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ABSTRACT
The modern-day research community has an embarrassment of
riches regarding pre-trained AI models. Even for a simple task such
as lexicon set expansion, where an AI model suggests new entities
to add to a prede�ned seed set of entities, thousands of models
are available. However, deciding which model to use for a given
set expansion task is non-trivial. In hindsight, some models can
be ‘o� topic’ for speci�c set expansion tasks, while others might
work well initially but quickly exhaust what they have to o�er.
Additionally, certain models may require more careful priming in
the form of samples or feedback before being �netuned to the task
at hand. In this work, we frame this model selection as a sequen-
tial non-stationary problem, where there exist a large number of
diverse pre-trained models that may or may not �t a task at hand,
and an expert is shown one suggestion at a time to include in the
set or not, i.e., accept or reject the suggestion. The goal is to expand
the list with the most entities as quickly as possible. We introduce
MArBLE, a hierarchical multi-armed bandit method for this task,
and two strategies designed to address cold-start problems. Experi-
mental results on three set expansion tasks demonstrate MArBLE’s
e�ectiveness compared to baselines.
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1 INTRODUCTION
Entity set expansion starts with a small set of seed entities and aims
at expanding the set by including entities with similar semantics.
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Figure 1: In traditional set expansion, a subject-matter expert
has to �rst select a model. In real-world settings, this is a
non-trivial decision, as each model may produce entity sets
with varying semantics and the expert must know about
the training distribution of the models beforehand. Instead,
MArBLE collects candidate entities from a large set ofmodels
simultaneously and progressively learns which model to
query in each round.

The extracted entities can be useful for various natural language
processing (NLP) downstream tasks, such as opinion mining [42],
semantic search [6], taxonomy construction [32], query understand-
ing [20, 36], question answering [35], and recommendation [17].
Depending on the downstream task, target semantics for a set ex-
pansion task can be general or nuanced. For example, starting with
a seed of “question answering” and “machine translation”,
the goal can be to extract entities encompassing the di�erent areas
of Computer Science research, such as “image classification”,
“activity detection”, and “recommender systems”. On the
other hand, the goal can be to extract NLP research tasks, such as
“sentiment classification”, and “text generation”, etc.

In practice, there exist several challenges for set expansion meth-
ods. There is a vast number of multifaceted data sources in the real
world. Additionally, there exists a wide range of methods suitable
for set expansion tasks. Each method has distinct unpredictable
advantages and limitations that may be observed in retrospect. Ex-
posing themethods to di�erent data sources also dictates the quality
of the trained models. For example, even if there is no pre-trained
model for a particular domain or task, there may be models trained
on related data collections and domains. Being able to capture in-
herent similarities between such models allows for the retrieval of
the most suitable methods. Yet, in many cases, choosing the most
suitable method for a given set expansion task is not straightfor-
ward. Additionally, what kinds of data collections were used to
train a model, and what kind of useful data subsets each training
set may contain, are model properties that often remain unknown
to users. Therefore, it is bene�cial to develop post hoc frameworks
that can select among multiple methods based on user feedback.
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There has been some work on selecting between multiple meth-
ods for other domains, such as recommender systems [10], digi-
tal advertising [5, 7], forecasting [12, 46], etc. However, the task
of human-in-the-loop entity set expansion is uniquely challeng-
ing compared to the aforementioned tasks as there is no predeter-
mined objective function that can guide the training process for
entity set expansion. Instead, the feedback must be collected from a
subject-matter expert at each iteration, and hence the model needs
to evolve based on iterative re�nements. Additionally, each new
entity task may be inherently di�erent from previous ones. A model
that worked well for expanding a set of computer science terms
might not work well for expanding a set of terms related to foods.
Consequently, it is important to incorporate user feedback into the
framework to guide the method selection process. Though there has
been some work on human-in-the-loop set expansion [1, 13], these
methods focus on pre-selecting a single data source and a single
method for set expansion. However, given the challenges above,
restricting the solution to a single model or dataset is suboptimal
in many cases. This line of research has received limited attention.

