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Despite the importance of reasoning and proving in mathematics and
mathematics education, little is known about how future teachers become
proficient in integrating reasoning and proving in their teaching practices. In
this article, we characterize this aspect of prospective secondary mathematics
teachers’ (PSTs) professional learning by drawing upon the commognitive
theory. We offer a triple-layer conceptualization of (student) learning, teaching,
and learning to teach mathematics via reasoning and proving by focusing on
the discourses students participate in (learning), the opportunities for reasoning
and proving afforded to them (teaching), and how PSTs design and enrich
such opportunities (learning to teach). We explore PSTs' pedagogical discourse
anchored in the lesson plans they designed, enacted, and modified as part of their
participation in a university-based course: Mathematical Reasoning and Proving
for Secondary Teachers. We identified four types of discursive modifications:
structural, mathematical, reasoning-based, and logic-based. We describe how
the potential opportunities for reasoning and proving afforded to students by
these lesson plans changed as a result of these modifications. Based on our
triple-layered conceptualization we illustrate how the lesson modifications
and the resulting alterations to student learning opportunities can be used to
characterize PSTs' professional learning. We discuss the affordances of theorizing
teacher practices with the same theoretical lens (grounded in commognition) to
inquire student learning and teacher learning, and how lesson plans, as a proxy
of teaching practices, can be used as a methodological tool to better understand
PSTs' professional learning.

reasoning and proof, commognition, teacher learning, prospective mathematics
teachers, lesson planning

1. Introduction

The critical role of reasoning and proving in mathematics and mathematics education is
broadly recognized (e.g., NCTM, 2000, 2009, 2014; Harel and Sowder, 2007; National Governors’
Association Center for Best Practices and Council of Chief State School Officers, NGA and
CCSSO, 2010; Hanna and de Villiers, 2012). Policy documents and national standards around
the world emphasize the importance of students learning mathematics meaningfully,
understanding the reasoning behind mathematical rules, procedures, and theorems, being able
to prove basic results in geometry, justify their thinking, and evaluate and critique mathematical
arguments (NCTM, 2000; AAMT, 2006; National Governors Association Center for Best
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Practices and Council of Chief State School Officers, NGA and
CCSSO, 2010). An underlying idea behind the emphasis on reasoning
and proving is that these are the key processes by which mathematical
knowledge is constructed and validated; therefore, they are important
vehicles for learning and understanding mathematics. Hanna and
Barbeau (2010) point out that in mathematics classrooms, proofs can
be bearers of mathematical knowledge by conveying methods and
strategies, and explaining why mathematical results are true.
Buchbinder and McCrone (2022) refer to this perspective as teaching
mathematics via reasoning and proving' and explain: “changing the
discourse from teaching proof toward proof-based teaching, puts
student learning of mathematics in focus” (p. 4). This perspective puts
forward a set of principles for guiding the classroom practice of
secondary mathematics teachers: (1) Reasoning and proving must
be fully embedded in the existing mathematics curriculum; (2)
Emphasis should be made on deductive reasoning in knowledge
production and validation, while (3) Using language, notation, and
representations within the conceptual reach of the students.

Despite the general acknowledgment of the importance of
reasoning and proving, in the United States, proof often remains
marginalized in mathematics classrooms. Reflecting on this
phenomenon and the research on reasoning and proof over the last
few decades, Stylianides et al. (2017) maintain that there is a vast body
of knowledge on students’ difficulties with proving and teachers’
challenges in teaching it; there are also several theoretical frameworks
explaining the origins of student challenges with proving. However,
there is a significant knowledge gap on how teachers can successfully
create learning environments that support student engagement with
reasoning and proving. Further, there is little theoretical or practical
knowledge on how to prepare teachers to enact this type of
mathematics teaching or how teacher knowledge in this area grows
and evolves. Consequently, there is also a shortage in the
methodological tools that researchers can use to explore teachers’
professional growth.

