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a b s t r a c t

Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language
understanding and generation. They possess deep language comprehension, human-like text gener-
ation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in
various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have
also gained traction in the security community, revealing security vulnerabilities and showcasing
their potential in security-related tasks. This paper explores the intersection of LLMs with security
and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential
risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a
comprehensive literature review, the paper categorizes the papers into ‘‘The Good’’ (beneficial LLM
applications), ‘‘The Bad’’ (offensive applications), and ‘‘The Ugly’’ (vulnerabilities of LLMs and their
defenses). We have some interesting findings. For example, LLMs have proven to enhance code
security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming
traditional methods. However, they can also be harnessed for various attacks (particularly user-level
attacks) due to their human-like reasoning abilities. We have identified areas that require further
research efforts. For example, Research on model and parameter extraction attacks is limited and
often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent
development, requires more exploration. We hope that our work can shed light on the LLMs’ potential
to both bolster and jeopardize cybersecurity.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A large language model is the language model with mas-
ive parameters that undergoes pretraining tasks (e.g., masked
anguage modeling and autoregressive prediction) to understand
nd process human language, by modeling the contextualized
ext semantics and probabilities from large amounts of text data.
capable LLM should have four key features [1]: (i) profound

omprehension of natural language context; (ii) ability to gen-
rate human-like text; (iii) contextual awareness, especially in
nowledge-intensive domains; (iv) strong instruction-following
bility which is useful for problem-solving and decision-making.
There are a number of LLMs that were developed and released

n 2023, gaining significant popularity. Notable examples include
penAI’s ChatGPT [2], Meta AI’s LLaMA [3], and Databricks’ Dolly
.0 [4]. For instance, ChatGPT alone boasts a user base of over 180
illion [5]. LLMs now offer a wide range of versatile applications
cross various domains. Specifically, they not only provide tech-
ical support to domains directly related to language processing
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(e.g., search engines [6,7], customer support [8], translation [9,
10]) but also find utility in more general scenarios such as code
generation [11], healthcare [12], finance [13], and education [14].
This showcases their adaptability and potential to streamline
language-related tasks across diverse industries and contexts.

LLMs are gaining popularity within the security community.
As of February 2023, a research study reported that GPT-3 un-
covered 213 security vulnerabilities (only 4 turned out to be
false positives) [15] in a code repository. In contrast, one of the
leading commercial tools in the market detected only 99 vul-
nerabilities. More recently, several LLM-powered security papers
have emerged in prestigious conferences. For instance, in IEEE
S&P 2023, Hammond Pearce et al. [16] conducted a compre-
hensive investigation employing various commercially available
LLMs, evaluating them across synthetic, hand-crafted, and real-
world security bug scenarios. The results are promising, as LLMs
successfully addressed all synthetic and hand-crafted scenarios.
In NDSS 2024, a tool named Fuzz4All [17] showcased the use
of LLMs for input generation and mutation, accompanied by an
innovative autoprompting technique and fuzzing loop.

These remarkable initial attempts prompt us to delve into
three crucial security-related research questions:
g University. This is an open access article under the CC BY-NC-ND license
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• RQ1. How do LLMs make a positive impact on security and
privacy across diverse domains, and what advantages do they
offer to the security community?

• RQ2. What potential risks and threats emerge from the utiliza-
tion of LLMs within the realm of cybersecurity?

• RQ3. What vulnerabilities and weaknesses within LLMs, and
how to defend against those threats?

Findings. To comprehensively address these questions, we con-
ducted a meticulous literature review and assembled a collec-
tion of 281 papers pertaining to the intersection of LLMs with
security and privacy. We categorized these papers into three dis-
tinct groups: those highlighting security-beneficial applications
(i.e., the good), those exploring applications that could poten-
tially exert adverse impacts on security (i.e., the bad), and those
focusing on the discussion of security vulnerabilities (alongside
potential defense mechanisms) within LLMs (i.e., the ugly). To be
more specific:

• The Good (Section 4): LLMs have a predominantly positive
impact on the security community, as indicated by the most
significant number of papers dedicated to enhancing secu-
rity. Specifically, LLMs have made contributions to both code
security and data security and privacy. In the context of code
security, LLMs have been used for the whole life cycle of
the code (e.g., secure coding, test case generation, vulnerable
code detection, malicious code detection, and code fixing).
In data security and privacy, LLMs have been applied to
ensure data integrity, data confidentiality, data reliability,
and data traceability. Meanwhile, Compared to state-of-the-
art methods, most researchers found LLM-based methods to
outperform traditional approaches.

• The Bad (Section 5): LLMs also have offensive applications
against security and privacy. We categorized the attacks into
five groups: hardware-level attacks (e.g., side-channel at-
tacks), OS-level attacks (e.g., analyzing information from op-
erating systems), software-level attacks (e.g., creating mal-
ware), network-level attacks (e.g., network phishing), and
user-level attacks (e.g., misinformation, social engineering,
scientific misconduct). User-level attacks, with 32 papers,
are the most prevalent due to LLMs’ human-like reasoning
abilities. Those attacks threaten both security (e.g., malware
attacks) and privacy (e.g., social engineering). Nowadays,
LLMs lack direct access to OS and hardware-level functions.
The potential threats of LLMs could escalate if they gain such
access.

• The Ugly (Section 6): We explore the vulnerabilities and
defenses in LLMs, categorizing vulnerabilities into two main
groups: AI Model Inherent Vulnerabilities (e.g., data poison-
ing, backdoor attacks, training data extraction) and Non-AI
Model Inherent Vulnerabilities (e.g., remote code execution,
prompt injection, side channels). These attacks pose a dual
threat, encompassing both security concerns (e.g., remote
code execution attacks) and privacy issues (e.g., data extrac-
tion). Defenses for LLMs are divided into strategies placed
in the architecture, and applied during the training and
inference phases. Training phase defenses involve corpora
cleaning, and optimization methods, while inference phase
defenses include instruction pre-processing, malicious de-
tection, and generation post-processing. These defenses col-
lectively aim to enhance the security, robustness, and eth-
ical alignment of LLMs. We found that model extraction,
parameter extraction, and similar attacks have received lim-
ited research attention, remaining primarily theoretical with
minimal practical exploration. The vast scale of LLM pa-
rameters makes traditional approaches less effective, and
the confidentiality of powerful LLMs further shields them
2

from conventional attacks. Strict censorship of LLM outputs
challenges even black-box ML attacks. Meanwhile, research
on the impact of model architecture on LLM safety is scarce,
partly due to high computational costs. Safe instruction
tuning, a recent development, requires further investigation.

Contributions. Our work makes a dual contribution. First, we are
pioneers summarizing the role of LLMs in security and privacy.
We delve deeply into the positive impacts of LLMs on security,
their potential risks and threats, vulnerabilities in LLMs, and the
corresponding defense mechanisms. Other surveys may focus
on one or two specific aspects, such as beneficial applications,
offensive applications, vulnerabilities, or defenses. To the best
of our knowledge, our survey is the first to cover all three key
aspects related to security and privacy for the first time. Sec-
ond, we have made several interesting discoveries. For instance,
our research reveals that LLMs contribute more positively than
negatively to security and privacy. Moreover, we observe that
most researchers concur that LLMs outperform state-of-the-art
methods when employed for securing code or data. Concurrently,
it becomes evident that user-level attacks are the most prevalent,
largely owing to the human-like reasoning abilities exhibited by
LLMs.

Roadmap. The rest of the paper is organized as follows. We begin
with a brief introduction to LLM in Section 2. Section 3 presents
the overview of our work. In Section 4, we explore the beneficial
impacts of employing LLMs. Section 5 discusses the negative
impacts on security and privacy. In Section 6, we discuss the
prevalent threats, vulnerabilities associated with LLMs as well as
the countermeasures to mitigate these risks. Section 7 discuss
LLMs in other security related topics and possible directions. We
conclude the paper in Section 9.

2. Background

2.1. Large Language Models (LLMs)

Large Language Models (LLMs) [18] represents an evolution
from language models. Initially, language models were statistical
in nature and laid the groundwork for computational linguistics.
The advent of transformers has significantly increased their scale.
This expansion, along with the use of extensive training corpora
and advanced pre-training techniques is pivotal in areas such as
AI for science, logical reasoning, and embodied AI. These models
undergo extensive training on vast datasets to comprehend and
produce text that closely mimics human language. Typically, LLMs
are endowed with hundreds of billions, or even more, parameters,
honed through the processing of massive textual data. They have
spearheaded substantial advancements in the realm of Natural
Language Processing (NLP) [19] and find applications in a mul-
titude of fields (e.g., risk assessment [20], programming [21],
vulnerability detection [11], medical text analysis [12], and search
engine optimization [7]).

