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Abstract. Let (M, g) be a closed Riemannian manifold, and let F : M ! R be a smooth function3
on M . We show the following holds generically for the function F : for each maximum p of F , there4
exist two minima, denoted by m+(p) and m�(p), so that the gradient flow initialized at a random5
point close to p converges to either m�(p) or m+(p) with high probability. The statement also holds6
for F 2 C1(M) fixed and a generic metric g on M . We conclude by associating to a generic pair7
(F, g) what we call its max-min graph, which captures the relation between minima and maxima8
derived in the main result.9
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1. Introduction. Gradient-based methods are some of the most widely used12

methods to find minima of di↵erentiable functions. Amongst the reasons for this13

widespread use is the fact that a gradient flow of a smooth function defined on a14

compact space always converges to one of its critical points. When the optimized15

function is known to have a unique minimum, gradient (descent) flows then converge to16

this minimum, and the major open problems relate to the speed of this convergence. If17

the function has more than one isolated minimum—which implies it is non-convex—and18

the gradient flow is Morse-Smale [3], then generically with respect to its initialization,19

the flow will converge to a (local) minimum of the function. Indeed, the set of initial20

conditions for which the flow converges to a saddle point or maxima is the union21

of their stable manifolds (see below for a definition). Since these manifolds are of22

codimension at least 1, the Lebesgue measure of their union is zero.23

The major challenge is thus to understand to which minimum the gradient flow24

will converge. This problem is in general di�cult, as it requires a global analysis of the25

flow that is often intractable. To sidestep these di�culties, stochastic methods such as26

simulated annealing [17] have been put forward, with the goal of using stochasticity27

to decouple the initialization of the flow from its convergence point [6, 18]. However,28

this comes at the cost of slower convergence times and reliance on heuristics to set29

the value of some parameters. In this paper, we do not rely on stochasticity. Instead,30

we consider deterministic gradient flows and investigate what information about the31

convergence point can be obtained by restricting the set of possible initializations of32

the gradient flow. More precisely, we show that regardless of the number of minima of33

F , for each maximum p of F , there exists two minima, not necessarily distinct, so that34

the gradient flow initialized at an arbitrary point near p converges to these minima35

with very high probability.36

An area of application of this characterization of gradient flows relates to recent ad-37

vances in learning theory and, more specifically, to the so-called implicit regularization38

phenomenon. In this context, learning amounts to tuning parameters by minimizing39

an appropriately defined cost function. Gradient methods initialized randomly but40

near a given point, though slower than some alternative methods, have been observed41

to yield models which generalize better to out of sample data. The reason behind42

this fact is widely believed to be the so-called implicit regularization phenomenon [7]:43

some gradient flows, when initialized at a random initial condition near a given point,44
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converge to a rather enviable minimum out of a large set of local minima, enviable in45

that it displays properties not encoded in the cost function, and not shared by the46

other minima. A concrete example is given by the following flow [7]: let Ai 2 Rn⇥n47

be positive definite matrices, yi > 0, i = 1, . . . , q, and consider the flow on the set of48

positive definite matrices Ẋ = �
Pq

i=1(tr(AiX)�yi)(AiX+XAi), which is easily seen49

to be the gradient flow of F (X) =
Pq

i=1(tr(AiX)� yi)2 for the trace inner product. It50

was observed, through extensive numerical studies, that when initialized near X = 0,51

the flow often converges to a matrix X
⇤ solving the constrained optimization problem:52

min trX such that trAiX = yi. However, the gradient flow has many more local53

minima which do not solve the above problem. It is easy to observe that X = 0 is54

in fact a maximum of F , and the result of this paper thus explains why the above55

flow initialized randomly near zero shows a predictable behavior 1. The fact that the56

minima of the flow corresponding to the maximum X = 0 solve the above constrained57

optimization problem can then be shown through an analysis of the flow itself [4].58

We mention two potential areas of future application: the first is in the design of59

gradient flows that converge to an equilibrium satisfying a set of desired properties, i.e.,60

in the design of implicitly regularized gradient flows. Such designs for model predictive61

control are currently being explored by the author. Another area of application62

pertains to the qualitative study of dynamical systems, and its appearance in control63

under the name of system abstractions. Indeed, based on the characterization provided64

by the results of this paper, we can naturally assign a graph to each generic pair65

function/metric (F, g); we refer to it as a max-min graph and discuss some of its basic66

properties, as well as an open problem, in the last section.67

1.1. Statement of the main result. Let (M, g) be a smooth closed Riemannian68

manifold and F : M ! R be a smooth function. We denote by rg
F the gradient69

vector field of M for the inner product g, which is defined by the equation70

(1.1) g(rg
F,X) = dF ·X for all x 2 M,X 2 TxM,71

see [5, 9] for examples. We omit the exponent g when the metric is clear from the72

context. Given a di↵erentiable vector field f(x) on M , we denote by e
tf
x the one-73

parameter group of di↵eomorphisms with infinitesimal generator f . Namely, we74

set75

(1.2) e
·f · : R⇥M ! M : (t, x) 7! e

tf
x76

to be the solution at time t of the Cauchy problem77

(1.3) ẏ = f(y), y(0) = x.78

The gradient flow of F at time t for the metric g is the map x 7! e
�trgF

x. We also79

write e
[�t,t]f

x to denote the solution of (1.3) between time �t and t. For a subset80

B ⇢ M , we let e[�t,t]f
B :=

S
x2B e

[�t,t]f
x.81

We denote by M the space of smooth Riemannian metrics on M and by C
1(M)82

the space of smooth real-valued functions on M . We endow these spaces with the83

Whitney C
k-topology, for any k � 3 fixed [10]. Given a topological space X, we say84

that a subset Y ✓ X is residual if it is a countable intersection of open dense subsets85

Yi of X, i.e., Y =
T1

i=1 Yi. A subset A ✓ X is called generic if it contains a residual86

1We note that the gradient flow is in fact Morse-Bott, but one can show that it possesses invariant
subspaces over which it is Morse.
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set. Finally, we say that X is a Baire space if generic subsets of X are also dense87

in X. The sets M and C
1(M), equipped with the Whitney C

k-topology, are Baire88

spaces. Minima and maxima of a function F refer to local minima and maxima.89

We are now in a position to state the main result of this paper. Let d : M⇥M ! R90

be any distance function uniformly comparable to the Euclidean metric (for example,91

any Riemannian distance function satisfies this requirement) and denote by B�(p) the92

ball of radius � centered at p for the distance d:93

(1.4) B�(p) := {x 2 M | d(x, p)  �}.94

Note that d is not necessarily the distance induced by the metric g. For m1,m2 2 M ,
let W�(p,m1,m2) be the set of points in B�(p) belonging to trajectories converging to
either m1 or m2:

W�(p,m1,m2) :=
n
x 2 B�(p) | lim

t!1
e
�trF

x 2 {m1,m2}
o
.

In terms of the stable manifolds W s(mi) (see [3] or below for a definition), we have95

W�(p,m1,m2) = B�(p) \ (W s(m1) [W
s(m2)). The main theorem is:96

Theorem 1.1. Let F 2 C
1(M) a Morse function on a smooth closed Riemannian97

manifold (M, g). Let µ be a measure on M induced by a smooth positive density and98

let d : M ⇥M ! [0,1) be any Riemannian distance function. Then generically for g99

(resp. generically for F ), the following holds: For any maximum p, there exists two100

minima m+(p),m�(p) with the property that for all " > 0, there is � > 0 such that101

(1.5) µ (W�(p,m+(p),m�(p))) � (1� ")µ(B�(p)).102

We make a few comments on the theorem. The minima m�(p) and m+(p) are not103

necessarily distinct; the gradient flow of the height function on a sphere provides a104

simple example of this fact. The proofs below hold for F of class C3 and g of class C2.105

The minimal di↵erentiability requirement stem from the use of a linearization theorem106

of Hartman, see Th. 2.1 below. In fact, since we use this theorem locally, one could107

even relax the hypotheses to include functions and metrics that are of class C3 and C
2108

around local maxima only. The results also hold for Morse functions F : K ⇢ Rn ! R,109

where K is any compact set so that rF evaluated on @K points outside of K (said110

more precisely, e�trF
K ⇢ K for t � 0.)111

1.2. Overview of the proof. The first step of the proof is to exhibit a necessary112

condition on the gradient of F ensuring that (1.5) holds for a maximum and some113

pair of minima of F . To this end, we introduce the notion of principal flow lines of a114

maximum of F . After having defined the principal flow lines, we show in Proposition 3.9115

that if they meet a condition described below, then (1.5) holds—we will say that a116

maximum of F is simple if its principal flow lines meet this condition. Finally, we117

will show in Proposition 3.14 that gradient flows with simple maxima are generic. We118

will prove genericity in terms of the choice of g for a fixed Morse function F , and119

reciprocally genericity for a smooth F given a metric g.120

1.3. Terminology and conventions. We denote by e1, . . . , en the canonical
basis of Rn. We let Sn�1

r (p) ⇢ Rn be the unit sphere of dimension n� 1, radius r and
centered at p. We let D

n
r (p) ⇢ Rn be the closed ball of radius r centered at p and

D
n,+
r (p) be the upper “half-ball”

D
n,+
r (p) := {x 2 Rn | kx� pk  r and e

>
1 (x� p) � 0}.
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For x = (x1, . . . , xn), we define the projections

⇡1 : Rn ! R : x 7! x1 and ⇡�1 : Rn ! Rn�1 : x 7! (x2, . . . , xn).

