of the 7304 grain boundaries selected, an average of 5888
potential starting structures were created for each GB to find the
minimum energy structure for each boundary. The starting structures
were obtained by varying the relative placement of the two crystals,
the placement of the boundary plane, and allowed proximity of atoms
in the grain boundary region. Each of these starting structures were
then subjected to conjugate gradient minimization, without heating
the structure first, and the lowest energy structure was kept as the
representative GB structure. Trends in the dataset are examined in [22].
In the present work, these GB energy values are used for comparison
with predictions by LM.

2.2. Lattice matching method for grain boundary energy

Here we review the LM method for grain boundary energy. A
general reference for this section is [37]. LM is rooted in the con-
struction of optimal transportation theory, building on the assumption
that the grain boundary energy is proportional to the energetic cost of
transforming one lattice into another within the interfacial region. The
grain boundary energy, then, is said to be the minimizer of this cost,
making the problem one of optimal transport. Applying thermalization
and taking the L2 upper bound makes it possible to determine the
solution in terms of lattice density fields. The lattice density field for a
grain, �, is defined implicitly as

∫
 �(x) dx = ⟨N⟩
 , ∀ measurable 
 ⊂ R
3, (1)

where ⟨N⟩
 is the expected value of the number of atoms contained
within 
. Intuitively one may think of �(x) as a collection of distribu-
tions (often Gaussians), each centered at the location of an atom in the
lattice. Lattice density functions are represented using Fourier series,

�(x) =
∑

n∈Z3

eikn⋅x  ̂(kn) �n, (2)

where k(n) are the reciprocal lattice vectors,  ̂ is the reciprocal atomic
distribution (often a Gaussian), and �n are Fourier coefficients. The
energy is then proportional to the normalized covariance of the two
atomic distributions over the boundary plane:

c[�1, �2] =
1

�(1) ∫)
 �
1(x) �2(x) d�(x) (3)

where � is a measure with respect to a window function �, the selection
of which is determined heuristically. If specializing to two identical
lattices undergoing rotations R1,R2 ∈ SO(3), then the covariance is
expressible in closed form,

c[�1, �2](R1,R2)

=
1

�̂(0)

∑

n1 ,n2∈Z3

�1
n1
�2
n2
 ̂(kn1 ) ̂(kn2 )�̂((R1kn1 −R2kn2 )),

(4)

where �̂ is the Fourier transform of � and  is a projection operator
onto the boundary plane. Eq. (4) is a double sum, closed-form expres-
sion that is readily amenable to evaluation. The Fourier coefficients
�1, �2 can be precalculated in advance, increasing the efficiency of the
calculation. The convergence of the double sum is dependent upon the
thermalization parameter, and tends towards infinity as the ‘‘tempera-
ture’’ of the lattices tends towards zero. For most practical applications,
a relatively high value of the thermalization parameter is sufficient;
nevertheless, the double sum often requires thousands of terms to
guarantee convergence. Therefore, some care must be taken when
implementing Eq. (4) to avoid excessive computation time. We find
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that a C++ implementation with O3 optimization is able to yield a GB
energy calculation on the order of milliseconds. The reader is referred
to WIELD [43], which contains an optimized C++ implementation and
Python bindings, for further details.

To convert from covariance to grain boundary energy 
, the follow-
ing affine relationship is used, which we consider to be a function of
rotations only (i.e., treating the lattice fields as parameters):


(R1,R2) = 
0

(
1 −

c(R1,R2)

c0

)
. (5)

The value c0 is the ‘‘ground state’’ covariance, and corresponds to the
maximum possible value of c0 attainable for the given lattices. This
value can be calculated directly for any pair of lattices by evaluating the
no-boundary boundary along the lattice’s most densely packed plane,
and so this is not considered to be an adjustable parameter.

The value 
0, however, is a scaling factor that must be determined
heuristically by comparison to experimental, atomistic, or ab initio
calculations. Values for 
0 were previously determined by comparison
to a consistent set of atomistic data [37]. However, atomistic results
are known to vary in their calculation of grain boundary energies by a
multiplicative factor [17], which may produce error in the calculation
of 
0. Moreover, grain boundary calculations exhibit strong potential
dependence, Calculations can differ by a multiplicative factor up to
an order of magnitude depending on the model used, although they
do demonstrate remarkable consistency (e.g., in cusp location and
shape) with themselves and LM, up to scalar multiplication [44]. For
aluminum specifically, the selection of potential can yield a difference
in scaling factor up to four; see [45–48] for the complete data set
including comparisons for the potential considered here.

