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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA

MOHAMED-ALI BELABBAS*

Abstract. Let (M, g) be a closed Riemannian manifold, and let F': M — R be a smooth function
on M. We show the following holds generically for the function F: for each maximum p of F', there
exist two minima, denoted by m4(p) and m_(p), so that the gradient flow initialized at a random
point close to p converges to either m_(p) or m4 (p) with high probability. The statement also holds
for FF € C°°(M) fixed and a generic metric g on M. We conclude by associating to a generic pair
(F,g) what we call its max-min graph, which captures the relation between minima and maxima
derived in the main result.
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1. Introduction. Gradient-based methods are some of the most widely used
methods to find minima of differentiable functions. Amongst the reasons for this
widespread use is the fact that a gradient flow of a smooth function defined on a
compact space always converges to one of its critical points. When the optimized
function is known to have a unique minimum, gradient (descent) flows then converge to
this minimum, and the major open problems relate to the speed of this convergence. If
the function has more than one isolated minimum—which implies it is non-convex—and
the gradient flow is Morse-Smale [3], then generically with respect to its initialization,
the flow will converge to a (local) minimum of the function. Indeed, the set of initial
conditions for which the flow converges to a saddle point or maxima is the union
of their stable manifolds (see below for a definition). Since these manifolds are of
codimension at least 1, the Lebesgue measure of their union is zero.

The major challenge is thus to understand to which minimum the gradient flow
will converge. This problem is in general difficult, as it requires a global analysis of the
flow that is often intractable. To sidestep these difficulties, stochastic methods such as
simulated annealing [17] have been put forward, with the goal of using stochasticity
to decouple the initialization of the flow from its convergence point [6,18]. However,
this comes at the cost of slower convergence times and reliance on heuristics to set
the value of some parameters. In this paper, we do not rely on stochasticity. Instead,
we consider deterministic gradient flows and investigate what information about the
convergence point can be obtained by restricting the set of possible initializations of
the gradient flow. More precisely, we show that regardless of the number of minima of
F, for each maximum p of F', there exists two minima, not necessarily distinct, so that
the gradient flow initialized at an arbitrary point near p converges to these minima
with very high probability.

An area of application of this characterization of gradient flows relates to recent ad-
vances in learning theory and, more specifically, to the so-called implicit regularization
phenomenon. In this context, learning amounts to tuning parameters by minimizing
an appropriately defined cost function. Gradient methods initialized randomly but
near a given point, though slower than some alternative methods, have been observed
to yield models which generalize better to out of sample data. The reason behind
this fact is widely believed to be the so-called implicit regularization phenomenon [7]:
some gradient flows, when initialized at a random initial condition near a given point,
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2 M.-A BELABBAS

converge to a rather enviable minimum out of a large set of local minima, enviable in
that it displays properties not encoded in the cost function, and not shared by the
other minima. A concrete example is given by the following flow [7]: let 4; € R"*"
be positive definite matrices, y; > 0,4 =1,..., ¢, and consider the flow on the set of
positive definite matrices X = — L (tr(AiX) —yi) (A X + X A;), which is easily seen
to be the gradient flow of F(X) = Y7, (tr(4;X) — y;)? for the trace inner product. It
was observed, through extensive numerical studies, that when initialized near X = 0,
the flow often converges to a matrix X* solving the constrained optimization problem:
min tr X such that tr 4; X = y;. However, the gradient flow has many more local
minima which do not solve the above problem. It is easy to observe that X = 0 is
in fact a maximum of F, and the result of this paper thus explains why the above
flow initialized randomly near zero shows a predictable behavior !. The fact that the
minima of the flow corresponding to the maximum X = 0 solve the above constrained
optimization problem can then be shown through an analysis of the flow itself [4].

We mention two potential areas of future application: the first is in the design of
gradient flows that converge to an equilibrium satisfying a set of desired properties, i.e.,
in the design of implicitly regularized gradient flows. Such designs for model predictive
control are currently being explored by the author. Another area of application
pertains to the qualitative study of dynamical systems, and its appearance in control
under the name of system abstractions. Indeed, based on the characterization provided
by the results of this paper, we can naturally assign a graph to each generic pair
function/metric (F, g); we refer to it as a max-min graph and discuss some of its basic
properties, as well as an open problem, in the last section.

1.1. Statement of the main result. Let (M, g) be a smooth closed Riemannian
manifold and F' : M — R be a smooth function. We denote by V9F the gradient
vector field of M for the inner product g, which is defined by the equation

(1.1) g(VIF, X)=dF - X forallz e M, X € T, M,

see [5,9] for examples. We omit the exponent g when the metric is clear from the
context. Given a differentiable vector field f(z) on M, we denote by e'/x the one-
parameter group of diffecomorphisms with infinitesimal generator f. Namely, we
set

(1.2) el iRx M — M: (t,z) — ez
to be the solution at time ¢ of the Cauchy problem

(1.3) y=fly), y(0)==z

The gradient flow of F' at time ¢ for the metric g is the map = — e x. We also
write el=54f2 to denote the solution of (1.3) between time —t and t. For a subset
BC M, welet el ™t B =, pel~t1/a.

We denote by M the space of smooth Riemannian metrics on M and by C°° (M)
the space of smooth real-valued functions on M. We endow these spaces with the
Whitney C*-topology, for any k > 3 fixed [10]. Given a topological space X, we say
that a subset Y C X is residual if it is a countable intersection of open dense subsets
Y; of X, ie,Y =2, Y. Asubset AC X is called generic if it contains a residual

—tVIF

1We note that the gradient flow is in fact Morse-Bott, but one can show that it possesses invariant
subspaces over which it is Morse.
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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 3

set. Finally, we say that X is a Baire space if generic subsets of X are also dense
in X. The sets M and C>(M), equipped with the Whitney C*-topology, are Baire
spaces. Minima and maxima of a function F refer to local minima and maxima.

We are now in a position to state the main result of this paper. Let d : M x M — R
be any distance function uniformly comparable to the Euclidean metric (for example,
any Riemannian distance function satisfies this requirement) and denote by Bs(p) the
ball of radius § centered at p for the distance d:

(1.4) Bs(p) :={x € M | d(z,p) < d}.

Note that d is not necessarily the distance induced by the metric g. For my, mo € M,
let Ws(p, m1,m2) be the set of points in Bs(p) belonging to trajectories converging to
either mq or ma:

Ws(p,mi,ma) == {x € Bs(p) | tlggo eV e {m17m2}} .

In terms of the stable manifolds W#(m;) (see [3] or below for a definition), we have
Ws(p, m1,ma) = Bs(p) N (W3 (my) UW?(mz)). The main theorem is:

THEOREM 1.1. Let F € C*°(M) a Morse function on a smooth closed Riemannian
manifold (M, g). Let u be a measure on M induced by a smooth positive density and
let d: M x M — [0,00) be any Riemannian distance function. Then generically for g
(resp. generically for F'), the following holds: For any maximum p, there exists two
minima m4 (p), m—_(p) with the property that for all € > 0, there is 6 > 0 such that

(1.5) w (Ws(p,m(p),m—(p))) > (1 —e)u(Bs(p)).

We make a few comments on the theorem. The minima m_(p) and m (p) are not
necessarily distinct; the gradient flow of the height function on a sphere provides a
simple example of this fact. The proofs below hold for F of class C® and g of class C2.
The minimal differentiability requirement stem from the use of a linearization theorem
of Hartman, see Th. 2.1 below. In fact, since we use this theorem locally, one could
even relax the hypotheses to include functions and metrics that are of class C® and C?
around local maxima only. The results also hold for Morse functions F' : K C R" — R,
where K is any compact set so that VF evaluated on 0K points outside of K (said
more precisely, e VI K C K for t > 0.)