Based on Yang’s study [1], an LLM should have at least four
key features. First, an LLM should demonstrate a deep under-
standing and interpretation of natural language text, enabling
it to extract information and perform various language-related
tasks (e.g., translation). Second, it should have the capacity to
generate human-like text (e.g., completing sentences, composing
paragraphs, and even writing articles) when prompted. Third,
LLMs should exhibit contextual awareness by considering factors
such as domain expertise, a quality referred to as ‘‘Knowledge-
intensive’’. Fourth, these models should excel in problem-solving
and decision-making, leveraging information within text passages
to make them invaluable for tasks such as information retrieval
and question-answering systems.
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Table 1
Comparison of popular LLMs [24–30].
Model Date Provider Open-Source Params Tunability
GPT-4 [24] 2023.03 OpenAI ✗ 1.7 T ✗

GPT-3.5-turbo 2021.09 OpenAI ✗ 175 B ✗

GPT-3 [25] 2020.06 OpenAI ✗ 175 B ✗

Cohere-medium [26] 2022.07 Cohere ✗ 6 B ✓

Cohere-large [26] 2022.07 Cohere ✗ 13 B ✓

Cohere-xlarge [26] 2022.06 Cohere ✗ 52 B ✓

BERT [27] 2018.08 Google ✓ 340 M ✓

T5 [28] 2019 Google ✓ 11 B ✓

PaLM [29] 2022.04 Google ✓ 540 B ✓

LLaMA [3] 2023.02 Meta AI ✓ 65 B ✓

CTRL [30] 2019 Salesforce ✓ 1.6 B ✓

Dolly 2.0 [4] 2023.04 Databricks ✓ 12 B ✓

*✗ The models are not open-source or can not be fine-tuned for specific tasks.
*✓ The models are open-source or can be fine-tuned for specific tasks.
2.2. Comparison of popular LLMs

As shown in Table 1 [22,23], there is a diversity of providers
for language models, including industry leaders such as OpenAI,
Google, Meta AI, and emerging players such as Anthropic and
Cohere. The release dates span from 2018 to 2023, showcasing
the rapid development and evolution of language models in re-
cent years. Newer models such as ‘‘gpt-4’’ have emerged in 2023,
highlighting the ongoing innovation in this field. While most of
the models are not open-source, it is interesting to note that
models like BERT, T5, PaLM, LLaMA, and CTRL are open-source,
which can facilitate community-driven development and appli-
cations. Larger models tend to have more parameters, potentially
indicating increased capabilities but also greater computational
demands. For example, ‘‘PaLM’’ stands out with a massive 540
billion parameters. It can also be observed that LLMs tend to
have more parameters, potentially indicating increased capabil-
ities but also greater computational demands. The ‘‘Tunability’’
column suggests whether these models can be fine-tuned for
specific tasks. In other words, it is possible to take a large, pre-
trained language model and adjust its parameters and training on
a smaller, domain-specific dataset to make it perform better on
a particular task. For instance, with tunability, one can fine-tune
BERT on a dataset of movie reviews to make it highly effective at
sentiment analysis.

3. Overview

3.1. Scope

Our paper endeavors to conduct a thorough literature review,
with the objective of collating and scrutinizing existing research
and studies about the realms of security and privacy in the
context of LLMs. The effort is geared towards both establishing
the current state of the art in this domain and pinpointing gaps
in our collective knowledge. While it is true that LLMs wield mul-
tifaceted applications extending beyond security considerations
(e.g., social and financial impacts), our primary focus remains
steadfastly on matters of security and privacy. Moreover, it is
noteworthy that GPT models have attained significant promi-
nence within this landscape. Consequently, when delving into
specific content and examples, we aim to employ GPT models as
illustrative benchmarks.

3.2. The research questions

LLMs have carried profound implications across diverse do-
mains. However, it is essential to recognize that, as with any
powerful technology, LLMs bear a significant responsibility. Our

paper delves deeply into the multifaceted role of LLMs in the

3

Fig. 1. An overview of our collected papers.

context of security and privacy. We intend to scrutinize their
positive contributions to these domains, explore the potential
threats they may engender, and uncover the vulnerabilities that
could compromise their integrity. To accomplish this, our study
will conduct a thorough literature review centered around three
pivotal research questions:

• The Good (Section 4): How do LLMs positively contribute to
security and privacy in various domains, and what are the
potential benefits they bring to the security community?

• The Bad (Section 5): What are the potential risks and threats
associated with the use of LLMs in the context of cyber-
security? Specifically, how can LLMs be used for malicious
purposes, and what types of cyber attacks can be facilitated
or amplified using LLMs?

• The Ugly (Section 6): What vulnerabilities and weaknesses
exist within LLMs, and how do these vulnerabilities pose a
threat to security and privacy?

Motivated by these questions, we conducted a search on
Google Scholar and compiled papers related to security and
privacy involving LLMs. As shown in Fig. 1, we gathered a total
of 83 ‘‘good’’ papers that highlight the positive contributions of
LLMs to security and privacy. Additionally, we identified 54 ‘‘bad’’
papers, in which attackers exploited LLMs to target users, and
144 ‘‘ugly’’ papers, in which authors discovered vulnerabilities
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Table 2
LLMs for code security and privacy.

Work

Life Cycle

LLM(s) Domain When compared to
SOTA ways?Coding (C) Test Case

Generating
(TCG)

Running and Executing (RE)

Bug
Detecting

Malicious
Code Detecting

Vulnerability
Detecting

Fixing

Sandoval et al. [31] ○ ○␣ ○␣ ○␣ ○␣ ○␣ Codex – $ Negligible risks
SVEN [32] ○ ○␣ ○␣ ○␣ ○␣ ○␣ CodeGen – $ More faster/secure
SALLM [33] ○ ○␣ ○␣ ○␣ ○␣ ○␣ ChatGPT etc. – –
Madhav et al. [34] ○ ○␣ ○␣ ○␣ ○␣ ○␣ ChatGPT Hardware –
Zhang et al. [35] ○␣ ○ ○␣ ○␣ ○ ○␣ ChatGPT Supply chain $ More valid cases
Libro [36] ○␣ ○ ○␣ ○␣ ○ ○␣ LLaMA – ! Higher FP/FN
TitanFuzz [37] ○␣ ○ ○ ○␣ ○ ○␣ Codex DL libs $ Higher coverage
FuzzGPT [38] ○␣ ○ ○ ○␣ ○ ○␣ ChatGPT DL libs $ Higher coverage
Fuzz4All [17] ○␣ ○ ○ ○␣ ○ ○␣ ChatGPT Languages $ Higher coverage
WhiteFox [39] ○␣ ○ ○ ○␣ ○ ○␣ GPT4 Compiler $ High-quality tests
Zhang et al. [40] ○␣ ○ ○ ○␣ ○ ○␣ ChatGPT API –
CHATAFL [41] ○␣ ○ ○ ○␣ ○ ○␣ ChatGPT Protocol $ Higher coverage
Henrik [42] ○␣ ○␣ ○␣ ○ ○␣ ○␣ ChatGPT – ! Higer FP/FN
Apiiro [43] ○␣ ○␣ ○␣ ○ ○␣ ○␣ N/A – –
Noever [44] ○␣ ○␣ ○␣ ○␣ ○ ○ ChatGPT – $ 4X faster
Bakhshandeh et al. [45] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT – $ Low FP/FN
Moumita et al. [46] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT – ! Higher FP/FN
Cheshkov et al. [47] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT – ! No better
LATTE [48] ○␣ ○␣ ○␣ ○␣ ○ ○␣ GPT – $ Cost effective
DefectHunter [49] ○␣ ○␣ ○␣ ○␣ ○ ○␣ Codex – –
Chen et al. [50] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT Blockchain –
Hu et al. [51] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT Blockchain –
KARTAL [52] ○␣ ○␣ ○␣ ○␣ ○ ○␣ ChatGPT Web apps $ Less manual
VulLibGen [53] ○␣ ○␣ ○␣ ○␣ ○ ○␣ LLaMa Libs $ Higher accuracy/speed
Ahmad et al. [54] ○␣ ○␣ ○␣ ○␣ ○ ○ Codex Hardware $ Fix more bugs
InferFix [55] ○␣ ○␣ ○ ○␣ ○ ○ Codex – $ CI Pipeline
Pearce et al. [16] ○␣ ○␣ ○ ○␣ ○ ○␣ Codex etc. – $ Zero-shot
Fu et al. [56] ○␣ ○␣ ○ ○␣ ○ ○ ChatGPT APR $ Higher accuracy
Sobania et al. [57] ○␣ ○␣ ○␣ ○␣ ○␣ ○ ChatGPT etc. APR $ Higher accuracy
Jiang et al. [58] ○␣ ○␣ ○␣ ○␣ ○␣ ○ ChatGPT APR $ Higher accuracy

*○ The model can enhance the specific facets of data protection.

*○␣ The model can not enhance the specific facets of data protection.
within LLMs. Most of the papers were published in 2023, with
only 82 of them released in between 2007 and 2022. Notably,
there is a consistent upward trend in the number of papers
released each month, with October reaching its peak, boasting
the highest number of papers published (38 papers in total,
accounting for 15.97% of all the collected papers). It is conceivable
that more security-related LLM papers will be published in the
near future.

