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Context: Design anti-patterns can be symptoms of problems that lead to long-term maintenance difficulty.
How should development teams prioritize their treatment? Which ones are more severe and deserve more
attention? Does the impact of anti-patterns and general maintenance efforts differ with different programming
languages?

Objective: In this study, we assess the prevalence and severity of anti-patterns in different programming
languages and the impact of dynamic typing in Python, as well as the impact scopes of prevalent anti-patterns
that manifest the violation of design principles.

Method: We conducted a large-scale study of anti-patterns using 1717 open-source projects written in Java,
C/C++, and Python. For the 288 Python projects, we extracted both explicit and dynamic dependencies and
compared how the detected anti-patterns and maintenance costs changed. Finally, we removed anti-patterns
involving five or fewer files to assess the impact of trivial anti-patterns.

Results: The results reveal that 99.55% of these projects contain anti-patterns. Modularity Violation — frequent
co-changes among seemingly unrelated files — is most prevalent (detected in 83.54% of all projects) and costly
(incurred 61.55% of maintenance effort on average). Unstable Interface and Crossing, caused by influential
but unstable files, although not as prevalent, tend to incur severe maintenance costs. Duck typing in Python
incurs more anti-patterns, and the churn spent on Python files multiplies that of C/C++ and Java files. Several
prevalent anti-patterns have a large portion of trivial instances, meaning that these common symptoms are
usually not harmful.

Conclusion: Implicit and visible dependencies are the most expensive to maintain, and dynamic typing in
Python exacerbates the issue. Influential but unstable files need to be monitored and rectified early to prevent
the accumulation of high maintenance costs. The violations of design principles are widespread, but many are
not high-maintenance.

1. Introduction

The software industry has long recognized that sub-optimal struc-
tures and relations in source code, often defined as “smells” or ‘“anti-
patterns”, may not introduce bugs or defects immediately but can
significantly reduce the quality and productivity of the project in the
long run. Cunningham [1] coined this phenomenon as technical debt.
In the past decades, researchers have proposed definitions of smells
and anti-patterns at various levels: code smell/anti-patterns indicate
improper relations among program entities within source files, design
smells/anti-patterns concern the relation among files, and architecture
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smells/anti-patterns represent symptoms among components. These
definitions are usually based on the violations of design principles
and supported by various tools, such as SonarQube [2], Designite [3],
Arcan [4], and DVS8 [5].

Fowler’s code smells [6], such as god class, long methods and
feature envy, are most well-known, and researchers have studied their
prevalence in a large number of open source projects [7,8] and in
various domains [9-11]. Researchers have also reported that prevailing
tools often detect a large number of code smells, many of which
are false positives and ignored by developers [12]. Multiple studies
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revealed that issues in higher-level design and architecture structures
are the primary source of code-level technical debt [13-15]. How-
ever, there is no large-scale prevalence and severity analysis for these
architecture and design-level smells/anti-patterns. Researchers often
evaluate their definitions and detection techniques using about a dozen
open source projects [16-18] primarily written in one programming
language. They have also reported various industrial case studies [19-
24] where these anti-patterns can be detected.

The question is: considering design anti-patterns as symptoms of
design debt, how prevalent are these symptoms in software systems
written in different programming languages? Are some of them more
severe than others and deserve more attention? Are prevalent anti-
patterns always worth treatment? Anti-patterns are usually defined
based on the violation of design principles, and we notice that certain
types of violations are extremely common, such as cyclical dependen-
cies among files and packages. The question is, are these violations
inevitable, and are they always harmful? These questions motivated our
large-scale anti-pattern prevalence and severity analysis.

Another motivation is that dynamic typing is the main feature
of popular programming languages, such as Python. While previous
studies on smaller projects have indicated that files involved in implicit
dependencies in Python projects tend to be more expensive to maintain
than Python files without implicit dependencies [25,26], the absence
of large-scale research necessitated a broader investigation to confirm
these findings in larger, long-lived Python projects, and avoid potential
biases inherent in smaller scope studies on smaller projects. Most
interestingly, since duck typing is the main feature of Python, the
question is, compared with traditional programming languages, such as
Java and C/C++, do Python projects, in general, more or less subject
to anti-patterns and more or less expensive to maintain?

In this paper, we study the prevalence and severity of a suite of anti-
patterns defined by Mo et al. [16]: Unstable Interface (UIF), Modularity
Violation Group (MVG), Crossing (CRS), Unhealthy Inheritance Hier-
archy (UIH), Clique (CLQ), and Package Cycle (PKC). Different from
other architectural and design level smells and anti-patterns, three out
of the six anti-patterns, UIF, MVG, and UIH, are defined using both
structural information and evolution history and are more likely to
identify real design debt that incurs high-maintenance costs. Moreover,
the tool that detects these anti-patterns, DV8, can also report the main-
tenance costs of each instance of each anti-pattern, in the form of file
percentage, churn, and churn percentage, making it possible to assess
the severity of each type of these anti-patterns. DV8 uses Depends [27],
a multi-language source code dependency extraction tool, to obtain
file relations so that we can investigate and compare the prevalence
and severity of anti-patterns of projects written in different languages.
In this study, we analyzed 1717 open-source projects written in Java,
C/C++, or Python. These projects have at least 100 files and evolved for
more than one year. Concretely, we investigated the following research
questions:

RQ1: Which anti-pattern is the most prevalent, and does the prevalence
differ for different programming languages?

Since anti-patterns manifest the violation of design principles, the
answer to this question will help us understand how well these design
principles are followed, if at all.

RQ2: Which anti-pattern incurs the most severe cost measured as the
amount of maintenance churn, and does the severity differ for different
programming languages?

The answer to this question will help us understand the differences
among anti-patterns and whether different programming languages
present different symptoms: Is one programming language subject to
certain symptoms more than others? It is also possible that certain anti-
patterns are prevalent, but are not expensive to maintain, and hence not
a significant problem.

RQ3: How does dynamic typing support by newer languages affect the
prevalence and severity of anti-patterns, as well as the overall maintenance
costs?
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In particular, popular programming languages, such as Python,
support duck typing; that is, the type of an entity will be inferred at
run-time so that the developers can write fewer LOCs and make the
programs more concise and easier to understand. The question is, can
dynamic typing really make a program easier to maintain? To answer
this question, for the 288 Python projects we studied, we analyzed their
anti-patterns using both explicit dependencies and possible dependen-
cies [25], that is, dependencies statistically inferred from duck typing,
and compared how the prevalence and severity of anti-patterns, as
well as general maintenance costs, change with and without possible
dependencies.

RQ4: For highly prevalent anti-patterns, do they always impact a large
number of files?

Since an anti-pattern manifests the violation of design principles, a
prevalent anti-pattern implies that the underlying design principles are
rarely strictly followed. In addition to assessing the consequence of such
violations in terms of churn, this question assesses their severity based
on their impact scopes: if a significant portion of such anti-patterns only
affect a small number of files, it implies that such violations are usually
confined within a small scope, and should not be a significant concern.

To answer this question, we remove trivial anti-patterns and recount
their prevalence among the 1717 projects. The rationale is that if there
is a significant portion of projects that are only infected by trivial anti-
patterns, it implies that although such violations are inevitable, these
projects can manage to limit their impact scope.

Here we consider an anti-pattern instance as trivial if it influences
five files or fewer, based on Gobet and Clarkson’s study on cognitive
complexity [28]: people can easily process approximately 5 “chunks”
of information at a time. Similarly, in his famous paper, Miller [29] pro-
posed a law of human cognition and information processing: “Humans
can effectively process no more than seven units, or chunks, of information,
plus or minus two pieces of information, at any given time”. Accordingly, it
is safe to state that if an anti-pattern only influences five or fewer files,
it will not significantly impair the developer’s ability to understand and
maintain them.

To the best of our knowledge, this is the first large-scale, multiple-
language prevalence and severity study of design-level anti-patterns.
The results reveal that the violation of design principles is very com-
mon but often without severe consequences, such as Package Cycle,
Clique, and Unhealthy Inheritance. By contrast, anti-patterns caused
by implicit dependencies, manifested as Modularity Violations, are
both prevalent and high-maintenance. The widely used duck typing in
Python makes more dependencies invisible, and the costs of maintain-
ing Python programs can be much higher than those of C/C++ and
Java projects. Unstable Interface and Crossing, caused by influential
but change-prone files, are less prevalent but can incur a significant
amount of maintenance costs. The results are consistent among all three
programming languages.

