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Abstract

Federated survival analysis (FSA) is an emerging technique
for analyzing decentralized survival data while preserving
data privacy. Existing FSA methods often rely on deep learn-
ing models, which require substantial data and communi-
cation rounds for optimal solutions. Recent research has
demonstrated that ensemble-based approaches like random
survival forests can achieve comparable performance to deep
learning models with a single communication round, particu-
larly on small, decentralized datasets within federated learn-
ing (FL) frameworks. However, these approaches have yet to
address the challenges specific to FSA, such as data hetero-
geneity, non-uniform censoring, and the presence of compet-
ing events across clients. To address the challenges specific
to FSA, we propose a random forests-based FL framework
called FedPRF. In FedPRF, we introduce federated pseudo
values (FPV) to replace the incompletely observed outcomes
caused by censoring. FPVs effectively tackle issues related
to non-uniform censoring, data heterogeneity, and compet-
ing risks in FSA. The FedPRF framework is computation-
ally efficient, requiring only two rounds of communication
across clients: (i) computing federated pseudo values and (ii)
aggregating a subset of trees trained locally on clients us-
ing our proposed RFpseudo model. Extensive experiments
on distributed survival data with a single event and multiple
competing events demonstrate that FedPRF achieves perfor-
mance close to the gold-standard centralized training setting
and outperforms deep learning-based FSA approaches. More-
over, our FL framework, FedPRF, effectively preserves the
interpretability inherent in centrally trained survival models.

Introduction

Survival analysis is a special technique that analyzes the
time duration until a specific event occurs, such as death
due to cardiovascular disease, in order to predict the risk
of the event over time. It has a wide range of applications
from finance (Dirick, Claeskens, and Baesens 2017; Blu-
menstock, Lessmann, and Seow 2022) to education (Ameri
et al. 2016), especially in the field of healthcare (Rahman
and Purushotham 2022; Lee et al. 2018), which is the fo-
cus of this paper. The conventional survival analysis as-
sumes data is centrally available, either collected by a sin-
gle, small-sized medical center or multiple medical insti-
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tutions or hospitals, such as the Surveillance, Epidemiol-
ogy, and End Results (SEER) dataset (NCI 2023a). How-
ever, challenges arise when dealing with limited data from
a single and small medical center, potentially resulting in
sub-optimal and less confident predictions. On the other
hand, while large-scale data can be obtained through a multi-
institution collaboration for better survival predictions, strict
data privacy laws and data sharing regulations, such as
GDPR and HIPAA, hinder multi-institution collaboration.
Federated Survival Analysis (FSA) is an emerging Federated
Learning (FL) paradigm for performing survival analysis at
multiple medical institutions by jointly training their models
without accessing their raw survival data, thus preserving
data privacy.

The critical challenges that arise in traditional survival
analysis, such as censoring and competing risks, are fur-
ther exacerbated when transitioning to a federated approach.
Censoring, also referred to as the presence of incomplete or
partial event information, can occur when a study ends be-
fore patients experience the event of interest, when they are
lost to follow-up, or when they withdraw from the study.
Notably, censoring and event distributions are often non-
uniform across different medical centers due to demographic
variations, discrepancies in healthcare facilities, or other
contextual factors, which pose a critical challenge during
federated training. On the other hand, competing risks arise
due to the presence of multiple chronic conditions within a
patient, commonly referred to as comorbidities, which in-
fluence the risk of the primary event of interest. Competing
risks are often overlooked in the traditional survival analy-
sis, resulting in biased and inaccurate risk predictions (Rah-
man et al. 2021; Lee et al. 2018; Danks and Yau 2022).
Transitioning to a federated setting amplifies this challenge,
primarily due to the imbalanced distribution of competing
events across different hospitals. This imbalance introduces
additional complexities during the convergence and training
phases, further exacerbating bias in the predictions. More-
over, FSA brings its specific challenges, such as data hetero-
geneity in terms of features and events, imbalanced sample
size, and resource constraints among participating medical
institutions, which demand innovative techniques and prac-
tical solutions.

Recent studies on FSA have developed approaches that
either adopt Cox proportional hazards (CoxPH) models or



deep survival models for federated training, which often
make underlying assumptions on stochastic processes, such
as proportional hazards. Moreover, these approaches do not
investigate competing risk problems, the impact of censor-
ing on predictions, and the non-uniformity of censoring rig-
orously. In addition, they require several communications
between the server and institutions or clients during each
iteration of iterative computation, resulting in a communica-
tion burden. Some recent works addressed the problem by
developing approaches that require a single round of com-
munication between the server and clients using the Cox-
based model (Imakura et al. 2023) and Random survival for-
est models (Archetti and Matteucci 2023). However, they
lack a censoring handling mechanism and do not account for
the competing risks, resulting in sub-optimal performance in
survival prediction.