1.2. Overview of the proof. The first step of the proof is to exhibit a necessary
condition on the gradient of F' ensuring that (1.5) holds for a maximum and some
pair of minima of F'. To this end, we introduce the notion of principal flow lines of a
maximum of F'. After having defined the principal flow lines, we show in Proposition 3.9
that if they meet a condition described below, then (1.5) holds—we will say that a
maximum of F' is simple if its principal flow lines meet this condition. Finally, we
will show in Proposition 3.14 that gradient flows with simple maxima are generic. We
will prove genericity in terms of the choice of g for a fixed Morse function F', and
reciprocally genericity for a smooth F' given a metric g.

1.3. Terminology and conventions. We denote by ey, ...,e, the canonical
basis of R™. We let S"~!(p) C R™ be the unit sphere of dimension n — 1, radius 7 and
centered at p. We let D'(p) C R™ be the closed ball of radius r centered at p and
D™ (p) be the upper “half-ball”

Dt (p) :={z € R" | |« - pll < r and e (z —p) > 0}.

This manuscript is for review purposes only.



122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153

4 M.-A BELABBAS

For = (x1,...,,), we define the projections
m:R*" S R:z— 2z and 7_q : R - R*7! cx o (e, ., Tn).

For a Morse function F' with a critical point p, we denote by ind(p) the Morse index
of F' at p. Given a map ¢ : M — N, we denote by ¢, its pushfoward [12].

Recall that two submanifolds My, My C M intersect transversally at x € My N My
in M if T,M, & T,My=T,M. For a vector field f on M, we say that M; and f are
transversal at « € My if T, My @ span{ f(z)} = T,,M. We shall use transversality and
appeal to the jet transversality theorem at various places in the proof. We refer to [10]
for an introduction. We will use throughout the paper the letter ¢ to denote a real
constant, with the understanding that the value of ¢ can change during a derivation.

2. Preliminaries. We let F € C*(M); a critical point of F is a point
so that dF(x) = 0. Their set is denoted by Crit F. We say that a critical point

is non-degenerate if the symmetric matrix %(p), where z are coordinates around
p, is invertible. A function with non-degenerate critical points is called a Morse
function [13]. We call the Morse index or index of a critical point p the number of
negative eigenvalues of %if (p). If F is Morse, it is easy to show that its critical points
are isolated (see, e.g., [3, Lemma 3.2]) and thus, since M is compact, they are finite in
number. We denote by Crit; F' the set of critical points of F' of index ¢. Consequently,
the set Crit,, F' is the set of maxima of F', and Crity F' the set of minima.

Given a metric ¢ € M (resp. F' € C*°(M)) and a property S (e.g. F being
Morse), we say that there exist h € M with property S arbitrarily close to g if
every Whitney open set containing g also contains an element h with property S. For
example, if F'is a smooth function, it is well-known that there exist Morse functions
arbitrarily close to F' [3].

The stable manifold W?*(p, g) of a critical point p is defined as

(2.1) We(p.g) :={z € M| lim eV"F(x) = p;

when the metric is obvious from the context, we omit it and simply write W*(p).
Similarly, we define the unstable manifold of p as

W'(p.g) = {e € M| lm eV (2) = p}.

The stable manifold theorem (for Morse functions) states (e.g., [3, Theorem 4.2]) that
W*#(p) is a smoothly embedded open-ball of dimension n—ind(p) in M. We furthermore
have the following decomposition of M afforded by stable (resp. unstable) manifolds
of the critical points of a Morse function F*:

M= 1] W= ] W w.

peCrit F p€eCrit F

We will use a result of Hartman [8, 14] which generalizes the Poincaré-Dulac
theorem on the linearization of analytic vector fields near a singularity [2]. It provides
conditions under which a diffeomorphism is locally C'-conjugate to its linearization at
a fixed point:

THEOREM 2.1 (Hartman). Let U be an open subset of R, 0 € U and f : U — R"”
be a C? wvector field with f(0) = 0. Assume that all the eigenvalues of A = %(O)
have a negative real part. Then there exists open neighborhoods V-C U, and W of the
origin, and a C* diffeomorphism 1 : V. — W so that for z = 1(x), the differential
equation & = f(x) is conjugate to 2 = Az.

This manuscript is for review purposes only.
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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 5

We will rely on the following two simple results, whose proofs are omitted, to
apply Theorem 2.1 to gradient vector fields.

LEMMA 2.2. Let F be a smooth Morse function and p € Crit F. Let (¢,U) be
a chart so that ¢(p) = 0. Denote by HJ(x) = d(p.VIF) the Jacobian matriz of
VIF expressed in the coordinate chart (p,U). Then HY(0) is diagonalizable and has
real eigenvalues, which are independent from . Furthermore, the number of negative
etgenvalues of Hg(O) s equal to the Morse index of p.

Proof. We work in the coordinates z = ¢(x), with 0 = ¢(p). Denote by G(z) €
R™*™ the expression of g in these coordinates. Then ¢, VF = G*1%—5 and dp,VF =

d(G1)- % + G 12E  SQince 9 () = 0, we obtain that

022 ° 0z
O’F
072 (0).

Since g is Riemannian, G~1(0) is positive definite. It is easy to see that dy,VF(0) is
similar to the symmetric matrix G_l/Q(O)%(O)G_l/Q(O). Hence, it is diagonalizable
with real eigenvalues. Furthermore, it is a direct consequence of Sylvester’s inertia
theorem that the index of %15 (0) is independent of the choice of coordinates and equal
to the Morse index of F' at p. It is then clear from the previous relation that it is
also the number of negative eigenvalues of dp,VF. Finally, it is well-known that the
eigenvalues of the linearization of a vector field at an equilibrium are independent of
the choice of coordinates. O

dp.VF(0) = G1(0)

Since the eigenvalues of H. g(O) are independent of the chart ¢, we will simply refer to
the eigenvalues of H9(0).

The following Corollary provides a normal form for gradient flows around maxima
(or minima):

COROLLARY 2.3. Let F be a smooth Morse function on the Riemannian manifold
(M, g) and let VF be its gradient. For any p € Crit,, F, there exists a chart (p,U) with
©(p) = 0 so that the gradient flow equation @ = —VF is C'-conjugate to 2 = —Az in
the coordinates z = p(x), where A = diag(A1, ..., A\n), with Ay < XAy <--- < A, < 0.

3. Proof of the main result. We start by describing the intersection of stable
manifolds of VF with submanifolds of M. The result is needed for the proofs of
Propositions 3.9 and 3.14. The topology on subspaces of M is the usual subspace
topology.

LEMMA 3.1. Let (M, g) be a closed Riemannian manifold and F a smooth function.
Let S be an embedded submanifold of codimension one in M that is everywhere
transversal to VIF and set Mo = | |,ccyie, p W° (). Then Mg = Mo N S is open
dense in S.

Proof. Recall the stable manifold decomposition of M:
M= || W
qeCrit F

where each stable manifold W*(q) is a smoothly embedded open ball of dimension
n —ind(q). When ind(q) = 0, the embedding is also a submersion and thus an open
map. Hence, for ¢ € Critg F', W#(q) is open in M and M, is also open, since it is a
union of open sets. Set

My =M — My = | ] W3(q).
g€Crit Flind(gq)>1

This manuscript is for review purposes only.
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Then M = My U M; and M; is closed. Set M{ := M; NS, then M7 is closed in S
and we have S = Mg LI My. Hence M is open in S as claimed.