For a Morse function F with a critical point p, we denote by ind(p) the Morse index121

of F at p. Given a map ' : M ! N , we denote by '⇤ its pushfoward [12].122

Recall that two submanifolds M1,M2 ⇢ M intersect transversally at x 2 M1 \M2123

in M if TxM1 � TxM2 = TxM . For a vector field f on M , we say that M1 and f are124

transversal at x 2 M1 if TxM1 � span{f(x)} = TxM . We shall use transversality and125

appeal to the jet transversality theorem at various places in the proof. We refer to [10]126

for an introduction. We will use throughout the paper the letter c to denote a real127

constant, with the understanding that the value of c can change during a derivation.128

2. Preliminaries. We let F 2 C
1(M); a critical point of F is a point x129

so that dF (x) = 0. Their set is denoted by CritF . We say that a critical point130

is non-degenerate if the symmetric matrix @2F
@z2 (p), where z are coordinates around131

p, is invertible. A function with non-degenerate critical points is called a Morse132

function [13]. We call the Morse index or index of a critical point p the number of133

negative eigenvalues of @
2F
@z2 (p). If F is Morse, it is easy to show that its critical points134

are isolated (see, e.g., [3, Lemma 3.2]) and thus, since M is compact, they are finite in135

number. We denote by Criti F the set of critical points of F of index i. Consequently,136

the set Critn F is the set of maxima of F , and Crit0 F the set of minima.137

Given a metric g 2 M (resp. F 2 C
1(M)) and a property S (e.g. F being138

Morse), we say that there exist h 2 M with property S arbitrarily close to g if139

every Whitney open set containing g also contains an element h with property S. For140

example, if F is a smooth function, it is well-known that there exist Morse functions141

arbitrarily close to F [3].142

The stable manifold W
s(p, g) of a critical point p is defined as143

(2.1) W
s(p, g) := {x 2 M | lim

t!1
e
�trgF (x) = p};144

when the metric is obvious from the context, we omit it and simply write W
s(p).

Similarly, we define the unstable manifold of p as

W
u(p, g) := {x 2 M | lim

t!�1
e
�trgF (x) = p}.

The stable manifold theorem (for Morse functions) states (e.g., [3, Theorem 4.2]) that
W

s(p) is a smoothly embedded open-ball of dimension n� ind(p) in M . We furthermore
have the following decomposition of M a↵orded by stable (resp. unstable) manifolds
of the critical points of a Morse function F :

M =
a

p2CritF

W
u(p) =

a

p2CritF

W
s(p).

We will use a result of Hartman [8, 14] which generalizes the Poincaré-Dulac145

theorem on the linearization of analytic vector fields near a singularity [2]. It provides146

conditions under which a di↵eomorphism is locally C
1-conjugate to its linearization at147

a fixed point:148

Theorem 2.1 (Hartman). Let U be an open subset of Rn, 0 2 U and f : U ! Rn149

be a C
2 vector field with f(0) = 0. Assume that all the eigenvalues of A := @f

@x (0)150

have a negative real part. Then there exists open neighborhoods V ⇢ U , and W of the151

origin, and a C
1 di↵eomorphism  : V ! W so that for z =  (x), the di↵erential152

equation ẋ = f(x) is conjugate to ż = Az.153

This manuscript is for review purposes only.



ON GRADIENT FLOWS INITIALIZED NEAR MAXIMA 5

We will rely on the following two simple results, whose proofs are omitted, to154

apply Theorem 2.1 to gradient vector fields.155

Lemma 2.2. Let F be a smooth Morse function and p 2 CritF . Let (', U) be156

a chart so that '(p) = 0. Denote by H
g
'(x) = d('⇤rg

F ) the Jacobian matrix of157

rg
F expressed in the coordinate chart (', U). Then H

g
'(0) is diagonalizable and has158

real eigenvalues, which are independent from '. Furthermore, the number of negative159

eigenvalues of Hg
'(0) is equal to the Morse index of p.160

Proof. We work in the coordinates z = '(x), with 0 = '(p). Denote by G(z) 2
Rn⇥n the expression of g in these coordinates. Then '⇤rF = G

�1 @F
@z and d'⇤rF =

d(G�1) · @F@z +G
�1 @2F

@z2 . Since
@F
@z (0) = 0, we obtain that

d'⇤rF (0) = G
�1(0)

@
2
F

@z2
(0).

Since g is Riemannian, G�1(0) is positive definite. It is easy to see that d'⇤rF (0) is161

similar to the symmetric matrix G
�1/2(0)@

2F
@z2 (0)G�1/2(0). Hence, it is diagonalizable162

with real eigenvalues. Furthermore, it is a direct consequence of Sylvester’s inertia163

theorem that the index of @
2F
@z2 (0) is independent of the choice of coordinates and equal164

to the Morse index of F at p. It is then clear from the previous relation that it is165

also the number of negative eigenvalues of d'⇤rF . Finally, it is well-known that the166

eigenvalues of the linearization of a vector field at an equilibrium are independent of167

the choice of coordinates.168

Since the eigenvalues of Hg
'(0) are independent of the chart ', we will simply refer to169

the eigenvalues of Hg(0).170

The following Corollary provides a normal form for gradient flows around maxima171

(or minima):172

Corollary 2.3. Let F be a smooth Morse function on the Riemannian manifold173

(M, g) and let rF be its gradient. For any p 2 Critn F , there exists a chart (', U) with174

'(p) = 0 so that the gradient flow equation ẋ = �rF is C
1-conjugate to ż = �⇤z in175

the coordinates z = '(x), where ⇤ = diag(�1, . . . ,�n), with �1  �2  · · ·  �n < 0.176

3. Proof of the main result. We start by describing the intersection of stable177

manifolds of rF with submanifolds of M . The result is needed for the proofs of178

Propositions 3.9 and 3.14. The topology on subspaces of M is the usual subspace179

topology.180

Lemma 3.1. Let (M, g) be a closed Riemannian manifold and F a smooth function.181

Let S be an embedded submanifold of codimension one in M that is everywhere182

transversal to rg
F and set M0 :=

F
q2Crit0 F W

s(q). Then M
S
0 := M0 \ S is open183

dense in S.184

Proof. Recall the stable manifold decomposition of M :

M =
G

q2CritF

W
s(q)

where each stable manifold W
s(q) is a smoothly embedded open ball of dimension

n� ind(q). When ind(q) = 0, the embedding is also a submersion and thus an open
map. Hence, for q 2 Crit0 F , W s(q) is open in M and M0 is also open, since it is a
union of open sets. Set

M1 := M �M0 =
G

q2CritF |ind(q)�1

W
s(q).
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Then M = M0 tM1 and M1 is closed. Set MS
1 := M1 \ S, then M

S
1 is closed in S185

and we have S = M
S
0 tM

S
1 . Hence M

S
0 is open in S as claimed.186

It remains to show that MS
0 is dense in S or, equivalently, that MS

1 has an empty
interior in S. To see this, first recall that M1 is the disjoint union of embedded open
balls of dimension at most n� 1, and thus by Sard ’s theorem, M1’s interior in M is
empty. Now assume by contradiction that there exists a non-empty open set U ⇢ M

S
1 ,

and let x0 2 U . Let B ⇢ U be an embedded closed ball of dimension n� 1 properly
containing x0. Because rg

F is transversal to S, for " > 0 small enough,

B1 := e
[�","]rgF ·B

is di↵eomorphic to [�", "]⇥B. Thus there exists an open neighborhood of x0 in M187

contained in B1. But since B ⇢ M
S
1 ⇢ M1 and M1 is invariant under the gradient188

flow, then B1 ⇢ M1 and M1 has a non-empty interior in M , which is a contradiction.189