To tackle the aforementioned challenges in FSA, we in-
troduce an innovative FSA framework, FedPRF, that lever-
ages federated pseudo values (FPV) as proposed in our prior
works (Rahman and Purushotham 2023b,a) to handle cen-
soring in distributed datasets while preserving privacy and
to enable federated training for distributed right censored
data. It adopts the popular machine learning model, Random
Forests, employing FPV as response variables, an innova-
tion termed RFpseudo, for analyzing decentralized survival
datasets. In contrast to deep learning-based FSA frameworks
that often require a substantial number of communications
for convergence, FedPRF stands out as computationally and
communicationally efficient, requiring only two rounds of
communication between the server and clients. Notably,
our FedPRF framework employing client-specific RFpseudo
models particularly shows improvement in cases where
clients possess limited data and operate within resource-
constrained environments. FedPRF demonstrates its effec-
tiveness by outperforming the traditional iterative FSA ap-
proaches in survival analysis and CRA tasks with less com-
munication overhead. Furthermore, our FPV-based FedPRF
framework shows significant improvement over our closest
counterpart, the RSF-based federated framework, FedSurF
(Archetti and Matteucci 2023), especially under various cen-
soring settings. Additionally, FedPRF provides feature im-
portance in predictions, which is useful for identifying risk
factors and better decision-making. The interpretation pro-
vided by FedPRF aligns with the interpretation obtained by
the gold-standard centralized model. Extensive experiments
on survival data with both single event and multiple com-
peting events and on synthetic data with different censoring
mechanism demonstrates that our FedPRF framework con-
sistently outperforms the state-of-the-art deep survival mod-
els as well as random survival forests trained within a fed-
erated framework, particularly under various censoring set-
tings.

Method: FedPRF

Notation and Problem Setting: We consider a Federated
Survival Analysis (FSA) setup with K clients, each with its
own survival dataset denoted by Dj. The dataset for client
k is represented as Dy = { X, Yi, dix }, where i refers
to a subject in client k, and k contains a total of nj sub-

jects, with 1 < ¢ < ny. The covariates for each subject are
denoted by X, which is a p-dimensional vector. The fail-
ure time is denoted by 7Tk, which represents the time until
the occurrence of an event (e.g., death). However, not all
subjects experience the event during the study; some may
be right-censored. The censoring time for subject ¢ in client
k is denoted by C;i, representing the time the observation
ends for that subject. The observed event time Y;;, is given
by Yix = min(Tjk, Cyx), which means that Y;;, takes the
value of Tj;, if the event occurred before or at the censor-
ing time; otherwise, it takes the value of C;;. Additionally,
an event indicator d;; is defined as 0;, = I(Ty, < Ci),
where I is the indicator function. ;) takes the value 1, 2,
3.... each corresponding to the available competing events,
and 0 otherwise. The goal of the FSA is to estimate the con-
ditional survival function S(¢|X;1), i.e., the probability that
the event time 77, is greater than a specific time ¢ given the
covariates X ;. and the cumulative incidence function (CIF),
F,.(t|x;1 ), for each event, by utilizing the federated learning
algorithms such as FedAvg (McMahan et al. 2017) for ag-
gregating client-specific models trained on their own CRA
data D;.

Overview of FedPRF

We propose a first-of-its-kind FL framework, FedPRF, em-
ploying federated pseudo value-based random forest model;
we call it RFpseudo for FSA. Pseudo values, widely stud-
ied in statistics and ML community (Andersen et al. 2010;
Graw et al. 2009; Binder et al. 2014; Mogensen and Gerds
2013; Rahman et al. 2021), are a natural replacement for
the incompletely observed random variable, such as survival
function or CIF, and thus, can handle censoring and has
been shown promising results when incorporated for mod-
eling survival data (Rahman and Purushotham 2022; Rah-
man et al. 2021, 2022). However, deriving pseudo values
for FSA is challenging. Locally computed Jackknife pseudo
values on local clients’ data show local consistency (Graw
et al. 2009) under the IID assumption; however, the IID as-
sumption often gets violated in federated setup due to the
non-IID and non-uniform censoring properties in survival
data. Computing pseudo values from aggregated local data
in a server can solve the issues; however, strict data pri-
vacy laws and regulations hinder data sharing. To address
the challenges, we propose federated pseudo values (FPV)
for survival analysis, which can easily be extended for CRA.
To derive FPVs, the local clients share the non-identifying
summary information instead of raw data, such as the num-
ber of events and censored observation at a particular time
t, to the server, and the server sends the global quantities
back to clients to compute FPVs at the client side. Our Fed-
PRF framework is structured into three stages; 1) Federated
pseudo values derivation, 2) Local training, and 3) Federated
Learning. Next, we briefly describe each stage.

1. Federated pseudo values derivation: Clients first con-
vert the event status into a non-identifying summary table,
Lj, with the following components; 1) Number of unique
time points 7y, 2) Number at risk at ty € 7%, Ry 1., 3) Num-
ber of events at t € T, dj+, 4) Number of censored at
t € 7, ¢k Additionally, for CRA, the number of events



due to cause r at ¢ € Ty, d, 1, is included. Then clients
send the summary table, Ly, to the server. The server cre-
ates a global summary table, M, by first sorting the union
of the unique time points in the clients’ summary table and
assigning the aggregated value of other components to the
corresponding unique time points. The global table has par-
tial information on the number at risk, i.e., information only
available at starting time point ¢g. To obtain the number at
risk at the subsequent time points, we apply the formula:
Ry, = Ry, —di,_, —c;_y55 =1,2,..,m. Once we have

the global full table, we compute the global survival func-
dy

Ht €T<t( - ﬁ)

or global CIF for CRA as F(t) = Yt er<t SG (¢t ) Rtj .