Given the variability in atomistic data, it becomes necessary to
quantify the uncertainty in 
0 in order to ensure reliability of future
grain boundary energy predictions. Determination of uncertainty is one
of the objectives of this work.

2.3. Faceting relaxation with lattice matching

As indicated above, many grain boundaries exhibit a faceted struc-
ture.1 Mathematically, this is understood to be a consequence of the
extreme non-convexity of 
 with respect to boundary orientation [18].
Faceting is relatively easy to see and measure experimentally, providing
a basis for implicit validation of energy. Facet morphology is, however,
impervious to the choice of scaling constant 
0 [39], providing little
help for experimental validation of 
0.

In lattice-matching calculations, it has been shown that straight-
forward calculation of Eq. (5) will systematically overestimate grain
boundary energy. This can be seen by observing that evaluation of

 for no-boundary boundaries (i.e., 
(R,R)) will produce a nonzero
value when the boundary plane does not align with the densest packed
plane. The faceting algorithm, when applied to LM, is able to resolve
this discrepancy by constructing a real (or, sometimes, hypothetical)
faceted boundary from nearby energy cusps. Formally, the process for
determining the facet-relaxed energy 
C is


NC (n) = inf
ni∈S(2)

�i∈R+

N∑

i=1

�i 
(ni) subject to
N∑

i=1

�i ni = n,

N∑

i=1

�i ≥ 1, (6)

where ni are normal vectors corresponding to facet plane orientations,
�i are area fractions corresponding to each facet, and N is the facet
order. N = 1 corresponds to the no-facet case. N = 2, referred to as
‘‘two-faceting’’ or ‘‘second-order’’ faceting, is the commonly observed
zig-zag facet pattern, extruded in the direction mutually orthogonal to
both facets. N = 3 is referred to as ‘‘three-faceting’’ or ‘‘third-order’’

1 Specifically, this is called ‘‘micro-faceting’’, which is distinct from the
formation of large, sometimes even visible, piecewise planar sections of
boundary. In this work, ‘‘faceting’’ refers exclusively to micro-faceting.

faceting, and corresponds to a three-dimensional facet pattern. Higher
order facet patterns (N ≥ 4) may exist, but cannot lower the energy
beyond what is possible with third order faceting relaxation (see [39]
for discussion), and come at the expense of additional facet junction
energy. This does not mean that they do not exist, only that they do
not offer an energetic advantage from a LM perspective. Note that the
inequality in Eq. (6) reflects that the process of faceting corresponds to
a net increase in area.

There is, to our knowledge, no way to evaluate Eq. (6) in closed
form, due to the nonconvexity of 
. Fortunately, S(2)N is a compact
space and, depending on the orientation relationship, can often be
reduced by a factor of up to 8. Therefore, we found that a primitive
grid search is sufficient for solving Eq. (6) without incurring excessive
computation time. We used the WIELD convexification algorithm to cal-
culate 
2C and 
3C for each boundary, and found that even boundaries
with irreducible fundamental zone took only on the order of seconds
to minutes to compute.

In this work, we use this algorithm to generate second and third
order faceting predictions for LM. Faceting, when applied to LM, does
not always mean that a visible facet pattern will emerge, since it
sometimes functions merely as a regularization. On the other hand, LM
has been shown to predict experimentally and atomistically observed
facet patterns [39,40]. We remark that the dataset presented in [22]
specifically aimed to suppress faceting in order to explore the energies
for planar or near-planar boundaries. Thus, one aspect of the compar-
ison performed in this work is the assessment of when the predicted
faceting of LM functions as a morphological prediction, and when it
functions merely as an energy correction. In section Section 3.4, we
explore the predictive capability of the faceting algorithm by testing to
see if facet-likely atomistic boundaries do form facets upon sufficient
annealing time.