Finding I. In terms of security-related applications (i.e., the
‘‘good’’ and the ‘‘bad’’ parts), it is evident that the majority
of researchers are inclined towards using LLMs to bolster
the security community, such as in vulnerability detection
and security test generation, despite the presence of some
vulnerabilities in LLMs at this stage. There are relatively few
researchers who employ LLMs as tools for conducting attacks.
In summary, LLMs contribute more positively than negatively
to the security community.

4. Positive impacts on security and privacy

In this section, we explore the beneficial impacts of employing
LMs. In the context of code or data privacy, we have opted to use
he term ‘‘privacy’’ to characterize scenarios in which LLMs are
tilized to ensure the confidentiality of either code or data. How-
ver, given that we did not come across any papers specifically
ddressing code privacy, our discussion focuses on code security
Section 4.1) as well as both data security and privacy (Section
.2).

.1. LLMs for code security

As shown in Table 2, LLMs have access to a vast repository
of code snippets and examples spanning various programming
languages and domains. They leverage their advanced language
understanding and contextual analysis capabilities to thoroughly
examine code and code-related text. More specifically, LLMs can
4

play a pivotal role throughout the entire code security lifecycle,
including coding (C), test case generation (TCG), execution, and
monitoring (RE).

Secure coding (C). We first discuss the use of LLMs in the con-
text of secure code programming [59] (or generation [60–63]).
Sandoval et al. [31] conducted a user study (58 users) to assess
the security implications of LLMs, particularly OpenAI Codex, as
code assistants for developers. They evaluated code written by
student programmers when assisted by LLMs and found that par-
ticipants assisted by LLMs did not introduce new security risks:
the AI-assisted group produced critical security bugs at a rate no
greater than 10% higher than the control group (non-assisted). He
et al. [32,64] focused on enhancing the security of code generated
by LLMs. They proposed a novel method called SVEN, which
leverages continuous prompts to control LLMs in generating
secure code. With this method, the success rate improved from
59.1% to 92.3% when using the CodeGen LM. Mohammed et al.
introduce SALLM [33], a framework consisting of a new security-
focused dataset, an evaluation environment, and novel metrics
for systematically assessing LLMs’ ability to generate secure code.
Madhav et al. [34] evaluate the security aspects of code gen-
eration processes on the ChatGPT platform, specifically in the
hardware domain. They explore the strategies that a designer
can employ to enable ChatGPT to provide secure hardware code
generation.

Test case generating (TCG). Several papers [65–71] discuss the uti-
lization of LLMs for generating test cases, with our particular em-
phasis on those addressing security implications. Zhang et al. [35]
demonstrated the use of ChatGPT-4.0 for generating security
tests to assess the impact of vulnerable library dependencies on
software applications. They found that LLMs could successfully
generate tests that demonstrated various supply chain attacks,
outperforming existing security test generators. This approach
resulted in 24 successful attacks across 55 applications. Similarly,
Libro [36], a framework that uses LLMs to automatically generate

test cases to reproduce software security bugs.
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In the realm of security, fuzzing stands [40,72–75] out as a
widely employed technique for generating test cases. Deng et al.
introduced TitanFuzz [37], an approach that harnesses LLMs to
generate input programs for fuzzing Deep Learning (DL) libraries.
TitanFuzz demonstrates impressive code coverage (30.38%/50.84%
and detects previously unknown bugs (41 out of 65) in popular
DL libraries. More recently, Deng et al. [38,76] refined LLM-
based fuzzing (named FuzzGPT), aiming to generate unusual
programs for DL library fuzzing. While TitanFuzz leverages LLMs’
ability to generate ordinary code, FuzzGPT addresses the need for
edge-case testing by priming LLMs with historical bug-triggering
program. Fuzz4All [17] leverages LLMs as input generators and
mutation engines, creating diverse and realistic inputs for various
languages (e.g., C, C++), improving the previous state-of-the-art
coverage by 36.8% on average. WhiteFox [39], a novel white-box
compiler fuzzer that utilizes LLMs to test compiler optimizations,
outperforms existing fuzzers (it generates high-quality tests for
intricate optimizations, surpassing state-of-the-art fuzzers by up
to 80 optimizations). Zhang et al. [40] explore the generation of
fuzz drivers for library API fuzzing using LLMs. Results show that
LLM-based generation is practical, with 64% of questions solved
entirely automatically and up to 91% with manual validation.
CHATAFL [41] is an LLM-guided protocol fuzzer that constructs
grammars for message types and mutates messages or predicts
the next messages based on LLM interactions, achieving better
state and code coverage compared to state-of-the-art fuzzers
(e.g., AFLNET [77], NSFUZZ [78]).

Vulnerable code detecting (RE). Noever [44] explores the capabil-
ity of LLMs, particularly OpenAI’s GPT-4, in detecting software
vulnerabilities. This paper shows that GPT-4 identified approx-
imately four times the number of vulnerabilities compared to
traditional static code analyzers (e.g., Snyk and Fortify). Paral-
lel conclusions have also been drawn in other efforts [15,45].
However, Moumita et al. [46] applied LLMs for software vulner-
ability detection, exposing a noticeable performance gap when
compared to conventional static analysis tools. This disparity
primarily arises from the relatively higher occurrence of false
alerts generated by LLMs. Similarly, Cheshkov et al. [47] point out
that the ChatGPT model performed no better than a dummy clas-
sifier for both binary and multi-label classification tasks in code
vulnerability detection. Wang et al. introduce DefectHunter [49],
a novel model that employs LLM-driven techniques for code vul-
nerability detection. They demonstrate the potential of combining
LLMs with advanced mechanisms (e.g., Conformer) to identify
software vulnerabilities more effectively. This combination shows
an improvement in effectiveness, approximately from 14.64% to
20.62%, compared with Pongo-70B. LATTE [48] is a novel static
binary taint analysis method powered by LLMs. LATTE surpasses
existing state-of-the-art techniques (e.g., Emtaint, Arbiter, and
Karonte), demonstrating remarkable effectiveness in vulnerability
detection (37 new bugs in real-world firmware) with lower cost.

Efforts in leveraging LLMs for vulnerability detection extend
to specialized domains (e.g.,blockchain [50,51], kernel [79] mo-
bile [80]). For instance, Chen et al. [50] and Hu et al. [51] focus
on the application of LLMs in identifying vulnerabilities within
blockchain smart contracts. Sakaoglu’s study introduces KAR-
TAL [52], a pioneering approach that harnesses LLMs for web
application vulnerability detection. This method achieves an ac-
curacy of up to 87.19% and is capable of conducting 539 pre-
dictions per second. Additionally, Chen et al. [53] make a note-
worthy contribution with VulLibGen, a generative methodology
utilizing LLMs to identify vulnerable libraries. Ahmad et al. [54]
shift the focus to hardware security. They investigate the use of
LLMs, specifically OpenAI’s Codex, in automatically identifying
and repairing security-related bugs in hardware designs. Pentest-
GPT [81], an automated penetration testing tool, uses the domain
knowledge inherent in LLMs to address individual sub-tasks of
penetration testing, improving task completion rates significantly.
5

Malicious code detecting (RE). Using LLM to detect malware is
a promising application. This approach leverages the natural
language processing capabilities and contextual understanding of
LLMs to identify malicious software. In experiments with GPT-
3.5 conducted by Henrik Plate [42], it was found that LLM-based
malware detection can complement human reviews but not re-
place them. Out of 1800 binary classifications performed, there
were both false-positives and false-negatives. The use of simple
tricks could also deceive the LLM’s assessments. More recently,
there are a few attempts have been made in this direction.
For example, Apiiro [43] is a malicious code analysis tool using
LLMs. Apiiro’s strategy involves the creation of LLM Code Patterns
(LCPs) to represent code in vector format, making it easier to
identify similarities and cluster packages efficiently. Its LCP de-
tector incorporates LLMs, proprietary code analysis, probabilistic
sampling, LCP indexing, and dimensionality reduction to identify
potentially malicious code.

Vulnerable/buggy code fixing (RE). Several papers [16,58,99] has
focused on evaluate the performance of LLMs trained on code
in the task of program repair. Jin et al. [55] proposed InferFix,

transformer-based program repair framework that works in
andem with the combination of cutting-edge static analyzer with
ransformer-based model to address and fix critical security and
erformance issues with accuracy between 65% to 75%. Pearce
t al. [16] observed that LLMs can repair insecure code in a range
f contexts even without being explicitly trained on vulnerability
epair tasks.

ChatGPT is noted for its ability in code bug detection and
orrection. Fu et al. [56] assessed ChatGPT in vulnerability-related
asks like predicting and classifying vulnerabilities, severity esti-
ation, and analyzing over 190,000 C/C++ functions. They found

hat ChatGPT’s performance was behind other LLMs specialized
n vulnerability detection. However, Sobania et al. [57] found
hatGPT’s bug fixing performance competitive with standard
rogram repair methods, as demonstrated by its ability to fix 31
ut of 40 bugs. Xia et al. [100] presented ChatRepair, leverag-
ng pre-trained language models (PLMs) for generating patches
ithout dependency on bug-fixing datasets, aiming to enhance
erformance to generate patches without relying on bug-fixing
atasets, aiming to improve ChatGPT’s code-fixing abilities using
mix of successful and failure tests. As a result, they fixed 162
ut of 337 bugs at a cost of $0.42 each.