After that server sends the global partial table, M, along
with the global survival function or global CIF to the clients.
Clients compute the leave-out-out global survival function
and global CIF by omitting the i*" subjects from the shared
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tion for survival analysis as SC(t) =

global partial table as S& % (t) =

—ik

d
Dt er< GG~k (¢ )R""’ respectively. Fi-

FG,—vik( )

nally, the federated pseudo values for the survival function,
Jir(t) and CIF, J;,(¢), are computed as J; (s) = nSG( )—
(n— l)géik(s) and Jig,(s) = nFC (s)— (n—1)FS (),
respectively.

2. Local Training: Once the federated pseudo values are
computed, the new dataset for model training is transformed
to D, = {X*, Jix(s) (for survival function) or Jix(s) for
CIF }. Each client & € K independently train their corre-
sponding local RFpseudo models, M, consisting of an en-
semble of trees, denoted as 71,75, ..., Ty, . To obtain the
optimal hyperparameters, such as the number of local trees
Ny, criterion, max features, maximum tree depth, minimum
samples per split, and the number of estimators, we fine-tune
the RFpseudo models using the validation set.

3. Federated Learning: The global server first pre-
specify the desired number of trees, Ng, and decide the
number of trees that each client should send to obtain Ng.
The clients send the information about the number of trees,
N, in their corresponding local model, My, to the server
so that the server can perform N iterations, incrementing a
tree counter, N ]'C < N, for a randomly chosen client with
a probability proportional to the size of their dataset, |Dy|.
The global server initiates the process by specifying the de-
sired total number of trees, denoted as Ng. Next, it deter-
mines the number of trees that each client needs to send to
obtain Ng trees. Each client returns the information about
the number of trees, Ny, within their respective local model
My, to the server. With this information, the server performs
Ng iterations, incrementing a tree counter, represented as
N, ]'C < N, for a randomly selected client following a uni-
form distribution. The probability of a client being chosen
is proportional to their dataset size, denoted as |Dy|. This
ensures that clients with larger datasets are more likely to
be selected, contributing more trees to the global model.
Each client sends N}, from their corresponding model Mj,

to the server to obtain total pre-specified Ng trees. Finally,
the server aggregates the trees that are sent by the clients to
update a global model.

Experiments

Extensive experiments were conducted to answer the follow-
ing research questions.

RQ1: To what extent does our proposed FedPRF outper-
form the FL framework using the state-of-the-art survival
models when applied to both simulated and real-world dis-
tributed survival datasets?

RQ2: How well does our proposed FedPRF perform on
real-world distributed survival datasets that exhibit multi-
ple competing events, non-independent and identically dis-
tributed (Non-IID) characteristics, and non-uniform cen-
soring properties, compared to the FL framework utilizing
state-of-the-art CRA models?

RQ3: How effectively do our federated pseudo value-
based FedPRF framework handle varying types and amounts
of censoring in contrast to the FL framework employing
baseline models?

RQ4: How successfully do our FedPRF federated frame-
work maintain the interpretability of the gold-standard cen-
tralized models?

Datasets

Survival Datasets with Single Event We consider four
real-world centrally collected survival datasets with a sin-
gle event: 1) METABRIC (Curtis et al. 2012), 2) SUP-
PORT (Knaus et al. 1995), 3) GBSG (Foekens et al. 2000;
Schumacher et al. 1994), and 4) METABRIC-HD (META-
HD) (Curtis et al. 2012) and simulate a federated environ-
ment by distributing the datasets to multiple clients. To eval-
uate the models on a real-world decentralized distributed
dataset, we consider TCGA (NCI 2023b) dataset, which
is collected from 7 regions across the world ((4 in the
US: South, West, Midwest, Northeast), Europe, Canada, and
Other).

Survival Datasets with Competing Events Competing
events influence the risk of the event of interest and should
be accounted for unbiased and accurate predictions. To show
the effectiveness of our FedPRF framework and RFpseudo
model in both federated and centralized competing risk anal-
ysis, we consider the SEER dataset containing 6 compet-
ing events and 28366 patients, out of which 23.2% patients
died of cervical cancer (CC), 2.6% died due to other cancers
(OCN), 2.4% died of cardiovascular disease (CVD), 1.1%
died due to chronic medical disease (CMD), 0.6% died of
infectious disease (ID), and 1.8% died due to other causes
(OCS) (Rahman et al. 2021). The Surveillance, Epidemiol-
ogy, and End Results (SEER) (NCI 2023a) program collects
data from cancer patients of different geographic locations.
The demographic and clinical covariates are included, such
as age at diagnosis, race, histology record, Grade, tumor
size, cancer stages (TNM staging system), surgery record,
cancer therapies, histology, etc.