It remains to show that Mﬁg is dense in S or, equivalently, that M} has an empty
interior in S. To see this, first recall that M is the disjoint union of embedded open
balls of dimension at most n — 1, and thus by Sard ’s theorem, Mj’s interior in M is
empty. Now assume by contradiction that there exists a non-empty open set U C M7,
and let g € U. Let B C U be an embedded closed ball of dimension n — 1 properly
containing xg. Because VIF is transversal to S, for € > 0 small enough,

By =l =V F . B

is diffeomorphic to [—¢, €] x B. Thus there exists an open neighborhood of xg in M
contained in B;. But since B C MIS C M, and M, is invariant under the gradient
flow, then By C M; and M; has a non-empty interior in M, which is a contradiction.
In conclusion, M7 is a closed set with empty interior in S. Its complement M(j'9 is
then open dense in S as claimed. 0

Remark 3.2. Lemma 3.1 can be simplified under the additional assumption that
VIF is a Morse-Smale vector field, i.e., under the additional assumption that the
stable and unstable manifolds of VIF intersect transversally. With this additional
assumption, one can obtain as a consequence of the A-Lemma [15, Lemma 2.7.1] that
the closure of My is equal to My (see also [19, Chapter 2]).

3.1. Principal flow lines and simple gradients. A smooth curve 7, : R — M
is a trajectory of the gradient flow of F' (resp. gradient ascent flow of F') if it satisfies
A(t) = =VF(y(t)) (resp. 4+ = VF(y)) for all t € R. Since F is Morse, it is well
known that lim;_, 4., v € Crit F [13]. We introduce the following definition:

DEFINITION 3.3. Let (M, g) be a smooth Riemannian manifold and ¢ a smooth
curve in M. We say that v, reaches p € M tangentially to v € T,M if
L limy 00 v = p-
2. limy_y o0 H’%H exists and is equal to v

The existence of the limit in condition 2 of Def. 3.3, under the assumption that VF
be analytic, is the content of Thom’s generalized gradient conjecture [11]. While we
can construct smooth gradients for which this limit does not exist, we show below in
Lemma 3.5 that when F' is Morse, its existence can easily be shown along what we
call the principal flow lines.

We now define a class of gradient vector fields for which the main inequality (1.4)
holds. We call them gradients with simple maxima. In order to define them, we first
introduce the notion of principal flow line of a maximum of VF'.

DEFINITION 3.4 (Principal flow lines). Let F be a smooth Morse function with
gradient vector field VIF and p € Crit,, F. Denote by HY(p) the linearization of VF
at p and let v € T,M be a vector in the eigenspace of the smallest eigenvalue of HI(p).
We say that a trajectory is a principal flow line of VF at p if it is a trajectory of
the gradient ascent flow that reaches p tangentially to v.

We have the following result:

LEMMA 3.5. If the algebraic multiplicity of the smallest eigenvalue of HI(p) is
equal to one, then VIF has exactly two principal flow lines at p.

Proof. Let (¢,U) be the chart of Corollary 2.3, and set z = ¢(z). The gradient
ascent flow is then

az = Az,

This manuscript is for review purposes only.
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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 7

for A = diag(A1,...,An) and A < dg < -+- < A\, < 0. Let r > 0 be so that
Sr(0) C V' := ¢(U). Note that S,.(0) parametrizes the set of gradient ascent flow lines
that reach p; indeed, every such flow lines intersects S,.(0) at a unique zy € S,(0), and
is thus of the form z(t) = exp(At)zp.

We can write zg = > ., (;e; for some coefficients ¢; € R, and exp(At) =
Yo etiteel . Since ef e; = §;;, where §;; is the Kronecker delta, we have that
z(t) = >, eM'(;e; and thus

Ax(t) = Z NiGiette; = et <A1C161 + Z )\iCie(A"'_’\l)tei> -
i—1

i=2
The norm of the above vector is
n 1/2 n 1/2
[[Az(t)| = (Z A2 EezAit) = Mt (A%Cf 4 Z)‘f i262()\i/\1)t> '
i=1 i=2

From the above two equations, we conclude that

n (X=Xt
lim Lm — lim )‘1C161 + 2122 )\zQe ell N
t=oo |[Az(t)||  t=oo (/\%Cf +3, ,\12(:2262(&_)\1”) /

Recall that by assumption, A\;—A; > 0, 2 < i < n. Since the e; are linearly independent,
we conclude that the above limit is £e; if and only if (; = 0 for 2 < i < n, and thus
¢1 = %r. This concludes the proof, with the vector v € T, M obtained by tracing back
the changes of variable used. O

If the conditions of Lemma 3.5 are not met, a maximum of a Morse function can
have more than two principal flow lines. For example, consider F(z) = —2"Qx on
R™, where @ is a positive definite matrix. Then F' has a maximum at the origin. If
Q@ = I, then every flow line is a principal flow line.

Remark 3.6 (Intrinsic definition of principal flow lines). In view of Lemma 3.5, we
can define the tangent vector to a principal flow line v € T, M intrisically as follows. For
vector fields X, Y, denote by LxY the Lie derivative of Y along X. If p is a zero of X,
ie., X(p) =0, then (LxY)(p) depends on the value of Y at p only. Hence, we conclude
that if p € Crit ', we can define the linear map Lyp : TyM — T,M : w — LyrW
where W is any differentiable vector field with W (p) = w. Then a short calculation
shows that Lyr has H,(p) as matrix representation in the coordinates . The
principal flow lines at p are thus the trajectories of the gradient ascent flow that reach
p tangentially to v € T, M, where v is an eigenvector of Ly corresponding to the
smallest eigenvalue.

We will denote the principal flow lines of VIF at p by v, (p,g) and 7; (p, g).
Equipped with the above Lemma, we define gradient vector fields with simple maxima:

DEFINITION 3.7 (Gradient vector fields with simple maxima). Let (M, g) be a
Riemannian manifold and F € C*(M) be Morse function with a mazimum at p. We
say that p is a simple mazimum of VF if H9(p) has a unique smallest eigenvalue and
its principal flow lines belong to the stable manifolds of some minima of VF. If all
the mazima of VF are simple mazxima, we say that VF is simple.

The above definition can be reformulated as follows. Let p € Crit,, F' and fix a choice
v, of eigenvector spanning the eigenspace of HY(p) corresponding to the smallest

This manuscript is for review purposes only.
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€2

5

Fig. 1: The simple maximum p of VF for a two-dimensional M has two principal flow lines,
aligned with the e; axis. The sphere S, is centered at p and C . is the spherical cap with the
e1 coordinate larger than z. The set L, , is the boundary of C, ;; it is a sphere of dimension
n — 2. Its image via the gradient flow is OV, ,. We express, in Lemma 3.8, the set OV, , as a
function from W (here, the ez axis) to R (the e; axis.)

eigenvalue. Then VF is simple if for some (and thus all) ¢t € R,

(3.1) U &fhvic U vl

p€eCrit,, F q€Critg F

3.2. Proof of the main theorem for simple gradients. We now show that
under the condition that VF' is simple, the inequality (1.4) holds. We start with
expressing an invariant set of VF' as the epigraph of a differentiable function locally
around a maximum p. To describe this set, denote by C;. ., for 0 < ro < r the top cap
of S"~1(0), where top cap refer to the first coordinate (i.e., along the e; axis) being
greater than ry (see Fig. 1). Its boundary, which we denote by L, ,, is a sphere of
dimension n — 2 centered at rge; given by:

n
(3.2) Ly, ={(z1,22,...,2n) | 21 = ro and Z 22 =p?} = 5372(7“061)
i=2

where p = /12 —r2. Let A\; < Aa < A3 <--- <), <0, A =diag(A1,...,\,) € R¥*"?
and define the diagonal system

(3.3) Z; = Nz, Tfor1<i<n.
We let V., be the image of C, , under the flow of Eq. (3.3):
(3.4) Vire = el0olA Crro={2z€R" | 2= My for t € [0,00],y € Crrg }-

The boundary of V,.,, is then 0V, ,, = et Ly . The following result expresses this
boundary as the graph of a function from R"~! — R, where by convention the domain
R"~1! is the space spanned by {es,...,e,}, and the codomain is spanned by e;.