Several researchers have proposed frameworks delineating various
types of knowledge teachers need to teach mathematics via reasoning
and proving (e.g., Stylianides, 2011; Lesseig, 2016). Buchbinder and
McCrone (2020) proposed a framework: Mathematical Knowledge for
Teaching Proof, which outlines the knowledge, dispositions, and
practices teachers need to teach mathematics via reasoning and
proving. The framework is grounded in the socio-cultural and situated
perspectives on teacher learning (Lave and Wenger, 1991; Borko et al.,
2000), which conceptualize knowledge and learning as situated within
physical and social contexts in which they develop through active
participation in social practices. According to Lave and Wenger
(1991), learning itself is a type of activity based on “situated negotiation
and renegotiation of meaning in the world” (p. 51). The commognitive
perspective (Sfard, 2008), on which we rely in this article, allowed us
to further operationalize teachers’ learning as evolving participation
in the social practices of integrating reasoning and proving in teaching
mathematics. By the rigorous discursive-based conceptual tools
commognition provides, we step forward and conceptualize how

1 Similar ideas were described in Reid’s (2011) Proof-Based Teaching and
Ronis’ (2008) problem-solving teaching. See Buchbinder and McCrone (2022)

for comparison of the frameworks.
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professional learning toward reasoning and proving can
be characterized and recognized in teacher practice.

The study reported herein is a part of larger, longitudinal research
investigating beginning teachers’ learning to teach mathematics via
reasoning and proving across several years and contexts: an
undergraduate teacher education program, a year-long school-based
internship, and two first years of teaching their own classroom. In this
article, we examine PSTS’ professional learning in the context of the
university-based capstone course’* Mathematical Reasoning and
Proving for Secondary Teachers. The course was uniquely designed to
provide PSTs opportunities to develop their learning toward teaching
mathematics via reasoning and proving. Specifically, four times during
the semester, the PSTs participated in the lesson planning-enacting-
reflecting cycle in which they designed and taught in local schools
lessons that integrated activities requiring reasoning and proving. The
PSTs recorded these lessons and reflected on them. At the end of the
semester, they were asked to revise two out of four lesson plans and
write an essay justifying their modifications. Building on the
commognitive perspective, we offer a discursive operationalization of
PSTS learning toward teaching mathematics via reasoning and
proving. We aim to explore how PSTs professional learning manifests
in their lesson plans - as a lens for their discourse. Thus, the data for
this study is obtained from PSTs’ original and modified lesson plans.

We begin by situating our work and the focus of this study in the
literature on lesson planning. Next, we outline the theoretical
perspective — commognition - and the Opportunities for Reasoning
and Proving (ORP) Framework grounded in it. We present our
operationalization of teacher learning to teach mathematics via
reasoning and proving as creating potentially richer and more ample
ORP. We then illustrate how PSTs modifications to their lesson plans
can indicate their professional growth.

2. Lesson planning

Lesson planning is a core task of teaching, and it is considered an
important part of teachers’ pedagogical knowledge and practice
(Hogan et al., 2003; Ball and Forzani, 2009; ZazKkis et al., 2009). As
such, teachers’ lesson plans have often been used as a key component
in models of teacher professional learning. For example, Blomeke
et al’s (2008) model of teacher competence contains lesson planning
- and lesson plans as the artifacts of this practice - as a situation-
specific skill, along with noticing and assessing student learning.
While lesson planning can take multiple forms for in-service teachers,
student teachers and novice teachers are typically required to write
lesson plans. Assessment of lesson plans as a representation of lesson
planning performance is commonly used in teacher education (e.g.,
Buchbinder and McCrone, 2020), as well as in the process of induction
of novice teachers into the teaching profession (Taylan, 2018; Konig
etal, 2021) and in awarding advanced certification for accomplished
teachers, e.g., American National Board for Professional Teaching