2.4. Observation of faceting through annealing

As noted in the introduction, the amount of faceting in the original
MD dataset (Section 2.1) was minimized without thermalizing the GBs,
or heating the GBs to high temperatures, prior to the minimization
process. This was to deliberately suppress the formation of facets,
because faceted boundaries consist of boundary plane normals with
energies that are different than that of the overall boundary plane
normal. So, working with non-thermalized GBs made it possible to
determine the most likely energy for a given boundary plane prior
to faceting. With comprehensive information about the energy as a
function of boundary plane, one can then predict likely faceting that
could lower the energy of a given boundary.

Since the LM relaxation algorithm can predict likely faceting to
reduce the overall energy of a GB, the non-thermalized MD dataset
provides an ideal opportunity for testing the predictive capability of
the LM relaxation algorithm: A GB that has had a chance to facet
will, ostensibly, adopt the faceted structure predicted by the LM model.
Therefore, the non-thermalized MD boundaries were selected that had
the highest likelihood, as predicted by LM, of faceting. Because of the
strong tendency of �3 GBs to facet [49], all �3 GBs are examined to
see how their structure would evolve given thermal energy to facilitate
the process. To accomplish this using MD, each of the �3 GBs are
replicated by 3 in both directions of the GB plane to increase the GB
area by a factor of 9. This makes it easier for long facets to emerge
within the constraints of the periodic boundary conditions. The GBs
are then equilibrated at 750 K for 50 ps, then quenched with a first
order (exponential) cooling profile using a time constant of 4.34 ps
over 30 ps. Finally, the structure is minimized using conjugate gradient
minimization. These ‘‘annealed’’ GB structures are compared with the
faceting predictions by the LM model.
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Fig. 1. Comparison of LM to MD data, plotted with respect to disorientation angle. (Left, green) Unrelaxed LM data (Center, blue) LM relaxed with second order (1d) faceting
(Right, gold) LM relaxed with third order (2d) faceting (All, gray) MD data. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Comparison between LM and MD data for unrelaxed (left), second order facet relaxed (center), and third order facet relaxed (left). Abscissa is LM value, ordinate is MD
value; the black line indicates a perfect match, and the dotted lines indicate approximate relative error. Color indicates density of points. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

3. Results

Given the approach outlined in the previous section, the goal of
this section is to determine three things: (1) what is the expected
error of LM as determined by systematic comparison to atomistics; (2)
are the cusps predicted by LM qualitatively similar to those predicted
by atomistics; and (3) what is the relationship between LM facet
predictions and original/annealed molecular dynamics? All LM results,
including the unrelaxed energy, relaxed energy by 2-faceting, relaxed
energy by 3-faceting, and associated facet orientations, are included
as supplementary data.2 Boundary identifiers are consistent with those
used in the MD dataset by Homer et al. [22], which is available for
download [42].

3.1. Grain boundary energy

We begin by presenting the raw LM energy prediction with the
energy prediction from atomistic simulations as a function of disori-
entation angle (Fig. 1). The left, center, and right panels correspond to
the no faceting case, 1-facet case, and 2-facet case, respectively. The
first qualitative trend to notice is the similar behavior for low angle
boundaries, where the disorientation angle is less than 20◦. This is
reflective of the well-known ability of LM to accurately capture cusp
locations. For the same reason, similar behavior is again observed for
the lower energy grain boundaries as the disorientation goes to 60◦.

One striking feature is the presence of a clear upper bound in
the LM data, represented by a plateau above which there are no LM
points. This is well-known behavior, and corresponds to the fact that
LM has a finite upper limit corresponding to the no-coincidence case.
On the other hand, a significant portion of the atomistic data exceeds

2 Al_GBs_2022_LatticeMatching.csv.

this value. There are multiple possible reasons for this, with the most
straightforward being that LM simply is not valid for certain high angle
boundaries. A contributing factor may be that the atomistic simulations
did not actually find the minimum energy state of the boundary, but
instead arrived at a metastable, higher energy state. However, given
the extensive optimization performed in the original MD dataset, we
believe this to be unlikely. And, though we cannot be be sure that the
atomistic simulations did achieve the minimum energy configuration,
it is not expected that they would exhibit the type of upper bound
exhibited by the LM results.