Synthetic datasets with various censoring settings We
generate 12 distributed synthetic datasets for both central-
ized and federated training, each exhibiting distinct censor-
ing scenarios. These censoring mechanisms include (a) time
censoring (TC), (b) interim censoring (IC), (c) case cen-
soring (CC) with varying levels of censoring (25%, 50%,
and 75%) (Barrajon and Barrajon 2020), and (d) heteroge-
neous survival distribution with equal and unequal censoring
across clients (HSDEC and HSDUC). These datasets were
generated assuming a decentralized setting with 10 clients,
with each client having either the same covariate distribu-
tions (IID) or different covariate distributions (non-IID). To
construct these datasets, we generated survival times from an
exponential distribution and 12 numerical covariates from a
multivariate normal distribution with mean p and variance
o2, similar to the approach in Lee et al. (Lee et al. 2018). In
addition, we generated 2 binary variables from a binomial
distribution with probability p.

Experimental Settings

We train the models on both centralized and federated set-
tings and evaluate them on combined test data aggregated
from clients.

Centralized Settings: The clients share their local data
with the global server, and the server aggregates the datasets.
The models are trained on the aggregated training data and
evaluated on the aggregated test data.

Federated Settings: For survival analysis with a single
event, we simulate two federated setups; IID (independent
and identically distributed) and Non-IID using the real-
world survival datasets and another federated setting with
distributed TCGA dataset. For competing risk analysis, we
simulate two distributed setups for federated training using
the SEER dataset; 1. SEER-Region, and 2. SEER-NUC. We
briefly discuss the federated setups below.

IID: In order to replicate an IID federated setup, we em-
ploy a random allocation process where an equal number
of subjects are assigned to each participating client. This
ensures that the samples within each client have an equal
chance of belonging to any client.

Non-IID: To replicate a non-1ID setting, we assign the
subjects to the clients in a way that the event time distri-
bution in a client is skewed towards a specific quantile of
the time horizon. For different clients, we assume different
quantiles for the skewness of event time distribution.

SEER-Region: To imitate a geographically distributed
data environment for federated learning, we divide the SEER
data into three clients based on the regions of the hospitals:
West, Central, and East.

SEER-NUC: We induce non-uniform censoring (NUC)
to the geographically distributed data environment, i.e., to
the SEER-Region setting, by varying the censoring percent-
ages from the options [0.2, 0.3, 0.4, 0.50, 0.55] across clients
while keeping an equal number of subjects in all clients.

Baseline Models: For federated survival analysis with a
single event, we compare our proposed RFpseudo model
with 7 baseline survival models; 1) LinearPH (Zhang et al.
2022), 2) DeSurv (Danks and Yau 2022), 3) Neural Fine &

Gray model (NFG) (Jeanselme et al. 2023), 4) Random Sur-
vival Forests (RSF) (Ishwaran et al. 2008; Archetti and Mat-
teucci 2023), 5) federated Neural Network-based Cox model
with proportional hazard (ph) assumption - NNph (approx-
imation of the model of (Andreux et al. 2020), 6) Fed-
erated Neural Network-based Cox model relaxing propor-
tional hazard (ph) assumption - NNnph (Zhang et al. 2022),
7) DeepHit (Rahimian et al. 2022; Lee et al. 2018). For
competing risk analysis, we consider 3 more models along
with RSF, DeSurv, NFG, and DeepHit for comparison.
They are: 1) Cause-specific Cox proportional hazard model
(CS-CoxPH) (Cox 1972), 2) DeepPseudo (Rahman et al.
2021), and 3) SurvTRACE (Wang et al. 2022).

Implementation Details: The data of each client is ran-
domly divided into 80% for training and 20% for testing pur-
poses. We use 20% of training data as validation sets. We
ran the experiment five times using different seeds or ran-
dom states and reported the average performance along with
the corresponding standard deviations. To train the Random
Forest Regressor with federated pseudo values (RFpseudo),
we set the friedman mse as a criterion and choose the pa-
rameters for maximum number of features, minimum sam-
ples per split, number of estimators based on the validation
performance. For federated learning, two rounds of commu-
nications happen between clients and servers; 1) one is for
deriving federated pseudo values, and 2) another round is for
federated training with random forests. We choose specific
time points for calculating pseudo values and evaluating the
models, such as the 10th to 99th percentile of the time hori-
zon with an interval of 10. Only for the eICU dataset, we
set the vector of pre-specified time points as [10, 20, 40, 80,
160, 320, 740].

Evaluation Metrics: We evaluate the models using the
time-dependent concordance index (C-Index) (Antolini et al.
2005), integrated [IPCW Brier score (iBS) (Graf et al. 1999).
For competing risk analysis, we employ the cause-specific
time-dependent concordance index and iBS as evaluation
metrics. We use pycox (Kvamme 2022) package to compute
the C-Index and iBS. The higher C-Index value and lower
iBS value indicate better performance.