This manuscript is for review purposes only.
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LEMMA 3.8. Let V,.,, C R™ be as in (3.4) for the dynamics of (3.3) and let
W= {w € R"! | |w| < p}. Then dV, ., is the graph of a positive differentiable
function F; : W — R, ie., OV,p, = {(Fi(w),w) | w € W}. Furthermore, for

A1

F,.W-—->R:ww (%)TQ ro, it holds that

F(w) < Fy(w).

The case n = 2 is proven: we have that L,,, = {(r0,p),(r0,—p)} and 0V, ,, =
{(eMtrg, £e*2tp) | t € [0,00]}. A short calculation yields that 9V, ., = (F;(w),w) for
the function

5
Fl:wH(?) ro, w € [=p,pl.

We now prove the general case:

Proof of Lemma 3.8. Denote a point in R™ as z1e; + z9e2 + - - + z,e, and recall
the definition of L, ., in Eq. (3.2). Set S)~2 := {(z2,...,2,) | 21—y 2] = p°}. From
Eq. (3.3), we obtain

Vo = {(eMi21, €029, e 2,) | (21,00, 20) € Lyyo, t € [0,00]}.
Set Wy := W — {0}. The map
®:[0,00) x 5P = Wyt (t,22,...,2n) > (eMlzy, ... eMtz)

is a diffeomorphism onto its image. Recalling that m; is the projection onto the first
coordinate, we see that OV, ., — {0} is the graph of

Fi(w) = exp(Am1 (2 (w))ro,

which is differentiable and can be differentiably extended by 0 at 0.

We now show that F,, dominates F; over W,. To see this, it is easier to work
in the coordinates afforded by ®~!: in these coordinates, w = ®(t, 29,...,2,) and,
recalling that w_; is the projection (21, 29,...,2,) — (22,...,2n), we have

Al/Az
n 20\t ~2
Fu(w) = Fy(m_1(eM2)) = <\/Zz2z> To
P
2 n2(Ni—A2)t 2 M2
A t\/z2 + 2y @2
e 0
p
> eMitrg = Fi(w)

where we used the facts that A\ < Ay < A, < 0,3 <3 <nand Z?:z zf = p2 to obtain
the inequality. O

We are now ready to prove that inequality (1.4) holds for simple gradient flows.

PROPOSITION 3.9. Let M be a closed manifold, and u and d as in Theorem 1.1.
Let (F, g) be so that VIF is simple, Then forp € Crit,,(F), there exists m4(p), m_(p) €
Crito(F'), not necessarily distinct, with the property that for all € > 0, there is 6 > 0
such that

u (o€ Botw) | Jim eV & (me(p). m_(9)}) > (1 = )u(Bs(p)).

This manuscript is for review purposes only.
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Proof. Fix e > 0. Let (p,U) be a chart as in Corollary 2.3. The gradient ascent
flow in the coordinates given by z = p(z) has the form

2= Az

in p(U), where A = diag(A1,...,A,). The principal flow lines v* and v~ of p are
aligned with the half-lines {z1e; | 21 > 0} and {z1e1 | 21 < 0}, respectively.

Because p is simple, the principal flow lines v and v~ of p belong to the stable
manifold of some minima of F’; denote them m(p), m_(p) € Critg F respectively. Let
K C ¢(U) be a compact, contractible set containing the origin in its interior. Since
the distance d is uniformly comparable to the Euclidean distance in K, i.e., there
exists constants S > a > 0 such that

(3.5) allz]] <d(0,z) < 82|, for all z € K,

where with a slight abuse of notation, we write d(0, z) for d(p, p~1(z)). Fix r > 0 such
that S, /o, C K and S, C K. For any 0 < 0 <, let Bs := {2 | d(0,z) < 6} be the ball
of radius § centered at 0 for the distance d, and by Ds := {z | ||z|| < §} the ball of
radius § centered at 0 for the Euclidean distance. We also let By := {2 € Bs | z; > 0}
(and By is defined in the obvious way), and define the half-balls Déi for the Euclidean
distance similarly.

Because p is simple, we have re; € W*(m4.(p)), and because W?*(m4(p)) is open
in M, there exists ro € (0,r) such that the closed spherical cap C, ,, of S, is contained
in W#(m4(p)); see Fig. 2-left. Hence V,. ., € W*(m4(p)), where we recall that V,. ,,
is the image of C.,, under the flow as we defined in (3.4).

We claim that

IU(B;_ ﬂ Vrﬂ“o)

3.6 lim =1
(30 L —ETS
.. . w(Bfnv,, ) _ . . .
and similarly, that lims_,q W =1, where V" is the image of a lower spherical
5

cap under the flow. Assuming the claim holds, using elementary properties of measures,
we have that (see Lemma 5.3 in the Appendix for a proof)

M(Bé N (‘/T,ro uv,, )) _

. TTo
530 11(Bs)
Since (Vi UV, ) € (WH(my(p)) UW*(m_(p))), we conclude that for all & > 0,
there exists d so that

(3.7) p (W2 (m—(p)) UW?*(m(p))] N Bs) = (1 — €)u(Bs),

as announced.

It now remains to prove the claim, i.e. prove that (3.6) holds. Let W and
F,(w), Fi(w) be as in Lemma 3.8 and define the graph of F' : W — R as the set
{(F(w),w) € R" | w € W}. We denote by Epi(f) the epigraph of a function f, and
by Hyp(f) its hypograph. Since F,, > Fj, we have that (see Fig. 2-right)

for any 0 < 0 < r. Passing to hypographs, we have

(3.8) Viry N D = Df — (Df NHyp(F)) 2 D — (D NHyp(F.)).

This manuscript is for review purposes only.
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Fig. 2: Left: In the coordinates of Cor. 2.3, the local principal flow lines are the positive
and negative e; (vertical) axis. The spherical cap C; . is contained in a stable manifold,
thus so is its image V; , under the gradient ascent flow. Right: We can express V; ., as the
epigraph of Fj(w), which is dominated by F,(w) and thus Hyp(F;) C Hyp F,. Furthermore,
D} NHyp(F.,) is contained in Bs, N Hyp(F,) which is itself contained into the cylinder with
base a ball of radius d2 and height Fy,(d2) (light shaded rectangle).

From (3.5), we have the inclusions

(3.9) Ds, € Bs C Ds,

for 67 := % and 0y 1= g. Hence,

(3.10) B NHyp(F,) C D{, NHyp(F,).
From (3.9) and (3.10), we have that

1 (B;' N Hyp(Fu)) < i (D:;z n Hyp(Fu))
u(By) - w(D3,)

Because F,(w) is rotationally symmetric about e; and strictly increasing as ||w||
increases, we have

(3.11)

u(DE NHyp(F,)) < edh 1 F,(8) < ed 1M/ A2,

whereas pu (D}) = ¢d". Since A1/ > 1, we conclude from the previous relation
together with (3.11) that

By NHyp(F, DY NHyp(F,
(3.12) oglim“( » NHyp(F)) _ . #(D5, N Hyp(F))

—0.
550 w(BY) Sas0 p(D)

From (3.8), we have that

p(Vero NBY) o p(BY NHyp(Fu))
pw(By) w(By)

(3.13)

This manuscript is for review purposes only.
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12 M.-A BELABBAS

Taking the limit as § — 0, using (3.12) and recalling that V,.,, C W5(m™(p)) we get
that
Ws + N B-‘r
lim p (W (m (Ji)) 5) _,
0=0 w(By)

thus proving (3.6) as claimed. Applying the same reasoning to the stable manifold of
p(We(m~(p)NBy)
n(Bys) =1 0

m~(p) and By, we get that similarly lims_,o

3.3. Simple gradients are generic. We now prove that gradient vector fields
with simple maxima are generic. There are two requirements to being simple: (1) the
smallest eigenvalue of the linearized vector field has geometric multiplicity one, and
(2) the principal flow lines need to be contained in stable manifolds of minima of F.
We treat the two requirements separately.