In this work, we frame the task of entity set expansion as a multi-
source human-in-the-loop setting (see Figure 1), and introduce Hi-
erarchical Multi-Armed Bandit for Lexicon Expansion (MArBLE).
In contrast to previous works where it is required to select a model
before starting the set expansion task, MArBLE can select from
multiple models without making any assumptions on the architec-
tures or training data distributions of the available models.MArBLE
can gradually improve its selection based on subject-matter expert
feedback. Speci�cally, the subject-matter expert decides whether to
accept or reject entity candidates andMArBLE learns based on this
type of feedback. While selecting a model is necessary for tradi-
tional approaches, which require knowledge about the architecture
and the training distribution of the models, MArBLE removes this
pre-requisite, making the process more streamlined, faster, and
less expensive. Furthermore, we present two boosting strategies to
address the cold-start problem [19], where models may not have
su�cient data to provide good candidates in the initial rounds.

The contributions of our work are summarized as follows: 1)
We introduceMArBLE, a human-in-the-loop entity set expansion
framework that, based on expert feedback, can select the most suit-
able model for the task at hand among a large number of available
set expansion models. 2) To alleviate cold-start problems, we pro-
pose two boosting methods that utilize collective information from
all models to make better-informed decisions in the initial stages. 3)
We validate the e�cacy of MArBLE through extensive experiments
across 3 benchmark datasets and 81 set expansion models. Experi-
ments show that MArBLE, along with its variants, can successfully
identify useful models for various set expansion tasks.

2 RELATEDWORK
Entity Set Expansion: Ghahramani and Heller [14] formulate set
expansion as a Bayesian inference problem, comparing the pos-
terior probability of an entity given the seed entities to the prior
probability of that entity. A few other early approaches rely on
co-occurrence statistics [26] and topic information [25] to rank
candidate entities. Pantel et al. [23] use distributional semantics to

e�ciently calculate the pairwise similarity of all terms in a web cor-
pus and later use it for set expansion.Wang and Cohen [33, 34] build
a graph by automatically extracting entities from semi-structured
webpages with lists and then use a ranking algorithm to �nd the
most promising entities. Other methods similarly exploit knowl-
edge graphs built on web corpora to extend entity sets using meta-
paths [29, 45], de�ciency (incompleteness) [6, 43], or variational
autoencoders [24]. There also exist approaches that incorporate
infrequent synonyms into the set [28], probe language models to
generate pseudo-class labels [44], apply contrastive learning to
�netune language models for the entity set expansion tasks [18],
or perform pattern matching (bootstrapping) [8, 39–41]. However,
none of these works consider human-in-the-loop settings.
Human-in-the-Loop Entity Set Expansion: A major drawback
of the aforementioned methods is that they cannot incorporate
subject-matter expert feedback in their architectures. Such feedback
can help prevent semantic drift and focus the set expansion task
on the target granularity. While there has been some work on
incorporating user feedback in model design and label acquisition
in various downstream tasks [4, 21, 22, 37, 38], set expansion has
received limited attention. Coden et al. [8] generate patterns from
seed entities to �nd similar terms in the corpus and validate the
candidate terms with the help of a subject matter expert in each
iteration. Gentile et al. [13] propose a human-in-the-loop “explore
and exploit” (EnE) paradigm, where the �rst step is to �nd similar
terms in the corpus by using neural languagemodels (explore phase)
and later on generate more terms by employing modi�cations and
extensions (exploit phase). Kohita et al. [16] extract terms based
on a weighted similarity function and optimize the process with
user feedback. However, all these works are designed with speci�c
models in mind and are not generalizable to handling multiple
models. In contrast, our work can automatically select between a
large set of available models and adjust based on user feedback.