We also notice that many instances of Unstable Interface and Cross-
ing also contain large cycles or highly influential base classes, implying
that even if the violations of design principles are not avoidable due to
trade-offs for other quality attributes, such violations in larger scopes
with growing impact and activities (which may transform into an UIF
or CRS) should be monitored and avoided. Another implication is that
the convenience of dynamic typing in Python may not be free. For
long-lived, larger projects, Python projects could be more expensive
to maintain. To prevent the accumulation of high maintenance costs,
the development team should prioritize the treatment of these severe
symptoms, reduce invisible dependencies, and monitor the emergence
and growth of unstable but influential files.

2. Background

Technical debt detection tools aim to identify, locate, and mea-
sure concrete problematic instances found within a project’s source
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11213456789 ]|10|11
1| Volume.h - 10,210,222 0,210,2
2 | WbfsBlob.h 0,2 —-10,3|4,40,1{0,2{0,3|0,2 0,4
3 | CISOBlob.h 0,203 —|43|0,1{0,2{0,2{0,2 0,3
4| Blob.h =
5| ISOFile.h 13,3/0,110,16,1| — |0,1]0,2]|0,2 0,1
6 | VolumeGC.h 10,5/ 0,2]0,2(4,2|0,1| — [0,6]0,6 0,2
7 | VolumeWiiCrypted.h 6,810,3/0,214,3/0,2|06| — |0,8(0,3]0,30,1
8 | VolumeWad.h 6,710,2/0,2|14,2/0,2(0,6(0,8| — |0,1]0,2
9 | WII_IPC_HLE Device_es.cpp 0,2 0,310,1] — 0,1
10| DriveBlob.h 0,2(0,41(0,3|4,5/0,1{0,2{0,3|0,2 —
11| Boot.cpp 11,2 0,1 0,1 =

Fig. 1. DSM of an Unstable Interface. Note: The file in red font is the leading file of the Unstable Interface, that is, it has many dependents and changes often with them.

code. Prominent commercial and academic examples include Sonar-
Qube [2], Designite [3], DV8 [5], Structurel01 [30], Arcan [18], and
Archinaut [31]. Prevailing tools are mostly limited to only searching
for code-level issues: issues that are contained within a single file.
Researchers have reported that problems at the design or architecture
level are the major source of code-level technical debt [13-16]: most
problems observed within a program entity stem from how program
entities are related to one another.

Researchers have proposed various design and architecture smell
definitions and detection techniques [32,33,33-35]. Mo et al. [16] in-
troduce a collection of high-level issues called architecture anti-patterns
that they have empirically shown to be indicators of excessive main-
tenance. These anti-patterns are defined in terms of the design rule
theory of Baldwin and Clark [36] and a suite of well-known design
principles. The rationale of their definition is to detect influential
abstractions that can be seen as potential design rules [36], which
may decouple the system into a collection of independent modules
and leverage revision history to determine if these modules are truly
independent. We chose to study the prevalence and severity of anti-
patterns based on their definitions first because these concepts and
the associated detection techniques have been applied and validated in
multiple industrial settings [19-21,37,38]. Another reason is that these
anti-patterns incorporate co-change history, more likely to identify
real design debt that incurs extra maintenance penalty [39]. Their
supporting tool, DV8 [5], reports the maintenance costs of each anti-
pattern instance, in terms of file count, file percentage, churn, and
churn percentage, making it possible to assess their severity.

An anti-pattern can be visualized using a Design Structure Matrix
(DSM), a complementary visualization technique that can be used to
display both structural and historical relationships between files as an
adjacency matrix. The columns and rows of this matrix are labeled with
the same set of files in the same order, and a marked cell indicates that
the file on the row depends on or co-changes with the file on the column.
For example, the ¢ 13, 3 in the cell at the intersection of the fifth
row and first column in Fig. 1 means ISOFile.h has 13 structural
dependencies, such as Call and Use, to Volumn.h, and these two files
co-changed together 3 times as recorded in their revision history. The
€¢0, 2’ in the cell at the intersection of the first row and second
column in Fig. 1 means WbfsBlob.h has zero structural dependencies
on Volume.h but the two files have changed together twice. The co-
change count has been omitted in some figures when not relevant. For
each anti-pattern proposed by Mo et al. we provide a brief description
and an example of a DSM.

* An Unstable Interface (UIF) is a file with a large number of
dependent files that also changes frequently with those dependent
files. In Fig. 1, Volume.h has 5 structural dependents while also
changing frequently with all the other 10 files. Such influential
but unstable files, which we call leading files, usually are the focal
points of design debt, making all their relatives unstable and
high-maintenance.

» A Modularity Violation Group (MVG) is a group of files where they
frequently co-change with structurally unrelated peers, which we
call evolutionary coupling. The higher the co-change frequency, the
stronger the coupling. In Fig. 2, most pairs of files have a strong
evolutionary relationship but without any structural connection—
especially those involving PowerPC. cpp: none of the other 13
files explicitly depend on it, but they co-changed frequently,
e.g., Interpreter_LoadStore.cpp changed 53 times with
it. These frequent co-changes indicate the existence of implicit
assumptions or hidden dependencies among them.

A Crossing (CRS) is a file with a large number of dependent and
dependee files that also changes frequently with those dependent
and dependee files. In Fig. 3, EmulationActivity.java is
at the center of many incoming and outgoing relationships as
evidenced by row 10 and column 10 both having high structure
counts and change frequencies. Similar to UIF, these center files in
a CRS are usually the core of design debt.

An Unbhealthy Inheritance Hierarchy (UIH) is a group of files with
one of the following two structures: a parent class depends on its
sub-classes, or the client of the hierarchy uses both the parent
and the children, which are empirically validated to be high-
maintenance [16,20,37,40-42]. In Fig. 4, files 2 through 6 inherit
from file 1. However, files 7 through 12 all depend on both the
base class, file 1, and at least one of its child classes. For projects
written in C, DV8 does not detect this anti-pattern.

A Clique (CLQ) is a set of files where each file directly or indirectly
depends on every other file, and the whole file group forms a
strongly connected graph. In Fig. 5, all these 12 files form a
clique, and changing any one of them may potentially cause all
other files to change.

A Package Cycle (PKC) is a pair of mutually dependent packages.
In Fig. 6, the files 6-10 are defined in a separate package from
the rest, yet there are dependencies going in both directions.
While CLQ detects cycles among multiple files, PKC detects cy-
cles between pair-wise packages, which violates the principle of
forming a hierarchical structure to ease software extension and
evolution [43,44].

Extracting various dependencies from source files is the first step
before these anti-patterns can be detected. DV8 uses Depends [27] as a
default preprocessor to extract dependency information from various
programming languages. In a strongly typed language, such as Java
or C/C++, the dependency structure can be determined at compile
time. In a language that does not require data type declaration at
compile time, such as Python, the exact dependency among files can
only manifest at run time. Depends can also be configured to extract
possible dependencies among Python files [25,26], that is, using type
inference techniques to determine most dynamic dependencies at com-
pile time. DV8 and Depends are the major tools we used to conduct
the prevalence and severity analysis of these anti-patterns for projects
written in multiple programming languages.
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11234 |5 |6 |7]8|9]|10]|11|12|13 |14

1| JitlLBase_LoadStore.cpp =

2 | PowerPC.cpp =

3 | Interpreter_Branch.cpp 0,2 —

4 | Interpreter_LoadStore.cpp 0,53 =

5 | Cachedlnterpreter.cpp 0,6 | 0,1 =

6 | Jit_Util.cpp =

7| Jit_LoadStore.cpp -

8 | Jit_SystemRegisters.cpp 0,1 =

9| Jit.cpp 0,8 — 0,1

10| JitArm64_LoadStore.cpp =

11| JitlL.cpp 0,9 =

12| IR_X86.cpp 0,4 0,4 0,11 —

13| Movie.cpp — 10,30

14| Core.cpp 0,6 0,13| —

Fig. 2. DSM of a Modularity Violation. Note: There are no syntactical dependencies among these files, and they changed together frequently.