In conclusion, MS
1 is a closed set with empty interior in S. Its complement M

S
0 is190

then open dense in S as claimed.191

Remark 3.2. Lemma 3.1 can be simplified under the additional assumption that192

rg
F is a Morse-Smale vector field, i.e., under the additional assumption that the193

stable and unstable manifolds of rg
F intersect transversally. With this additional194

assumption, one can obtain as a consequence of the �-Lemma [15, Lemma 2.7.1] that195

the closure of M0 is equal to M1 (see also [19, Chapter 2]).196

3.1. Principal flow lines and simple gradients. A smooth curve �t : R ! M197

is a trajectory of the gradient flow of F (resp. gradient ascent flow of F ) if it satisfies198

�̇(t) = �rF (�(t)) (resp. �̇t = rF (�t)) for all t 2 R. Since F is Morse, it is well199

known that limt!±1 �t 2 CritF [13]. We introduce the following definition:200

Definition 3.3. Let (M, g) be a smooth Riemannian manifold and �t a smooth201

curve in M . We say that �t reaches p 2 M tangentially to v 2 TpM if202

1. limt!1 �t = p.203

2. limt!1
�̇t

k�̇tk exists and is equal to v204

The existence of the limit in condition 2 of Def. 3.3, under the assumption that rF205

be analytic, is the content of Thom’s generalized gradient conjecture [11]. While we206

can construct smooth gradients for which this limit does not exist, we show below in207

Lemma 3.5 that when F is Morse, its existence can easily be shown along what we208

call the principal flow lines.209

We now define a class of gradient vector fields for which the main inequality (1.4)210

holds. We call them gradients with simple maxima. In order to define them, we first211

introduce the notion of principal flow line of a maximum of rF .212

Definition 3.4 (Principal flow lines). Let F be a smooth Morse function with213

gradient vector field rg
F and p 2 Critn F . Denote by H

g(p) the linearization of rF214

at p and let v 2 TpM be a vector in the eigenspace of the smallest eigenvalue of Hg(p).215

We say that a trajectory is a principal flow line of rF at p if it is a trajectory of216

the gradient ascent flow that reaches p tangentially to v.217

We have the following result:218

Lemma 3.5. If the algebraic multiplicity of the smallest eigenvalue of Hg(p) is219

equal to one, then rg
F has exactly two principal flow lines at p.220

Proof. Let (', U) be the chart of Corollary 2.3, and set z = '(x). The gradient
ascent flow is then

d

dt
z = ⇤z,
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for ⇤ = diag(�1, . . . ,�n) and �1 < �2  · · ·  �n < 0. Let r > 0 be so that221

Sr(0) ⇢ V
0 := '(U). Note that Sr(0) parametrizes the set of gradient ascent flow lines222

that reach p; indeed, every such flow lines intersects Sr(0) at a unique z0 2 Sr(0), and223

is thus of the form z(t) = exp(⇤t)z0.224

We can write z0 =
Pn

i=1 ⇣iei for some coe�cients ⇣i 2 R, and exp(⇤t) =Pn
i=1 e

�iteie
>
i . Since e

>
i ej = �ij , where �ij is the Kronecker delta, we have that

z(t) =
Pn

i=1 e
�it⇣iei and thus

⇤z(t) =
nX

i=1

�i⇣ie
�itei = e

�1t

 
�1⇣1e1 +

nX

i=2

�i⇣ie
(�i��1)tei

!
.

The norm of the above vector is

k⇤z(t)k =

 
nX

i=1

�
2
i ⇣

2
i e

2�it

!1/2

= e
�1t

 
�
2
1⇣

2
1 +

nX

i=2

�
2
i ⇣

2
i e

2(�i��1)t

!1/2

.

From the above two equations, we conclude that

lim
t!1

⇤z(t)

k⇤z(t)k = lim
t!1

�1⇣1e1 +
Pn

i=2 �i⇣ie
(�i��1)tei

�
�
2
1⇣

2
1 +

Pn
i=2 �

2
i ⇣

2
2e

2(�i��1)t
�1/2 .

Recall that by assumption, �i��1 > 0, 2  i  n. Since the ei are linearly independent,225

we conclude that the above limit is ±e1 if and only if ⇣i = 0 for 2  i  n, and thus226

⇣1 = ±r. This concludes the proof, with the vector v 2 TpM obtained by tracing back227

the changes of variable used.228

If the conditions of Lemma 3.5 are not met, a maximum of a Morse function can229

have more than two principal flow lines. For example, consider F (x) = �x
>
Qx on230

Rn, where Q is a positive definite matrix. Then F has a maximum at the origin. If231

Q = I, then every flow line is a principal flow line.232

Remark 3.6 (Intrinsic definition of principal flow lines). In view of Lemma 3.5, we233

can define the tangent vector to a principal flow line v 2 TpM intrisically as follows. For234

vector fields X,Y , denote by LXY the Lie derivative of Y along X. If p is a zero of X,235

i.e., X(p) = 0, then (LXY )(p) depends on the value of Y at p only. Hence, we conclude236

that if p 2 CritF , we can define the linear map LrF : TpM ! TpM : w 7! LrFW237

where W is any di↵erentiable vector field with W (p) = w. Then a short calculation238

shows that LrF has H'(p) as matrix representation in the coordinates '. The239

principal flow lines at p are thus the trajectories of the gradient ascent flow that reach240

p tangentially to v 2 TpM , where v is an eigenvector of LrF corresponding to the241

smallest eigenvalue.242

We will denote the principal flow lines of rg
F at p by �+t (p, g) and �

�
t (p, g).243

Equipped with the above Lemma, we define gradient vector fields with simple maxima:244

Definition 3.7 (Gradient vector fields with simple maxima). Let (M, g) be a245

Riemannian manifold and F 2 C
1(M) be Morse function with a maximum at p. We246

say that p is a simple maximum of rF if Hg(p) has a unique smallest eigenvalue and247

its principal flow lines belong to the stable manifolds of some minima of rF . If all248

the maxima of rF are simple maxima, we say that rF is simple.249

The above definition can be reformulated as follows. Let p 2 Critn F and fix a choice250

vp of eigenvector spanning the eigenspace of Hg(p) corresponding to the smallest251
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Sr

�
�

�
+

e1

e2

Lr,r0 Lr,r0

Cr,r0

@Vr,r0

Vr,r0

r0

⇢Wp

Fig. 1: The simple maximum p of rF for a two-dimensional M has two principal flow lines,

aligned with the e1 axis. The sphere Sr is centered at p and Cr,x is the spherical cap with the

e1 coordinate larger than x. The set Lr,x is the boundary of Cr,x; it is a sphere of dimension

n� 2. Its image via the gradient flow is @Vr,x. We express, in Lemma 3.8, the set @Vr.x as a

function from W (here, the e2 axis) to R (the e1 axis.)

eigenvalue. Then rF is simple if for some (and thus all) t 2 R,252

(3.1)
[

p2Critn F

{�+t , �
�
t } ⇢

[

q2Crit0 F

W
s(q).253

3.2. Proof of the main theorem for simple gradients. We now show that254

under the condition that rF is simple, the inequality (1.4) holds. We start with255

expressing an invariant set of rF as the epigraph of a di↵erentiable function locally256

around a maximum p. To describe this set, denote by Cr,r0 , for 0 < r0 < r the top cap257

of Sn�1
r (0), where top cap refer to the first coordinate (i.e., along the e1 axis) being258

greater than r0 (see Fig. 1). Its boundary, which we denote by Lr,r0 , is a sphere of259

dimension n� 2 centered at r0e1 given by:260

(3.2) Lr,r0 := {(z1, z2, . . . , zn) | z1 = r0 and
nX

i=2

z
2
i = ⇢

2} = S
n�2
⇢ (r0e1)261

where ⇢ =
p
r2 � r

2
0. Let �1 < �2  �3  · · ·  �n < 0, ⇤ = diag(�1, . . . ,�n) 2 Rn⇥n262

and define the diagonal system263

(3.3) żi = �izi, for 1  i  n.264

We let Vr,r0 be the image of Cr,x under the flow of Eq. (3.3):265

(3.4) Vr,r0 := e
[0,1]⇤ · Cr,r0 = {z 2 Rn | z = e

⇤t
y for t 2 [0,1], y 2 Cr,r0}.266

The boundary of Vr,r0 is then @Vr,r0 = e
⇤t · Lr,r0 . The following result expresses this267

boundary as the graph of a function from Rn�1 ! R, where by convention the domain268

Rn�1 is the space spanned by {e2, . . . , en}, and the codomain is spanned by e1.269
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Lemma 3.8. Let Vr,r0 ⇢ Rn be as in (3.4) for the dynamics of (3.3) and let
W := {w 2 Rn�1 | kwk  ⇢}. Then @Vr,r0 is the graph of a positive di↵erentiable
function Fl : W ! R, i.e., @Vr,r0 = {(Fl(w), w) | w 2 W}. Furthermore, for

Fu : W ! R : w 7!
⇣

kwk
⇢

⌘�1
�2

r0, it holds that

Fl(w)  Fu(w).