2 By capstone course, we mean a course offered toward the end of the
teacher preparation program, which aims to serve as a concluding experience,
linking academic training with the future professional occupation (Winslaw
and Grgnbaek, 2014).
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Standards (Silver et al., 2009). In the process of lesson planning,
teachers attend to multiple components, generally associated with
three dimensions: content, social interactions, and time (Stigler and
Miller, 2018). Along the content dimension, teachers analyze the
mathematical subject matter and then select, adapt, and transform it
into “teachable content” (Chevallard, 1989). They need to take into
consideration the broader context of the instructional unit, curriculum
objectives as well as local or national standards. In attending to the
second dimension of lesson planning - social interactions, teachers
consider their students’ prior knowledge and discursive practices and
develop mathematical tasks that afford students the opportunities to
engage in productive struggle (Warshauer, 2015). The teachers need
to choose instructional strategies for enacting these tasks and
supporting student learning (Watson and Ohtani, 2015). This includes
attending to teacher actions for supporting student thinking and
responding to student inquiries, instructional explanations, and
approaches for facilitating group work (Fennema and Franke, 1992;
Grossman and McDonald, 2008; Stein et al., 2008; Taylan, 2018).
These processes intend to ensure that the learning and teaching
processes occur within students’ zone of proximal development
(Vygotsky, 1978). The third dimension - time, requires each lesson to
have a clearly defined structure, organized along a timeline, with
appropriately phased activities, which students can easily recognize
and follow (Ball and Forzani, 2009). This may include a warm-up, an
individual activity, a whole class discussion, or a lesson summary.
Such an extensive list of components indicates the inherent complexity
of lesson planning. Hence the challenges facing PSTs and novice
teachers in developing the practice of lesson planning are
understandable. Studies have shown that expert and novice teachers
use different processes when planning lessons. While expert teachers
tend to pay more attention to student learning processes, can better
anticipate student difficulties, and plan for contingencies, novice
teachers apply less-adaptive, rigid instructional approaches (Berliner,
2004; Contreras et al., 2020). In particular, these challenges apply to
PSTs, who usually have limited access to mathematics classrooms
(Grossman and McDonald, 2008; Stein et al., 2008; Remillard
et al., 2009).

With lesson planning being an important and complex practice,
teacher preparation programs extend significant efforts to helping
PSTs develop proficiency with lesson and unit planning (Konig et al.,
2021). This may involve analyzing or critiquing lesson plans,
modifying existing lesson plans, synthesizing across multiple plans,
sequencing, and creating original lesson plans (Lim et al., 2018).
Teacher educators may also engage PSTs in enacting a part or even
whole lesson with their peers, akin to microteaching or rehearsals
(Lampert et al., 2013). However, in the context of university-based
secondary teacher preparation programs, in particular, in the
United States, PSTs seldom have an opportunity to enact full-length
lessons in real classrooms prior to their student teaching experiences®
(Tatto et al., 2009). The uniqueness of the capstone course designed by
Buchbinder and McCrone (2020), which provided a context for the

3 Secondary education programs around the world are commonly structured
as consecutive periods of university-based coursework followed by a separate
period of school-based preparation. At the elementary level, a concurrent

university and school-based experience is more common (Tatto et al,, 2009).
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current study, is that over the course of one semester, PSTs participated
in four cycles of planning a 50-min lesson, enacting it with school
students, reflecting, and redesigning the lesson plan. The learning
environment of the course aimed to advance PSTs professional
learning toward teaching mathematics via reasoning and proving.

In this paper, we aim to examine the development of PSTS
teaching practices, as reflected in their lesson planning and the
modifications they made to their lesson plans after they enacted the
lesson and reflected on it. The modified lesson plans involved PSTs’
envisioned teaching actions and the potential learning opportunities
with respect to reasoning and proving that can be offered to students.
In this process, we rely on the robust conceptual tools of discursive
learning theory, that of commognition, which allows conceptualizing
learning as a change of discourse. Thus, we examine PSTS’ discourse,
as reflected in the revisions they made to their lesson plans and their
explanations for these modifications. We suggest these modifications
and explanations to be indicators of PSTs professional learning.

3. Theoretical framework

3.1. Commognition: learning as becoming
a sophisticated participant in discourse

The commognitive perspective (Sfard, 2008), similar to other
socio-cultural theories, views learning as becoming a more proficient
participant in the discourse of a particular community. This
proficiency in discourse is often termed by commognitive studies as
explorative participation, where learners’ participation gradually shifts
from ritualistic to more goal-oriented (Lavie et al., 2019). This change
in participation is captured by learners’ discourse, including their use
of keywords, the routines they follow, the visual mediators used, and
the narratives they produce. Most of the commognitive studies have
focused on students’ mathematical discourse and the extent to which
their communication about mathematical objects gradually changes
over time (e.g., Lavie and Sfard, 2019; Zayyadi et al., 2019; Shinno and
Fujita, 2021). Recently, some commognitive-based studies examined
the teaching practices that can encourage students to participate more
exploratively in mathematical discourse (e.g., Nardi et al., 2014;
Viirman, 2015; Nachlieli and Tabach, 2019; Weingarden et al., 2019).
Also, there has been a growing interest in examining the learning
process of teachers toward teaching for explorative participation
(Thoma and Nardi, 2018; Heyd-Metzuyanim and Shabtay, 2019;
Zayyadi et al., 2020; Christiansen et al., 2022). Some of these studies
inquire into teachers’ pedagogical discourse and the extent to which
teachers adopt or value learning and teaching actions aligned with
such explorative participation (e.g., Heyd-Metzuyanim and Shabtay,
2019; Nachlieli and Heyd-Metzuyanim, 2021). However, little is
known about how changes in teachers’ pedagogical discourse and
their expressed valuation of a particular set of teaching-learning
actions are associated with changes in their teaching practices,
specifically in the practices they encountered during their professional
learning. In addition, there is a shortage of theoretical and
methodological tools for examining changes in teachers’ pedagogical
discourse and how these changes relate to their teaching practices and
their professional learning around these practices.