112|134 |5 |67 |8|9 1011|1213
1| LoadStateFragment.java — 0,310,20,3 4,3
2 | NativeLibrary.java - 5,11 0,5 0,2
3 | Java_WlimoteAdapter.java 51| — 0,1 0,1
4| Animations.java —
5 | MainPresenter.java 3,2 — 0,2 0,2 0,5
6 | MenuFragment. java 0,3 - 10,310,3 4.5
7 | EmulationFragment. java 0,2 {15,5] 0,1 0,2{0,3| — [0,2]0,1]0,2
8 | SaveStateFragment.java 0,3 0,310,3| — 4,3
9 | Java_GCAdapter.java 9,0 0,1 0,2 0,1 — 0,2
10| EmulationActivity.java 9,3 5,11 3,2 (11,2| 3,2 14,5(16,9/9,3| 3,2 | —
11| GameAdapter.java 0,5 0,5 0,2 3,12 — 10,5(3,8
12| TvMainActivity.java 7,4 0,213,5/0,5| — 0,5
13| GameDetailsDialog.java 0,2 3,6 0,50 —

Fig. 3. DSM of a Crossing. Note: The file in red font is the center file of the Crossing, that is, it has high fan-in, high fan-out, and changed often with its relatives.

112134567 |89 [10]11|12
1| SettingsItem.java =
2 | SliderSetting. java 14 | —
3 | CheckBoxSetting. java 10 —
4 | SingleChoiceSetting.java 10 —
5 | SubmenuSetting.java 3 =
6 | HeaderSetting. java 3 =
7 | SubmenuViewHolder. java 5 4 )
8 | SettingsAdapter.java 25 (11| 3 |13 | 3 3| = 31313
9 | SettingsFragmentPresenter.java 5 |3 31119 7|9 =
10| SliderViewHolder.java 5| 4 3 =
11| CheckBoxSettingViewHolder. java 5 5 3 =
12| SingleChoiceViewHolder. java 5 4 3 =

Fig. 4. DSM of an Unhealthy Inheritance. Note: The file in red font is the base class with many subclasses, and they are all used by the client files in blue font.

3. Large-scale anti-pattern prevalence and severity study

In this section, we elaborate on the subjects of our study, the process
and measures employed to investigate each of the research questions
proposed in Section 1, as well as the results and answers to these
questions. The replication package [45] with all the scripts and data
are provided.'

1 https://zenodo.org/records/10472153.

3.1. Subjects

We first selected the most popular projects in GitHub based on
the number of stars they received, and manually removed repeated
projects, forming the initial projects list with 3111 projects in total: 752
in C/C++, 1884 in Java, and 475 in Python. We analyzed all of them
using DV8 and posted the results on a demo website.? Since Depends,®

2 http://demo.archtimize.io/discover.
3 https://github.com/multilang-depends/depends.
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112|345 |6 |7]8]9]|10]11]12

1| authentication.cpp — | 17

2 | remote_actor.cpp 14 | — 2

3| test 5 | — 5|5 | 5

4 | protobuf_broker.cpp 15 = 15|15 | 15

5 | simple_broker.cpp 15 = 15| 15| 15

6 | ping_pong.cpp 114 | 4| — 4 | 4

7 | request_timeout.cpp 15115 |15 | — 15 | 15

8 | core-test.cpp 4 —

9 | drr_cached_queue.cpp 30 30 — |30

10| drr_queue.cpp 10 10 | 10 | —

11| remote_actor.cpp 2 14 114 | 14 | 10 — | 14

12| broker.cpp 9191915 9 | —

Fig. 5. DSM of a Clique. Note: The dependency relations among these files form a strongly connected graph.

112|345 |6 |7 |89 |10|11]12|13|14]|15

1| TextureInfo.h =

2 | XFMemory.h =

3 | VideoEvents.h —

4 | TextureDecoder.h =

5 | VideoConfig.h —

6 | FBInfo.h 3 =

7 | GraphicsModActionData.h —

8 | GraphicsModAction.h 0| =

9 | GraphicsModManager.h 115 ]|1 11 33| —

10| GraphicsModManager.cpp 1|2 14| 10| 6 | 17| 14| — 7

11| VertexManagerBase.cpp 5 | 40 34 2 211 —-1]3]14

12| TextureCacheBase.cpp 103 54 [111| 5 | 4 5149 | —140

13| VideoConfig.cpp 52 2|11 (21—

14| VideoBackendBase.cpp 1120 312 (3|5 |13 —

15| VertexShaderManager.cpp 117 31 21213122 15 =

Fig. 6. DSM of a Package Cycle. Note: The files in blue font belong to a different package from the rest of the files, but there are cyclical dependencies across packages.

the multi-language source code dependency extraction tool used by
DV8, can only reliably process three types of programming languages,
C/C++, Java, and Python, in this study, we only analyzed projects
written in these languages. Since anti-patterns are only meaningful for
non-trivial projects, and their impacts are long-term, in this study, we
filtered out projects with 100 or fewer files and those with less than
1 year of revision history. Table 1 presents the basic information of
the 1717 projects used as the subjects of this study, which include 487
C/C++ projects, 942 Java projects, and 288 Python projects. These
projects are all non-trivial and long-lived, with at least 1954 LOC.

For each project, we first extract different types of structural depen-
dencies from source files, such as call and implement, and export
these dependency information into a JSON file that can be accepted
by DV8 [5]. In order to detect the three types of anti-patterns that
require co-change information, for each project, we also extracted its 1-
year revision history and exported it into a log file as the second input
of DV8. Using the JSON structural dependency file and the revision
history log, DV8 calculates all the anti-patterns for each project on the
backend and presents the results on the demo website. These results
can be downloaded for further processing and analysis. Next, we will
explain the measures, process, and answers to these research questions.

3.2. RQI: General anti-pattern prevalence

To investigate the prevalence of these anti-patterns, we first counted
the percentage of projects in which these anti-patterns are detected
and the percentage of anti-pattern infected projects written in different
programming languages, as presented in Table 2. This table reveals

Table 1
Subjects.
Language # Projects LOC range Files range Evolution period
C++ 487 1954-2289195 101-584 216 1-37 years
Java 942 1694-2816 629 101-50318 1-25 years
Python 288 3679-1062453 101-7811 1-22 years
Table 2

Percentage of projects with anti-patterns.
Language CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) Any (%)

All 82.00 39.00 83.54 84.79 91.62 34.26 99.55
C/C++ 49.28 43.12 83.16 93.02 91.17 39.84 98.77
Java 92.46 21.66 73.67 94.06 98.09 19.64 99.68
Python 92.01 48.96 100 29.51 75.69 35.76 100

that within the 1717 projects analyzed, 99.55% of them contain some
instances of anti-patterns.

Four out of the six anti-patterns are detected in more than 80%
of the 1717 projects: Unhealthy Inheritance (UIH) (91.62%), Package
Cycle (PKC) (84.79%), Modularity Violation (MVG) (83.54%), and
Clique (CLQ) (82%). The results indicate that the violation of well-
known design principles is very common. For example, although it
has long been recognized that cyclical dependencies among program
entities may increase maintenance costs, and a complex system should
form a hierarchical structure to ease software extension and evolu-
tion [43,44], most software projects do have cycles, in the form of
PKC at the package level, or CLQ at the file level. The prevalence of
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MVG indicates that co-changes happen extremely often between files
that do not refer to each other explicitly. The high prevalence of these
anti-patterns implies that these well-known design principles are rarely
strictly followed, which motivated our investigation of their severity
and impact scope in RQ2 and RQ4, respectively.

The results do not differ much for different programming languages.
Java projects have the least occurrence of Unstable Interface (19.64%)
and Crossing (21.66%), while C/C++ projects have the least occurrence
of Clique (49.28%). The other noticeable observation is that, for Python
projects, Package Cycles is least common (29.51%), and the occurrence
of Unhealthy Inheritance is also the least (75.69%) compared with
C/C++ and Java. However, MVG instances are detected in ALL Python
projects. One possibility is that the anti-pattern data published on the
website are all calculated based on explicit dependencies only, that is,
not including implicit dependencies caused by Python duck typing. This
observation motivated our investigation of RQ3.

The other two anti-patterns are not as prevalent: Unstable Interface
is detected in 34.26% of projects, and Crossing is found in 39% of
projects. These two anti-patterns reflect that in these projects, there
exist one or a few highly influential files, such as key abstractions or
widely used utility files, but these influential files are error-prone or
change-prone, making all their relative files unstable. It is interesting
to note that these two anti-patterns are least common for Java projects,
only about 20% of the 942 Java projects contain them, while prior
work has reported that [16], for Java projects, Unstable Interface and
Crossing have the most significant contributions to error-proneness
and change-proneness. The implication is that these less prevalent
anti-patterns are not necessarily less important, which motivated our
investigation of RQ2.