The case n = 2 is proven: we have that Lr,r0 = {(r0, ⇢), (r0,�⇢)} and @Vr,r0 =
{(e�1tr0,±e

�2t⇢) | t 2 [0,1]}. A short calculation yields that @Vr,r0 = (Fl(w), w) for
the function

Fl : w 7!
✓
|w|
⇢

◆�1
�2

r0, w 2 [�⇢, ⇢].

We now prove the general case:270

Proof of Lemma 3.8. Denote a point in Rn as z1e1 + z2e2 + · · ·+ znen and recall
the definition of Lr,r0 in Eq. (3.2). Set Sn�2

⇢ := {(z2, . . . , zn) |
Pn

i=2 z
2
i = ⇢

2}. From
Eq. (3.3), we obtain

@Vr,r0 = {(e�1tz1, e
�2tz2, . . . , e

�ntzn) | (z1, . . . , zn) 2 Lr,r0 , t 2 [0,1]}.

Set W0 := W � {0}. The map

� : [0,1)⇥ S
n�2
⇢ ! W0 : (t, z2, . . . , zn) 7! (e�2tz2, . . . , e

�ntzn)

is a di↵eomorphism onto its image. Recalling that ⇡1 is the projection onto the first
coordinate, we see that @Vr,r0 � {0} is the graph of

Fl(w) := exp(�1⇡1(�
�1(w))r0,

which is di↵erentiable and can be di↵erentiably extended by 0 at 0.271

We now show that Fu dominates Fl over W0. To see this, it is easier to work272

in the coordinates a↵orded by ��1: in these coordinates, w = �(t, z2, . . . , zn) and,273

recalling that ⇡�1 is the projection (z1, z2, . . . , zn) 7! (z2, . . . , zn), we have274

Fu(w) = Fu(⇡�1(e
⇤t
z)) =

 pPn
i=2 e

2�itz2i

⇢

!�1/�2

r0275

=

0

@e
�2t

q
z
2
2 +

Pn
i=3 e

2(�i��2)tz2i

⇢

1

A

�1/�2

r0276

� e
�1tr0 = Fl(w)277278

where we used the facts that �1 < �2  �n < 0, 3  i  n and
Pn

i=2 z
2
i = ⇢

2 to obtain279

the inequality.280

We are now ready to prove that inequality (1.4) holds for simple gradient flows.281

Proposition 3.9. Let M be a closed manifold, and µ and d as in Theorem 1.1.
Let (F, g) be so that rg

F is simple, Then for p 2 Critn(F ), there exists m+(p),m�(p) 2
Crit0(F ), not necessarily distinct, with the property that for all " > 0, there is � > 0
such that

µ

⇣
x 2 B�(p) | lim

t!1
e
�trF

x 2 {m+(p),m�(p)}
⌘
� (1� ")µ(B�(p)).
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Proof. Fix " > 0. Let (', U) be a chart as in Corollary 2.3. The gradient ascent
flow in the coordinates given by z = '(x) has the form

ż = ⇤z

in '(U), where ⇤ = diag(�1, . . . ,�n). The principal flow lines �+ and �
� of p are282

aligned with the half-lines {z1e1 | z1 > 0} and {z1e1 | z1 < 0}, respectively.283

Because p is simple, the principal flow lines �+ and �� of p belong to the stable284

manifold of some minima of F ; denote them m+(p),m�(p) 2 Crit0 F respectively. Let285

K ⇢  (U) be a compact, contractible set containing the origin in its interior. Since286

the distance d is uniformly comparable to the Euclidean distance in K, i.e., there287

exists constants � > ↵ > 0 such that288

(3.5) ↵kzk  d(0, z)  �kzk, for all z 2 K,289

where with a slight abuse of notation, we write d(0, z) for d(p,'�1(z)). Fix r > 0 such290

that Sr/↵ ⇢ K and Sr ⇢ K. For any 0 < � < r, let B� := {z | d(0, z)  �} be the ball291

of radius � centered at 0 for the distance d, and by D� := {z | kzk  �} the ball of292

radius � centered at 0 for the Euclidean distance. We also let B+
� := {z 2 B� | z1 � 0}293

(and B
�
� is defined in the obvious way), and define the half-balls D±

� for the Euclidean294

distance similarly.295

Because p is simple, we have re1 2 W
s(m+(p)), and because W

s(m+(p)) is open296

in M , there exists r0 2 (0, r) such that the closed spherical cap Cr,r0 of Sr is contained297

in W
s(m+(p)); see Fig. 2-left. Hence Vr,r0 ✓ W

s(m+(p)), where we recall that Vr,r0298

is the image of Cr,r0 under the flow as we defined in (3.4).299

We claim that300

(3.6) lim
�!0

µ(B+
� \ Vr,r0)

µ(B+
� )

= 1301

and similarly, that lim�!0
µ(B+

� \V �
r,r0

)

µ(B+
� )

= 1, where V �
r,r0 is the image of a lower spherical

cap under the flow. Assuming the claim holds, using elementary properties of measures,
we have that (see Lemma 5.3 in the Appendix for a proof)

lim
�!0

µ(B� \ (Vr,r0 [ V
�
r,r0))

µ(B�)
= 1

Since
�
Vr,r0 [ V

�
r,r0

�
✓ (W s(m+(p)) [W

s(m�(p))), we conclude that for all " > 0,302

there exists � so that303

(3.7) µ ([W s(m�(p)) [W
s(m+(p))] \B�) � (1� ")µ(B�),304

as announced.305

It now remains to prove the claim, i.e. prove that (3.6) holds. Let W and
Fu(w), Fl(w) be as in Lemma 3.8 and define the graph of F : W ! R as the set
{(F (w), w) 2 Rn | w 2 W}. We denote by Epi(f) the epigraph of a function f , and
by Hyp(f) its hypograph. Since Fu � Fl, we have that (see Fig. 2-right)

Epi(Fu) \D
+
� ✓ Epi(Fl) \D

+
� = Vr,r0 \D

+
� ,

for any 0 < � < r. Passing to hypographs, we have306

(3.8) Vr,r0 \D
+
� = D

+
� � (D+

� \Hyp(Fl)) ◆ D
+
� � (D+

� \Hyp(Fu)).307
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Br

W
s(m)

Vr,x

r0
Lr,r0 Lr,r0

Cr,r0

�
�

�
+

p

B
+
�

B
�
�

Fu

Fl = @Vr,x

�
�

�
+

D�2D�1

p

Fig. 2: Left: In the coordinates of Cor. 2.3, the local principal flow lines are the positive

and negative e1 (vertical) axis. The spherical cap Cr,x is contained in a stable manifold,

thus so is its image Vr,x under the gradient ascent flow. Right: We can express Vr,x as the

epigraph of Fl(w), which is dominated by Fu(w) and thus Hyp(Fl) ⇢ HypFu. Furthermore,

D+
� \Hyp(Fu) is contained in B�2 \Hyp(Fu) which is itself contained into the cylinder with

base a ball of radius �2 and height Fu(�2) (light shaded rectangle).