Results and Discussion

Performance Comparison in FSA: Table 1 shows the per-
formance comparison of our FedPRF model with baseline
survival models on 4 real-world survival datasets and 1 dis-
tributed survival dataset, TCGA, in terms of C-Index and
iBS. FedPRF shows consistently better performance in real-
world survival data compared to baselines. FedPRF achieves
up to 5% (DeSurv, RSF), 1% (LinearPH, NFG, DeepHit),
6% (DeepHit), and 11% (NFG, RSF) average improve-
ment in METABRIC, SUPPORT, GBSG, and META-HD
datasets, respectively, in terms of C-Index. With respect to
iBS, FedPRF obtains up to 10% (RSF), 8% (NFG), 8%
(NFG), and 9% (NFG, RSF) average outperformance in
METABRIC, SUPPORT, GBSG, and META-HD datasets,
respectively. In the TCGA dataset, FedPRF shows better per-
formance in terms of C-index, but both Random Forests-
based models, RSF and FedPRF, show poor iBS in a cen-
tralized setting.



Table 1: Performance comparisons of the models on the real survival datasets

Federated

&,
'}(‘

Dataset

Baseline Models FedPRF

Setup LinearPH DeSurv

%

RSF NNnph NNph DeepHit

METABRIC Fed-IID

Centralized | 0.63 (0.001) 0.66 (0.022) 0.62 (0.005) 0.60 (0.002) 0.66 (0.009) 0.63 (0.008) 0.65 (0.034) | 0.65 (0.002)
0.63 (0.004)  0.60 (0.010) 0.62 (0.009) 0.62 (0.005) 0.65(0.019) 0.63 (0.006) 0.66 (0.017) | 0.66 (0.005)
Fed-non-IID | 0.65(0.003) 0.61(0.013) 0.64 (0.007) 0.63 (0.006) 0.68 (0.014) 0.65(0.020) 0.68 (0.015) | 0.70 (0.007)

SUPPORT Fed-IID

Centralized | 0.60 (0.001) 0.62(0.004) 0.60 (0.001) 0.60 (0.001) 0.61(0.004) 0.61 (0.004) 0.60 (0.008) | 0.61 (0.002)
0.60 (0.001)  0.61 (0.003) 0.60 (0.014)  0.61 (0.001) 0.60 (0.006) 0.61 (0.002) 0.59 (0.007) | 0.61 (0.002)
Fed-non-IID | 0.60 (0.002) 0.61 (0.002) 0.60 (0.002) 0.61 (0.002) 0.61 (0.004) 0.61(0.004) 0.60 (0.008) | 0.61 (0.002)

GBSG Fed-1ID

C-Index

Centralized | 0.66 (0.005) 0.67 (0.003) 0.66 (0.002) 0.66 (0.006) 0.66 (0.008) 0.67 (0.008) 0.61 (0.055) | 0.67 (0.003)
0.64 (0.008)  0.63 (0.005) 0.66 (0.006) 0.68 (0.004) 0.64 (0.011) 0.66 (0.010) 0.63 (0.016) | 0.69 (0.003)
Fed-non-IID | 0.63 (0.007) 0.62(0.014) 0.64 (0.011) 0.63 (0.022) 0.57 (0.013) 0.60 (0.019) 0.57 (0.031) | 0.63 (0.015)

META-HD Fed-1ID

Centralized | 0.65(0.008) 0.65 (0.008) 0.56 (0.007) 0.58 (0.012) 0.59(0.026) 0.63 (0.034) 0.64 (0.010) | 0.67 (0.005)
0.65 (0.012)  0.64 (0.007) 0.55(0.018) 0.55(0.005) 0.65(0.009) 0.66 (0.007) 0.64 (0.025) | 0.66 (0.008)
Fed-non-IID | 0.67 (0.007) 0.66 (0.013) 0.55(0.015) 0.55(0.015) 0.65(0.013) 0.67 (0.007) 0.66 (0.007) | 0.65 (0.005)

TCGA
Federated

Centralized | 0.76 (0.010) 0.75(0.011) 0.75(0.008) 0.74 (0.001) 0.76 (0.010) 0.74 (0.012)  0.76 (0.006) | 0.77 (0.001)
0.76 (0.002) 0.76 (0.002) 0.74 (0.006) 0.75(0.002) 0.75(0.004) 0.76 (0.005) 0.75 (0.010) | 0.76 (0.003)

METABRIC Fed-IID

Centralized | 0.19 (0.007) 0.18 (0.004) 0.28 (0.004) 0.30 (0.004) 0.18 (0.003) 0.20 (0.009) 0.19 (0.002) | 0.18 (0.001)
0.18 (0.001)  0.20 (0.005)  0.28 (0.008)  0.29 (0.003)  0.18 (0.003) 0.19 (0.003)  0.20 (0.002) | 0.18 (0.002)
Fed-non-1ID | 0.18 (0.002) 0.20 (0.004) 0.27 (0.010) 0.30(0.001) 0.18 (0.003) 0.19 (0.008) 0.20 (0.005) | 0.22 (0.014)