Finding II. As shown in Table 2, a comparison with state-
of-the-art methods reveals that the majority of researchers
(17 out of 25) have concluded that LLM-based methods
outperform traditional approaches (advantages include higher
code coverage, higher detecting accuracy, less cost etc.). Only
four papers argue that LLM-based methods do not surpass the
state-of-the-art approaches. The most frequently discussed
issue with LLM-based methods is their tendency to produce
both high false negatives and false positives when detecting
vulnerabilities or bugs.

.2. LLMs for data security and privacy

As demonstrated in Table 3, LLMs make valuable contributions
to the realm of data security, offering multifaceted approaches
to safeguarding sensitive information. We have organized the re-
search papers into distinct categories based on the specific facets
of data protection that LLMs enhance. These facets encompass
critical aspects such as data integrity (I), which ensures that data
remains uncorrupted throughout its life cycle; data reliability
(R), which ensures the accuracy of data; data confidentiality (C),
which focuses on guarding against unauthorized access and dis-
closure of sensitive information; and data traceability (T), which
involves tracking and monitoring data access and usage.
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Table 3
LLMs for data security and privacy.

Work Prop. Model Domain Compared to
SOTA ways?

I C R T
Fang [82] ○ ○␣ ○ ○␣ ChatGPT Ransomware –
Liu et al. [83] ○ ○␣ ○ ○␣ ChatGPT Ransomware –
Amine et al. [84] ○ ○ ○ ○␣ ChatGPT Semantic $ Aligned w/ SOTA
HuntGPT [85] ○ ○ ○ ○␣ ChatGPT Network $ More effective
Chris et al. [86] ○ ○ ○ ○␣ ChatGPT Log $ Less manual
AnomalyGPT [87] ○ ○ ○ ○␣ ChatGPT Video $ Less manual
LogGPT [88] ○ ○ ○ ○␣ ChatGPT Log $ Less manual
Arpita et al. [89] ○␣ ○ ○␣ ○␣ BERT etc. – –
Takashi et al. [90] ○␣ ○␣ ○ ○␣ ChatGPT Phishing $ High precision
Fredrik et al. [91] ○␣ ○␣ ○ ○␣ ChatGPT etc. Phishing $ Effective
IPSDM [92] ○␣ ○␣ ○ ○␣ BERT Phishing –
Kwon et al. [93] ○␣ ○ ○␣ ○␣ ChatGPT – $ Non-exp friendly
Scanlon et al. [94] ○␣ ○␣ ○␣ ○ ChatGPT Forensic $ More effective
Sladić et al. [95] ○␣ ○␣ ○␣ ○ ChatGPT Honeypot $ More realistic
WASA [96] ○␣ ○␣ ○ ○ – Watermark $ More effective
REMARK [97] ○␣ ○␣ ○ ○ – Watermark $ More effective
SWEET [98] ○␣ ○␣ ○ ○ – Watermark $ More effective

*○ The model can enhance the specific facets of data protection.
*○␣ The model can not enhance the specific facets of data protection.
d
u

D

Data integrity (I). Data Integrity ensures that data remains un-
changed and uncorrupted throughout its life cycle. As of now,
there are a few works that discuss how to use LLMs to protect
data integrity. For example, ransomware usually encrypts a vic-
tim’s data, making the data inaccessible without a decryption
key that is held by the attacker, which breaks the data integrity.
Wang Fang’s research [82] examines using LLMs for ransomware
cybersecurity strategies, mostly theoretically proposing real-time
analysis, automated policy generation, predictive analytics, and
knowledge transfer. However, these strategies lack empirical val-
idation. Similarly, Liu et al. [83] explored the potential of LLMs for
creating cybersecurity policies aimed at mitigating ransomware
attacks with data exfiltration. They compared GPT-generated
Governance, Risk and Compliance (GRC) policies to those from
established security vendors and government cybersecurity agen-
cies. They recommended that companies should incorporate GPT
into their GRC policy development.

Anomaly detection is a key defense mechanism that identi-
fies unusual behavior. While it does not directly protect data
integrity, it identifies abnormal or suspicious behavior that can
potentially compromise data integrity (as well as data confi-
dentiality and data reliability). Amine et al. [84] introduced an
LLM-based monitoring framework for detecting semantic anoma-
lies in vision-based policies and applied it to both finite state
machine policies for autonomous driving and learned policies
for object manipulation. Experimental results demonstrate that it
can effectively identify semantic anomalies, aligning with human
reasoning. HuntGPT [85] is an LLM-based intrusion detection
system for network anomaly detection. The results demonstrate
its effectiveness in improving user understanding and interaction.
Chris et al. [86] and LogGPT [88] explore ChatGPT’s potential
for log-based anomaly detection in parallel file systems. Re-
sults show that it addresses the issues in traditional manual
labeling and interpretability. AnomalyGPT [87] uses Large Vision-
anguage Models to detect industrial anomalies. It eliminates
anual threshold setting and supports multi-turn dialogues.

ata confidentiality (C). Data confidentiality refers to the prac-
tice of protecting sensitive information from unauthorized access
or disclosure, a topic extensively discussed in LLM privacy dis-
cussions [89,101–103]. However, most of these studies concen-
trate on enhancing LLMs through state-of-the-art Privacy Enhanc-
ing Techniques (e.g., zero-knowledge proofs [104], differential
privacy (e.g., [102,105,106], and federated learning [107–109]).
6

There are only a few attempts that utilize LLMs to enhance
user privacy. For example, Arpita et al. [89] use LLMs to pre-
serve privacy by replacing identifying information in textual data
with generic markers. Instead of storing sensitive user infor-
mation, such as names, addresses, or credit card numbers, the
LLMs suggest substitutes for the masked tokens. This obfuscation
technique helps to protect user data from being exposed to adver-
saries. By using LLMs to generate substitutes for masked tokens,
the models can be trained on obfuscated data without com-
promising the privacy and security of the original information.
Similar ideas have also been explored in other studies [103,110].
Hyeokdong et al. [93] explore implementing cryptography with
ChatGPT, which ultimately protects data confidentiality. Despite
the lack of extensive coding skills or programming knowledge,
the authors were able to successfully implement cryptographic
algorithms through ChatGPT. This highlights the potential for
individuals to utilize ChatGPT for cryptography tasks.

Data reliability (R). In our context, data reliability refers to the
accuracy of data. It is a measure of how well data can be de-
pended upon to be accurate, and free from errors or bias. Takashi
et al. [90] proposed to use ChatGPT for the detection of sites
that contain phishing content. Experimental results using GPT-
4 show promising performance, with high precision and recall
rates. Fredrik et al. [91] assessed the ability of four large language
models (GPT, Claude, PaLM, and LLaMA) to detect malicious intent
in phishing emails, and found that they were generally effective,
even surpassing human detection, although occasionally slightly
less accurate. IPSDM [92] is a model fine-tuned from the BERT
family to identify phishing and spam emails effectively. IPSDM
emonstrates superior performance in classifying emails, both in
nbalanced and balanced datasets.

ata traceability (T). Data traceability is the capability to track
and document the origin, movement, and history of data within
a single system or across multiple systems. This concept is par-
ticularly vital in fields such as incident management and forensic
investigations, where understanding the journey and transfor-
mations of events to resolving issues and conducting thorough
analyses. LLMs have gained traction in forensic investigations,
offering novel approaches for analyzing digital evidence. Scanlon
et al. [94] explored how ChatGPT assists in analyzing OS artifacts
like logs, files, cloud interactions, executable binaries, and in ex-
amining memory dumps to detect suspicious activities or attack
patterns. Additionally, Sladić et al. [95] proposed that generative
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odels like ChatGPT can be used to create realistic honeypots to
eceive human attackers.
Watermarking involves embedding a distinctive, typically im-

erceptible or hard-to-identify signal within the outputs of a
odel. Wang et al. [96] discusses concerns regarding the intel-

ectual property of training data for LLMs and proposed WASA
ramework to learn the mapping between the texts of different
ata providers. Zhang et al. [97] developed REMARK-LLM that
ocused on monitor the utilization of their content and validate
heir watermark retrieval. This helps protect against malicious
ses such as spamming and plagiarism. Furthermore, identifying
ode produced by LLMs is vital for addressing legal and ethical is-
ues concerning code licensing, plagiarism, and malware creation.
imilarly, Li et al. [111] propose the first watermark technique to
rotect large language model-based code generation APIs from
emote imitation attacks. Lee et al. [98] developed SWEET, a
ool that implements watermarking specifically on tokens within
rogramming languages.