Answer to RQ1: Of all the 6 types of anti-patterns, PKC, CLQ,
UIF, and MVG are most prevalent, while UIF and CRS do not
happen often. These results are consistent across programming
languages, sizes, and project domains.

3.3. RQ2: General anti-pattern severity

To assess the severity of these anti-patterns, we consider the follow-
ing three measures:

1. File percentage: the percentage of files involved in these anti-
patterns (Table 8a, b, ¢, d);

2. Churn and churn percentage: maintenance costs measured by the
total amount of churn (lines of Code (LOC) added or deleted to
maintain source files), and the percentage of churn spent on files
involved in anti-patterns (Table 9a, b, c, and d);

3. Churn per file: maintenance costs per file measured by the
amount of churn spent per anti-pattern-involved file
(Table 10 a, b, ¢, and d).

For each project, we collect the total amount of churn spent in the
1-year evolution period from its GitHub log as the basis and calculate
these measures accordingly. For example, the Median rows and MVG
columns in Tables 8a, 9a, and 10a present that, without differentiating
programming languages, the median percentage of files influenced by
MVG is 10.30% (Table 8a), but these files costs as much as 68.27%
of the total churn (Table 9a). If we consider the costs per file, files
involved in MVG spent 150.38 LOC to maintain (Table 10), ranked the
third after UIF and CRS.

These data confirm that Modularity Violation is not only the most
prevalent but costly: files involved in MVG cost the majority of churn.
Unstable Interface (UIF) and Crossing (CRS) are also expensive anti-
patterns: although their median file percentages are small (7.10% and
4.29% respectively), their median churn percentages are non-trivial
(36.88% and 17.79% respectively). Considering the median value of
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Churn per File, files involved in these two anti-patterns are the most
expensive: they can cost 80% more churn than MVG and about 10 times
more than that of CLQ, PKC, and UIH. The implication is that although
influential but unstable files do not happen often and do not necessarily
influence many files, once they occur, they can be very expensive to
maintain, becoming the focal point of technical debt. We consider the
three anti-patterns, UIF, CRS, and MVG, to be severe.

For the other three prevalent anti-patterns, Clique is the least costly
in terms of churn and file percentages, only consuming 7.98% of the
total churn and impacting 6.31% of all the files (Tables 9a, 8a), while
PKC’s Churn per File median score is the least: files involved in PKC
only consumes 16.72 churn LOC (Table 10a).

The implication is that the most common anti-patterns are not
necessarily the most harmful, while less common anti-patterns could
be the most expensive to maintain.

Now, we examine how this result differs for different programming
languages. Tables 8b-10b, 8c-10c, and 8d-10d represent the measures
for C/C++, Java, and Python programs respectively. These data reveal
that, regardless of the programming language in use, MVG is the
number one costly anti-pattern in terms of churn percentage, even
though it does not necessarily influence most files. It is noticeable that
ALL Python projects are infected with MVG, and the median score
of churn percentage is 66%, much higher than that of C/C++ and
Java projects. The implication is that developers have to spend most
effort changing files that appear to be independent of each other,
because their dependencies are invisible, implicit, but not absent. For
both C/C++ and Python projects, Unstable Interface is the second
most costly in terms of churn percentage. For Java projects, Unhealthy
Inheritance (UIH) is the second in terms of median churn percentage
(46.53%), almost as high as Modularity Violation (46.59%). For all
three programming languages, Cliques incurred the least (C/C++ and
Java) or second to the least (Python) churn percentage, meaning that
although this anti-pattern is prevalent, its impact is limited.

The Churn per File data also reveal a consistent story: for all three
languages, the median amount of churn spent on files with severe anti-
patterns, UIF, CRS, and MVG, are in the order of hundreds of LOC:
from 107 (MVG in Java) to 442 (UIF in Python). Among these three
anti-patterns, files involved in UIF and CRS consume significantly more
churn than MVG. By contrast, these numbers on prevalent anti-patterns
are in the order of tens: from 9 (PKC in Java) to 61 (CLQ in Python).
These anti-patterns are not mutually exclusive, however. We notice
that many instances of Unstable Interface and Crossing also overlap
with Unhealthy Inheritance and Clique instances. In particular, if an
influential base class has many subclasses and changes together with
them and their clients often, this base class will also be detected as
an unstable interface. Similarly, the center file of a Crossing has both
high fan-in and high fan-out, and their relatives are more likely to have
cycles. The implication is that although the violations of well-known
design principles are very common, most of them do not incur severe
penalties as long as they are not also part of severe anti-patterns.

( R
Answer to RQ2: Of all the 6 types of anti-patterns, MVG
files consume the majority of maintenance churn; files infected
with UIF and CRS are the most costly to maintain, and they
can be the focal point of high maintenance. The majority of
PKC, CLQ, and UIH instances, although very prevalent, are not
as harmful. These results are consistent across programming
languages, sizes, and project domains.

3.4. RQ3: The impact of dynamic typing

From Table 2, we can observe that compared with C/C++ and Java
projects, much fewer Python projects contain Package Cycles (29.51%)
and Unhealthy inheritance (75.69%). Except for Modularity Violation
and Unstable Interface, the file percentage and churn percentage of
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Table 3
Percentage of python projects with anti-patterns: Detected with possible dependencies.
Language CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) Any (%)
Python (Explicit) 92.01 48.96 100 29.51 75.69 35.76 100.00
Python (Both) 93.06 78.72 100 95.83 87.15 71.18 100.00
Java 92.46 21.66 73.67 94.06 98.09 19.64 99.68
all other types of anti-patterns are exceptionally low. Is it really the Table 4
case that Python projects are less infected by these other types of anti- Churn per File & Churn per LOC.
patterns? Our hypothesis is that this is caused by the widely used duck Churn per File Churn per LOC
typing in Python: the data type of a variable does not need to be Ct+ Java Python C++ Java Python
declared at compile time. Instead, its type will be inferred at run-time MEAN 106.18 17.70 118.25 0.42 0.20 2.19
based on how the variable is used so that a variable can be assigned to MIN 0.00 0.00 0.04 0.00 0.00 0.00
a different data type dynamically. MAX 9598.27 220.49 2591.82 31.03 2.76 96.88
Q1 6.34 1.90 21.86 0.04 0.02 0.29
Jin et al. [25,26] first investigated the possibility of making these MEDIAN 27.85 772 58.88 0.14 0.10 0.81
dynamic dependencies explicit at compile time. Since a variable can be Q3 79.48 22.39 130.51 0.37 0.27 1.71
bounded to more than one data type, they named such dependencies IQR 73.13 20.49 108.65 0.33 0.24 1.42
SD 502.82 26.83 229.06 1.77 0.30 6.80

as possible dependencies and revealed that more than 90% of possible
dependencies can be uniquely determined statically. They have also
demonstrated that a Python file involved in possible dependencies con-
sumes 32% more maintenance effort than a Python file without possible
dependencies. The question is, if a file with implicit dependencies can be
more difficult to maintain than a file without, is it possible that a Python
project, in general, could be more expensive to maintain than a C/C++ or
Java project? To answer this question, we compare (1) how the number
of anti-patterns differs with and without possible dependencies, and (2)
how maintenance efforts spent on Python projects, measured by Churn
per File and Churn per LOC, differ from programs written in C/C++
and Java. Here we only consider the possible dependencies that can be
uniquely determined.

3.4.1. Anti-pattern costs with and without possible dependency

To understand the impact of possible dependencies on anti-pattern
detection, we make these possible dependencies caused by duck typing
explicit and rerun DV8, and assess how the number of anti-pattern
instances and their costs would change. For this purpose, we down-
loaded the source files and revision history of these 288 Python projects
and re-generated the dependency information using Depends, which
is configured to extract possible dependencies using type inference
techniques. Using these new dependency files, we re-ran DV8 on these
projects and repeated the prevalence and severity study.

Table 3 presents the percentage of Python projects infected by each
type of anti-pattern using both explicit and possible dependencies. We
also copied the data for Python projects analyzed using explicit depen-
dencies only and that of Java projects as references. The table shows
that the occurrence of Package Cycle increases from 29.51% to 95.83%,
meaning that Python projects are even less likely to form a hierarchical
structure than C/C++ and Java projects. All other types of anti-patterns
increased as well. In particular, the occurrence of Crossing increased
from 48.96% to 78.72%, and the Unhealthy Inheritance percentage is
now 87.15%, comparable to that of C/C++ and Java.