To this end, for F € C°°(M), we denote by My g the set of Riemannian metrics g
on M with the property that the smallest eigenvalue of the linearization of V9 F(p) has
geometric multiplicity one when evaluated at any maximum p € Crit,, (F). We write
the requirement simply as A\ (H?(p)) < A2(HY(p)) for all p € Crit,, F. We further
denote by My the subset of Mg r consisting of metrics g for which V9F has simple
maxima. Given g € M, we similarly let F 4 be the set of Morse functions F' € C*(M)
on (M, g) so that for each p € Crit,, F', \i(H9(p)) < A2(H9(p)) and F, the subset of
Fo,q consisting of functions F' for which VIF' has simple maxima. We will show that
M is residual in M and that F, is residual in C*°(M).

3.3.1. Geometric multiplicity of the smallest eigenvalue. We prove that
the set of metrics for which the linearization of VIF has a smallest eigenvalue of
multiplicity one at each maximum p is open-dense:

PrOPOSITION 3.10. The set Mg r is open and dense in M.

Proof. We first show the set is open. Let F' be a Morse function so that for
each p € Crit, F, A\ (H9(p)) < A2(HY9(p)). Since the eigenvalues of H9(p) depend
continuously on g, there exists an open set U, C G so that for all h € U, \1(H"(p)) <
Ao (H"(p)). Since | Crit,, F| is finite, U := U, C M is an open set containing
g. Hence My r is open.

To show that My r is dense, assume that g is so that there exists p € Crit,, /' with
A (HI(p)) = Ma(HI(p)). We show that we can find, in any open set containing g, a
metric A so that Ay (H"(p)) < Xo(H"(p)). Recall that in coordinates around p sending

p to 0 € R™, we can write H"(p) = H*I(O)a;;j, where H(x) is a positive definite
matrix defined in a neighborhood of 0. Using a bump function around p, the fact that
the map X — X ! is a diffeomorphism around X = H~1(0), and Lemma 5.1 (which
states that if a product AB of two positive definite matrices has repeated eigenvalues,
there exists A’ positive definite and arbitrarily close to A so that A’B has distinct
eigenvalues), we can obtain a metric h arbitrarily close to g and so that H ’1(0)57@
has distinct eigenvalues.

peCrity,

We now show the equivalent result for a fixed metric ¢ and arbitrary Morse
function F'. Just as above, we in fact prove the stronger statement that the set of
Morse function so that HY(p) has distinct eigenvalues at each of the critical points of
F is open dense. The proof relies on the notion of jet tranversality — we refer to [10]
for an introduction.

PROPOSITION 3.11. The set Fy 4 is open dense in C(M).

This manuscript is for review purposes only.
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360 Proof. We know that Morse functions are an open dense subset of C*°(M) [3].
361  We show that Morse functions for which HY(p) has distinct eigenvalues at p € Crit,, F'
362 form an open dense subset of the set of Morse functions, and thus are open dense in
363 C°(M).

364 Given A € R™*™, denote by pa(s) its characteristic polynomial in the indeterminate
365 s and let p/y(s) = pa(s). Denote by ry € R?™*2" the Sylvester resultant of py
366 and p/y. It is well known that det(r4) = 0 if and only if p4 has a double root. Let
367 Z C R™™ be the zero set of det(r4). Relying on Whitney’s stratification theorem [20],
368 we can show that Z is a finite union of closed manifolds.

Denote by J?(M,R) the second jet-space of maps F : M — R and define

C={(z,y,0,,H) € J*(M,R) |z € M,y € R,G"*(2)H € Z)},

369 where G(x) is the matrix expression of g. Then C is a finite union of submanifolds of
370 J*(M,R) of codimension > n + 1 (since we restrict the first derivative to be zero, and
1 Z is the union of submanifolds of codimension at least one.) Consequently, the second
2 jet prolongation of F', j2(F), and C are transversal only at points at which they do
'3 not intersect. Furthermore, C is easily seen to be closed in J2(M,R). Hence, from
4

5

oo
J

W W W W W
SRS RS EEES TS IR

the jet-transversality theorem [10], we conclude that the set of real-valued functions
without critical points for which HY(p) has repeated eigenvalues is open and dense in
e (M). 0

377 3.3.2. Continuity of principal flow lines with respect to F/g. We now
378 address the second part of the simplicity of VF requirement: the principal flow lines
379 of each maxima belong to the stable manifolds of minima of F'. The first step is to
380 establish that principal flow lines depend continuously on the metric/function.

381 LEMMA 3.12. Let (M, g) be a closed Riemannian manifold. Let F be a smooth
382  Morse function, and p € M a simple mazimum of VIF. Then, there exists a C'-
383  embedded closed ball B, > p in M and an open set U C M containing g with the
384 following properties:

385 1. B, contains no other critical points of F

386 2. the principal flow line v+ (p, h) (resp. v~ (p, h)) intersect OB, at one point,
387 and the intersection v N OB, (resp. v~ NOB,) depends continuously on h,
388 hel.

389 3. the boundary OB, is everywhere transversal to V'"F, h € U

390 4. By, is an invariant set for the gradient ascent flow of VhE, hel.

391 Proof. We work in the chart (¢, U) afforded by Corollary 2.3 sending p to 0 € R,

392 and for which the gradient flow differential equation is 2 = Az, with A a diagonal
393  matrix with diagonal entries \; < Ao < -+- < A, < 0.

394 Since VI depends continuously on h, from the proof of Hartman’s theorem [8],
395 we know that there exists a neighborhood V' 3 0, a neighborhood Uy C M of g and
396 a continuous mapping ¢ : Uy — Diff (V;R™) such that for any metric h € Uy, the
397  diffeomorphism 1y, : V — R linearizes V*F around 0 (see also [14, p. 215], the
398 author calls the continuous dependence of the linearizing diffeomorphism with respect
399 to the vector field robust linearization). Note that in the coordinates used, v, = Id.

400 The principal flow lines of VIF in the z-coordinates are locally given by the
1 half-lines starting at the origin and spanned by the vectors +e;. Let » > 0 be such
2 that B, := B,.(0) C V. The half-lines intersect dB,. = S, at exactly two points, denote
3 them z4(g),2-(g), and these intersections are clearly transversal.

| Taking a subset U; C Uy, we can ensure that for all h € Uy, \i(H"(p)) <

This manuscript is for review purposes only.
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Xo(H"(p)), since the eigenvalues depend continuously on h. Similarly, in the (lin-
earizing) coordinates vy, the principal flow lines of V" F are half-lines starting at the
origin and spanned by an eigenvector vq (Hg (p)) associated with Al(HI’; (p)) and, from
Lemma 5.2, we know that the eigenspace vl(Hg(p)) depends continuously on h as
well. The principal flow lines of V”F in the z-coordinates are given by the image
under ¢, of the half-line starting at zero and parallel to vy (H. [; (p)), and thus depend
continuously on h. Now since the principal flow lines of VI F intersect S, transversally,
by taking a subset Us C U, we can ensure that for all h € Us, the principal flow lines
of V*F in z-coordinates intersect S, transversally and the intersections z, (h), z_ (h)
are continuous in h.