In this study, we step forward to contribute to these recent
developments and extend this body of knowledge by relating the
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change in teachers” discourse to the development of their teaching
practice. Specifically, we are interested in conceptualizing future
teachers’ professional learning toward integrating reasoning and
proving in their mathematics classrooms by relying on the discursive-
based modifications they made to their original lesson plans after
enacting and reflecting on these lessons. Teachers professional
learning can thus be examined by the modifications they produced to
their lesson plans and the potential opportunities for reasoning and
proving embedded in these modifications.

To conceptualize teachers’ learning to teach mathematics via
reasoning and proving, we need to describe what is entailed in
students’ learning mathematics via reasoning and proving, as well as
which teaching practices can support this type of learning. We turn
now to describe these conceptualizations in detail.

3.2. Learning mathematics via reasoning
and proving

3.2.1. Participating in mathematical discourse

Learning mathematics, as described by Lavie and Sfard (2019),
can be viewed as a “change in discourses,” where discourse consists of
certain keywords, involved in the communication (e.g., triangles,
numbers), routines, which are patterns of actions that learners follow
while operating on the objects of discourse (e.g., combining like terms,
graphing functions), visual mediators used to mediate communication
(e.g., mathematical symbols, tables, graphs), and narratives produced
by the participants of discourse (e.g., the graph of y =2x —8 passes
through a point (0, —8)). The narratives produced by the discourse’s
participants can be divided into object-level and meta-level (Sfard,
2007). The object-level narratives are produced on mathematical
objects (e.g., the angles opposite to the legs of an isosceles triangle are
congruent), whereas the meta-level narratives are “stories about the
discourse itself [... and] about how mathematics is done” (Sfard, 2007,
p- 574). Sfard and Kieran (2001) described meta-level narratives as
meta-discursive utterances — discourse about discourse, that focus on
discursive elements rather than on the objects of mathematics. The
meta-discursive utterances concern the truth values of the utterances
(“I know this is true because...”) and actions of the interlocutors (“I
used a quadratic formula to solve this equation”).

Meta-discursive activity that focuses on the utterances themselves
and their truth values, such as “how do you know this is true?” or
“why can you say this?” is largely related to reasoning and proving
because it often requires the interlocutors to infer mathematical
utterances from other mathematical utterances. For example, to
generalize a pattern that they identified or to justify their argument.
This relationship between the meta-discursive activity and reasoning
and proving was investigated by Jeannotte and Kieran (2017), who
developed a conceptual model of Mathematical Reasoning for School
Mathematics. Based on the extensive review of literature on reasoning
and proving, Jeannotte and Kieran defined mathematical reasoning
processes as: “meta-discursive commognitive processes that derive
narratives about objects or relations by exploring the relations between
objects” (p. 9). The nine mathematical reasoning processes are:
generalizing, conjecturing, identifying a pattern, comparing,
classifying, validating, justifying, proving, and formal proving. For
example, generalizing is “a process that infers narratives about a set of
mathematical objects or a relation between objects of the set from a
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subset of this set” (Jeannotte and Kieran, 2017, p. 9). Justifying is “a
mathematical reasoning process that, by searching for data, warrant,
and backing, allows for modifying the epistemic value of a narrative”
(Jeannotte and Kieran, 2017, p. 12). The notion of these mathematical
reasoning processes has been broadly used by many researchers and
mathematics educators, both to develop curricular materials (Ellis
et al,, 2012; Arbaugh et al, 2018) and to examine the processes
underlying certain types of student mathematical activity (e.g.,
identifying patterns, making conjectures, providing non-proof
arguments, and providing proofs) (Stylianides, 2009; Davis, 2012;
Thompson et al., 2012; Otten et al., 2014).