The same data is presented again in a parity plot (Fig. 2), where
each point signifies a particular boundary; its horizontal position rep-
resents its LM energy and its vertical position represents its atomistic
energy. Perfect agreement between LM and atomistics would result
in all points falling along a straight line, the slope of which is the
scaling parameter 
0. Obviously, from the figure, there is substantial
variance between the two models. This is not surprising, as LM is not
generally expected to capture large angle boundary energy perfectly.
There is a linear trend between the two energy calculations. Least
squares regression is used to determine the most likely scaling factor,
which was 731, 762, 770, for the no-facet, two-facet, and three-facet
cases, respectively. The standard deviation from the least squares fitting
algorithm was also calculated and reported to be 32%, 27%, 27% for each
case, and the corresponding dispersion estimate is indicated by dotted
lines above and below the mean trendline. Nearly all of the points
fall within this band, with only a handful outside. Therefore, from this
regression analysis, a safe estimate of the upper bound for LM error is
±25%. Furthermore, the relative and absolute errors can be calculated
by:

average relative error =
1

#points

∑

i

|
 i
md

− 
 i
lm
|


 i
md

= 7.6%, 6.7%, 6.5% (7)

average absolute error =
1

# points

∑

i

|
 i
md

− 
 i
lm
|

maxj (

j

md
)
= 5.8%, 5.1%, 5.0% (8)
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Fig. 3. Histogram of relative error |
LM − 
MD|∕
MD and average absolute error |
LM − 
MD|∕(#points) for the no-faceting case (left), second order facet relaxed (center), and third
order facet relaxed (right).

corresponding to the no-facet case, the second-order facet case, and the
third-order facet case, respectively. Histograms of these errors indicate
the general spread of the error across the dataset (Fig. 3). This error is
comparable with the variance observed in the atomistic dataset, where
an unpublished analysis of the dataset has estimated the uncertainty on
the grain boundary energy to be ≈10%.

It is important to note the influence of faceting on the scaling factor,
standard deviation, and error. Apparently, second order faceting results
in a substantial decrease in the error, while third order faceting does
not narrow the window by any significant amount. Thus, it is concluded
that second order faceting is sufficient when performing actual energy
calculations (which is fortunate, because of the reduced time needed
for second order vs. third order faceting.) Still, third order faceting
produces an interesting change in the distribution of points, because
even though the error is unchanged, there is a noticeable difference in
the scatter plots. One small cluster of points, in particular, located in
the three-facet plot at approximately (0.29, 400), is not present in the
two-facet or no-facet cases. This implies that these points experienced
a substantial energy difference, dropping the energy well below the
atomistic estimate. This is likely due to the constraints placed on the
atomistic simulations that discourage faceting.

3.2. Exploration of grain boundary energy in the fundamental zone

One of the key capabilities of LM is the ability to predict general
trends in grain boundary space. Grain boundary energy is characterized
by the presence of deep wells (‘‘cusps’’), which are usually sharp
(discontinuous derivative) at the minimum. The presence of cusps is
known to be a strong driver of boundary behavior, and it is essential
that energy models for boundary energy accurately report if a certain
boundary is near to a cusp. So, while the actual prediction of the energy
magnitude may be off by up to 25%, this is often less important than
capturing the overall trend.

To explore LM predictions in general grain boundary space, we
compared trends of LM and molecular dynamics in individual boundary
plane fundamental zones [50,51]. The atomistic dataset considered
150 distinct fundamental zones, each with varying numbers of points
depending on the symmetry of the zone. Twelve representative zones
are included here (Fig. 4), and the remaining 138 visualizations are
included in the supplementary data.3 Each polar plot shows the stereo-
graphic projection of the LM energy, as defined over the unit 2-sphere,
onto the unit 2-ball.

Along with the continuous LM data, discrete points from the atom-
istic dataset are plotted on top. The color of each point corresponds
to the value of the measured energy, scaled by the factor determined
in Section 3.1, so that matching colors corresponds to similar energy
values. The shape of each point corresponds to the faceting of the
boundary as predicted by LM : circular points are predicted to have no
facets, square points to two-faceted boundaries (when reducing energy
by 10% or more of unrelaxed), and triangular points to three-faceted

3 fundamental_zone.tar.gz.

boundaries (when reducing energy by 10% or more of unrelaxed). A
full discussion of how the LM-predicted faceting compares with that
actually observed in MD will follow in the next section.