Finally, for the last two items, since VIF is linearized by ¢ as 2 = Az, with A
diagonal and with negative, real eigenvalues, then V9F evaluated on S, points inward,
toward B,.: indeed, the inward pointing normal to S, at z is —z and its inner product
with VIF is —z " Az > 0. Because S, is compact, the same conclusion holds for vector
fields close enough to VI9F. Hence B, is invariant for V*F, for h close to g. Setting
By, to be the inverse image under the chart

(3.14) By = ¢~ (B,(0)),
we obtain a set with the required properties. 0

Remark 3.13. The above result transposes immediately to the case where the
Riemannian metric g is fixed, and we consider an open set of function Uy C C°° (M)
containing F' where VIF has a simple maximum at p. The continuous dependence
of VIF on F is obvious. The only point of demarcation is that when varying F' to
a nearby F7, the critical points of V9F; may move. It is easy to see though that for
a Uy small enough, they move continuously and their index remains the same: there
exists a continuous map P : Uy — V C M so that P(F}) is a critical point of Fy. (See,
e.g., [15, Lemma 3.2.1] or [14]).

3.3.3. Genericity of simple gradients. We now prove the second part of the
main theorem, namely that simple gradient flows are generic.

PROPOSITION 3.14. Let F € C*°(M) be a Morse function. The set Mg of
Riemannian metrics for which VIF is simple is residual. Similarly, for a Riemannian
manifold (M, g), the set F of smooth functions for which VIF is simple is residual.

We prove the first statement, and then indicate the minor changes needed to
obtain the second statement. The idea of the proof is to consider the sets of metrics
h for which the principal flow lines of V”F do not intersect an increasing sequence of
nested compact subsets of the stable manifolds of the saddle points of F'. We show
that for each compact subset, the set of such metrics is open and dense in the set of
Riemannian metrics. Since the limit of the sequence of these compact subsets is the
union of the stable manifolds of the saddle points, this will prove that the set of such
metrics is generic.

Proof. Pick a Morse function F € C*° (M) and metric g € Mo p. We denote by
P1,---,Pm and by s1,...,s the maxima and saddle points of F', respectively. We
have shown that Mg r is open dense in M, it thus remains to show that metrics g
in My p for which the principal flow lines of VIF at p;, 1 < i < m, belong to the
stable manifolds of some minima form a generic set. Owing to the stable manifold
decomposition of M and the fact that W#*(p) = {p} for p € Crit,, F, it is equivalent to
show that, generically for g, the principal flow lines of VIF at p; do not belong to the
stable manifold of some saddle points.

This manuscript is for review purposes only.
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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 15

To this end, we will make use of the following straightforward characterization
of generic sets: given that M r is dense in M, the subset Mp C M is generic if
and only if for each g € My p, there exists a neighborhood N of g in M so that
Mp (N is generic in Nj. For a proof of this statement, we refer to, e.g., [15, Lemma
3.3.3]. The statement allows us to consider only elements of M g, which is an easier
task than considering any element of Mp.

For each s;, we let W (s;, g) be a compact neighborhood of s; in the stable manifold
W3(si,g). Let ¢ be a codimension one submanifold of M that is (1) transversal
to VIF and to W (s;, g) and (2) meets W§(s;,g) at the boundary OW¢E(s;, g). The
construction of the set X7 appears in the proof of the Kupka-Smale theorem [16], and
we refer to, e.g., [15, p.107] for a constructive proof of its existence.

Because V"F depends continuously on h, we know from the stable manifold
theorem [15, Th. 2.6.2] that for A in a small enough neighborhood N, C My p, the
maps h — W§(s;, h), 1 <i <, are continuous and so that W (s;, h) intersects X?
transversally at OW§ (s;, h), 1 <i <I. Note that since My g is open in M, Ny is also
a neighborhood of g in M.

Let k > 1 be a positive integer. Define

h
W]:(Suh) = eikv £ WO(Si7h)a

i.e., the image of Wg(s;, h) by applying the gradient flow for a time of k (or the
gradient ascent flow for a time —k.) Since e~ *V"F . M — M is a diffeomorphism for
each k, W7(s;, h) is a compact subset of M that depends continuously on h. Finally,
we have by definition that

WS(Si,h) = U W]:(Sz,h)
k>0

Let My i(Ny) € Mo, r [Ny be the set of metrics h in N, for which the local
principal flow lines of VA F at p; do not intersect W (s;, h) forall 1 <j <[, 1 <i<m.
Let

Mk(Ng) = ﬂ Mk,i(Ng)~

We will show that for all k > 0, My (Ny) is open dense in N,;. Since N2 ; My (Ny) =
Mp NN, this shows that Mp NN is generic and, using the characterization of
generic sets described above, proves the result.

My i(N,) is open in Nj: We show that for any h € Mj, ;(N;), there exists an open
neighborhood U, of h contained in My, ;(Ny).

To this end, let B,, C M and U’ C Mgy be the closed ball and open set,
respectively, from Lemma 3.12 for the metric h. Since V" F is transversal to 9B, and
codim 0B, = 1, then Wy (s;, h) and 0B, intersect transversally. Additionally, because
the map h’' — W7 (s;,h’) is continuous for h’ € My, ;(Ny), so are the intersections of
W7 (s;,h') with By, as a function of 2’. From the same Lemma, denoting by %% the

(positive) local principal flow line of V' F at p;, we know that the map h' — %%ﬂaBpi
is continuous as well.

Putting the above two facts together, we conclude that there exists a neighborhood
Uy, of h in My, ;(Ny) so that for all ' € Uy, the principal flow lines *yl% do not intersect
W¢(si,h'). Hence My, ;(Ny) is open.
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16 M.-A BELABBAS

My..i(N,) is dense in N;: We will show that for any element h € Ny, there exists an
element h' € M, ; arbitrarily close to h. If h € My, there is nothing to prove. Hence
assume, to fix ideas, that the positive principal flow line 7{?0 intersects U§:1W§ (sj,h).

Using the local change of variables ¢p, : (U, p;) — (R™,0) afforded by Hartman’s
Theorem (Theorem 2.1) around the maximum p;, the system follows the dynamics
Z = Az and after potentially another linear change of variables, we can assume that
A = diag(\1,...,An), with A} < Ag < --- < )\, < 0 the eigenvalues of H"(p). From
Eq. (3.14), we know that B,, in the z coordinates is a ball B,.(0) of given radius r > 0
and centered at 0.

Denote by var the segment (te1,0,...,0) € R", 0 <t <r. It is a compact subset
of the (positive) principal flow line of V*F at p;. Let 2o = (/2,0,...,0). Since 2 is
not a critical point of V*F, by the flowbox theorem [15, p. 93], we know there exists a
neighborhood Uy of zp, which we take to be included in the ball of radius r/2 around
2o, and a local diffeomorphism ¢q : Uy — R™ under which the dynamics is, in the new
variables induced by o (which we denote by y) given by

(3.15) g =(1,0,...,0).

Without loss of generality, we can assume that ¢o(z0) = (r/2,0,...,0) =: yo. See
Fig. 3 for an illustration.

Working in the y-coordinates, let K be a box (unit ball for || - ||s norm) centered
at yo and of width 0 < 7/ < 7/2 small enough so that ¢y (K) C B,. For any h € M

which agrees with h outside of K, because V" F and V" F then also agree outside of
M — B, and this set is invariant under the flow —V"F by Lemma 3.12, we have that

(3.16) Wi (sj,h) N OB, = Wi(sj,h)NIB,.