Tables 8e and 9e respectively present the file percentage and churn
percentage measures for Python projects with both explicit and pos-
sible dependencies. Except for that of Modularity Violation, file and
churn percentages for the other five types of anti-patterns all increased
(Table 8d vs. Table 8e, and Table 9d vs. Table 9e), which is expected
because a large portion of previously implicit dependencies become
explicit. As shown in Table 8(d) and 8(e): the percentage of anti-pattern
files increased from 27.17% to 44.81%, indicating that a significant
portion of anti-patterns were hidden by duck typing. In particular,
the PKC file percentage increased from 3.7% to 26.12%, and the
CRS and UIH file percentages almost doubled. The implication is that
many syntactical dependency-based anti-patterns still exist but become
implicit. Then the question is, compared with anti-patterns detected

in C/C++ and Java, are these implicit anti-patterns in Python more
expensive to maintain?

Comparing the Churn per File data in Table 10b (C/C++), Table 10c
(Java), and Table 10e (Python), it becomes clear that in term of the
mean and median Churn per File measures, Java files involved in anti-
patterns consume much less churn than that of C/C++ and Python
anti-pattern files, regardless of the anti-pattern types. The Churn per
File costs for C/C++ and Python are comparable. We also notice that
the median total churn LOC for Python MVG (19k) is much higher
than that of C/C++ (11k), and Java (9k), which implies that implicit
dependencies in Python, mostly in the form of duck typing, could be
more expensive to maintain than that of C/C++ and Java. Next, we
further explore the overall maintenance cost differences among projects
written in these three programming languages.

3.4.2. Overall maintenance costs with and without possible dependency

To test the hypothesis that files involved in Python duck typing
are more expensive to maintain, hence Python projects could be more
costly to maintain than that of C/C++ and Java, we now calculate the
maintenance costs of all the source files in a project, regardless of their
involvement in anti-patterns. Specifically, we calculate the Churn per
File and Churn per LOC using the 1-year evolution history of a project
and compare how these measures differ for different programming
languages. Since the amount of churn consumed for Python projects
does not change regardless of how we detected anti-patterns, with or
without possible dependencies, here we only use the data extracted
using both explicit and possible dependencies.

Table 4 presents these data for all three languages. First of all, a
Java file consumes much less churn, with a median value of 7.72 per
file and 0.10 per LOC. Although the Churn per File data for anti-pattern
files in C/C++ and Python are similar, when we consider all files,
the median score of Python (58.88) doubles that of C/C++ (27.85).
Similarly, Python has the largest median Churn per LOC, 0.81, which
is about 6 times that of C/C++ (0.14) and 8 times that of Java (0.10).

The result is somewhat counter-intuitive in that Python is often
considered easier to use. We would like to test the hypothesis that
Python files are more expensive to maintain in a more rigorous way.
To assess which models should be used to assess the differences among
the three measures, we first apply the Shapiro-Wilk test* to determine
that most of this data are not normally distributed. Accordingly, we
apply the non-parametric 1-tailed Mann-Whitney U Test® to determine

4 https://www.statskingdom.com/shapiro-wilk-test-calculator.html.
5 https://www.statskingdom.com/170median_mann_whitney.html.
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Table 5 Table 6
Churn per File & Churn per LOC. Percentage of projects with All vs. Non-trivial anti-patterns.
Churn per File Churn per LOC Language CLQ (%) MVG (%) UIH (%)
C++ Java Python C++ Java Python All (>5 files) 54.71 67.98 77.66
C/C++ - - - _ _ _ All - 82.00 83.54 91.62
Java 2.13F-4 _ _ 0 _ _ Reduction -33% -19% -15%
Python 0 0 - 4.44E-16 0 - C/C++ (>5 files) 18.69 66.94 80.08
C/C++ 49.28 83.16 91.17
Reduction —-62% —-20% -12%
Java (>5 files) 68.79 49.36 90.98
if the maintenance costs for the three programming languages are truly Java 92.46 73.67 98.09
different from each other. Reduction —-26% —-33% 7%
Table 5 presents the p-values of the pairwise Mann-Whitney tests for Python (>5 files) 68.40 99.00 67.36
the Churn per File and Churn per LOC data. Each cell is a p-value of the Python 93.06 100.00 87.15
i — 0 —-19 — 0
test between the data set on the column and the one on the row. For Reduction 26% 1% 23%
example, 2.13E — 04 in row Java, column C/C++ in Table 5 means that
the Cost per File in Java is significantly lower than that of C++ since Table 7
the p-value is significantly lower than 0.05. Since all the p-values are File percentage of anti-patterns: All vs. Non-trivial.
significantly lower than 0.05, it confirms that the maintenance costs Language CLQ (%) MVG (%) UIF (%)
for source files in different programming languages are significantly All (>5 files) 6.09 20.86 16.28
different: Java files consume the least churn to maintain, followed by All 8.5 25.13 22.55
. . . P i —289 —179% —289
C/C++ files. Python files, however, contrary to our intuition, are most Reduction 28% 17% 28%
expensive to maintain. C/C++ (>5 files) 1.34 11.28 13.67
C/C++ 2.35 14.63 18.82
) ) Reduction —-43% —-23% —-27%
Answer to RQ3: When we take into account possible depen-
dencies, the prevalence of structural anti-patterns increases Java (>5 files) 979 583 24.60
R p R P S Java 13.23 8.71 34.03
significantly; because of implicit dependencies, maintaining a Reduction _26% _33% _28%
Python file can I?e multiple times more costly than that of a Python (>5 files) 201 4556 3.50
C/C++ or Java file. Python 4.19 51.95 472
Reduction -31% -12% —26%

3.5. RQ4: The impact of non-trivial anti-patterns

Based on the observation that most prevalent anti-patterns may not
be costly, we would like to further assess the severity of these prevalent
anti-patterns based on their impact scopes: if an anti-pattern instance
is trivial, e.g., only involving five or fewer files, it is highly likely
that its existence is not very harmful. As we mentioned in Section 1,
our choice of using five as the threshold to determine if an anti-
pattern instance is “trivial” is based on Gobet and Clarkson’s study on
cognitive complexity [28], and Miller’s [29] law of human cognition
and information processing: people can easily process approximately 5
“chunks” of information at a time.

To assess the difference between trivial and non-trivial anti-patterns,
for each project, we excluded these trivial instances and recalculated
the percentages of projects in which these anti-patterns are detected, as
well as their file percentages. Based on DV8’s default thresholds of anti-
patterns, there should not be any trivial Unstable Interface instances:
for a group of files to be detected as a UIF, the leading file needs to
influence at least 10% of all the files, which should always be more
than 5 because all the projects we selected have more than 100 files.
There should be few trivial cases for Crossing as well: the center file of a
Crossing should have at least four dependents and depend on four other
files. For PKC, since DV8 only detects pair-wise cyclical dependencies
among packages, the total number of instances does not change either.
Accordingly, in this section, we only consider three prevalent anti-
patterns: UIH, CLQ, and MVG. We are particularly interested in UIH
and CLQ because they violate most well-known design principles.

Table 6 presents the percentage of projects with all vs. non-trivial
anti-patterns. Overall, Clique had the biggest difference when trivial
instances were removed: the percentage of projects infected with Clique
decreased 33%, from 82% to 54.71%. Projects with Modularity Vi-
olations decreased 19%, from 83.54% to 67.98%, and projects with
Unhealthy Inheritance decreased 15%, from 91.62% to 77.66%. The
implication is that although Cliques are prevalent, many of these in-
stances are small, especially for those in C/C++ projects: the percentage

of C/C++ projects with Cliques decreases 62%, from 49.28% to 18.69%
when trivial Cliques are excluded. Table 7 presents the file percentage
differences with all vs. non-trivial anti-patterns, from which we also
observed a significant reduction. In particular, the file percentage of
CLQ and UIH both dropped 28%. The implication is that although
Clique and Unhealthy Inheritance are very common, a large portion
of projects only have trivial instances.

Answer to RQ4: From the three most prevalent anti-patterns,
a large portion of CLQ and UIH instances are trivial, neither
influential nor high-maintenance.