3 PROPOSED METHOD
3.1 Problem Statement
Given an initial set of seed entities E = {41 . . . 4# }, the goal is to
expand the set with more entities with similar semantics. These
latent semantics are de�ned by a subject-matter expert and are
not given a priori. Let M = {<1 . . .<" } be the set of entity set
expansion models that are available for the task. Each model is
denoted as C = <8 (P+,N�

), where <8 2 M takes as input a
set of positive entities P+ and a set of negative entities N�, and
returns a set of candidate entities C= {48 }

|C |

8=1 . By considering both
positive and negative samples, the model can focus more quickly
on a speci�c density region of the hypothesis space. Let O be a
perfect oracle, i.e., a subject matter expert that provides feedback
5 (48 ) 2 {0, 1}, 848 2 C, where 0 and 1 represents negative and
positive feedback, respectively, for each candidate 48 2 C.

Each model in M can have di�erent characteristics, e.g., model
architecture, model capacity, and training distributions di�er, mak-
ing each model suitable for di�erent tasks. It is thus challenging
to select between the set of available models without knowing the
underlying model attributes and the training distribution. Even
building an ensemble of models is non-trivial in this case, as the set
expansion task can be very speci�c, making it impossible to know
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Figure 2:MArBLE is a meta-learner that selects between a set
of multi-armed bandit agents A. The selected multi-armed
bandit agent A8 in turn selects between a set of available set
expansion models M. Then, the selected model M 9 outputs
a set of candidate entities C, which are passed to the subject-
matter expert to accept or reject and update the global sets
of positive and negative entities P+ and N

�, respectively.

which models may be relevant. Consequently, it is bene�cial to con-
struct a framework that can dynamically improve model selection
based on task feedback.

3.2 Sequential Model Selection
Intuitively, model selection can be framed as a multi-armed bandit
problem, where each model is an arm and the subject-matter expert
feedback is the reward for the corresponding arms. At each time
step C , the multi-armed bandit agent � 9 �rst selects a model <C
based on a probability vector C ⇠ ?C 2 [0, 1]" , initialized uniformly.
The selected model<C returns a set of candidate entities ⇠C and
the subject matter expert provides feedback for each candidate
entity 5C (48 ),848 2 CC , i.e., whether to accept

�
5C (48 ) =1

�
or reject�

5C (48 )=0
�
a candidate 481. The accepted or rejected entities form

subsets P+
C = {48 2 CC : 5C (48 ) = 1} and N

�
C = {48 2 CC : 5C (48 ) = 0},

respectively, which are used to update the global positive and nega-
tive sets, i.e., P+=P+

[P
+
C , and similarly forN�. We reward model

<C for each entity candidate, i.e., RC (<C ,⇠C ) = |P
+
C | � |N

�
C |. The

process continues with the global set of positives P+ and negatives
N

� fed to the model<C+1 on the next round.
To balance exploitation (select a model that performed well in

previous rounds) and exploration (explore the space of models),
there exist several ways to update the probability vector ?C based
on the reward RC (<C ,⇠C ). For a given model<C , bandit algorithms
compute the distribution ?C (<C ) such that it maximizes the long-
term rewards. There are several existing methods to model ?C (<C ).
For example, Boltzmann exploration [30] uses a softmax over the
reward history to make a selection, as shown in Eq. 1.

?C (<8 ) =
4G?

�
RC (<C ,⇠C )/g

�
Õ

< 9 2M

4G?
�
RC (<C ,⇠C )/g

� . (1)

1For brevity, 48 := 4 (C )8 , i.e., the candidate entity index for timestep C is not shown.

Here, g is a temperature parameter that controls the degree of
exploration. While Boltzmann exploration provides a simple yet
e�cient approach, the agent needs to su�ciently explore all models
(arms) before making good decisions, which may be prohibitively
expensive. Additionally, the need to tune the additional temperature
parameter g adds more computational overhead.

The family of UCB algorithms [2, 3] selects a bandit with the
highest upper con�dence bound. UCB-1 [2] maximizes

?C (<C ) =
RC (<C ,⇠C )

BC
+

s
2 ln C
BC

, (2)

where BC is the number of times the model<C has been selected
thus far and C is the time step (iteration).