Finding III. Likewise, it is noticeable that LLMs excel in data
protection, surpassing current solutions and requiring fewer
manual interventions. Table 2 and Table 3 reveal that ChatGPT
is the predominant LLM extensively employed in diverse
security applications. Its versatility and effectiveness make it
a preferred choice for various security-related tasks, further
reinforcing its position as a go-to solution in the field of
artificial intelligence and cybersecurity.

5. Negative impacts on security and privacy

As shown in Fig. 2, we have categorized the attacks into five
groups based on their respective positions within the system in-
frastructure. These categories encompass hardware-level attacks,
OS-level attacks, software-level attacks, network-level attacks,
and user-level attacks. Additionally, we have quantified the num-
ber of associated research papers published for each group, as
illustrated in Fig. 3.

Hardware-level attacks. Hardware attacks typically involve phys-
ical access to devices. However, LLMs cannot directly access
physical devices. Instead, they can only access information as-
sociated with the hardware. Side-channel attack [112–114] is
ne attack that can be powered by the LLMs. Side-channel at-
acks typically entail the analysis of unintentional information
eakage from a physical system or implementation, such as a
ryptographic device or software, with the aim of inferring secret
nformation (e.g., keys).

Yaman [115] has explored the application of LLM techniques
o develop side-channel analysis methods. The research eval-
ates the effectiveness of LLM-based approaches in analyzing
ide-channel information in two hardware-related scenarios: AES
ide-channel analysis and deep-learning accelerator side-channel
nalysis. Experiments are conducted to determine the success
ates of these methods in both situations.

S-level attacks. LLMs operate at a high level of abstraction and
rimarily engage with text-based input and output. They lack
he necessary low-level system access essential for executing OS-
evel attacks [116–118]. Nonetheless, they can be utilized for
he analysis of information gathered from operating systems,
hus potentially aiding in the execution of such attacks. Andreas
t al. [119] establish a feedback loop connecting LLM to a vul-
erable virtual machine through SSH, allowing LLM to analyze
he machine’s state, identify vulnerabilities, and propose concrete
ttack strategies, which are then executed automatically within
he virtual machine. More recently, they [120] introduced an au-
omated Linux privilege-escalation benchmark using local virtual
achines and an LLM-guided privilege-escalation tool to assess
arious LLMs and prompt strategies against the benchmark.
7

Software-level attacks. Similar to how they employ LLM to tar-
get hardware and operating systems, there are also instances
where LLM has been utilized to attack software (e.g., [35,121–
123]). However, the most prevalent software-level use case in-
volves malicious developers utilizing LLMs to create malware.
Mika et al. [124] present a proof-of-concept in which ChatGPT
is utilized to distribute malicious software while avoiding de-
tection. Yin et al. [125] investigate the potential misuse of LLM
by creating a number of malware programs (e.g., ransomware,
worm, keylogger, brute-force malware, Fileless malware). Anto-
nio Monje et al. [126] demonstrate how to trick ChatGPT into
quickly generating ransomware. Marcus Botacin [127] explores
different coding strategies (e.g., generating entire malware, cre-
ating malware functions) and investigates the LLM’s capacities to
rewrite malware code. The findings reveal that LLM excels in con-
structing malware using building block descriptions. Meanwhile,
LLM can generate multiple versions of the same semantic content
(malware variants), with varying detection rates by Virustotal AV
(ranging from 4% to 55%).

Network-level attacks. LLMs can also be employed for initiating
network attacks. A prevalent example of a network-level attack
utilizing LLM is phishing attacks [128,129]. Fredrik et al. [91]
compared AI-generated phishing emails using GPT-4 with manu-
ally designed phishing emails created using the V-Triad, along-
side a control group exposed to generic phishing emails. The
results showed that personalized phishing emails, whether gener-
ated by AI or designed manually, had higher click-through rates
compared to generic ones. Tyson et al. [130] investigated how
modifying ChatGPT’s input can affect the content of the gener-
ated emails, making them more convincing. Julian Hazell [131]
demonstrated the scalability of spear phishing campaigns by
generating realistic and cost-effective phishing messages for over
600 British Members of Parliament using ChatGPT. In another
study, Wang et al. [132] discuss how the traditional defenses may
fail in the era of LLMs. CAPTCHA challenges, involving distorted
letters and digits, struggle to detect chatbots relying on text and
voice. However, LLMs may break the challenges, as they can
produce high-quality human-like text and mimic human behavior
effectively. There is one study that utilizes LLM for deploying
fingerprint attacks. Armin et al. [133] employed density-based
clustering to cluster HTTP banners and create text-based finger-
prints for annotating scanning data. When these fingerprints are
compared to an existing database, it becomes possible to identify
new IoT devices and server products.

User-level attacks. Recent discussions have primarily focused on
user-level attacks, as LLM demonstrates its capability to create
remarkably convincing but ultimately deceptive content, as well
as establish connections between seemingly unrelated pieces of
information. This presents opportunities for malicious actors to
engage in a range of nefarious activities. Here are a few examples:

• Misinformation. Overreliance on content generated by LLMs
without oversight is raising serious concerns regarding the
safety of online content [134]. Numerous studies have fo-
cused on detecting misinformation produced by LLMs. Sev-
eral study [135–137] reveal content generated by LLMs
are harder to detect and may use more deceptive styles,
potentially causing greater harm. Canyu Chen et al. [135]
propose a taxonomy for LLM-generated misinformation and
validate methods. Countermeasures and detection meth-
ods [136,138–145] have also been developed to address
these emerging issues.

• Social Engineering. LLMs not only have the potential to
generate content from training data, but they also offer
attackers a new perspective for social engineering. Work
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Fig. 2. Taxonomy of Cyberattacks. The colored boxes represent attacks that have been demonstrated to be executable using LLMs, whereas the gray boxes indicate
attacks that cannot be executed with LLMs.
Fig. 3. Prevalence of the existing attacks.

from Stabb et al. [146] highlights the capability of well-
trained LLMs to infer personal attributes from text, such as
location, income, and gender. They also reveals how these
8

models can extract personal information from seemingly
benign queries. Tong et al. [147] investigated the content
generated by LLMs may include user information. More-
over, Polra Victor Falade [148] stated the exploitation by
LLM-driven social engineers involves tactics such as psy-
chological manipulation, targeted phishing, and the crisis of
authenticity.

• Scientific Misconduct. Irresponsible use of LLMs can re-
sult in issues related to scientific misconduct, stemming
from their capacity to generate original, coherent text. The
academic community [149–159], encompassing diverse dis-
ciplines from various countries, has raised concerns about
the increasing difficulties in detecting scientific misconduct
in the era of LLMs. Concerns arise from LLMs’ ability to
generate coherent and original content, including complete
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papers from unreliable sources [160–162]. Researchers are
also actively engaged in the effort to detect such miscon-
duct. For example, Kavita Kumari et al. [163,164] proposed
DEMASQ, a precise ChatGPT-generated content detector.
DEMASQ considers biases in text composition and evasion
techniques, achieving high accuracy across diverse domains
in identifying ChatGPT-generated content.

• Fraud. Cybercriminals have devised a new tool called
FraudGPT [148,165], which operates like ChatGPT but fa-
cilitates cyberattacks. It lacks the safety controls of Chat-
GPT and is sold on the dark web and Telegram for $200
per month or $1,700 annually. FraudGPT can create fraud
emails related to banks, suggesting malicious links’ place-
ment in the content. It can also list frequently targeted
sites or services, aiding hackers in planning future attacks.
WormGPT [166], a cybercrime tool, offers features such as
unlimited character support and chat memory retention.
The tool was trained on confidential datasets, with a focus
on malware-related and fraud-related data. It can guide cy-
bercriminals in executing Business Email Compromise (BEC)
attacks.

Finding IV. As illustrated in Fig. 3, when compared to other
attacks, it becomes apparent that user-level attacks are the
most prevalent, boasting a significant count of 33 papers.
This dominance can be attributed to the fact that LLMs have
increasingly human-like reasoning abilities, enabling them to
generate human-like conversations and content (e.g., scientific
misconduct, social engineering). Presently, LLMs do not pos-
sess the same level of access to OS-level or hardware-level
functionalities. This observation remains consistent with the
attack observed in other levels as well. For instance, at the
network level, LLMs can be abused to create phishing websites
and bypass CAPTCHA mechanisms.

6. Vulnerabilities and defenses in LLMs

In the following section, we embark on an in-depth explo-
ation of the prevalent threats and vulnerabilities associated with
LMs (Section 6.1). We will examine the specific risks and chal-
enges that arise in the context of LLMs. In addition to discussing
hese challenges, we will also delve into the countermeasures and
trategies that researchers and practitioners have developed to
itigate these risks (Section 6.2). Fig. 4 illustrates the relationship
etween the attacks and defenses.

.1. Vulnerabilities and threats in LLMs

In this section, we aim to delve into the potential vulnerabil-
ties and attacks that may be directed towards LLMs. Our exami-
ation seeks to categorize these threats into two distinct groups:
I Model Inherent Vulnerabilities and Non-AI Model Inherent
ulnerabilities.