4. Result summary

Our study obtained several interesting results. The answer to RQ1
and RQ2 revealed that, of all the 1717 non-trivial and long-lived
projects written in C/C++, Java, or Python, as many as 99.55% of them
have at least one of the 6 types of anti-patterns. Among all these anti-
patterns, Modularity Violation — frequent co-changes among seemingly
unrelated files — turns out to be the most prevalent and costly, incur-
ring, on average, 61.55% of all the LOC spent to modify a codebase.
By contrast, less than 40% of the projects have Unstable Interface or
Crossing—revealing influential but unstable files. However, once these
anti-patterns occur, their maintenance cost could be most significant.
We consider Modularity Violation (MVG), Unstable Interface (UIF) and
Crossing (CRS) as three severe anti-patterns. The other three most
prevalent anti-patterns, Package Cycle (PKC), Unhealthy Inheritance
(UIH), and Clique (CLQ), are not as high-maintenance. These results are
consistent regardless of the programming languages, sizes, and project
domains.

The answer to RQ3 revealed that if we only consider explicit de-
pendencies without dynamic typing, the presence of certain types of
anti-patterns is significantly lower in Python projects: only 29.51% of
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Python projects have Package Cycle, and the numbers for Java and
C/C++ projects are 94.06% and 93.02% respectively. However, after
we make possible dependencies explicit, the percentage of Package
Cycle infected projects increased to 95.83%, indicating that using duck
typing in Python does not reduce the prevalence of anti-patterns but
just makes them invisible. As a matter of fact, considering the Churn
per File and Churn per LOC spent on all the source files, the cost of
maintaining Python files multiplies that of C/C++ and Java projects,
and the majority of these costs stem from implicit dependencies. This
result strengthens the observation that invisible dependencies are most
high-maintenance, and Python, as a programming language known as
being easier to use, may incur high maintenance costs in the long run.

Finally, the study reveals that after removing anti-patterns that in-
fluence 5 or fewer files, the prevalence of several anti-patterns reduced
significantly. For example, the Clique infected projects reduced from
82% to 54.71%. The instances of Unhealthy Inheritance and Modularity
Violations and their File Percentages were also noticeably reduced.
The implication is that although cyclical dependencies are considered
harmful in general, and the violations of well-known principles appear
to be very common, file-level cycles are usually small and do not incur
severe maintenance costs. However, if such a violation extends to a
large number of files, a Clique or Unhealthy Inheritance could become a
severe Unstable Interface or Crossing, which may cause severe technical
debt.

5. Related work

Researchers have proposed many definitions and tools to detect
problems in code, design, and architecture. Fowler [6]’s definition of
“bad smell”—a heuristic for a number of design symptoms at the code
level, such as god method, spaghetti code, code clones, and feature
envy, are most widely studied. Researchers have proposed various
methods to detect these code smells [46-49,49,50,50,51], and these
tools tend to report a large number of code smells, making it hard to
determine which ones are false positives, and often ignored by develop-
ers [52]. It has been recognized that many of these code-level problems
are caused by higher-level problems in design or architecture [15]. In
this study, we focus on design-level anti-patterns, that is, problematic
relations among files.

Design and architecture smells are also widely studied [32,33,33-
35]. Different researchers proposed different definitions of architec-
tural smells. For example, Garcia et al. [33] proposed a categorization
of architecture smells based on components and connectors; Sharma
et al. [53] presented a tool named Designite® that detects architectural-
level problems such as package cycles. Fontana et al. [4,54] also
proposed a suite of architectural smells, such as HubLike structure that
is similar to Crossing in DV8, supported by their tool named Arcan.
There are other commercial tools available to support the detection
of design or architecture smells, such as AiReviewer,” SonarGraph,®
and Structure 101.° In this study, we used DV8 because in addition to
structural problems such as package cycles, its definitions of Modularity
Violation, Unstable Interface, and Crossing include evolution history
information, more likely to identify real design problems leading to
extra maintenance costs [39]. Moreover, DV8 is the only tool that
defines Unhealthy Inheritance and reports maintenance costs in terms
of churn and file percentages as part of the output. We will explore how
the results may differ for other types of anti-patterns defined in other
tools in the future.

There are also many empirical studies investigating the practical im-
pact of these smells and anti-patterns. In particular, Palomba et al. [7,8]
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have studied the co-occurrence and impact of code smells in 395
releases of 30 software systems. Johannes et al. [55] performed a large-
scale study of JavaScript code smells from 15 JavaScript applications.
Researchers also studied the prevalence of code smells in specific
contexts or domains, such as code smells in Android code [10], in
SQL code [9], and in machine learning code [11]. However, there is
no large-scale prevalence study for architecture and design-level smells
or anti-patterns. Mo et al. [16] only studied 15 Java projects. Xiao el
al.’s [17] recent study investigated 18 Java projects. Jin et al. [56]
studied the impact of possible dependencies using 499 projects, but
only those written in Python, and a large portion of them are small
projects with just a few files. Different from these prior studies, we
studied the prevalence of anti-patterns for Java, Python, and C/C++
from 1717 open-source projects that are long-lived and non-trivial. To
study the severity of these anti-patterns, we also removed anti-patterns
that impacted 5 or fewer files. To the best of our knowledge, this is
the first large-scale, multiple-language prevalence and severity study
of design anti-patterns.

6. Discussion

In this section, we discuss the implications, limitations, and future
work of this research.

Implications. In the comprehensive analysis of myriad open-source
projects, certain architectural anti-patterns have shown their
pronounced presence, with distinct implications for software mainte-
nance. Notably, Modularity Violation stands out as both prevalent and
most costly to maintain: it is detected in 83.54% of all projects and
inflicts the gravest toll on software projects, implying that invisible
dependencies are most difficult to maintain. Corroborating previous
research, the adverse effects of Crossing and Unstable Interface anti-
patterns come to the fore. Such affirmation aligns with the existing
body of knowledge that these two anti-patterns contribute most to
error-proneness and change-proneness [16], which is not only true
for Java but also for C/C++ and Python projects. It becomes evident,
then, that the most resource-consuming anti-patterns, in terms of
code modifications, are Modularity Violation, Unstable Interface, and
Crossing. This gravitas is not merely in numbers; it translates to the
tangible, escalated demands on time, effort, and resources—a palpable
manifestation of accruing technical debt.

Delineating further into the specifics of the Python language and
its characteristic feature of duck typing, an intriguing observation
emerges. The overall prevalence of anti-pattern diminishes significantly
when potential dependencies brought about by duck typing are factored
out. This implies that a substantial fraction of anti-patterns in Python
arises due to invisible dependencies instigated by duck typing. The LOC
spent on maintaining a Python file can be many times more than that
of a C/C++ or Java file, meaning that the widely applied duck typing
only makes Python programs more expensive to maintain.

When the lens narrows down to anti-pattern instances influencing
a minimum of five files, a drastic decline of Clique and Unhealthy
Inheritance instances is observed, suggesting that a considerable por-
tion of these prevalent anti-patterns has limited sprawl across files and
may pose minimal immediate threats to software maintenance. The
implication is that, well-known design principles underlying these anti-
patterns are often violated, but are kept in a small scope. As long
as these violations do not grow into more severe anti-patterns, their
impacts are limited.

In essence, these findings are not just statistical revelations. They
underscore the imperative for vigilant monitoring and timely inter-
vention in the realm of software development. By recognizing and
rectifying anti-patterns early on, the industry stands to enhance its effi-
ciency and productivity, thereby ensuring robust, sustainable software
ecosystems.

Limitations and Future Work. First of all, we only studied open-
source projects written in three programming languages, and we cannot
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claim that the results will be similar for other programming languages.
In this study, we used DV8’s default parameters to detect anti-patterns.
For example, to detect Cliques, DV8 only considers Call and Use rela-
tions; to detect Modularity Violations, the minimal co-change frequency
threshold is 2. If we use other types of relations or a different co-
change frequency threshold, the results would be different. We plan
to conduct sensitive analysis using various threshold settings to assess
the prevalence and severity of these anti-patterns in the future.

Another limitation is that the accuracy of our results depends on the
accuracy of the dependencies extracted from Depends. We have noticed
that the dependency information extracted using different tools, such
as Understand [57] or ENER [26], can be slightly different because
different tools define and report dependency information differently.
One of our future works is to compare and contrast the dependencies
extracted from these tools and build a benchmark to unify the detection
and representation of dependencies.