The top row of Fig. 4 has GBs that share the [1 0 0] disorientation
axis and increase in disorientation angle from left to right. One can see
the expected D4ℎ symmetry and the general trend of increased energy
with increased disorientation angle in both LM and atomistic data.
The symmetric twist GBs about the disorientation axis (center point in
the plots) consistently have the lowest energy in the atomistic data,
but this particular location increases in energy in the LM results with
increased disorientation angle. Of curious note in Figs. 4(a) and 4(b) are
the energy cusps along the 45 degree axes about midway between the
center and edge. The MD data points do not show a dramatic change
near the cusps but the data points are generally closer to the cusp
energy than the energy predictions surrounding the cusp. These larger
region of low energies in the MD simulations are consistent with other
MD simulations of [1 0 0] disorientation axis GBs in nickel [20].

The second row of Fig. 4 has GBs that share the [1 1 1] disorientation
axis and increase in disorientation angle from left to right. The LM
plots all possess the expected symmetry and both LM and atomistic
data feature the lowest energy at the symmetric twist GBs about the
disorientation axis (center point in the plots). The low disorientation
angle LM plot (Fig. 4(e)) again shows cusps midway between the center
and edge of the circle. These cusps are not matched by the atomistic
data and the atomistic data in the surrounding points is lower than the
LM prediction. On the other hand, the six-fold cusps in Figs. 4(g) and
4(h) are matched by the MD data, particularly in the case of Fig. 4(h).
Interestingly, these six-fold cusps are strong enough to appear in the
LM predictions of CSLs somewhat close to the �3. This can be seen
in Figs. 4(k) and 4(l), which, because of the lower C2ℎ symmetry, are
rotated by 90◦ relative to the �3 plot (Fig. 4(h)). The atomistic data
in these near �3 GB plots appear to follow the trends but with less
dramatic cusps.

The final two plots, Figs. 4(i) and 4(j) represent a low-angle and
high-angle boundary, respectively. The low-angle boundary in Fig. 4(i)
illustrates how the symmetric twist is not the lowest energy in [1 1 0]

disorientation axis boundaries. This matches trends illustrated in [51].
Interestingly, the cusp along the horizontal axis matches the low energy
of the MD simulation while the cusp along the vertical axis does not.
The high-angle GB in Fig. 4(j) has little indication of cusping and just
generally has high energy, as indicated by both the LM and MD data.

Overall, the LM appears to give predictions that match the general
trends present in the atomistic data. LM predicts deeper cusps than
those evident in the atomistic data; in some cases there is no atomistic
prediction where LM predicts a minimum (for instance, in the three
prominent minima of the �111a fundamental zone). It is also likely
that some of the cusps predicted by LM result from minima in nearby
disorientations, thereby making it difficult to assess the degree to which
this ‘‘cusping’’ behavior should be present in the imperfectly sampled
atomistic data. Without much higher resolution of atomistic data, it is
not possible to determine whether the cusp structure predicted by LM is
accurate, but the LM fundamental zone plots provide a guide for future
study of potentially interesting boundaries.
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Fig. 4. LM vs. MD for a selection of fundamental zones. The continuous polar plot is the LM data, and the discrete points are MD. The range is the same as that in Fig. 2.
Circular glyphs indicate no faceting predicted by LM, diamond glyphs indicate second order faceting predicted by LM, triangular glyphs indicate third order faceting predicted
by LM. 2-faceting and 3-faceting are considered favorable if they lower the energy by at least 10% below the unrelaxed energy. Each of the subplots is labeled with the CSL �
number, the angle and axis of rotation, as well as the Schönflies point group of the CSL. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The biggest differences between LM predictions and atomistic data
emerge in the low-angle GBs. In these cases relaxed LM predictions
(Fig. 1) predict lower, and therefore more accurate energies. It is known
that low-angle GBs exhibit discrete dislocation arrays, after the Read-
Shockley model, which is ‘‘faceting’’ after a manner and suggests why
the predictions for LM get better when relaxation is allowed. In short,
while the match is not perfect, LM provides predictions that are useful
in exploring energetics in the 5D space, which can later be examined
in select locations with more accurate methods.