SUPPORT Fed-IID

Centralized | 0.20 (0.001) 0.19 (0.001) 0.27 (0.004) 0.22 (0.001) 0.20 (0.001)  0.20 (0.002)  0.21 (0.002) | 0.19 (0.000)
0.20 (0.001)  0.20 (0.002) 0.27 (0.020)  0.22 (0.001)  0.20 (0.003)  0.20 (0.003) 0.23 (0.004) | 0.20 (0.001)
Fed-non-IID | 0.19 (0.001) 0.19 (0.001) 0.28 (0.004) 0.22(0.001) 0.20 (0.002) 0.20 (0.003) 0.22 (0.002) | 0.19 (0.001)

iBS

GBSG Fed-1ID

Centralized | 0.20 (0.011) 0.18 (0.001) 0.25(0.002) 0.26 (0.003) 0.19 (0.003) 0.19 (0.007) 0.23 (0.001) | 0.19 (0.001)
0.19 (0.002)  0.19(0.001) 0.26 (0.007)  0.25(0.003) 0.19(0.002)  0.19 (0.003) 0.23 (0.001) | 0.18 (0.001)
Fed-non-1ID | 0.21 (0.004) 0.21 (0.004) 0.31(0.007) 0.23(0.004) 0.23(0.004) 0.22 (0.005) 0.23 (0.002) | 0.22 (0.003)

META-HD Fed-1ID

Centralized | 0.27 (0.114)  0.19 (0.003) 0.34 (0.008) 0.32(0.008) 0.20 (0.003) 0.25(0.075) 0.20 (0.007) | 0.19 (0.002)
0.22 (0.010)  0.19 (0.003) 0.31(0.032) 0.32(0.006) 0.23 (0.009) 0.22 (0.002) 0.21 (0.032) | 0.19 (0.002)
Fed-non-IID | 0.22 (0.006) 0.18 (0.005) 0.29 (0.005) 0.30 (0.005) 0.24 (0.008) 0.22 (0.004) 0.18 (0.004) | 0.30(0.010)

TCGA

Federated

Centralized | 0.11 (0.006) 0.15(0.007) 0.18 (0.004) 0.17 (0.001) 0.11 (0.006) 0.13 (0.008) 0.14 (0.006) | 0.16 (0.004)
0.15(0.001) 0.15(0.004) 0.17 (0.003) 0.18 (0.001) 0.13 (0.006) 0.15(0.004) 0.16 (0.003) | 0.15(0.003)

Table 2: Centralized model C-Index performance comparisons on the real CRA datasets

Setup | Dataset | Event | CS-CoxPH DeepPseudo RSF DeSurv NFG DeepHit SurvTRACE FedPRF
CC | 0.81(0.000) 0.72(0.058) 0.85(0.000) 0.82(0.007) 0.65(0.013) 0.88(0.003) 0.82(0.002) | 0.90 (0.000)
OCN | 0.50(0.162) 0.68 (0.010)  0.91 (0.002) 0.58 (0.064) 0.69 (0.009) 0.86 (0.007)  0.84 (0.004) | 0.91(0.002)
SEER CVD | 0.84(0.002) 0.81(0.061) 0.90(0.001) 0.68 (0.056) 0.85(0.003) 0.88(0.005) 0.87(0.005) | 0.91(0.002)
(Region) | CMD | 0.48 (0.125) 0.75(0.081)  0.85 (0.005) 0.49 (0.048) 0.82(0.005) 0.75(0.036) 0.83(0.009) | 0.81 (0.009)
E ID 0.53(0.042) 0.69 (0.038)  0.87 (0.005) 0.61 (0.066) 0.76 (0.006) 0.82(0.033)  0.80(0.012) | 0.86 (0.008)