Duck typing is only one type of implicit dependencies. Other types
of implicit dependencies exist for various reasons, such as the usage of
third-party frameworks. Our understanding of these implicit dependen-
cies and their consequences is still limited. We plan to investigate fur-
ther and categorize these different types of implicit dependencies, their
root causes, and their extraction methods so that designers can be made
aware of their impact before they incur more severe consequences.

This research also reveals that instead of reporting all instances
of all anti-patterns, technical debt detection tools should focus on
reporting the most severe instances so that the designers can prioritize
their efforts in fixing these design debts. Our next step is to study the
relations among these anti-pattern instances and devise more effective
refactoring recommendations.

In this paper, we use the amount of churn to approximate main-
tenance costs. As Shihab et al. [58] pointed out, using churn alone,
similar to using LOC and complexity alone, may not be sufficient to
predict the actual maintenance effort. Even if we combine the three
dimensions, the correlation with real effort, measured in time, for
example, can still be impacted by various factors. Given the scale and
nature of this study, churn is the best objective approximation that we
can leverage, similar to a number of prior publications that also used
churn as effort approximation [59-62].

We are also aware of the fact that not all the churn spent on an anti-
pattern-related file is caused by the anti-pattern. Multiple prior works
have proved that the maintenance costs of files involved in anti-patterns
are significantly higher than those without anti-patterns [16,40]. Here,
our main objective is to compare the prevalence and severity of differ-
ent types of anti-patterns, and we counted their total churn in the same
way for all anti-pattern types so that this limitation would not affect the
results.

7. Conclusion

The intricacies of software development often lead to the formation
of suboptimal structures, commonly referred to as anti-patterns. These
anti-patterns, while not immediately problematic, possess the poten-
tial to erode the quality of code and escalate maintenance overhead
over time. Our study, the first of its magnitude and scope, conducted
an in-depth analysis of anti-pattern prevalence and severity across a
significant corpus of 1717 open-source projects in Java, C/C++, and
Python. The revelations from this comprehensive study have significant
implications for the software development community.

A whopping 99.55% of the projects under our scrutiny were afflicted
by anti-patterns, emphasizing the universality of this issue across pro-
gramming paradigms. While Modularity Violation was identified as one
of the most prevalent anti-patterns, its consequent maintenance cost
was alarmingly high, accounting for, on average, 61.55% of the entire
LOC dedicated to project maintenance. However, Unstable Interface
and Crossing, though less frequently occurring, manifested as a dispro-
portionately resource-intensive anti-pattern, demanding almost 40% of
all maintenance efforts.
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Our exploration into the dynamics of the Python programming
language, specifically in the context of its implicit dependencies arising
from duck typing, unfolded another layer of complexity. Contrary
to prevailing beliefs about dynamic typing enhancing maintainabil-
ity, our findings suggest that implicit dependencies in Python do not
simplify maintenance. Instead, duck typing amplifies the presence of
anti-patterns and significantly increases maintenance difficulty: main-
taining Python files could be many times more costly than maintaining
C/C++ and Java files.

Moreover, our examination of trivial anti-patterns, those affecting
5 or fewer files, underscored the fact that design principle violations
are extremely common and almost inevitable. However, a significant
portion of the projects are able to control these violations in smaller
scopes. It is possible that these violations are the results of the consid-
eration of other tradeoffs. As long as such violations do not grow into
more severe anti-patterns, their impacts are limited. This distinction
is paramount as it helps developers differentiate between anti-patterns
that are widespread but less harmful and those that, despite their rarity,
can be detrimental to the maintenance life cycle.

In conclusion, this study sheds light on the silent yet pervasive
existence of anti-patterns in software projects. It underscores the need
for proactive detection and intervention, especially for the more detri-
mental anti-patterns like Modularity Violation, Unstable Interface, and
Crossing. As the software development landscape continues to evolve,
armed with insights from this research, developers, and organizations
can adopt more informed strategies to tackle anti-patterns preemp-
tively, optimizing the health, quality, and longevity of their software
projects.
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Appendix. Anti-pattern cost comparison of different languages

See Tables 8-10.

Table 8
Anti-patterns cost comparison: File percentage.

(a) File percentage of anti-patterns: All languages

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) ALL AP (%)

MEAN 9.83% 6.42% 14.50% 29.88% 23.54% 10.04% 43.89%
MIN 0.03% 0.07% 0.00% 0.10% 0.09% 0.09% 0.00%

MAX 76.77% 53.68% 76.47% 98.60% 87.63% 63.97% 98.94%
Q1 2.50% 1.63% 3.33% 13.55% 7.30% 3.35% 28.05%
MEDIAN 6.31% 4.29% 10.30% 27.78% 20.50% 7.10% 45.05%
Q3 13.42% 8.78% 21.80% 42.22% 36.99% 13.10% 59.77%
IQR 10.92% 7.16% 18.47% 28.67% 29.69% 9.75% 31.72%
SD 10.61% 6.98% 13.83% 19.51% 17.81% 9.87% 21.02%

(b) File percentage of anti-patterns: C/C++

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) ALL AP (%)

MEAN 2.35% 7.88% 14.63% 38.68% 18.82% 12.04% 48.87%
MIN 0.03% 0.22% 0.08% 0.76% 0.23% 0.60% 0.00%

MAX 22.43% 53.68% 72.79% 98.60% 70.83% 63.97% 98.60%
Q1 0.50% 2.73% 3.85% 21.61% 8.07% 4.39% 34.75%
MEDIAN 1.31% 5.75% 11.12% 39.58% 17.64% 9.55% 51.07%
Q3 2.67% 10.51% 21.39% 54.22% 27.53% 15.73% 64.14%
IQR 2.17% 7.78% 17.54% 32.61% 19.46% 11.35% 29.39%
SD 3.06% 7.60% 13.78% 21.03% 12.77% 10.88% 20.94%

(c) File percentage of anti-patterns: Java

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) ALL AP (%)

MEAN 13.23% 5.49% 8.71% 27.93% 34.03% 7.69% 50.90%
MIN 0.27% 0.07% 0.02% 0.15% 0.09% 0.09% 0.00%

MAX 76.77% 39.22% 67.40% 92.80% 87.63% 50.83% 98.94%
Q1 4.27% 1.02% 1.78% 13.75% 21.92% 1.89% 39.24%
MEDIAN 9.29% 2.93% 4.86% 25.84% 35.29% 4.57% 52.92%
Q3 18.30% 6.90% 12.28% 38.50% 45.91% 10.28% 64.70%
IQR 14.03% 5.88% 10.50% 24.76% 23.99% 8.39% 25.46%
SD 12.37% 7.23% 10.06% 17.15% 16.35% 9.12% 18.98%

(d) File percentage of anti-patterns: Python - Explicit dependencies only

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) ALL AP (%)

MEAN 6.25% 3.72% 22.27% 8.68% 4.32% 9.01% 28.02%
MIN 0.21% 0.26% 0.00% 0.10% 0.24% 0.79% 1.14%

MAX 27.07% 15.79% 76.47% 76.89% 32.57% 31.95% 85.61%
Q1 2.37% 0.75% 10.68% 1.74% 1.39% 4.08% 16.44%
MEDIAN 4.65% 2.41% 19.95% 3.70% 2.65% 6.84% 27.17%
Q3 9.28% 4.66% 31.68% 9.81% 5.44% 8.85% 37.37%
IQR 6.91% 3.91% 21.00% 8.07% 4.05% 4.78% 20.93%
SD 5.15% 3.97% 14.65% 12.48% 4.71% 8.05% 15.04%

(e) File percentage of anti-patterns: Python - with possible dependencies

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%) ANY AP (%)

MEAN 8.98% 6.64% 21.35% 28.16% 9.96% 10.92% 45.41%
MIN 0.21% 0.32% 0% 0.41% 0.24% 0.48% 2.29%

MAX 45.10% 27.63% 76.14% 87.58% 60.45% 35.02% 90.85%
Q1 3.26% 2.19% 9.77% 12.51% 3.23% 4.74% 33.65%
MEDIAN 6.63% 4.71% 19.05% 26.12% 7.18% 8.06% 44.81%
Q3 13.46% 9.46% 30.67% 39.64% 14.17% 16.55% 58.15%
IQR 10.21% 7.41% 20.91% 27.13% 10.94% 11.81% 24.49%
SD 7.58% 5.72% 14.49% 18.71% 9.03% 8.54% 18.15%

Note: IQR = Inter-quartile range. SD = Standard Deviation.
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Table 9
Anti-patterns cost comparison: Churn and churn percentage.