From (3.5), we have the inclusions308

(3.9) D�1 ✓ B� ✓ D�2309

for �1 := �
� and �2 := �

↵ . Hence,310

(3.10) B
+
� \Hyp(Fu) ✓ D

+
�2

\Hyp(Fu).311

From (3.9) and (3.10), we have that312

(3.11)
µ
�
B

+
� \Hyp(Fu)

�

µ(B+
� )


µ
�
D

+
�2

\Hyp(Fu)
�

µ(D+
�1
)

.313

Because Fu(w) is rotationally symmetric about e1 and strictly increasing as kwk
increases, we have

µ(D+
�2

\Hyp(Fu))  c�
n�1
2 Fu(�2)  c�

n�1+�1/�2 ,

whereas µ
�
D

+
�1

�
= c�

n. Since �1/�2 > 1, we conclude from the previous relation314

together with (3.11) that315

(3.12) 0  lim
�!0

µ
�
B

+
� \Hyp(Fu)

�

µ(B+
� )

 lim
�!0

µ(D+
�2

\Hyp(Fu))

µ(D+
�1
)

= 0.316

From (3.8), we have that317

(3.13)
µ
�
Vr,r0 \B

+
⇢

�

µ(B+
� )

� 1�
µ
�
B

+
� \Hyp(Fu)

�

µ(B+
� )

.318
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Taking the limit as � ! 0, using (3.12) and recalling that Vr,r0 ✓ W
s(m+(p)) we get

that

lim
�!0

µ
�
W

s(m+(p)) \B
+
�

�

µ(B+
� )

= 1,

thus proving (3.6) as claimed. Applying the same reasoning to the stable manifold of319

m
�(p) and B

�
� , we get that similarly lim�!0

µ(W s(m�(p))\B�
� )

µ(B�
� )

= 1.320

3.3. Simple gradients are generic. We now prove that gradient vector fields321

with simple maxima are generic. There are two requirements to being simple: (1) the322

smallest eigenvalue of the linearized vector field has geometric multiplicity one, and323

(2) the principal flow lines need to be contained in stable manifolds of minima of F .324

We treat the two requirements separately.325

To this end, for F 2 C
1(M), we denote by M0,F the set of Riemannian metrics g326

on M with the property that the smallest eigenvalue of the linearization of rg
F (p) has327

geometric multiplicity one when evaluated at any maximum p 2 Critn(F ). We write328

the requirement simply as �1(Hg(p)) < �2(Hg(p)) for all p 2 Critn F . We further329

denote by MF the subset of M0,F consisting of metrics g for which rg
F has simple330

maxima. Given g 2 M, we similarly let F0,g be the set of Morse functions F 2 C
1(M)331

on (M, g) so that for each p 2 Critn F , �1(Hg(p)) < �2(Hg(p)) and Fg the subset of332

F0,g consisting of functions F for which rg
F has simple maxima. We will show that333

MF is residual in M and that Fg is residual in C
1(M).334

3.3.1. Geometric multiplicity of the smallest eigenvalue. We prove that335

the set of metrics for which the linearization of rg
F has a smallest eigenvalue of336

multiplicity one at each maximum p is open-dense:337

Proposition 3.10. The set M0,F is open and dense in M.338

Proof. We first show the set is open. Let F be a Morse function so that for339

each p 2 Critn F , �1(Hg(p)) < �2(Hg(p)). Since the eigenvalues of Hg(p) depend340

continuously on g, there exists an open set Up ⇢ G so that for all h 2 Up, �1(Hh(p)) <341

�2(Hh(p)). Since |Critn F | is finite, U :=
T

p2Critn F Up ⇢ M is an open set containing342

g. Hence M0,F is open.343

To show that M0,F is dense, assume that g is so that there exists p 2 Critn F with344

�1(Hg(p)) = �2(Hg(p)). We show that we can find, in any open set containing g, a345

metric h so that �1(Hh(p)) < �2(Hh(p)). Recall that in coordinates around p sending346

p to 0 2 Rn, we can write H
h(p) = H

�1(0)@
2F
@z2 , where H(x) is a positive definite347

matrix defined in a neighborhood of 0. Using a bump function around p, the fact that348

the map X 7! X
�1 is a di↵eomorphism around X = H

�1(0), and Lemma 5.1 (which349

states that if a product AB of two positive definite matrices has repeated eigenvalues,350

there exists A
0 positive definite and arbitrarily close to A so that A

0
B has distinct351

eigenvalues), we can obtain a metric h arbitrarily close to g and so that H�1(0) @F@x2352

has distinct eigenvalues.353

We now show the equivalent result for a fixed metric g and arbitrary Morse354

function F . Just as above, we in fact prove the stronger statement that the set of355

Morse function so that Hg(p) has distinct eigenvalues at each of the critical points of356

F is open dense. The proof relies on the notion of jet tranversality – we refer to [10]357

for an introduction.358

Proposition 3.11. The set F0,g is open dense in C
1(M).359
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Proof. We know that Morse functions are an open dense subset of C1(M) [3].360

We show that Morse functions for which H
g(p) has distinct eigenvalues at p 2 Critn F361

form an open dense subset of the set of Morse functions, and thus are open dense in362

C
1(M).363

GivenA 2 Rn⇥n, denote by pA(s) its characteristic polynomial in the indeterminate364

s and let p
0
A(s) = d

dspA(s). Denote by rA 2 R2n⇥2n the Sylvester resultant of pA365

and p
0
A. It is well known that det(rA) = 0 if and only if pA has a double root. Let366

Z ⇢ Rn⇥n be the zero set of det(rA). Relying on Whitney’s stratification theorem [20],367

we can show that Z is a finite union of closed manifolds.368

Denote by J
2(M,R) the second jet-space of maps F : M ! R and define

C = {(x, y, 0n, H) 2 J
2(M,R) | x 2 M, y 2 R, G�1(x)H 2 Z)},

where G(x) is the matrix expression of g. Then C is a finite union of submanifolds of369

J
2(M,R) of codimension � n+ 1 (since we restrict the first derivative to be zero, and370

Z is the union of submanifolds of codimension at least one.) Consequently, the second371

jet prolongation of F , j2(F ), and C are transversal only at points at which they do372

not intersect. Furthermore, C is easily seen to be closed in J
2(M,R). Hence, from373

the jet-transversality theorem [10], we conclude that the set of real-valued functions374

without critical points for which H
g(p) has repeated eigenvalues is open and dense in375

C
1(M).376

3.3.2. Continuity of principal flow lines with respect to F/g. We now377

address the second part of the simplicity of rF requirement: the principal flow lines378

of each maxima belong to the stable manifolds of minima of F . The first step is to379

establish that principal flow lines depend continuously on the metric/function.380

Lemma 3.12. Let (M, g) be a closed Riemannian manifold. Let F be a smooth381

Morse function, and p 2 M a simple maximum of rg
F . Then, there exists a C

1-382

embedded closed ball Bp 3 p in M and an open set U ⇢ M containing g with the383

following properties:384

1. Bp contains no other critical points of F385

2. the principal flow line �+(p, h) (resp. ��(p, h)) intersect @Bp at one point,386

and the intersection �+ \ @Bp (resp. �� \ @Bp) depends continuously on h,387

h 2 U .388

3. the boundary @Bp is everywhere transversal to rh
F , h 2 U389

4. Bp is an invariant set for the gradient ascent flow of rh
F , h 2 U .390

Proof. We work in the chart (', U) a↵orded by Corollary 2.3 sending p to 0 2 Rn,391

and for which the gradient flow di↵erential equation is ż = ⇤z, with ⇤ a diagonal392

matrix with diagonal entries �1 < �2  · · ·  �n < 0.393

Since rh
F depends continuously on h, from the proof of Hartman’s theorem [8],394

we know that there exists a neighborhood V 3 0, a neighborhood U0 ⇢ M of g and395

a continuous mapping  : U0 ! Di↵(V,Rn) such that for any metric h 2 U0, the396

di↵eomorphism  h : V ! Rn linearizes rh
F around 0 (see also [14, p. 215], the397

author calls the continuous dependence of the linearizing di↵eomorphism with respect398

to the vector field robust linearization). Note that in the coordinates used,  g = Id.399