.1.1. AI Inherent vulnerabilities and threats
These are vulnerabilities and threats that stem from the very

ature and architecture of LLMs, considering that LLMs are fun-
amentally AI models themselves. For example, attackers may
anipulate the input data to generate incorrect or undesirable
utputs from the LLM.
9

(A1) Adversarial attacks. Adversarial attacks in machine learning
refer to a set of techniques and strategies used to intentionally
manipulate or deceive machine learning models. These attacks
are typically carried out with malicious intent and aim to exploit
vulnerabilities in the model’s behavior. We only focus on the
most extensively discussed attacks, namely, data poisoning and
backdoor attacks.

• Data Poisoning. Data poisoning stands for attackers influ-
encing the training process by injecting malicious data into
the training dataset. This can introduce vulnerabilities or
biases, compromising the security, effectiveness, or ethical
behavior of the resulting models [134]. Various study [167–
172] have demonstrated that pre-trained models are vulner-
able to compromise via methods such as using untrusted
weights or content, including the insertion of poisoned ex-
amples into their datasets. By their inherent nature as pre-
trained models, LLMs are susceptible to data poisoning at-
tacks [173–175]. For example, Alexander et al. [168] showed
that even with just 100 poison examples, LLMs can pro-
duce consistently negative results or flawed outputs across
various tasks. Larger language models are more susceptible
to poisoning, and existing defenses like data filtering or
model capacity reduction offer only moderate protection
while hurting test accuracy.

• Backdoor Attacks. Backdoor attacks involve the malicious
manipulation of training data and model processing, cre-
ating a vulnerability where attackers can embed a hidden
backdoor into the model [176]. Both backdoor attacks and
data poisoning attacks involve manipulating machine learn-
ing models, which can include manipulation of inputs. How-
ever, the key distinction is that backdoor attacks specifically
focus on introducing hidden triggers into the model to ma-
nipulate specific behaviors or responses when the trigger
is encountered. LLMs are subject to backdoor attacks [177–
179]. For example, Yao et al. [180] a bidirectional backdoor,
which combines trigger mechanisms with prompt tuning.

(A2) Inference attacks. Inference attacks in the context of machine
learning refer to a class of attacks where an adversary tries to gain
sensitive information or insights about a machine learning model
or its training data by making specific queries or observations to
the model. These attacks often exploit unintended information
leakage from the responses.

• Attribute Inference Attacks. Attribute inference Attack
[181–186] is a type of threat where an attacker attempts
to deduce sensitive or personal information of individuals or
entities by analyzing the behavior or responses of a machine
learning models. It works against the LLMs as well. Robin
et al. [146] presented the first comprehensive examination
of pretrained LLMs’ ability to infer personal information
from text. Using a dataset of real Reddit profiles, the study
demonstrated that current LLMs can accurately infer a vari-
ety of personal information (e.g., location, income, sex) with
high accuracy.

• Membership Inferences. Membership inference Attack is a
specific type of inference attack in the field of data security
and privacy that determining whether a data record was
part of a model’s training dataset, given white-/black-box
access to the model and the specific data record [187–193].
A number of research studies have explored the concept
of membership inference, each adopting a unique perspec-
tive and methodology. These studies have explored various
membership inference attacks by analyzing the label [194],
determining the threshold [195–197], developing a general-
ized formulation [198], among other methods. Mireshghal-
lah et al. [199] found that fine-tuning the head of the model
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Fig. 4. Taxonomy of Threats and the Defenses. The line represents a defense technique that can defend against either a specific attack or a group of attacks.
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exhibits greater susceptibility to attacks when compared to
fine-tuning smaller adapters.

(A3) Extraction attacks. Extraction attacks typically refer to at-
tempts by adversaries to extract sensitive information or insights
from machine learning models or their associated data. Extrac-
tion attacks and inference attacks share similarities but differ
in their specific focus and objectives. Extraction attacks aim to
acquire specific resources (e.g., model gradient, training data)
or confidential information directly. Inference attacks seek to
gain knowledge or insights about the model or data’s charac-
teristics, often by observing the model’s responses or behavior.
Various types of data extraction attacks exist, including model
theft attacks [200,201], gradient leakage [202], and training data
extraction attacks [203]. As of the current writing, it has been
observed that training data extraction attacks may be effective
against LLMs. Training data extraction [203] refers to a method
where an attacker attempts to retrieve specific individual exam-
ples from a model’s training data by strategically querying the
machine learning models. Numerous research [204–206] studies
have shown that it is possible to extract training data from LLMs,
which may include personal and private information [207,208].
Notably, the work by Truong et al. [209] stands out for its ability
to replicate the model without accessing the original model data.

(A4) Bias and unfairness exploitation. Bias and unfairness in LLMs
pertain to the phenomenon where these models demonstrate
prejudiced outcomes or discriminatory behaviors. While bias and
fairness issues are not unique to LLMs, they have received more
attention due to the ethical and societal concerns. That is, the
societal impact of LLMs has prompted discussions about the
ethical responsibilities of organizations and researchers devel-
oping and deploying these models. This has led to increased
scrutiny and research on bias and fairness. Concerns of bias were
raised from various fields, encompassing gender and minority
groups [210–213], the identification of misinformation, political
aspects. Multiple studies [214,215] revealed biases in the lan-
guage used while querying LLMs. Moreover, Urman et al. [216]
discovered that biases may arise from adherence to government
censorship guidelines. Bias in professional writing [145,217,218]
involving LLMs is also a concern within the community, as it can
significantly damage credibility. The biases of LLMs may also lead
to negative side effects in areas beyond text-based applications.
Dai et al. [219] noted that content generated by LLMs might in-
troduce biases in neural retrieval systems, and Huang et al. [220]
discovered that biases could also be present in LLM generated
code.

(A5) Instruction tuning attacks. Instruction tuning, also known as
instruction-based fine-tuning, is a machine-learning technique
used to train and adapt language models for specific tasks by
providing explicit instructions or examples during the fine-tuning
process. In LLMs, instruction-tuning attacks refer to a class of at-
tacks or manipulations that target instruction-tuned LLMs. These
attacks are aimed at exploiting vulnerabilities or limitations in
LLMs that have been fine-tuned with specific instructions or
examples for particular tasks.

• Jailbreaking. Jailbreaking in LLMs involves bypassing se-
curity features to enable responses to otherwise restricted
or unsafe questions, unlocking capabilities usually limited
by safety protocols. Numerous studies have demonstrated
various methods for successfully jailbreaking LLMs [221–
223]. Wei et al. [224] emphasized that the alignment capa-
bilities of LLMs can be influenced or manipulated through
in-context demonstrations. In addition to this, several re-
searches [225,226] also demonstrated similar manipulation

using various approaches, highlighting the versatility of

11
methods that can jailbreaking LLMs. More recently, MAS-
TERKEY [227] employed a time-based method for dissecting
defenses, and demonstrated proof-of-concept attacks. It au-
tomatically generates jailbreak prompts with a 21.58 More-
over, diverse methods have been employed in jailbreaking
LLMs, such as conducting fuzzing [228], implementing op-
timized search strategies [229], and even training LLMs
specifically to jailbreak other LLMs [229,230]. Meanwhile,
Cao et al. [231] developed RA-LLM, a method to lowers the
success rate of adversarial and jailbreaking prompts without
needing of retraining or access to model parameters.

• Prompt Injection. Prompt injection attack describes a metho
of manipulating the behavior of LLMs to elicit unexpected
and potentially harmful responses. This technique involves
crafting input prompts in a way that bypasses the model’s
safeguards or triggers undesirable outputs. A substantial
amount of research [232–237] has already automated the
process of identifying semantic preserving payload in prompt
injections with various focus. Facilitated by the capability for
fine-tuning, backdoors may be introduced through prompt
attacks [183,238–240]. Moreover, Greshake et al. [241] ex-
pressed concerns about the potential for new vulnerabili-
ties arising from LLMs invoking external resources. Other
studies have also demonstrated the ability to take advan-
tage of prompt injection attacks, such as unveiling guide
prompts [242], virtualizing prompt injection [243], and in-
tegrating applications [244]. He et al. [245,246] explored a
shift towards leveraging LLMs, trained on extensive datasets,
for mitigating such attacks.

• Denial of Service. A Denial of Service (DoS) attack is a
type of cyber attack that aims to exhaust computational re-
sources, causing latency or rendering resources unavailable.
Due to the nature of LLMs require significant amount of re-
sources, attackers use deliberately construct prompts to re-
duce the availability of models [247]. Shumailov et al. [248]
proved the possibility of conducting sponge attacks in the
field of LLMs, specifically designed to maximize energy con-
sumption and latency (by a factor of 10 to 200). This strategy
aims to draw the community’s attention to their poten-
tial impact on autonomous vehicles, as well as scenarios
requiring making decisions in timely manner.