Let y1 :=yo— (1'/2,0,...,0) € OK. Let § : M — R be a smooth positive function
with support K and such that

/

/ G(yl + tel)dt =1.
0
Now define the following smooth vector field with support in K: for v € R",

Yy (y) := 0(y)v.
Let ¢} (y1) be the solution at time ¢ of the Cauchy problem
(3.17) y=V"F(y) +Yu(y),5(0) = m.
To proceed, we show that we can always find a metric for which the vector field in

Eq. (3.17) is the gradient of F:

LEMMA 3.15. For § > 0 small enough, there exists a metric-valued function h,
for all v € R™ with ||v|| < §, depending continuously on v, agreeing with h outside of
K, so that

V" F(y) = V'F(y) + Yo(y).

Proof. Because K does not contain any critical points of F; we have that dF -
V"F > 0. Thus, for § small enough, we have that dF - (V*F +Y,) > 0 for all v with
v <6,y € K. Set Z, :== V'"F +Y,,.

This manuscript is for review purposes only.
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ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 17

From the above, we can decompose the tangent space T,M = spanZ,(y) &
ker dF'(y) for y € K. We now introduce a metric for which this decomposition of the
tangent space is orthogonal. In coordinates, it has the matrix expression

_ (dF-ZU 0 )
v 0 hiverar )’

where h|er ¢p is the restriction of i to the n—1 dimensional subspace ker dF" (precisely,
the matrix expression for h, is in the basis {Z,, Z1, ..., Z,—_1} where the Z; are any
independent system spanning ker dF. In particular, note that h,(Z,, Z,) = dF - Z,
and h,(Z,,Z;)=0,1<i<n-—1).

The above construction is such that h, depends continuously on v, hg = h and
hy, = hin M — K. Finally, we show that V' F = Z,. To this end, let W be an
arbitrary vector field; we can decompose it uniquely as W = a2, + W), where
Wy, € kerdF, a; € R. We then have

(3.18) dF -W =dF - (a1Z, + Wy,)

(319) =adF-Z, = alhv(Zm Zv)

(3.20) = hy(a1Zy + Wi, Zy) = ho(W, Z,),

which concludes the proof. 0

Now introduce the flow map of (3.17)
(3.21) O :R" - M :v— O(v) := ¢, (y1)-

Then, recalling that V*F = (1,0...0) in K, we see that ®(0) = y; + (',0,...,0) =:
yo € OK. Furthermore, we have the following Lemma:

LEMMA 3.16. The map ® defined in Eq. (3.21) is locally surjective around 0.

Proof. We prove the statement by showing that the linearization of ® around
0 is surjective. Denote by w(t) = y; + tey the solution of (3.17) with v = 0. It is
clear that w(t) is a segment of the positive principal flow line of V*F' at p;, and that
w(0) =y1 = ((r—1")/2,0,...,0) and w(r’) = ((r +1')/2,0,...,0) = y2. Recall the
perturbation formula [1, Sec. 32]

(3.22) %M:O(I)(??U) = /OT Y, (w(r' — s))ds.

In particular, the right-hand side depends on the value of Y,, along w only and, by
construction, is equal to v. This proves that ® is locally surjective as claimed. O

To conclude the proof, we show for any § > 0, we we can find v with ||v]| < d so
that the gradient of F' for h, is simple. Since hg = h and h,, is continuous in v, this
shows that there exists metric arbitrarily close to h for which the gradient of F' is
simple.

As above, let U; > h be the open neighborhood of h from Lemma 3.12. By perhaps
decreasing J, we can ensure that h, € U; for all v with ||v|| < ¢ (since h, depends
continuously on v, and hy = h.)

Denote by z*(h,) € 0B, the point of intersection of 9B, and v(p;, h,) (the
intersection is not empty per Lemma 3.12). Then for each ||v|| < &, *(h,) is on the
same flow line as y; since h,, agrees with h outside of K. Because @ is locally surjective
around 0, appealing to the inverse function theorem, we can find, for § and ¢; small
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7 (p, h)

Fig. 3: The gradient flow inside B, goes along vertical lines. The principal flow line for h,
and for any metric agreeing with h outside of K, contains the segment (p,y1). Changing the
metric only inside K, we can make the corresponding principal flow line go through y2 + u,
for any small u. The set of realizable intersections of top face of K and principal flow lines
(by changing the metric to k' inside K) is denoted by S. Since S is transversal to V" F (and
thus to V*' F , since h and h' agree outside of K), its image under the gradient flow intersects
OB, to yield S’ containing an open set around z* (ho).

enough, a continuous function @1 : u > v so that ®(v) = u, for all u with |Jul| < &;.
Let S € OK be the subset of the 'top face’ defined as

S :={ya+u||ull <6 and e u=0}.

546 Note that S and V" F are transversal by construction.

To make the notation simpler, we set v := ®~1(u). The principal flow line of Vv

intersects S at ya 4+ u: every point in S can thus be made to belong to a principal flow

line of a V" F for an appropriate v. Using again the fact that h, agrees with hg = h
outside of K, we see that

ef[o,oo)vth(S) _ ef[O,OO)Vh’F(S)

)

547 and thus S := e_[O’OO)VhUF(S) () OB, contains an open set around z*(hg). Hence, for
548 any z% € OB, near x*(hg), we can find a v so that the principal flow line of Vv F
549  goes through xf. Finally, since W,,(p;, h) = W, (pi, hy) and W, (p;, h) N OB, is closed,
550 there exists z7 € 0B, arbitrarily close to z*(h)—and thus a v arbitrarily small-—so
551 that the principal flow line of V"I does not belong to W, (p;, h,) N B, and thus
552 does not belong to W, (p;, hy). This concludes the proof. ]
553 4. Summary and outlook: max-min graphs.

554 4.1. Max-min graphs. From the main result of the paper, we see that given a
555 smooth n-dimensional closed manifold M, to any generic pair (F,g) € C*°(M) x M,
556 there is a naturally assigned bipartite graph G = (V| E), which we call maz-min graph
55

7 of (F.g)
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Fig. 4: Top Left: A Morse function on M = R. To each maximum p;, we can assign two
minima m_ (p), m4(p) so that gradient descent for F} initialized in B(p) converges to either
m—(p) or m4(p). Top Right: The flow graph of the gradient of Fi. Each minimum has degree
two and maxima have degrees one or two. Bottom Left: A circle is embedded in the plane
with vertical axis z and we consider the Morse function Fz(z) = z (height function). It has
three maxima and three minima. Bottom Right: The flow graph of the gradient of F>. All
critical points have degree two.

58 DEFINITION 4.1 (Max-min graph of (F,g)). The max-min graph of a generic pair
59 (F,g) € C®(M) x M is the bipartite graph G = (V, E) with V = Crito(F) U Crit,,(F)
60 and

E = {(pi,m_(p:)), (pi,m+(pi)) | pi Crit,, (F)}.

561 The set of possible max-min graphs for generic gradient vector fields for n = 1
562 is easily seen to depend on the topology of M, and can be completely characterized:
563 denote by p; and m; the elements of Crit, (F) and Crity(F'), respectively. Denote by
564  Hyp(M) is the first homology group of M which, since dim M =1 and M is connected,
565 has rank either 0 or 1. Recall that if M = R", we assume that lim, e F(z) = 00
566 and F has a finite number of critical points. We have (see Fig. 4 for an illustration)

567 PROPOSITION 4.2 (Max-min graphs for dim M = 1). Assume dim M = 1, then
1. case rank Hy (M) = 0: k =: | Crito(F)| = | Crit,,(F)| + 1 and there exists an
ordering of p;, m; so that

E = U']L'czl{(p’ia mi)’ (pu mi+1)}~

568 Thus deg(p;) = 2 for p; € Crit,(F).
2. case rank Hy (M) = 1: then k =: | Crit,,(F)| = | Crito(F)| and there exists an
ordering of p;, m; so that

E= U§:1{(mmpi), (M, Pit1 mod k) }-

569 Thus deg(m;) = deg(p;) = 2 for m;,p; € V.

70 The proof of the proposition is an immediate consequence of the following facts: (1)
71 F is generically Morse (and thus does not have saddle points if dim M = 1); (2) the

o Ot

This manuscript is for review purposes only.