The principal flow lines of rg
F in the z-coordinates are locally given by the400

half-lines starting at the origin and spanned by the vectors ±e1. Let r > 0 be such401

that Br := Br(0) ⇢ V . The half-lines intersect @Br = Sr at exactly two points, denote402

them z+(g), z�(g), and these intersections are clearly transversal.403

Taking a subset U1 ⇢ U0, we can ensure that for all h 2 U1, �1(Hh(p)) <404
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�2(Hh(p)), since the eigenvalues depend continuously on h. Similarly, in the (lin-405

earizing) coordinates  h, the principal flow lines of rh
F are half-lines starting at the406

origin and spanned by an eigenvector v1(Hh
 (p)) associated with �1(Hh

 (p)) and, from407

Lemma 5.2, we know that the eigenspace v1(Hh
 (p)) depends continuously on h as408

well. The principal flow lines of rh
F in the z-coordinates are given by the image409

under  �1
h of the half-line starting at zero and parallel to v1(Hh

 (p)), and thus depend410

continuously on h. Now since the principal flow lines of rg
F intersect Sr transversally,411

by taking a subset U2 ⇢ U1, we can ensure that for all h 2 U2, the principal flow lines412

of rh
F in z-coordinates intersect Sr transversally and the intersections z+(h), z�(h)413

are continuous in h.414

Finally, for the last two items, since rg
F is linearized by ' as ż = ⇤z, with ⇤415

diagonal and with negative, real eigenvalues, then rg
F evaluated on Sr points inward,416

toward Br: indeed, the inward pointing normal to Sr at z is �z and its inner product417

with rg
F is �z

>⇤z > 0. Because Sr is compact, the same conclusion holds for vector418

fields close enough to rg
F . Hence Br is invariant for rh

F , for h close to g. Setting419

Bp to be the inverse image under the chart420

(3.14) Bp := '
�1(Br(0)),421

we obtain a set with the required properties.422

Remark 3.13. The above result transposes immediately to the case where the423

Riemannian metric g is fixed, and we consider an open set of function U0 ⇢ C
1(M)424

containing F where rg
F has a simple maximum at p. The continuous dependence425

of rg
F on F is obvious. The only point of demarcation is that when varying F to426

a nearby F1, the critical points of rg
F1 may move. It is easy to see though that for427

a U0 small enough, they move continuously and their index remains the same: there428

exists a continuous map P : U0 ! V ⇢ M so that P (F1) is a critical point of F1. (See,429

e.g., [15, Lemma 3.2.1] or [14]).430

3.3.3. Genericity of simple gradients. We now prove the second part of the431

main theorem, namely that simple gradient flows are generic.432

Proposition 3.14. Let F 2 C
1(M) be a Morse function. The set MF of433

Riemannian metrics for which rg
F is simple is residual. Similarly, for a Riemannian434

manifold (M, g), the set F of smooth functions for which rg
F is simple is residual.435

We prove the first statement, and then indicate the minor changes needed to436

obtain the second statement. The idea of the proof is to consider the sets of metrics437

h for which the principal flow lines of rh
F do not intersect an increasing sequence of438

nested compact subsets of the stable manifolds of the saddle points of F . We show439

that for each compact subset, the set of such metrics is open and dense in the set of440

Riemannian metrics. Since the limit of the sequence of these compact subsets is the441

union of the stable manifolds of the saddle points, this will prove that the set of such442

metrics is generic.443

Proof. Pick a Morse function F 2 C
1(M) and metric g 2 M0,F . We denote by444

p1, . . . , pm and by s1, . . . , sl the maxima and saddle points of F , respectively. We445

have shown that M0,F is open dense in M, it thus remains to show that metrics g446

in M0,F for which the principal flow lines of rg
F at pi, 1  i  m, belong to the447

stable manifolds of some minima form a generic set. Owing to the stable manifold448

decomposition of M and the fact that W s(p) = {p} for p 2 Critn F , it is equivalent to449

show that, generically for g, the principal flow lines of rg
F at pi do not belong to the450

stable manifold of some saddle points.451
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To this end, we will make use of the following straightforward characterization452

of generic sets: given that M0,F is dense in M, the subset MF ✓ M is generic if453

and only if for each g 2 M0,F , there exists a neighborhood Ng of g in M so that454

MF
T
Ng is generic in Ng. For a proof of this statement, we refer to, e.g., [15, Lemma455

3.3.3]. The statement allows us to consider only elements of M0,F , which is an easier456

task than considering any element of MF .457

For each si, we letW s
0 (si, g) be a compact neighborhood of si in the stable manifold458

W
s(si, g). Let ⌃s

i be a codimension one submanifold of M that is (1) transversal459

to rg
F and to W

s
0 (si, g) and (2) meets W s

0 (si, g) at the boundary @W s
0 (si, g). The460

construction of the set ⌃s
i appears in the proof of the Kupka-Smale theorem [16], and461

we refer to, e.g., [15, p.107] for a constructive proof of its existence.462

Because rh
F depends continuously on h, we know from the stable manifold463

theorem [15, Th. 2.6.2] that for h in a small enough neighborhood Ng ⇢ M0,F , the464

maps h 7! W
s
0 (si, h), 1  i  l, are continuous and so that W

s
0 (si, h) intersects ⌃s

i465

transversally at @W s
0 (si, h), 1  i  l. Note that since M0,F is open in M, Ng is also466

a neighborhood of g in M.467

Let k � 1 be a positive integer. Define

W
s
k (si, h) := e

�krhF ·W0(si, h),

i.e., the image of W s
0 (si, h) by applying the gradient flow for a time of k (or the

gradient ascent flow for a time �k.) Since e
�krhF : M ! M is a di↵eomorphism for

each k, W s
k (si, h) is a compact subset of M that depends continuously on h. Finally,

we have by definition that

W
s(si, h) =

[

k�0

W
s
k (si, h).

Let Mk,i(Ng) ✓ M0,F
T
Ng be the set of metrics h in Ng for which the local

principal flow lines of rh
F at pi do not intersect W s

k (sj , h) for all 1  j  l, 1  i  m.
Let

Mk(Ng) =
m\

i=1

Mk,i(Ng).

We will show that for all k � 0, Mk(Ng) is open dense in Ng. Since \1
k=1Mk(Ng) =468

MF \ Ng, this shows that MF \ Ng is generic and, using the characterization of469

generic sets described above, proves the result.470

Mk,i(Ng) is open in Ng: We show that for any h 2 Mk,i(Ng), there exists an open471

neighborhood Uh of h contained in Mk,i(Ng).472

To this end, let Bpi ⇢ M and U i ⇢ M0,F be the closed ball and open set,473

respectively, from Lemma 3.12 for the metric h. Since rh
F is transversal to @Bp and474

codim @Bpi = 1, then Wk(sj , h) and @Bpi intersect transversally. Additionally, because475

the map h
0 7! W

s
i (sj , h

0) is continuous for h0 2 Mk,i(Ng), so are the intersections of476

W
s
i (sj , h

0) with Bpi as a function of h0. From the same Lemma, denoting by �h
0

i,0 the477

(positive) local principal flow line of rh0
F at pi, we know that the map h

0 7! �
h0

i,0\@Bpi478

is continuous as well.479

Putting the above two facts together, we conclude that there exists a neighborhood480

Uh of h in Mk,i(Ng) so that for all h0 2 Uh, the principal flow lines �h
0

i,0 do not intersect481

W
s
k (si, h

0). Hence Mk,i(Ng) is open.482
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Mk,i(Ng) is dense in Ng: We will show that for any element h 2 Ng, there exists an483

element h0 2 Mk,i arbitrarily close to h. If h 2 Mk,i, there is nothing to prove. Hence484

assume, to fix ideas, that the positive principal flow line �hi,0 intersects [l
j=1W

s
n(sj , h).485

Using the local change of variables 'h : (U, pi) ! (Rn
, 0) a↵orded by Hartman’s486

Theorem (Theorem 2.1) around the maximum pi, the system follows the dynamics487

ż = ⇤z and after potentially another linear change of variables, we can assume that488

⇤ = diag(�1, . . . ,�n), with �1 < �2  · · ·  �n < 0 the eigenvalues of Hh(p). From489

Eq. (3.14), we know that Bpi in the z coordinates is a ball Br(0) of given radius r > 0490

and centered at 0.491

Denote by �+0 the segment (te1, 0, . . . , 0) 2 Rn, 0  t  r. It is a compact subset492

of the (positive) principal flow line of rh
F at pi. Let z0 = (r/2, 0, . . . , 0). Since z0 is493

not a critical point of rh
F , by the flowbox theorem [15, p. 93], we know there exists a494

neighborhood U0 of z0, which we take to be included in the ball of radius r/2 around495

z0, and a local di↵eomorphism '0 : U0 ! Rn under which the dynamics is, in the new496

variables induced by '0 (which we denote by y) given by497

(3.15) ẏ = (1, 0, . . . , 0).498

Without loss of generality, we can assume that '0(z0) = (r/2, 0, . . . , 0) =: y0. See499

Fig. 3 for an illustration.500

Working in the y-coordinates, let K be a box (unit ball for k · k1 norm) centered501

at y0 and of width 0 < r
0
< r/2 small enough so that '�1

0 (K) ⇢ Br. For any h̃ 2 M502

which agrees with h outside of K, because rh
F and rh̃

F then also agree outside of503

M �Br and this set is invariant under the flow �rh
F by Lemma 3.12, we have that504

(3.16) W
s
k (sj , h̃) \ @Br = W

s
k (sj , h) \ @Br.505

Let y1 := y0� (r0/2, 0, . . . , 0) 2 @K. Let ✓ : M ! R be a smooth positive function
with support K and such that

Z r0

0
✓(y1 + te1)dt = 1.