Finding V. Currently, there is limited research on model ex-
traction attacks [188], parameter extraction attacks, or the
extraction of other intermediate results [209]. While there are
a few mentions of these topics, they tend to remain primarily
theoretical (e.g., [249]), with limited practical implementation
or empirical exploration. We believe that the sheer scale of
parameters in LLMs complicates these traditional approaches,
rendering them less effective or even infeasible. Addition-
ally, the most powerful LLMs are privately owned, with their
weights, parameters, and other details kept confidential, fur-
ther shielding them from conventional attack strategies. Strict
censorship of outputs generated by these LLMs challenges even
black-box traditional ML attacks, as it limits the attackers’
ability to exploit or analyze the model’s responses.

6.1.2. Non-AI Inherent vulnerabilities and threats
We also need to consider non-AI Inherent Attacks, which en-

compass external threats and new vulnerabilities (which have not
been observed or investigated in traditional AI models) that LLMs
might encounter. These attacks may not be intricately linked to
the internal mechanisms of the AI model, yet they can present
significant risks. Illustrative instances of non-AI Inherent Attacks
involve system-level vulnerabilities (e.g., remote code execution).
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A6) Remote code execution (RCE). RCE attacks typically target
ulnerabilities in software applications, web services, or servers
o execute arbitrary code remotely. While RCE attacks are not
ypically applicable directly to LLMs, if an LLM is integrated into
web service (e.g.,https://chat.openai.com/) and if there are RCE
ulnerabilities in the underlying infrastructure or code of that
ervice, it could potentially lead to the compromise of the LLM’s
nvironment. Tong et al. [250] identified 13 vulnerabilities in six
rameworks, including 12 RCE vulnerabilities and 1 arbitrary file
ead/write vulnerability. Additionally, 17 out of 51 tested apps
ere found to have vulnerabilities, with 16 being vulnerable to
CE and 1 to SQL injection. These vulnerabilities allow attack-
rs to execute arbitrary code on app servers through prompt
njections.

A7) Side channel. While LLMs themselves do not typically leak
nformation through traditional side channels such as power con-
umption or electromagnetic radiation, they can be vulnerable
o certain side-channel attacks in practical deployment scenarios.
or example, Edoardo et al. [251] introduce privacy side channel
ttacks, which are attacks that exploit system-level components
e.g., data filtering, output monitoring) to extract private infor-
ation at a much higher rate than what standalone models can
chieve. Four categories of side channels covering the entire ML
ifecycle are proposed, enabling enhanced membership inference
ttacks and novel threats (e.g., extracting users’ test queries). For
nstance, the research demonstrates how deduplicating training
ata before applying differentially-private training creates a side
hannel that compromises privacy guarantees.

A8) Supply chain vulnerabilities. Supply Chain Vulnerabilities re-
er to the risks in the lifecycle of LLM applications that may
rise from using vulnerable components or services. These in-
lude third-party datasets, pre-trained models, and plugins, any
f which can compromise the application’s integrity [134]. Most
esearch in this field is focused on the security of plugins. An
LM plugin is an extension or add-on module that enhances the
apabilities of an LLM. Third-party plug-ins have been developed
o expand its functionality, enabling users to perform various
asks, including web searches, text analysis, and code execution.
owever, some of the concerns raised by security experts [134,
52] include the possibility of plug-ins being used to steal chat
istories, access personal information, or execute code on users’
achines. These vulnerabilities are associated with the use of
Auth in plug-ins, a web standard for data sharing across online
ccounts. Umar et al. [253] attempted to address this problem
y designing a framework. The framework formulates an exten-
ive taxonomy of attacks specific to LLM platforms, taking into
ccount the capabilities of plugins, users, and the LLM platform
tself. By considering the relationships between these stakehold-
rs, the framework helps identify potential security, privacy, and
afety risks.

.2. Defenses for LLMs

In this section, we examine the range of existing defense
ethods against various attacks and vulnerabilities associated
ith LLMs.1

6.2.1. Defense in model architecture
Model architectures determine how knowledge and concepts

re stored, organized, and contextually interacted with, which is
rucial in the safety of Large Language Models. There have been
lot of works [254–257] delved into how model capacities affect

1 Please be aware that we will not delve into solutions for non-AI inherent
ulnerabilities as they tend to be highly specific to individual cases.
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the privacy preservation and robustness of LLMs. Li et al. [254]
revealed that language models with larger parameter sizes can be
trained more effectively in the differential privacy manner using
appropriate non-standard hyper-parameters, in comparison to
smaller models. Zhu et al. [255] and Li et al. [256] found that LLMs
with larger capacities, such as those with more extensive parame-
ter sizes, generally show increased robustness against adversarial
attacks. This was also verified in the Out-of-distribution (OOD) ro-
bustness scenarios by Yuan et al. [257]. Beyond the architecture of
LLMs themselves, studies have focused on improving LLM safety
by combining them with external modules including knowledge
graphs [258] and cognitive architectures (CAs) [259,260]. Romero
et al. [261] proposed improving AI robustness by incorporating
various cognitive architectures into LLMs. Zafar et al. [262] aimed
to build trust in AI by enhancing the reasoning abilities of LLMs
through knowledge graphs.

6.2.2. Defenses in LLM training and inference
Defense strategies in LLM training. The core components of LLM
training include model architectures, training data, and opti-
mization methods. Regarding model architectures, we examine
trustworthy designs that exhibit increased robustness against
malicious use. For training corpora, our investigation focuses on
methods aimed at mitigating undesired properties during the
generation, collection, and cleaning of training data. In the con-
text of optimization methods, we review existing works that
developed safe and secure optimization frameworks.

• Corpora Cleaning
LLMs are shaped by their training corpora, from which
they learn behavior, concepts, and data distributions [263].
Therefore, the safety of LLMs is crucially influenced by
the quality of the training corpora [264,265]. However, it
has been widely acknowledged that raw corpora collected
from the web are full of issues of fairness [266], toxic-
ity [267], privacy [181], truthfulness [268], etc. A lot of
efforts have been made to clean raw corpora and create
high-quality training corpora for LLMs [269–274]. In general,
these pipelines consist of the following steps: language
identification [269,275], detoxification [267,276–278], de-
biasing [279–281], de-identification (personally identifiable
information (PII)) [282,283], and deduplication [284–287].
Debiasing and detoxification aimed to remove undesirable
content from training corpora.

• Optimization Methods Optimization objectives are crucial
in directing how LLMs learn from training data, influencing
which behaviors are encouraged or penalized. These objec-
tives affect the prioritization of knowledge and concepts
within corpora, ultimately impacting the overall safety and
ethical alignment of LLMs. In this context, robust train-
ing methods like adversarial training [288–292] and ro-
bust fine-tuning [293,294] have shown resilience against
perturbation-based text attacks. Drawing inspiration from
traditional adversarial training in the image field [295], Ivgi
et al. [296] and Yoo et al. [291] applied adversarial training
to LLMs by generating perturbations concerning discrete
tokens. Wang et al. [289] extended this approach to the con-
tinuous embedding space, facilitating more practical conver-
gence, as followed by subsequent research [288,290,292].
Safety alignments [297], an emerging learning paradigm,
guide LLM behavior using well-aligned additional models
or human annotations, proving effective for ethical align-
ment. Efforts to align LLMs with other LLMs [298] and LLMs
themselves [299]. In terms of human annotations, Zhou
et al. [300] and Shi et al. [301] emphasized the importance
of high-quality training corpora with carefully curated in-
structions and outputs for enhancing instruction-following

https://chat.openai.com/
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capabilities in LLMs. Bianchi et al. [302] highlighted that the
safety of LLMs can be substantially improved by incorporat-
ing a limited percentage (e.g., 3%) of safe examples during
fine-tuning.

Defense strategies in LLM inference. When LLMs are deployed as
cloud services, they operate by receiving prompts or instruc-
tions from users and generating completed sentences in response.
Given this interaction model, the implementation of test-time
LLM defense becomes a necessary and critical aspect of ensur-
ing safe and appropriate outputs. Generally, test-time defense
encompasses a range of strategies, including the pre-processing
of prompts and instructions to filter or modify inputs, the detec-
tion of abnormal events that might signal misuse or problematic
queries, and the post-processing of generated responses to ensure
they adhere to safety and ethical guidelines. Test-time LLM de-
fenses are essential to maintain the integrity and trustworthiness
of LLMs in real-time applications.

• Instruction Processing (Pre-Processing) Instruction pre-
processing applies transformations over instructions sent
by users, in order to destroy potential adversarial contexts
or malicious intents. It plays a vital role as it blocks out
most malicious usage and prevents LLMs from receiving sus-
picious instructions. In general, instruction pre-processing
methods can be categorized as instruction manipulation
[303–307], purification [308], and defensive demonstrations
[224,249,309]. Jain et al. [306] and Kirchenbauer et al. [305]
evaluated multiple baseline preprocessing methods against
jailbreaking attacks, including retokenization and paraphrase
Li et al. [308] proposed to purify instructions by first mask-
ing the input tokens and then predicting the masked tokens
with other LLMs. The predicted tokens will serve as the
purified instructions. Wei et al. [224] and Mo et al. [309]
demonstrated that inserting pre-defined defensive demon-
strations into instructions effectively defends jailbreaking
attacks of LLMs.