588
589
590
591
592
593
594
595
596
597

598

20 M.-A BELABBAS

my

D1 D2 D3

my
Fig. 5: Top: We consider the height functions of an embedded sphere in R, The function
has three maxima p1, p2, p3, two saddle points s, s2 and a minimum m;. Bottom: Max-min
graph of the gradient of the height function of the embedded sphere.

critical points of F' can in this case be given a cyclic (if rank H1 (M) = 1) or linear (if
rank H; (M) = 0) order and (3) maxima and minima of F' appear alternatively in this
order.

4.2. Realizable max-min graphs and topology of M. This leads us to the
following:

Open problem: what is the set of bipartite graphs that can be max-min graphs of
generic pair (F, g) over M?

To address this problem, we call an abstract max-min graph any simple bipartite

graph G = (VU V4, E) where

2. 1 <deg(p) <2forallpeV;
We think of V4 as the set of minima and V; as the set of maxima. We say that a pair
(F,g) realizes G on M with the max-min graph of VIF is equal to G.

The set of abstract max-min graphs that can be realized depends on the topology
of M, as was clear in the case dim M = 1 described in Prop. 4.2. We can also easily
realize max-min graphs with a single node in Vj and an arbitrary number of nodes
in Vi, by generalizing the construction of Fig. 5 to add more maxima. These yield
max-min graphs where the degree of elements in V; is one and the degree of the
element in Vj is unbounded. Reciprocally, we can have functions with a single node in
V1 and an arbitrary number of nodes in Vj. For example, it suffices to consider the
negative of the height function for the embedded sphere in Fig. 5. From this particular
example, we also conclude that flow graphs can be disconnected: since |Vy| = 3 and
|[Vi| = 1 and the degree of the node in V; is at most 2, at least one node in V; has
no incident edges. Furthermore, we see that reversing the direction of the gradient
flow (i.e., considering the gradient ascent flow of F' instead of the gradient descent
flow), does not yield an automorphism of the corresponding flow graphs: indeed, while
the elements of V) become the elements of V7 and vice-versa, the edge sets of the two
flow graphs do not even necessarily have the same cardinality. Finally, it should be
clear that none of the examples described in the paragraph could be realized over a
state-space M of dimension 1. The above leads to the question of how can one realize
an abstract max-min graph, and what restriction on the topology of the underlying
state-space is imposed. We will address these questions, and others, in a forthcoming
publication.
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4.3. Summary. Let M be a smooth closed manifold and (F, g) a generic pair
where F' is a smooth function and g a Riemannian metric on M. We have shown
in this paper that to each maximum p of F, we can assign two minima—denoted
m_(p), my(p)—having the following property: the gradient flow of F initialized close
enough to p converges with high-probability to the set {m_(p), my(p)}. In order to
prove the result, we introduced the notion of principal flow lines of a maximum. When
the linearization of the gradient flow around p has a smallest eigenvalue of algebraic
multiplicity one, we showed the existence of exactly two flow lines of the gradient
ascent flow that reach p tangentially to the corresponding eigenspace. These are the
principal flow lines of p. If they belong to the stable manifolds of minima of F', we call
the corresponding gradient vector field simple. We then showed in a first part that
for simple gradients, most of the volume of any small ball containing at maximum p
belongs to the union of the two stable manifolds to which principal flow lines belong.
In a second part, we showed that simple gradient vector fields are generic.

The proof of the first part is local in nature, with the exception of the reliance
on the global stable manifold decomposition theorem. The C' linearization result
of Hartman [8] plays an important role there, and we note that it holds only if all
eigenvalues of the linearized gradient vector field have real parts of the same sign.
This result thus cannot be used at a saddle point of F. We also point out that the
topological equivalence provided by the Hartman-Grobman theorem, which can be
applied at any hyperbolic fixed point, is not sufficient to obtain our result. The second
part of the proof shows that generically for (F, g), the linearization of the gradient flow
at a maximum has a smallest eigenvalue of multiplicity one, and the corresponding
principal flow lines belong to the stable manifolds of some minima. The proof that
the linearization of the gradient vector field at p has a unique smallest eigenvalue
relies on transversality arguments. The proof that the principal flow lines belong to
stable manifolds of minima goes by showing that the property holds for an increasing
sequence of compact subsets of the stable manifolds, and appealing to Baire theorem.
Finally, we introduced the notion of max-min graph graph of a generic pair (F, g), and
described some of its properties along with open questions.
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5. Appendix.

LEMMA 5.1. Let A, B € R™*™ be positive definite matrices so that AB has repeated
eigenvalues. Then for any € > 0, there exists a positive definite Q, with ||Q|| < € and
(A + Q)B has distinct eigenvalues.

Proof. We give a simple, constructive proof. The matrix AB is similar to
B2 AB/2_ The latter being symmetric, there exists an orthogonal matrix P and a
diagonal matrix D so that PT BY2ABY/2P = D, where the diagonal entries of D are
the eigenvalues of AB. Denote the p; € R™ the ith column of P. Then p;»'—pj = 0;; and
PTp; = e;. Now set v; = B~/2p;. Then PTBY2(A + g,v;v, )BY?2P = D + ;e;e; T,
Since D + aieieiT is diagonal, it contains the eigenvalues of PTRB/2 (A +€iviviT)Bl/2P,
which are the same as the eigenvalues of (A + g;v;v, )B. It now suffices to choose
the €; > 0 small enough and so that D + diag(ey,...,&,) has distinct entries, and set
Q=" cvv. O

LEMMA 5.2. Let A € R™ ™ be a real symmetric matriz with eigenvalues Ay >
Ay > - > Ao Letwvy S, — RP" 1 A s vi(A) be a map assigning to A the
eigenspace associated with \1. Then vy is differentiable around A.

Proof. Consider the map

VS, xR x R — R : (X, u,\) s C?ﬁ;ﬁ“) .

Let A € S, be such that A\; > Ao and denote by v a unit eigenvector spanning the
eigenspace of A;. Then V(A,v,A;) = 0 and the differential of V' with respect to u, A
evaluated at (A, v, A1) is

MI—A
du,)\V(A7U7)‘1) = ( 12’UT 8)

Since A; is a simple eigenvalue of A, the above map is invertible. Hence, the implicit
function theorem states that there is an open set U C 5, containing A and differentiable
functions A\(X),u(X) such that (A\(X)I — X)u(X) =0 and ||[u(X)||?> =1 for all X € U,
which proves the result. 0

LEMMA 5.3. Let Bs = B} UB? and V = V! UV? with

p(By N B3) = u(V' N V?) = u(By NVa) = w(B; NV;) = 0.
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Assume that

Bl 1 B2 2
tim B0V g, B OVE)
d—0 M(B(;) 6—0 N(Ba)
Then it holds that B AV
lim 2B 0V)
6—0 ,LL(B(;)
Proof. Since Bg C Bgs, we have
Bl 1 Bl _ Bl 1 Bl _ Bl 1
01— Iim A 5ﬂlv ) _ iy M85 = ( (150‘/ ) _ iy MBs — (Bs0 V7))
6—0  u(Bj) 5—0 w(Bj) 5—0 w(Bs)
and, similarly, lims_,q W = 0. Summing the above two equalities, we get
in the numerator
p(B — (By NVY) +u(Bf = (BN V?) = u((B; — (B;NVY)) U (B] — (B NV?))
= 1 (Bs — (BLNV) U (BN V)
=u(Bs —(BsNV)). i
Hence, limgs_,o W = 0, which concludes the proof. 0
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