Now define the following smooth vector field with support in K: for v 2 Rn,

Yv(y) := ✓(y)v.

Let �vt (y1) be the solution at time t of the Cauchy problem506

(3.17) ẏ = rh
F (y) + Yv(y), y(0) = y1.507

To proceed, we show that we can always find a metric for which the vector field in508

Eq. (3.17) is the gradient of F :509

Lemma 3.15. For � > 0 small enough, there exists a metric-valued function hv

for all v 2 Rn with kvk < �, depending continuously on v, agreeing with h outside of
K, so that

rhvF (y) = rh
F (y) + Yv(y).

Proof. Because K does not contain any critical points of F , we have that dF ·510

rh
F > 0. Thus, for � small enough, we have that dF · (rh

F + Yv) > 0 for all v with511

kvk < �, y 2 K. Set Zv := rh
F + Yv.512
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From the above, we can decompose the tangent space TyM = spanZv(y) �
ker dF (y) for y 2 K. We now introduce a metric for which this decomposition of the
tangent space is orthogonal. In coordinates, it has the matrix expression

hv :=

✓
dF · Zv 0

0 h| ker dF

◆
,

where h| ker dF is the restriction of h to the n�1 dimensional subspace ker dF (precisely,513

the matrix expression for hv is in the basis {Zv, Z1, . . . , Zn�1} where the Zi are any514

independent system spanning ker dF . In particular, note that hv(Zv, Zv) = dF · Zv515

and hv(Zv, Zi) = 0, 1  i  n� 1).516

The above construction is such that hv depends continuously on v, h0 = h and517

hv = h in M � K. Finally, we show that rhvF = Zv. To this end, let W be an518

arbitrary vector field; we can decompose it uniquely as W = a1Zv + Wh, where519

Wh 2 ker dF , a1 2 R. We then have520

dF ·W = dF · (a1Zv +Wh)(3.18)521

= a1dF · Zv = a1hv(Zv, Zv)(3.19)522

= hv(a1Zv +Wh, Zv) = hv(W,Zv),(3.20)523524

which concludes the proof.525

Now introduce the flow map of (3.17)526

(3.21) � : Rn ! M : v 7! �(v) := �
v
r0(y1).527

Then, recalling that rh
F = (1, 0 . . . 0) in K, we see that �(0) = y1 + (r0, 0, . . . , 0) =:528

y2 2 @K. Furthermore, we have the following Lemma:529

Lemma 3.16. The map � defined in Eq. (3.21) is locally surjective around 0.530

Proof. We prove the statement by showing that the linearization of � around531

0 is surjective. Denote by w(t) = y1 + te1 the solution of (3.17) with v = 0. It is532

clear that w(t) is a segment of the positive principal flow line of rh
F at pi, and that533

w(0) = y1 = ((r � r
0)/2, 0, . . . , 0) and w(r0) = ((r + r

0)/2, 0, . . . , 0) = y2. Recall the534

perturbation formula [1, Sec. 32]535

(3.22)
d

d⌘
|⌘=0�(⌘v) =

Z r0

0
Yv(w(r

0 � s))ds.536

In particular, the right-hand side depends on the value of Yv along w only and, by537

construction, is equal to v. This proves that � is locally surjective as claimed.538

To conclude the proof, we show for any � > 0, we we can find v with kvk < � so539

that the gradient of F for hv is simple. Since h0 = h and hv is continuous in v, this540

shows that there exists metric arbitrarily close to h for which the gradient of F is541

simple.542

As above, let Ui 3 h be the open neighborhood of h from Lemma 3.12. By perhaps543

decreasing �, we can ensure that hv 2 Ui for all v with kvk < � (since hv depends544

continuously on v, and h0 = h.)545

Denote by x
⇤(hv) 2 @Br the point of intersection of @Br and �(pi, hv) (the

intersection is not empty per Lemma 3.12). Then for each kvk < �, x⇤(hv) is on the
same flow line as y1 since hv agrees with h outside of K. Because � is locally surjective
around 0, appealing to the inverse function theorem, we can find, for � and �1 small
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y0

Br0

�
+(p, h)

p

K

y2

y1

S y2 + u

�
+(p, h̃)Br

S1
x
⇤(h0) x

⇤(hv)

Fig. 3: The gradient flow inside Br0 goes along vertical lines. The principal flow line for h,
and for any metric agreeing with h outside of K, contains the segment (p, y1). Changing the

metric only inside K, we can make the corresponding principal flow line go through y2 + u,
for any small u. The set of realizable intersections of top face of K and principal flow lines

(by changing the metric to h0
inside K) is denoted by S. Since S is transversal to rhF (and

thus to rh0
F , since h and h0

agree outside of K), its image under the gradient flow intersects

@Br to yield S0
containing an open set around x⇤

(h0).

enough, a continuous function ��1 : u 7! v so that �(v) = u, for all u with kuk < �1.
Let S 2 @K be the subset of the ’top face’ defined as

S := {y2 + u | kuk < �1 and e
>
1 u = 0}.

Note that S and rh
F are transversal by construction.546

To make the notation simpler, we set v := ��1(u). The principal flow line of rhv

intersects S at y2 + u: every point in S can thus be made to belong to a principal flow
line of a rhvF for an appropriate v. Using again the fact that hv agrees with h0 = h

outside of K, we see that

e
�[0,1)rhvF (S) = e

�[0,1)rhF (S),

and thus S1 := e
�[0,1)rhvF (S)

T
@Br contains an open set around x

⇤(h0). Hence, for547

any x
⇤
1 2 @Br near x

⇤(h0), we can find a v so that the principal flow line of rhvF548

goes through x
⇤
1. Finally, since Wn(pi, h) = Wn(pi, hv) and Wn(pi, h) \ @Br is closed,549

there exists x⇤
1 2 @Br arbitrarily close to x

⇤(h)—and thus a v arbitrarily small—so550

that the principal flow line of rhvF does not belong to Wn(pi, hv) \ @Br and thus551

does not belong to Wn(pi, hv). This concludes the proof.552

4. Summary and outlook: max-min graphs.553

4.1. Max-min graphs. From the main result of the paper, we see that given a554

smooth n-dimensional closed manifold M , to any generic pair (F, g) 2 C
1(M)⇥M,555

there is a naturally assigned bipartite graph G = (V,E), which we call max-min graph556

of (F, g)557
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M x

F1(x)

B(p1) B(p2)

m1

p1

m2

p2

m3

p1 p2

m1 m2 m3

� + � +

m1 m2

m3

p1 p2 p3 z p1 p2 p3

m1 m2

m3

Fig. 4: Top Left: A Morse function on M = R. To each maximum pi, we can assign two

minima m�(p),m+(p) so that gradient descent for F1 initialized in B(p) converges to either

m�(p) or m+(p). Top Right: The flow graph of the gradient of F1. Each minimum has degree

two and maxima have degrees one or two. Bottom Left: A circle is embedded in the plane

with vertical axis z and we consider the Morse function F2(x) = z (height function). It has

three maxima and three minima. Bottom Right: The flow graph of the gradient of F2. All

critical points have degree two.

Definition 4.1 (Max-min graph of (F, g)). The max-min graph of a generic pair558

(F, g) 2 C
1(M)⇥M is the bipartite graph G = (V,E) with V = Crit0(F ) [ Critn(F )559

and560

E = {(pi,m�(pi)), (pi,m+(pi)) | pi Critn(F )}.

The set of possible max-min graphs for generic gradient vector fields for n = 1561

is easily seen to depend on the topology of M , and can be completely characterized:562

denote by pi and mj the elements of Critn(F ) and Crit0(F ), respectively. Denote by563

H1(M) is the first homology group of M which, since dimM = 1 and M is connected,564

has rank either 0 or 1. Recall that if M = Rn, we assume that limkxk!1 F (x) = 1565

and F has a finite number of critical points. We have (see Fig. 4 for an illustration)566

Proposition 4.2 (Max-min graphs for dimM = 1). Assume dimM = 1, then567

1. case rankH1(M) = 0: k =: |Crit0(F )| = |Critn(F )|+ 1 and there exists an
ordering of pi, mj so that

E = [k
i=1{(pi,mi), (pi,mi+1)}.

Thus deg(pi) = 2 for pi 2 Critn(F ).568

2. case rankH1(M) = 1: then k =: |Critn(F )| = |Crit0(F )| and there exists an
ordering of pi, mj so that

E = [k
i=1{(mi, pi), (mi, pi+1 mod k)}.