In contrast, Thompson sampling [31] models ?C (<C ) based on a
Beta distribution derived from existing observations, i.e.,

?C (<C ) = ⌫4C0
�
(C (<C ) + 1,*C (<C ) + 1

�
, (3)

where (C (<C ) = |P
+
<C

| is the number of candidates from model
<C that were accepted in all previous time steps 1, . . . , C � 1, and
similarly *C (<C )= |N�

<C
| is the number of candidates from model

<C that were rejected in all previous time steps 1, . . . , C � 1. All
previously described methods explore the models to some extent,
but settle down once some su�ciently good models are found. On
the other hand, the Exp3 algorithm continues searching for changes
in the model rewards. The bene�t to this approach is that sometimes
set expansion models may perform di�erently with varying sizes
of the set of positive and negative entities P+ and N

�. However,
this also has the risk of generating suboptimal results in general
use cases. Exp3 introduces a new weightFC (<C ) for each arm (in
this case, model candidate<C ) and uses these weights to select new
candidates, i.e.,

?C (<C ) =
�
1 � W

� FC (<C )Õ
< 9 2M

F 9 (< 9 )
+
W

"
(4)

where W 2 [0, 1] is a factor controlling the probability of picking
an action uniformly at random, and " is the total number of set
expansion models. The weights are updated with

FC+1 (<C ) =

(
FC (<C )4G?

⇣⇣
RC (<C ,⇠C )

?C (<C )
W
⌘
/"

⌘
if<C is selected

FC (<C ) otherwise.
(5)

In our experiments, we observe that each bandit algorithm can have
suboptimal results depending on the domain and granularity of
the semantics. In reality, it would be expensive to run experiments
to discover the optimal algorithm among these bandit methods
for a given set expansion task. Therefore, we proposeMArBLE, a
hierarchical multi-armed bandit method to adjust model selection
based on task feedback. The proposed method leverages the intrin-
sic feedback component of human-in-the-loop set expansion tasks,
without introducing any additional annotation burden or overhead.

3.3 MArBLE
Intuitively, MArBLE is a meta-learner that selects among a set
of  bandit agents A = {A1 . . .A }. At each time step C , MAr-
BLE evaluates the set of bandit agents based on their rewards his-
tory2 'C (A8 ) = {R1 (A8 ), . . . ,RC�1 (A8 )}. Speci�cally, at time step

2We simplify notation for reward for�8 at time step C , i.e., RC (A8 ) =R
(�8 )
C (<C ,⇠C )
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Figure 3: Cumulative total number of accepted candidates.

C , MArBLE computes the posterior distribution ? (A8 |'C (A8 )) of
selecting algorithm �8 as ? (A8 |'C (A8 )) / ? (A8 )? ('C (A8 ) |A8 ),
where the marginal likelihood ? ('C (A8 ) |A8 ) is given by

?
⇣
'C (A8 ) |A8

⌘
=

'C (A8 )Õ
� 9 2�

'C (A 9 )
, (6)

and the prior is assumed to be uniform, i.e., ? (A8 ) = 1/|A|. Con-
versely, the Bayes Factor ? ('C (A8 ) |A8 )

? ('C (A 9 ) |A 9 )
expresses the preference

over two bandit agents A8 and A 9 . An overview of MArBLE is
shown in Figure 2.

3.4 Cold-Start Problem
One limitation of MArBLE (and bandits in general) is that models
may not have su�cient data for a new task to make a good guess.
The lack of expert feedback at the initial stages makes all options
equally possible. In other words, there is no domain knowledge that
we can use a priori. Consequently, it is di�cult to make inferences
at the beginning. To alleviate this cold-start problem, we propose
two boosting algorithm variants, explained below.
Frequency-based Boosting (MArBLE-B): Initially, many models
may provide the same generic suggestions. One way to alleviate this
is to collect a few initial suggestions from all models and present the
most frequent ones to the subject matter expert. The bene�t is that
it is possible to provide the subject matter expert with a small set
of entities and reward a large set of models based on the feedback
at a very low cost. For frequency-voted boosting, we �rst acquire
:1 � 0 candidates from all models and select top-:2 candidates
based on majority voting, where :2  :1. Then, we present the
top-:2 candidates to the subject-matter expert and receive feedback
on which candidates are accepted. The accepted candidate entities
are added to the initial positive set. In preliminary experiments, we
observe that larger values of :1 (>10) lead to more noisy entities.
Additionally, we reward each model<8 2 M with RC (<C ,⇠C ) =
|P

+
C,<8

|, where P+
C ,<8

is the number of accepted entities at time step
C from model<8 . In other words, the reward is proportional to the
number of accepted entities found in the model’s candidate list,
thereby rewarding models that are more likely to be useful.