= OCS | 0.76 (0.009) 0.70(0.027)  0.89 (0.004) 0.58 (0.059) 0.73 (0.008) 0.80 (0.021)  0.78 (0.013) | 0.86 (0.002)
‘E CC | 0.79(0.015) 0.64(0.229) 0.83 (0.006) 0.80 (0.012) 0.66 (0.006) 0.88 (0.010)  0.84 (0.028) | 0.88 (0.006)
S OCN | 0.78 (0.010)  0.69 (0.089) 0.84 (0.026) 0.69 (0.018) 0.62(0.027) 0.85(0.018)  0.83(0.025) | 0.89 (0.016)
SEER CVD | 0.80(0.007) 0.69(0.131) 0.87(0.018) 0.71(0.045) 0.82(0.021) 0.82(0.018) 0.83(0.026) | 0.90 (0.009)
(NUC) | CMD | 0.84(0.023) 0.70(0.100) 0.89(0.029) 0.61(0.052) 0.83(0.016) 0.76 (0.046)  0.79 (0.051) | 0.90 (0.027)
ID 0.68 (0.207)  0.66 (0.147)  0.90 (0.043) 0.63 (0.066) 0.75(0.083) 0.81(0.107)  0.83 (0.080) | 0.87 (0.068)
OCS | 0.77 (0.026)  0.63 (0.100) 0.84 (0.025) 0.67 (0.061) 0.72 (0.039) 0.82(0.022)  0.80 (0.067) | 0.87 (0.013)
CC | 0.81(0.000) 0.78(0.011) 0.83(0.001) 0.78 (0.014) 0.64 (0.016) 0.85(0.004) 0.82(0.005) | 0.87 (0.001)
OCN | 0.82(0.001) 0.74(0.013)  0.89 (0.007) 0.58 (0.031) 0.70(0.008) 0.84 (0.008)  0.81(0.01) | 0.87 (0.005)
SEER CVD | 0.84(0.000) 0.85(0.004) 0.89(0.004) 0.67 (0.050) 0.84 (0.002) 0.89 (0.007)  0.87(0.009) | 0.90 (0.006)
(Region) | CMD | 0.82(0.002) 0.79 (0.006)  0.84 (0.015) 0.60 (0.018) 0.82(0.005) 0.79 (0.041)  0.76 (0.029) | 0.77 (0.016)
2 ID 0.73(0.018)  0.71(0.009)  0.83 (0.009) 0.64 (0.043) 0.77 (0.005) 0.84 (0.024)  0.77 (0.029) | 0.81 (0.013)
E OCS | 0.75(0.002) 0.72(0.007)  0.85(0.007) 0.57 (0.061) 0.74 (0.003) 0.75(0.015)  0.74(0.02) | 0.82(0.006)
% CC | 0.79(0.013) 0.72(0.062) 0.80 (0.006) 0.76 (0.011) 0.63 (0.027) 0.83 (0.008)  0.82(0.007) | 0.85 (0.005)
= OCN | 0.79 (0.007)  0.65(0.033) 0.78 (0.041) 0.66 (0.031) 0.62(0.011) 0.83(0.03)  0.81(0.025) | 0.85(0.016)
SEER CVD | 0.80(0.009) 0.77(0.023) 0.82(0.013) 0.65(0.047) 0.78(0.016) 0.86 (0.014) 0.82(0.017) | 0.86 (0.014)
(NUC) | CMD | 0.84(0.022) 0.79(0.055) 0.85(0.028) 0.65(0.052) 0.82(0.011) 0.84(0.049) 0.78 (0.078) | 0.87 (0.008)
ID 0.75(0.027)  0.73(0.072)  0.84 (0.063) 0.72(0.025) 0.73 (0.086) 0.87 (0.038)  0.84 (0.058) | 0.84 (0.087)
OCS | 0.76 (0.031)  0.69 (0.024)  0.80 (0.016) 0.68 (0.050) 0.71 (0.024) 0.82(0.028)  0.80 (0.051) | 0.83 (0.023)