3.3. Lattice matching relaxation behavior

The facet algorithm as discussed in the theory section, and as
apparent from previous results, has a non-trivial effect on the accuracy
of the LM model. In this section, we quantify and explore the prevalence
of LM energy reduction through faceting. When a boundary relaxes its
energy by faceting, it simultaneously lowers its energy by reorienting
the boundary to more favorable orientations, and lowers its energy
by creating additional boundary surface area. In real boundaries, the
junction created between facets incurs an additional energetic cost,
which will likely prohibit faceting except when the energy reduction is
very large. LM does not account for this cost, and will predict faceting
even if the energy reduction is marginal. Consequently, the ‘‘percentage
of energy reduced by faceting’’ is a reliable indicator for when we
expect LM facet predictions to be realized in atomistic simulations. This
is especially true for the present atomistic dataset, which as mentioned
earlier, was specifically designed to suppress faceting.

Of the boundaries that exhibit faceting, the vast majority accom-
plished an energy reduction of 30% or less. (This is reflected in
Fig. 5(a), where it is important to note that a logarithmic scale is used
for the ordinate.) The energy reduction measured for two-faceting is

based on the original, unrelaxed energy; the energy reduction measured
for three-faceting is based on the difference between the three-faceting
and the two-faceting energy reductions. Even though most faceting
produced a relatively small energy reduction, there were several bound-
aries with an appreciable energy reduction for both two-facet and
three-facet relaxation.

There is a distinct correspondence between disorientation angle
and facet likelihood (Fig. 5(b); note there is no log scale used here).
Faceting appears to occur predominantly in the 5–20◦ and 50–60◦

disorientation ranges. Three-faceting occurs almost exclusively in low
angle boundaries. The reason for this localization is the presence of
two strong cusps: the ‘‘no boundary’’ or ‘‘near-no-boundary’’ cusp for
low disorientations, and the coherent �3 twin at high disorientations.
As stated before, small-reduction faceting does not always correspond
to visible faceting in atomistic simulations, although it can be reflec-
tive of the boundary’s microstructure (e.g. the Read-Shockley type
structure of low-angle GBs). This can be seen even more clearly by
plotting the faceted boundaries in Rodrigues–Frank space (Fig. 6),
where faceted boundaries tend to localize at or near the no-boundary
or the coherent twin boundary. In terms of quantity, the number of
boundaries predicted to exhibit three-faceting at high disorientation
angles is small (Fig. 5(b)). However, as we shall see in the next section,
these three-facets are important for �3 GBs.

3.4. Comparison of predicted and observed facet morphology

To compare the facet morphology between the atomistic data and
LM predictions, we apply visual and computational methods. We focus
our efforts on �3 GBs because of the strong drive to facet with coherent
twin segments. In the plot of energy as function of boundary plane
normal (Fig. 4) it can be seen that the coherent twin (1 1 1) and {1 1 2}
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Fig. 5. Statistics of faceted boundaries as predicted by LM.

Fig. 6. Plot of boundaries in the Rodrigues–Frank space with 30% reduction (left), 20% reduction (center), 10% reduction (right), for second order (top, blue) and third order
(bottom, gold) faceting. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

normals have the lowest energy and would likely be the most ideal
candidates for faceting.

In the dataset comprised of non-thermalized GBs, there are 13
�3 GBs, including the coherent twin. Of these, only 1 GB exhibits
considerable faceting, since GB creation process was designed not to
encourage faceting. In this work, additional annealing was carried
out on these GBs to enable the GBs to form facets. However, despite
increasing the area of the GBs and annealing the structures at elevated
temperatures, there was limited change to the structures in terms of
the degree of faceting present. The atomic structures of 4 �3 GBs are
illustrated in Fig. 7a. (Visualization and rendering of the 3D atomic
structures was performed using blender [52].) The atoms are colored
by CNA with blue atoms having HCP or twin-like local environments
and red atoms having no crystal structure; all atoms with FCC structure

have been removed. It can be seen that the number of HCP or twin-like
local environments decreases from top to bottom.