Thus deg(mi) = deg(pi) = 2 for mi, pi 2 V .569

The proof of the proposition is an immediate consequence of the following facts: (1)570

F is generically Morse (and thus does not have saddle points if dimM = 1); (2) the571
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m1

s1 s2

p1 p2 p3

p1 p2 p3

m1

Fig. 5: Top: We consider the height functions of an embedded sphere in R3
. The function

has three maxima p1, p2, p3, two saddle points s1, s2 and a minimum m1. Bottom: Max-min

graph of the gradient of the height function of the embedded sphere.

critical points of F can in this case be given a cyclic (if rankH1(M) = 1) or linear (if572

rankH1(M) = 0) order and (3) maxima and minima of F appear alternatively in this573

order.574

4.2. Realizable max-min graphs and topology of M . This leads us to the575

following:576

Open problem: what is the set of bipartite graphs that can be max-min graphs of577

generic pair (F, g) over M?578

To address this problem, we call an abstract max-min graph any simple bipartite579

graph G = (V0 [ V1, E) where580

1. |V0| � 1, |V1| � 1581

2. 1  deg(p)  2 for all p 2 V1582

We think of V0 as the set of minima and V1 as the set of maxima. We say that a pair583

(F, g) realizes G on M with the max-min graph of rg
F is equal to G.584

The set of abstract max-min graphs that can be realized depends on the topology585

of M , as was clear in the case dimM = 1 described in Prop. 4.2. We can also easily586

realize max-min graphs with a single node in V0 and an arbitrary number of nodes587

in V1, by generalizing the construction of Fig. 5 to add more maxima. These yield588

max-min graphs where the degree of elements in V1 is one and the degree of the589

element in V0 is unbounded. Reciprocally, we can have functions with a single node in590

V1 and an arbitrary number of nodes in V0. For example, it su�ces to consider the591

negative of the height function for the embedded sphere in Fig. 5. From this particular592

example, we also conclude that flow graphs can be disconnected: since |V0| = 3 and593

|V1| = 1 and the degree of the node in V1 is at most 2, at least one node in V0 has594

no incident edges. Furthermore, we see that reversing the direction of the gradient595

flow (i.e., considering the gradient ascent flow of F instead of the gradient descent596

flow), does not yield an automorphism of the corresponding flow graphs: indeed, while597

the elements of V0 become the elements of V1 and vice-versa, the edge sets of the two598

flow graphs do not even necessarily have the same cardinality. Finally, it should be599

clear that none of the examples described in the paragraph could be realized over a600

state-space M of dimension 1. The above leads to the question of how can one realize601

an abstract max-min graph, and what restriction on the topology of the underlying602

state-space is imposed. We will address these questions, and others, in a forthcoming603

publication.604
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4.3. Summary. Let M be a smooth closed manifold and (F, g) a generic pair605

where F is a smooth function and g a Riemannian metric on M . We have shown606

in this paper that to each maximum p of F , we can assign two minima—denoted607

m�(p),m+(p)—having the following property: the gradient flow of F initialized close608

enough to p converges with high-probability to the set {m�(p),m+(p)}. In order to609

prove the result, we introduced the notion of principal flow lines of a maximum. When610

the linearization of the gradient flow around p has a smallest eigenvalue of algebraic611

multiplicity one, we showed the existence of exactly two flow lines of the gradient612

ascent flow that reach p tangentially to the corresponding eigenspace. These are the613

principal flow lines of p. If they belong to the stable manifolds of minima of F , we call614

the corresponding gradient vector field simple. We then showed in a first part that615

for simple gradients, most of the volume of any small ball containing at maximum p616

belongs to the union of the two stable manifolds to which principal flow lines belong.617

In a second part, we showed that simple gradient vector fields are generic.618

The proof of the first part is local in nature, with the exception of the reliance619

on the global stable manifold decomposition theorem. The C
1 linearization result620

of Hartman [8] plays an important role there, and we note that it holds only if all621

eigenvalues of the linearized gradient vector field have real parts of the same sign.622

This result thus cannot be used at a saddle point of F . We also point out that the623

topological equivalence provided by the Hartman-Grobman theorem, which can be624

applied at any hyperbolic fixed point, is not su�cient to obtain our result. The second625

part of the proof shows that generically for (F, g), the linearization of the gradient flow626

at a maximum has a smallest eigenvalue of multiplicity one, and the corresponding627

principal flow lines belong to the stable manifolds of some minima. The proof that628

the linearization of the gradient vector field at p has a unique smallest eigenvalue629

relies on transversality arguments. The proof that the principal flow lines belong to630

stable manifolds of minima goes by showing that the property holds for an increasing631

sequence of compact subsets of the stable manifolds, and appealing to Baire theorem.632

Finally, we introduced the notion of max-min graph graph of a generic pair (F, g), and633

described some of its properties along with open questions.634
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5. Appendix.675

Lemma 5.1. Let A,B 2 Rn⇥n be positive definite matrices so that AB has repeated676

eigenvalues. Then for any " > 0, there exists a positive definite Q, with kQk < " and677

(A+Q)B has distinct eigenvalues.678

Proof. We give a simple, constructive proof. The matrix AB is similar to679

B
1/2

AB
1/2. The latter being symmetric, there exists an orthogonal matrix P and a680

diagonal matrix D so that P>
B

1/2
AB

1/2
P = D, where the diagonal entries of D are681

the eigenvalues of AB. Denote the pi 2 Rn the ith column of P . Then p
>
i pj = �ij and682

P
>
pi = ei. Now set vi = B

�1/2
pi. Then P

>
B

1/2(A+ "iviv
>
i )B

1/2
P = D + "ieiei>.683

Since D+ "ieie>i is diagonal, it contains the eigenvalues of P>
B

1/2(A+ "iviv>i )B1/2
P ,684

which are the same as the eigenvalues of (A + "iviv
>
i )B. It now su�ces to choose685

the "i > 0 small enough and so that D + diag("1, . . . , "n) has distinct entries, and set686

Q =
Pn

i=1 "iviv
>
i .687

Lemma 5.2. Let A 2 Rn⇥n be a real symmetric matrix with eigenvalues �1 >688

�2 � · · · � �n. Let v1 : Sn ! RPn�1 : A 7! v1(A) be a map assigning to A the689

eigenspace associated with �1. Then v1 is di↵erentiable around A.690

Proof. Consider the map

V : Sn ⇥ Rn ⇥ R ! Rn+1 : (X,u,�) 7!
✓
(�I �X)u
u
>
u� 1

◆
.

Let A 2 Sn be such that �1 > �2 and denote by v a unit eigenvector spanning the
eigenspace of �1. Then V (A, v,�1) = 0 and the di↵erential of V with respect to u,�

evaluated at (A, v,�1) is

du,�V (A, v,�1) =

✓
�1I �A v

2v> 0

◆
.

Since �1 is a simple eigenvalue of A, the above map is invertible. Hence, the implicit691

function theorem states that there is an open set U ⇢ Sn containing A and di↵erentiable692

functions �(X), u(X) such that (�(X)I�X)u(X) = 0 and ku(X)k2 = 1 for all X 2 U ,693

which proves the result.694

Lemma 5.3. Let B� = B
1
� [B

2
� and V = V

1 [ V
2 with

µ(B1
� \B

2
� ) = µ(V 1 \ V

2) = µ(B1
� \ V2) = µ(B2

� \ V1) = 0.
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Assume that

lim
�!0

µ(B1
� \ V

1)

µ(B1
� )

= lim
�!0

µ(B2
� \ V

2)

µ(B2
� )

= 1.

Then it holds that

lim
�!0

µ(B� \ V )

µ(B�)
= 1

Proof. Since B
i
� ✓ B�, we have695

0 = 1� lim
�!0

µ(B1
� \ V

1)

µ(B1
� )

= lim
�!0

µ(B1
� � (B1

� \ V
1))

µ(B1
� )

= lim
�!0

µ(B1
� � (B1

� \ V
1))

µ(B�)
696
697

and, similarly, lim�!0
µ(B2

��(B2
�\V 2))

µ(B�)
= 0. Summing the above two equalities, we get698

in the numerator699

µ(B1
� � (B1

� \ V
1)) + µ(B2

� � (B2
� \ V

2)) = µ
�
(B1

� � (B1
� \ V

1)) [ (B2
� � (B2

� \ V
2))
�

700

= µ
�
B� � ((B1

� \ V )) [ (B2
� \ V ))

�
701

= µ (B� � (B� \ V )) .702703

Hence, lim�!0
µ(B��(B�\V ))

µ(B�)
= 0, which concludes the proof.704
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