• Malicious Detection (In-Processing) Malicious detection pro-
vides in-depth examinations of LLM intermediate results,
such as neuron activation, regarding the given instructions,
which are more sensitive, accurate, and specified for mali-
cious usage. Sun et al. [310] proposed to detect backdoored
instructions with backward probabilities of generations. Xi
et al. [311] differentiated normal and poisoned instructions
from the perspective of mask sensitivities. Shao et al. [303]
identified suspicious words according to their textual rel-
evance. Wang et al. [312] detected adversarial examples
according to the semantic consistency among multiple gen-
erations, which has been explored in the uncertainty quan-
tification of LLMs by Duan et al. [313]. Apart from the
intrinsic properties of LLMs, there have been works lever-
aging the linguistic statistic properties, such as detecting
outlier words [314],

• Generation Processing (Post-Processing) Generation post pro
cessing refers to examining the properties (e.g., harmful-
ness) of the generated answers and applying modifications
if necessary, which is the final step before delivering re-
sponses to users. Chen et al. [315] proposed to mitigate
the toxicity of generations by comparing with multiple
model candidates. Helbling et al. [316] incorporated indi-
vidual LLMs to identify the harmfulness of the generated
answers, which shared similar ideas as Xiong et al. [317]
and Kadavath et al. [318] where they revealed that LLMs
can be prompted to answer the confidences regarding the
generated responses.
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Finding VI. For defense in LLM training, there is a no-
table scarcity of research examining the impact of model
architecture on LLM safety, which is likely due to the high com-
putational costs associated with training or fine-tuning large
language models. We observed that safe instruction tuning is a
relatively new development that warrants further investigation
and attention.

7. Discussion

7.1. LLM in other security related topics

LLMs in cybersecurity education. LLMs can be used in security
practices and education [319–321]. For example, in a software
security course, students are tasked with identifying and re-
solving vulnerabilities in a web application using LLMs. Jingyue
et al. [320] investigated how ChatGPT can be used by students
for these exercises. Wesley Tann et al. [321] focused on the
evaluation of LLMs in the context of cybersecurity Capture-The-
Flag (CTF) exercises (participants find ‘‘flags’’ by exploiting system
vulnerabilities). The study first assessed the question-answering
performance of these LLMs on Cisco certifications with varying
difficulty levels, then examined their abilities in solving CTF chal-
lenges. Jin et al. [322] conducted a comprehensive study on LLMs’
understanding of binary code semantics [323] across different
architectures and optimization levels, providing key insights for
future research in this area.

LLMs in cybersecurity laws, policies and compliance. LLMs can as-
sist in drafting security policies, guidelines, and compliance docu-
mentation, ensuring that organizations meet regulatory require-
ments and industry standards. However, it is important to rec-
ognize that the utilization of LLMs can potentially necessitate
changes to current cybersecurity-related laws and policies. The
introduction of LLMs may raise new legal and regulatory consid-
erations, as these models can impact various aspects of cyberse-
curity, data protection, and privacy. Ekenobi et al. [324] examined
the legal implications arising from the introduction of LLMs, with
a particular focus on data protection and privacy concerns. It ac-
knowledges that ChatGPT’s privacy policy contains commendable
provisions for safeguarding user data against potential threats.
The paper also advocated for emphasizing the relevance of the
new law.

7.2. Future directions

We have gleaned valuable lessons that we believe can shape
future directions.

• Using LLMs for ML-Specific Tasks. We noticed that LLMs
can effectively replace traditional machine learning methods
and in this context, if traditional machine learning methods
can be employed in a specific security application (whether
offensive or defensive in nature), it is highly probable that
LLMs can also be applied to address that particular chal-
lenge. For instance, traditional machine learning methods
have found utility in malware detection, and LLMs can simi-
larly be harnessed for this purpose. Therefore, one promising
avenue is to harness the potential of LLMs in security appli-
cations where machine learning serves as a foundational or
widely adopted technique. As security researchers, we are
capable of designing LLM-based approaches to tackle secu-
rity issues. Subsequently, we can compare these approaches
with state-of-the-art methods to push the boundaries.
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• Replacing Human Efforts. It is evident that LLMs have
the potential to replace human efforts in both offensive
and defensive security applications. For instance, tasks in-
volving social engineering, traditionally reliant on human
intervention, can now be effectively executed using LLM
techniques. Therefore, one promising avenue for security
researchers is to identify areas within traditional security
tasks where human involvement has been pivotal and ex-
plore opportunities to substitute these human efforts with
LLM capabilities.

• Modifying Traditional ML Attacks for LLMs. we have ob-
served that many security vulnerabilities in LLMs are ex-
tensions of vulnerabilities found in traditional machine-
learning scenarios. That is, LLMs remain a specialized in-
stance of deep neural networks, inheriting common vul-
nerabilities such as adversarial attacks and instruction tun-
ing attacks. With the right adjustments (e.g., the threat
model), traditional ML attacks can still be effective against
LLMs. For instance, the jailbreaking attack is a specific form
of instruction tuning attack aimed at producing restricted
texts.

• Adapting Traditional ML Defenses for LLMs. The counter-
measures traditionally employed for vulnerability mitiga-
tion can also be leveraged to address these security issues.
For example, there are existing efforts that utilize traditional
Privacy-Enhancing Technologies (e.g., zero-knowledge proofs
differential privacy, and federated learning [325,326]) to
tackle privacy challenges posed by LLMs. Exploring addi-
tional PETs techniques, whether they are established meth-
ods or innovative approaches, to address these challenges
represents another promising research direction.

• Solving Challenges in LLM-Specific Attacks. As previously
discussed, there are several challenges associated with im-
plementing model extraction or parameter extraction at-
tacks (e.g., vast scale of LLM parameters, private ownership
and confidentiality of powerful LLMs). These novel charac-
teristics introduced by LLMs represent a significant shift in
the landscape, potentially leading to new challenges and
necessitating the evolution of traditional ML attack method-
ologies.

8. Related work

There have already been a number of LLM surveys released
with a variety of focuses (e.g., LLM evolution and taxonomy
[18,327–332], software engineering [333,334], and medicine
[12,335]). In this paper, our primary emphasis is on the security
and privacy aspects of LLMs. We now delve into an examination
of the existing literature pertaining to this particular topic. Peter
J. Caven [336] specifically explores how LLMs (particularly, Chat-
GPT) could potentially alter the current cybersecurity landscape
by blending technical and social aspects. Their emphasis leans
more towards the social aspects. Muna et al. [337] and Marshall
et al. [338] discussed the impact of ChatGPT in cybersecurity,
highlighting its practical applications (e.g., code security, mal-
ware detection). Dhoni et al. [339] demonstrated how LLMs can
assist security analysts in developing security solutions against
cyber threats. However, their work does not extensively address
the potential cybersecurity threats that LLM may introduce. A
number of surveys (e.g., [247,340–347]) highlight the threats and
attacks against LLMs. In comparison to our work, they do not
dedicate as much text to the vulnerabilities that the LLM may
possess. Instead, their primary focus lies in the realm of security
applications, as they delve into utilizing LLMs for launching cy-
berattacks. Attia Qammar et al. [348] and Maximilian et al. [349]
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discussed vulnerabilities exploited by cybercriminals, with a spe-
cific focus on the risks associated with LLMs. Their works em-
phasized the need for strategies and measures to mitigate these
threats and vulnerabilities. Haoran Li et al. [106] analyzed current
privacy concerns on LLMs, categorizing them based on adver-
sary capabilities, and explored existing defense strategies. Glorin
Sebastian [102] explored the application of established Privacy-
Enhancing Technologies (e.g., differential privacy [350], federated
learning [351], and data minimization [352]) for safeguarding
the privacy of LLMs. Smith et al. [353] also discussed the pri-
vacy risks of LLMs. Our study comprehensively examined both
the security and privacy aspects of LLMs. In summary, our re-
search conducted an extensive review of the literature on LLMs
from a three-fold perspective: beneficial security applications
(e.g., vulnerability detection, secure code generation), adverse
implications (e.g., phishing attacks, social engineering), and vul-
nerabilities (e.g., jailbreaking attacks, prompt attacks), along with
their corresponding defensive measures.

9. Conclusion

Our work represents a pioneering effort in systematically ex-
amining the multifaceted role of LLMs in security and privacy.
On the positive side, LLMs have significantly contributed to en-
hancing code and data security, while their versatile nature also
opens the door to malicious applications. We also delved into
the inherent vulnerabilities within these models, and discussed
defense mechanisms. We have illuminated the path forward for
harnessing the positive aspects of LLMs while mitigating their
potential risks. As LLMs continue to evolve and find their place
in an ever-expanding array of applications, it is imperative that
we remain vigilant in addressing security and privacy concerns,
ensuring that these powerful models contribute positively to the
digital landscape.
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