Quantitative assessment of facet morphologies is notoriously diffi-
cult for atomistic datasets.4 This difficulty can be understood by noting
the ambiguity between ‘‘facets’’ and ‘‘roughness’’, where the former
are distinct geometric features, whereas the latter merely result from
atomic corrugation. Consequently, systematic analysis of large numbers
of faceting boundaries can easily miss important features because they
are too small, or may misidentify innocuous boundary structures as

4 It is difficult even for theoretical analysis of idealized boundaries,
and requires the application of geometric measure theory for proper
characterization.
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Fig. 7. (a) Atomic structures of GB atoms colored by CNA (Blue = HCP atoms, Red = no crystal structure). (b) Surface mesh of GB atoms colored by the standard stereographic
triangle normal to each mesh face based on the inverse pole figure coloring included. The point-of-view icon ( ) indicates the perspective in the 3D view. (c) LM facet patterns
also colored by the normal based on the inverse pole figure coloring included. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

facets. In the present work, faceting is assessed semi-quantitatively by
fitting the GB atoms with a mesh in OVITO [53] and coloring the
mesh by the mesh surface normals in Fig. 7b. Note that these are
colored by the standard stereographic triangle. The fraction of the
GB area with (1 1 1) normals decreases from top to bottom, but all of
these structures are altered compared with the structure of the GB
prior to annealing. Fig. 7c plots the facet pattern predicted by LM.
Patterns for all LM boundaries that exhibit 3-faceting are included as
supplementary data.5 The match between the facet patterns for the
(11 8 5) ∕

(
1̄1 5̄ 8̄

)
GB are quite good. However, it can be seen that the

jagged facets between the coherent twins do not quite reach {1 1 2}

boundary plane normals, which might have occurred if the boundary
were much larger or relaxed for a longer period. The match between
the facet patterns for the (14 5 2) ∕

(
4̄ 0 3̄

)
GB is less clear, but in the

5 facet_pattern.tar.gz.

few places where small (1 1 1) planes can be observed, the orientation
and placement of the facets appears to match. However, there is a
large patch where the surface has numerous normals (yellow, pink,
green) where the atoms do not adopt any particular facet structure.
GBs

(
31 1 1̄1

)
∕
(
2̄5 17 1̄3

)
and

(
29 11 7̄

)
∕
(
2̄9 7 1̄1

)
both also have a large

region without any particular facet structure. The other regions in
the GBs appear to be moving towards some sort of faceted structure,
but have not yet achieved anything significant. For example, in the(
31 1 1̄1

)
∕
(
2̄5 17 1̄3

)
GB in Fig. 7b an alternating pattern of (1 1 1) and

{1 1 2} facets is present. In the
(
29 11 7̄

)
∕
(
2̄9 7 1̄1

)
GB several pyramid

like structures are emerging. One of the pyramidal faces in Fig. 7a has
small regions of HCP atoms, which would have a (1 1 1) normal, but
due to the small size and meshing are not colored as (1 1 1) facets. The
nascent facets in the bottom 3 GBs bear some resemblance to the facet
patterns in Fig. 7c, but it is too early to be sure. In short, it appears that
these system are slowly restructuring into the low energy facets, but
they are limited in their ability to do so by the annealing time and the
constraints of the length scale and the periodic boundary conditions.
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Fig. 8. Plot of boundary normal distributions before (B) and after (A) annealing for the 13 �3 GBs. The center diagram shows the location of each GB in the �3 boundary plane
fundamental zone. The normals for likely facets of (1 1 1) plane and {1 1 2} family of planes are denoted by a red square and magenta triangles, respectively.