History-based Boosting (MArBLE-H): Although we show the
subject matter expert : = 1 candidate entity at a time (top-: from
each model), many of the other candidates lower in the list may
also have been relevant. Some of these candidates may be provided
to the subject-matter expert in future iterations, perhaps due to
being selected from a di�erent model in later rounds. It would make
sense to also reward both the model that selects a candidate, as
well as any other model that produces this candidate lower in their
list in previous steps. In the history-based boosting setup, we take
:1 � 0 candidates in every iteration. We only present the top-:
candidates to the subject-matter expert but keep the remaining
(:1 � :) candidate entities in a hidden set. For each accepted entity
at time step C , and in addition to rewarding the currently selected
model<C , we also reward any other models< 9, 9<C 2 M that had
previously suggested the same candidate. We observe thatMArBLE
is robust on a range of :2 values because for a model to receive a
reward, the entity has to get accepted in a future iteration. This
strategy allows for minimizing the number of candidates we pass
to the subject matter expert for annotation (minimizing human
e�ort) but maximizes the e�cacy of the proposed approach by
retrospectively rewarding models for lower-ranked candidates.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Models: We make use of methods available in the existing human-
in-the-loop set expansion literature [8, 13]. We build 40 EnE [13]
and 40 GLIMPSE [8] models, respectively, trained on 40 di�erent
datasets. In addition, we use a WordNet [11] model in our exper-
iments. In total, our benchmark consists of 81 models acting as
possible options to choose from in each experiment. As mentioned,
each of the models takes as input a set of positive entities and a
set of negative entities and returns a list of ranked candidate entities.

Datasets: We utilize three ground-truth lexicons from a diverse
set of tasks as subject-matter expert proxies. For all three tasks, we
randomly sample 10% of the lexicon as the initial entity seed set.
A������ D��� E������ (ADE): The ADE corpus [15] consists of
3, 341 adverse drug e�ects extracted from medical case reports.
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Figure 4: Area Under the Curve (AUC) after 300 iterations.

Some examples of entities in the ADE corpus are ‘coronary spasm’,
‘aseptic meningitis’, ‘protamine allergy’, and ‘malignant lymphoma’.
RGB C���� N����: We extract RGB color names from the X11 RGB
�le, which consists of 145 names of RGB colors. Some examples of
entities are ‘royal blue’, ‘brown’, ‘dark green’, and ‘cyan’.
F���O�: We extract food names from the FoodOn ontology [9]
that consists of 16, 801 names of various items consumed as food.
Some examples of entities in FoodOn are ‘shortbread cake small’,
‘cookie mix prepared from powder’, and ‘crowberry food product’.

Bandit Methods: We use a multi-armed bandit agent to select
models at each iteration. We compare against the four di�erent ban-
dit algorithms described in Section 3.2: (a) Boltzmann Exploration
(BoltzExp), (b) Upper Con�dence Bound (UCB1), (c) Thompson
Sampling (TS), and (d) Exp3.

4.2 Sequential Model Selection
To evaluate the correctness of the bandit algorithms in the set
expansion tasks, we plot the number of correct entities extracted
at each iteration, as shown in Figure 3. Although we see a similar
pattern for all of the traditional bandit algorithms across the three
tasks, their performance has signi�cant di�erences. Moreover, there
is no single best algorithm that performs best in all three tasks.
For example, Exp3 outperforms others in the �rst two tasks but
performs signi�cantly worse in the F���O� task.