3.2.2. Participating in meta-discourse about proof

In our previous study (Weingarden et al., 2022), we argued that in
order for students to enact meta-discursive processes (e.g.,
mathematical reasoning processes such as validating and
conjecturing), and to produce meta-level narratives (e.g., justification
narratives such as “I know this is true because...”) students, often
implicitly, follow logic-based principles and enact logic-based
processes. Consider the following task: “Prove or refute the statement:
‘A quadrilateral with two pairs of opposite congruent sides is a

>

parallelogram” To complete this task, students need to participate in
mathematical discourse: produce mathematical narratives about
quadrilaterals, use keywords such as “parallelogram” and “congruent,”
use visual mediators such as a figure of a parallelogram and symbolic
notation (e.g., AB || CD), and follow mathematical routines such as
drawing a quadrilateral with two pairs of opposite congruent sides.
Since students are asked to prove or refute the statement, they also
need to enact reasoning processes of proving, which are “mathematical
reasoning process that, by searching for data, warrant, and backing,
modifies the epistemic value of a narrative from likely to true”
(Jeannotte and Kieran, 2017, p. 12). While modifying the epistemic
value of mathematical narrative from likely to true or from likely to
false, students, often unconsciously, follow principles like “a universal
statement can be refuted by a counterexample” or “each proposition
in the argument is endorsed based on those that preceded it” These
are examples of what Sfard (2007) defines as meta-level rules, which
are principles that regulate the production of meta-level narratives.
According to Sfard, these meta-level rules are “rarely made explicit
and are usually learned from examples rather than from general verbal
prescriptions” (Sfard, 2007, p. 575).

The implicitness of the meta-level rules is broadly recognized
regarding proof and argumentation in the context of secondary school
mathematics as well as the need to make these meta-level rules explicit
and communicable among secondary teachers and students (Harel
and Sowder, 2007; Buchbinder and McCrone, 2020; Cirillo and May,
2020; Harel and Weber, 2020). This need is at the core of our efforts to
conceptualize the meta-discourse about proof. This discourse is not
about mathematical objects. Rather, the objects at the core of this
discourse are logic-based objects related to the meta-level rules about
proofs. This includes the logical structure of theorems (e.g., the form
of an if-then statement ‘if A then B’), the types of proof (e.g., direct
(e.g.
counterexample, supportive examples), rules of logic (e.g., if A then B

proof, proof by contradictions), roles of examples
is different from if B then A), and the derived conclusions from
different types of statements (e.g., existential statements vs. universal
statements). The narratives produced in this discourse are thus, the

meta-level rules, such as “a universal statement can be refuted by a
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» <

counterexample,” “a statement if ‘A then B’ is equivalent to ‘if not B
then not A” The keywords used to communicate in meta-discourse
about proof are logic-related terms such as “conditional statement,”

» « »

“hypothesis,” “conclusion;

» <«

truth value,” “contradiction,” and more,
and the visual mediators of this discourse are, for example, 4 — B,
—B — 4,V, 3. The routines of this discourse are logic-based processes,
such as writing a conditional statement in the if-then form, identifying
the hypothesis and conclusion of a conditional statement, determining
what is needed for a statement to be proved or disproved, and others.

To conclude, from the commognitive perspective, learning
mathematics via reasoning and proving can be defined as participating
in two types of discourses. One is mathematical discourse while
enacting reasoning processes, which we term mathematical reasoning
discourse for short, and the second is participating in meta-discourse
about proof or logic-based discourse (here, we use these two concepts
interchangeably). Similar to mathematical discourse, where teachers
can offer more or less opportunities for students to participate
exploratively by enacting certain tasks or through certain teaching
actions (e.g., Weingarden et al., 2019), also in meta-discourse about
proof, teachers can offer different types of opportunities for learning
mathematics via reasoning and proving.