Performance Comparison in Federated CRA: Table 2
shows that our FedPRF performs significantly better (up to
25% (DeSurv)) than all the baselines except for the RSF,
which shows similar performance in the centralized setting
on SEER-Region data in terms of C-Index. On SEER-NUC
data, FedPRF achieves at least 2.3% (RSF) and at most
21.7% (DeepPseudo) improvement than the baselines. Fed-
PRF obtains up to 20% and 16.3% (DeSurv) improvements
in the federated settings on SEER-Region and SEER-NUC

datasets, respectively, compared to the baselines.

Performance under Various Censoring Settings: To
show the effectiveness of the federated pseudo value-based
Random Forest model (FedPRF) in handling different types
and amounts of censoring, we compare FedPRF with state-
of-the-art CRA models, DeepHit and SurvTRACE along
with another Random Forests-based model RSF under var-
ious censoring settings. Table 3 shows that our FedPRF
model outperforms the DeepHit and SurvTRACE by 10.8%



Table 3: C-Index performance comparisons on the distributed synthetic CRA datasets with different censoring settings

Number of comorbidity
Cancer (None)
Cancer (Present)
WBC Count
Respiration Rate
Serum Creatinine
Heart Rate
Temperature
Mean Arterial BP
Serum Sodium
Age

Federated-NonlID u Federated-I1ID

Dataset Centralized Federated
RSF DeepHit SurvTRACE FedPRF RSF DeepHit SurvTRACE FedPRF
TC-IID 0.67 (0.007)  0.69 (0.006)  0.70 (0.004)  0.80 (0.007) | 0.68 (0.003) 0.69 (0.006) 0.70 (0.007)  0.74 (0.005)
TC-Non-IID | 0.65(0.001) 0.68 (0.009) 0.72 (0.014)  0.81 (0.004) | 0.65 (0.007) 0.66 (0.007)  0.70 (0.004)  0.75 (0.006)
IC-IID 0.66 (0.001) 0.68 (0.010)  0.69 (0.003)  0.79 (0.013) | 0.67 (0.001) 0.69 (0.006) 0.69 (0.003)  0.73 (0.012)
IC-Non-IID 0.64 (0.003) 0.68 (0.012)  0.69 (0.015)  0.80 (0.007) | 0.64 (0.008) 0.66 (0.006) 0.68 (0.005)  0.75 (0.009)
CC25-1ID 0.64 (0.008) 0.77 (0.033)  0.92(0.013) 0.82(0.018) | 0.67 (0.002) 0.73 (0.007)  0.91 (0.030) 0.84 (0.024)
CC25-Non-IID | 0.64 (0.009) 0.65 (0.004)  0.67 (0.006)  0.78 (0.006) | 0.63 (0.005) 0.65(0.006) 0.67 (0.009)  0.73 (0.002)
CC50-1ID 0.63 (0.015)  0.80 (0.005)  0.92 (0.008) 0.86 (0.002) | 0.68 (0.007) 0.74 (0.006)  0.91 (0.004) 0.85 (0.003)
CC50-Non-I1ID | 0.64 (0.009) 0.67 (0.007)  0.67 (0.009)  0.81 (0.003) | 0.64 (0.006) 0.65(0.009) 0.68 (0.007)  0.73 (0.004)
CC75-1ID 0.61 (0.023) 0.82(0.003) 0.88(0.014)  0.89 (0.002) | 0.68 (0.010) 0.73 (0.009)  0.86 (0.004)  0.85 (0.003)
CC75-Non-IID | 0.64 (0.006) 0.72(0.007)  0.67 (0.008)  0.87 (0.004) | 0.62 (0.010) 0.65(0.002) 0.71(0.009)  0.74 (0.011)
DSDEC 0.64 (0.027) 0.66 (0.025)  0.70 (0.008)  0.78 (0.011) | 0.60 (0.005) 0.68 (0.008)  0.68 (0.004)  0.71 (0.015)
DSDUC 0.66 (0.007) 0.67 (0.017)  0.70 (0.006)  0.78 (0.012) | 0.62 (0.008) 0.68 (0.006) 0.69 (0.005)  0.73 (0.01)
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Figure 1: Comparing interpretation between RFpseudo (Centralized) and FedPRF (Federated-IID and Federated-NonlID).

and 7.2% in the centralized setting and 7.8% and 2.3% in
the federated setting. Interestingly, FedPRF performs signif-
icantly better than Random Forests-based RSF (which does
not have any censoring handling mechanism like federated
pseudo values), by 17.3% and 11.4% in the centralized and
federated settings, respectively. The results indicate that our
federated pseudo values are efficient in handling different
types and amounts of censoring and can improve the sur-
vival predictions under extreme censoring scenarios.

Interpretability of FedPRF: Our FedPRF provides in-
terpretability that helps to identify important and influen-
tial features that impact the survival predictions, which most
Deep survival models lack. In Figure 1, We compare the fea-
ture contributions obtained by FedPRF between Centralized
and Federated (IID & non-IID) settings in real-world sur-
vival datasets; METABRIC, SUPPORT, and GBSG. Inter-
estingly, our FedPRF not only offers interpretability but also
maintains the similar interpretability of the gold-standard
centrally trained model when trained in a federated learning
framework. The results demonstrate that our FedPRF pro-
vides both accurate and trustworthy survival predictions in
both centralized and federated settings.

Discussion

The paper introduces a communication-efficient federated
framework called FedPRF for survival analysis, addressing
challenges related to limited data sharing and data privacy in
multi-institute medical collaborations. The experiments on
real-world survival data with limited subjects demonstrate
that deep survival models perform sub-optimally in limited-
sized data, whereas the ensemble approach RFpseudo-based
FL framework (FedPRF) showed significant advantages in
survival analysis with limited data. FedPRF leverages fed-
erated pseudo-values (FPV) for handling censoring and en-
abling regression analysis as response variables, leading to
superior performance compared to baseline approaches, in-
cluding the closest architecture RSF. FedPRF was further
evaluated in the presence of competing events and var-
ious censoring settings, including non-uniform censoring
across clients. FedPRF successfully overcame these chal-
lenges by utilizing federated pseudo-values and the ensem-
ble approach (random forest). In addition, experiments on
large distributed data settings with competing events based
on locations (SEER-Region) further confirm the model’s
effectiveness in challenging scenarios. Furthermore, Fed-



PRF maintained similar interpretations to gold-standard cen-
trally trained survival models, ensuring reliable results when
trained on the federated framework. The FedPRF framework
offers promising applications in distributed healthcare data
settings, especially in resource-constrained environments,
allowing decentralized training while preserving data pri-
vacy and achieving accurate survival predictions.

Conclusion

In this paper, we studied some critical challenges in fed-
erated survival analysis (FSA), including competing risks,
non-uniform censoring across clients, and data heterogene-
ity. To address these challenges, we introduced a pseudo-
value-based federated learning framework called FedPRF.
This framework employs random forest models for local
training to estimate subject-specific quantities of interest in
survival analysis and CRA, such as survival probabilities
and cumulative incidence functions. The existing FSA ap-
proaches employing deep survival models suffer from com-
putation and communication burdens while the FSA ap-
proach with random survival forest does not investigate the
different censoring impacts on predictions and does not im-
pose any censoring handling mechanism. Our proposed Fed-
PRF framework effectively addresses critical challenges in
FSA by leveraging federated pseudo-values. FedPRF pro-
vides accurate and trustworthy predictions in general sur-
vival analysis problems, especially in distributed settings
with limited data and resources.
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