To better illustrate this drive towards the low energy facets, we
illustrate the distribution of GB surface mesh normals for all 13 �3 GBs
in Fig. 8. The distribution of normals comes from the same mesh fitting
process as in Fig. 7b, except that now we plot just the distribution of
normals from each GB. Fig. 8 plots the distribution of boundary plane
normals before (B) and after (A) annealing. The plots also include a red
square and magenta triangles that denote the normal to the (1 1 1) plane
and {1 1 2} family of planes, respectively. As noted earlier, these plane
normals are the preferred facet planes for a �3 GB (as illustrated in
Fig. 4). Careful inspection of these normal distributions in Fig. 8 shows
a tendency of the distributions to include the low energy facets, even if
the system is unable to fully partition into those facets. It is also clear
that most of the normals in the distribution have not moved towards
the low energy facet positions, meaning that these GBs could perhaps
lower their energy further if given sufficient time and space to facet
appropriately.

Interestingly, there was negligible change in the GB energies for
all these �3 GBs despite the change in structures; all changes were in
the range [−4,4] mJ/m2. This is likely for the following reasons. First,
there is a junction energy when a GB facets, which penalty affects the
overall stability and length scale of facets that emerge [54,55]. Second,
as noted above and as evident in Fig. 7, there are regions that do not
facet in some of the GBs. This may be a result of the periodic boundary
conditions enforced in these simulations. The facet geometries may not
conform well to the dimensions enforced by the periodic boundaries.
Even the facet patterns predicted by LM in Fig. 7 are not setup to
enforce periodic boundaries. Of course, periodic boundaries are a con-
struct of the simulation methods employed and would not impact GBs
in real materials, but it affects our ability to accurately simulate the
nature of faceting in small simulation cells.

In short, atomistic predictions of faceting are impacted by a number
of factors, including time required to achieve lower energy structures as
well as the length scales and boundary conditions employed. The length
scales and boundary conditions not only affect the ability to achieve
a pattern of facets, but also come into play by the length scale of
the facets and frequency of facet junctions. Adopting facets may lower
the energy but the facet junctions will raise the energy and affect the
overall stability of the structure [54,55]. Nonetheless, in these cases the

LM prediction appears consistent with the faceting pattern that would
emerge in GBs upon very long annealing time. Further investigation
of faceting behavior, as well as the development of more quantitative
metrics for atomistic faceting, are left to future work.

4. Discussion

This work has led to a number of general insights for practitioners
of molecular dynamics as well as analytic modelers of grain boundaries.
Some of these considerations are discussed here, in the spirit of recom-
mending best practices for future combined atomistic and theoretical
efforts.

This systematic study has demonstrated that LM is useful for gener-
ating reasonably accurate GB estimations, and importantly, providing
insight into the local geometry (cusps) and trends (low-angle vs. high-
angle GBs) given an arbitrary GB character. This makes LM a useful tool
for when high-throughput GB estimates are needed, as is often the case
in multiscale modeling. On the other hand, LM users should note that
LM is limited in its ability to correctly calculate the energy of high angle
grain boundaries, especially as it exhibits a distinct maximum reachable
energy. It is also important to note that, while LM requires faceting
relaxation in order to properly correct GB energy estimates, these facet
patterns are not always reflected in the MD structures. Therefore, care
must be taken when considering LM predictions of facet morphology
and comparison to MD is advisable.

From the atomistic perspective, LM can serve as a supplement that
offers a quick estimate of GB energy and the kind of faceting that can
occur. Length scale limitations resulting from facet junction energy,
and constraints of MD system size and periodicity, make it difficult to
conduct a thorough search for faceted boundaries. LM can be used to
screen for facet-likely configurations, and to provide recommendations
for the necessary system size and periodicity requirements in order
for facets to exist. LM can also provide information on the optimal
facet configurations, so in some cases, MD can be used to individually
determine facet boundary energies.
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5. Conclusions

Recent advances in experiments and computation provide unpar-
alleled understanding of grain boundary (GB) properties. This work
compares lattice matching (LM) and atomistic predictions of faceting
and energy in GBs across the 5D space. In comparison to atomistic
simulations, LM provides a very fast method to predict and explore GB
energy and faceting with some sacrifice in accuracy. On the other hand
atomistic simulations provide a detailed view of the GB energy and
atomic structure, including any faceting, at the sacrifice of considerable
computation time. Additionally, atomistic simulations can require con-
siderable annealing time to form substantial facets. This work shows
that LM provides reasonably accurate predictions as well as insights
into the location of possible energy cusps and faceting structures.
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