Additionally, we observe that the di�erence among the bandit
algorithms becomes more prominent as the number of iterations
grows. For example, for the RGB C���� N���� task, most of them
converge pretty quickly, except for BoltzExp. However, for the
F���O� lexicon, there exists a large gap between the best and the
worst algorithms.UCB1 yields 39 accepted entities compared to the
28 accepted entities extracted using BoltzExp. In terms of relative
gain, after 300 iterations, UCB1 generates 39.29% more accepted
entities compared to BoltzExp on F���O�. Similarly, Exp3 gener-
ates 21.21%more entities compared to BoltzExp on A������D���
E������. In terms of AUC, this represents a 75.49% and 27.27% in-
crease on F���O� and A������ D��� E������, respectively. This

clearly shows the signi�cance of selecting an appropriate bandit
algorithm. Similar �ndings are observable in Figure 4.

However, selecting an appropriate method for each task can be
non-trivial and expensive both in terms of computational resources
and in terms of subject-matter expert e�ort. MArBLE facilitates
automatic selection with solid performance vs. computational over-
head trade-o�s. Experimental results show that MArBLE performs
well across all three lexicons. In addition, MArBLE outperforms
UCB1 by a large margin in the F���O� task, achieving 56.67%
more accepted entities. Similarly, MArBLE outperforms Exp3 in
the A������ D��� E������ task, achieving 7.14% more accepted
entities. Likewise,MArBLE retrieves the same number of entities
as Exp3 in the RGB C���� N���� task. Additionally,MArBLE-B
surpasses the performance of all the traditional bandit algorithms
across all three tasks. We further observe thatMArBLE-B outper-
forms MArBLE and all the baselines in terms of AUC.

4.3 Qualititative Analysis
To understand how model selection di�ers among each bandit, we
qualitatively analyze the percentage of times each algorithm selects
di�erent models in Figure 5 On each row, a brighter color means
that the model on the corresponding column was selected a higher
number of times. We observe that BoltzExp has a large number of
models that were selected very often. This is expected as BoltzExp
is known for more exploitation and less exploration, which has,
in turn, resulted in suboptimal results in terms of accepted enti-
ties.MArBLE variants �nd a few good model candidates but also
su�ciently explore the model space.

We then take a closer look at some of the most frequently se-
lected models. In Table 1, we observe that some of the top model
choices for the F���O� task, across all bandits, are models trained
on social media and food-related datasets, for example, Social
Media Posts on NYC and PizzaWP. There are also some models
trained on general datasets, for example, UKWAC, a British English
corpus from the .uk domain. On the other hand, a popular choice
for the ADE task is models trained on medical-related datasets,
i.e., MIMIC II, MIMIC III, DynaMed, COVID19, NEJM (New England
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Table 1: Top-3 most frequently selected models. Columns #selected denote the number of times an algorithm selected a model,
and #accepted is the number of candidate entities accepted by the subject-matter expert for the corresponding model.

RGB Color Names ADE FoodON

model # selected # accepted model # selected # accepted model # selected # accepted

BoltzExp
EnE: SocMedNycLoc 39 3 GLIMPSE: MIMIC II 32 7 EnE: SocMedNyc 23 5
EnE: Wiki 2018 22 2 GLIMPSE: OsteoReports 26 2 GLIMPSE: Finance Contracts I 16 1
GLIMPSE: Astronomy 11 2 EnE: ArticlesCOVID 17 5 GLIMPSE: Dynamed 12 1

UCB1
EnE: Tweets2016 5 2 GLIMPSE: Dynamed 8 5 EnE: Wiki 2018 8 5
EnE: Chemical Journals 5 2 EnE: NEJM 6 3 EnE: SocMedNyc 7 4
GLIMPSE: DiabetesMedTexts 5 2 EnE: SocMedNycLoc 6 3 EnE: SocMedGatherings 7 4

TS
GLIMPSE: Chemical Journals 7 2 GLIMPSE: MIMIC II 12 6 EnE: ukWaC 18 11
EnE: ukWaC 7 2 EnE: PubMed 8 3 EnE: PubMed 9 4
EnE: MIMIC III 6 1 EnE: ArticlesCOVID 7 2 EnE: Astronomy 7 3