(a) Churn and churn percentage of anti-patterns: All languages

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UTF (%)
MEAN 6K (15.46) 20K (24.22) 42K (61.55) 12K (33.04) 11K (31.98) 31K (39.31)
MIN 0 (0.00) 94 (0.05) 0 (0.00) 0 (0.00) 0 (0.00) 73 (0.11)
MAX 1045K (100.00) 362K (95.49) 2130K (100.00) 703K (100.00) 688K (100.00) 893K (98.40)
Q1 61.75 (1.04) 3K (7.17) 1K (39.60) 226 (7.56) 189 (3.76) 5K (17.78)
MEDIAN 673.5 (7.98) 8K (17.79) 8K (68.27) 2K (26.06) 2K (25.89) 12K (36.88)
Q3 4K (22.34) 22K (37.11) 31K (86.02) 10K (52.60) 8K (55.68) 32K (58.10)
IQR 4K (21.30) 19K (29.94) 30K (46.43) 10K (45.04) 7K (51.92) 26K (40.32)
SD 30K (19.93) 36K (20.79) 147K (28.28) 35K (28.84) 33K (28.86) 64K (24.87)
(b) Churn and churn percentage of anti-patterns: C/C++

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%)
MEAN 9K (6.94) 27K (35.68) 37K (57.95) 23K (45.36) 18K (32.11) 38K (47.40)
MIN 0 (0.00) 255 (0.43) 19 (0.05) 0 (0.00) 0 (0.00) 73 (0.26)
MAX 1045K (99.93) 362K (95.49) 700K (98.64) 703K (100.00) 688K (100.00) 388K (96.93)
Q1 0 (0.00) 4K (16.89) 3K (34.93) 568 (12.36) 339.75 (5.34) 8K (28.21)
MEDIAN 197 (1.07) 11K (33.72) 11K (63.93) 5K (45.85) 3K (27.80) 19K (45.77)
Q3 2K (6.35) 32K (53.05) 35K (80.17) 20K (75.54) 14K (52.87) 45K (65.86)
IQR 2K (6.35) 28K (36.16) 32K (45.24) 20K (63.18) 13K (47.53) 38K (37.65)
SD 69K (13.81) 46K (23.10) 77K (27.78) 56K (32.62) 53K (27.24) 56K (24.21)
(c) Churn and churn percentage of anti-patterns: Java

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%)
MEAN 5K (22.80) 13K (27.93) 14K (46.33) 6K (33.69) 9K (44.66) 14K (34.03)
MIN 0 (0.00) 94 (0.55) 11 (0.14) 0 (0.00) 0 (0.00) 155 (0.88)
MAX 215K (100.00) 178K (82.01) 335K (100.00) 206K (100.00) 351K (100.00) 232K (87.11)
Q1 50.5 (3.11) 2K (11.29) 661.5 (25.40) 116.75 (10.86) 180.5 (21.98) 3K (13.80)
MEDIAN 538 (16.94) 6K (23.33) 3K (46.59) 1K (29.12) 1K (46.53) 7K (29.04)
Q3 3K (34.47) 16K (40.35) 12K (67.07) 5K (50.16) 7K (66.64) 16K (51.59)
IQR 3K (31.36) 13K (29.07) 11K (41.67) 5K (39.30) 7K (44.67) 13K (37.79)
SD 13K (23.26) 21K (20.54) 33K (25.48) 16K (27.24) 25K (27.79) 23K (23.86)
(d) Churn and churn percentage of anti-patterns: Python - Explicit dependencies only

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%)
MEAN 5K (9.28) 11K (10.72) 82K (62.12) 4K (8.67) 3K (6.09) 23K (28.24)
MIN 0K (0.00) 1K (0.32) 0K (0.00) 0K (0.00) 0K (0.00) 1K (0.84)
MAX 143K (73.03) 85K (49.01) 2130K (99.27) 39K (72.20) 50K (56.12) 118K (73.71)
Q1 OK (1.18) 3K (2.55) 4K (45.07) OK (0.36) 0K (0.31) 10K (13.89)
MEDIAN 1K (4.79) 5K (9.37) 19K (66.03) 1K (2.84) 1K (3.04) 18K (25.22)
Q3 5K (12.46) 16K (14.89) 58K (83.04) 5K (11.22) 3K (7.98) 28K (43.09)
IQR 5K (11.28) 14K (12.34) 54K (37.97) 4K (10.86) 3K (7.67) 18K (29.20)
SD 13K (11.94) 14K (10.55) 239K (24.53) 7K (13.61) 6K (9.19) 23K (19.40)
(e) Churn and churn percentage of anti-patterns: Python - with possible dependencies

CLQ (%) CRS (%) MVG (%) PKC (%) UIH (%) UIF (%)
MEAN 8K (12.05) 21K (20.76) 81K (59.54) 16K (28.02) 9K (13.35) 53K (33.49)
MIN OK (0.00) OK (0.35) OK (0.00) OK (0.00) 0K (0.00) 1K (1.24)
MAX 233K (79.95) 361K (81.58) 2130K (99.26) 465K (94.32) 250K (69.05) 893K (88.58)
Q1 OK (1.46) 4K (6.75) 4K (41.55) 1K (7.18) OK (0.86) 9K (16.13)
MEDIAN 2K (6.94) 9K (15.72) 19K (61.82) 6K (23.99) 2K (8.04) 19K (29.77)
Q3 7K (17.61) 22K (29.70) 57K (80.15) 15K (45.42) 7K (19.91) 46K (52.28)
IQR 7K (16.15) 18K (22.95) 53K (38.60) 14K (38.25) 7K (19.05) 38K (36.15)
SD 19K (14.15) 40K (17.94) 239K (25.03) 37K (22.92) 25K (15.12) 120K (22.81)

Note: IQR = Inter-quartile range. SD = Standard Deviation.
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Table 10
Anti-patterns cost comparison: Churn Per File.

(a) Churn per file of anti-patterns: All languages

CLQ CRS MVG PKC UIH UIF
MEAN 189 408 260 58 78 409
MIN 0 13 4 0 0 3
MAX 149K 23K 12K 9K 16K 12K
Q1 3 177 83 3 3 180
MEDIAN 23 276 150 17 21 276
Q3 86 443 248 57 77 437
IQR 83 266 165 54 74 257
SD 3.7K 990 643 256 402 796

(b) Churn per file of anti-patterns: C/C++

CLQ CRS MVG PKC UIH UIF
MEAN 2K 655 397 123 187 594
MIN 0 32 10 0 0 3
MAX 149K 23K 12K 9K 16K 12K
Q1 0 200 120 5 7 221
MEDIAN 21 349 206 28 46 358
Q3 159 542 338 91 129 529
IQR 159 342 218 86 122 308
SD 13K 2K 1K 640 1K 1K

(c) Churn per file of anti-patterns: Java

CLQ CRS MVG PKC UIH UIF
MEAN 41 244 133 24 28 221
MIN 0 13 4 0 0 9
MAX 1K 921 2K 499 2K 745
Q1 2 154 64 1 2 138
MEDIAN 12 211 107 9 10 196
Q3 43 306 164 29 32 289
IQR 41 152 100 27 30 152
SD 97 143 134 44 72 125

(d) Churn per file of anti-patterns: Python - Explicit dependencies only

CLQ CRS MVG PKC UIH UIF
MEAN 117 506 340 82 118 476
MIN 0 131 4 0 0 55
MAX 2K 2K 7K 684 1K 1K
Q1 15 228 118 7 8 231
MEDIAN 61 330 179 44 56 442
Q3 154 628 297 130 163 637
IQR 139 400 180 123 154 406
SD 174 444 676 107 157 311

(e) Cost Per File of Anti-patterns: Python - with possible dependencies

CLQ CRS MVG PKC UIH UIF
MEAN 121 384 348 84 100 485
MIN 0 44 4 0 0 47
MAX 2K 2K 8K 1K 870 5K
Q1 14 221 118 15 11 229
MEDIAN 65 297 184 54 58 320
Q3 144 477 315 109 131 491
IQR 130 256 197 94 120 262
SD 240 278 692 117 133 648

Note: IQR = Inter-quartile range. SD = Standard Deviation.
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