Exp3
GLIMPSE: Astronomy 8 1 GLIMPSE: HealthImagingReports 9 0 EnE: MIMIC II 7 0
GLIMPSE: HealthImagingReports 8 0 EnE: Product Catalog 7 0 EnE: MIMIC III 7 3
GLIMPSE: Product Catalog 7 0 EnE: Airline Help Tickets 7 0 GLIMPSE: Sales Contracts 6 0

MArBLE
GLIMPSE: Medical Transcription 11 1 GLIMPSE: MIMIC II 17 8 GLIMPSE: PizzaWP 57 25
GLIMPSE: Chemical Journals 11 2 GLIMPSE: MIMIC III 15 6 EnE: ukWaC 19 10
WordNet 9 1 GLIMPSE: Radiographic Reports 10 2 EnE: SocMedNycLoc 9 5

MArBLE-B
EnE: Tweets2016 18 2 EnE: MIMIC III 16 4 EnE: Chemical Journals 63 20
GLIMPSE: Astronomy II 16 0 GLIMPSE: MIMIC II 12 4 EnE: ukWaC 20 10
EnE: ukWaC 12 1 GLIMPSE: OsteoReports 9 2 EnE: DiabetesMedTexts 11 4

MArBLE-H
WordNet 11 1 GLIMPSE: DynaMed 56 18 EnE: Tweets from 2020 17 7
GLIMPSE: Chemical Journals 9 2 GLIMPSE: MIMIC II 9 4 EnE: SocMedNycLoc 13 6
GLIMPSE: Sales Contracts 8 2 EnE: DiabetesMedTexts 8 2 EnE: Chemical Journals 11 5

(a) RGB C���� N���� (b) ADE (c) F���ON
Figure 5: Model selection distributions for each algorithm. Number of times each selection algorithm selects di�erent models:
each column corresponds to one of the 81 set expansion models, and each row corresponds to the selection algorithms.

Journal of Medicine), etc. This further demonstrates that the pro-
posed method can successfully discover useful models for the task
at hand. Another interesting observation is that most of the top
choices of Exp3 yield very few, if any, accepted entities. This is a
known phenomenon for Exp3, where the algorithm keeps explor-
ing in the hopes of a change in the reward distribution, resulting in
suboptimal results in traditional bandit settings [27].

5 SYSTEM DEPLOYMENT AND USE
MArBLE and its early prototypes have been deployed since 2020,
with a patent �led and pending. In our experiments, theMArBLE-B
variant seems to better deal with the cold-start problem and yields a
signi�cantly higher AUC. Therefore, we have MArBLE-B deployed
in our production systems. These systems have been used to per-
form set expansions for over two dozen clients, in �elds ranging
from fashion to product concerns to organized retail crime. In all
these cases we have been able to expand lexicons to achieve better
recall by working into the long tail of the concepts of interest. The
MArBLE approach lets subject matter experts who are not com-
puter scientists provide invaluable training data to the underlying
AI systems. In real-world applications, we have observed that hu-
man experts are more e�cient in adjudicating suggested lexicon
entries compared to generating new samples without any prompts.
Adjudicating a single term takes only seconds, while generating
new samples becomes increasingly time-consuming, with several

hours required for a few hundred lexicon entries. In our deployed
system, subject matter experts spend an average of approximately
⇠2 seconds per adjudication. Adjudicating a set of 300 samples
would take around 10 minutes. These observations highlight the
signi�cant time savings achieved by leveraging expert adjudication
over generating new entries independently.

6 CONCLUSION
Selecting suitable models for a particular task is often non-trivial
as such selection requires signi�cant a priori knowledge about the
method, the model architecture, and the training data available. In
this work, we explore human-in-the-loop set expansion and utilize
bandit strategies to automatically select models based on a subject-
matter expert’s feedback. We propose a hierarchical multi-armed
bandit approach, termed MArBLE, as a meta-learner that selects
among the set of bandit methods, and two boosting methods to
improve performance in cold-start scenarios.MArBLE alleviates the
need to select appropriate exploration mechanisms. Future work
can extend to handle noisy oracles and combine models performing
diverse but interconnected tasks.
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