3.3. Teaching mathematics via reasoning
and proving as providing students with
opportunities to participate in two
discourses

In our previous study (Weingarden et al., 2022), we empirically
identified four types of Opportunities for Reasoning and Proving (ORP)
embedded in tasks designed by prospective teachers. The first type -
limited ORP, involves tasks that focus solely on mathematical objects,
such as “solve the following 10 equations: e.g., 2x-7=9. Though it can
be argued that solving any mathematical task can (and should) involve
reasoning, this particular task involves limited ORP since students are
not explicitly required to operate at the meta-discourse level nor to
enact reasoning processes such as explaining why they can perform
the same operations on both sides of the equation. The second type of
ORP - reasoning-based mathematical ORP - appears in tasks that
centered on a mathematical object, but in addition, in order to solve
the task, students need to enact reasoning processes. For example,
“explain why (2,—3) is not a point on the line y = 3x + 4 This task
offers students an opportunity to participate in mathematical
reasoning discourse by enacting processes such as justifying and
explaining around mathematical objects of linear equations and
points. The third type - logic-based ORP - involves tasks characterized
by logic-based objects and logic-based processes. For example,
“identify hypothesis and conclusion in given statements and
determine if the statements are existential or universal” This task
provides students with opportunities to participate in meta-discourse
about proof. Importantly, in such a task, the mathematical content is
in the background, while the object at the core of the task is the logical
structure of mathematical statements. The fourth type - fully-
integrated ORP - appears in tasks that involve opportunities for
participating in both the mathematical reasoning discourse and meta-
discourse about proof. For example, “come up with an example of a
conditional statement that has to do with linear functions and
equations and determine whether the statement is true or false” The
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TABLE 1 The four types of ORP in mathematical tasks.

Limited ORP Reasoning-based mathematical ORP

Object: Mathematical Object: Mathematical
Processes: Mathematical Processes: Mathematical + Reasoning
Example: Solve and graph the equation:

X +4x-12=0

Example: Make a conjecture about the
relationship between isosceles triangles
and equilateral triangles and justify your
thinking.

Logic-based ORP
Object: Logic-based

Fully-integrated ORP

Object: Mathematical + Logic-based
Processes: Logic-based Processes: Mathematical + Reasoning +
Example: Identify a hypothesis and a Logic-based
conclusion in a given statement. Example: Write a conditional statement
about linear functions and equations
and determine whether the statement is

true or false.

four types of ORP, summarized in Table 1, allow researchers, teachers,
and teacher educators “to communicate about opportunities for
reasoning and proving by operating with definite characteristics such
as objects and processes, [which] may contribute to more explicit, and
unambiguous communication” (Weingarden et al., 2022, p. 846).

In this study, we use the three latter types of ORP (reasoning-
based, logic-based, and fully-integrated) as a discursive-based
commognitive theorization and operationalization of the principles
of Teaching Mathematics via Reasoning and Proving (Buchbinder
and McCrone, 2022). This theorization allows us to better
communicate about and characterize the teaching practices included
in teaching mathematics via reasoning and proving, and more
importantly, to operationalize teachers’ professional learning around
these practices. The first principle of incorporating reasoning and
proving in the existing mathematics curriculum is operationalized
by the reasoning-based ORP, which characterizes tasks that afford
students to enact reasoning processes on mathematical objects from
the school curriculum, and also by the fully-integrated ORP, which
involves the reasoning-based ORP along with the logic-based
ORP. The second principle of putting emphasis on deductive
reasoning in knowledge production and validation can
be operationalized by the logic-based ORP that affords students to
participate in meta-discourse about proof. The third principle of
using language, notation, and representations within the conceptual
reach of the students can be viewed as a cross-cutting principle. It
can be operationalized by the discourse’s characteristics, both
mathematical discourse and meta-discourse about proof, including
the use of keywords (e.g., “slope,” “contradiction”), the narratives
produced (“the slope of y =2x+2 is 2 “the converse of 4 — B is
B — A7), the visual artifacts that mediate communications (e.g.,
“y=2x+2“A—B”), and the routines followed (e.g., “graphing the
and conclusion  of

function,”  “identifying  hypothesis

conditional statements”).

3.4. PSTs' learning to teach mathematics via
reasoning and proving

Based on the discursive-based commognitive conceptualizations
of learning mathematics via reasoning and proving as participating
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both in meta-discourse about proof and in mathematical reasoning
discourse; and based on the operationalization of teaching practices
that could encourage such participation by different ORPs, we are
interested in operationalizing and characterizing PSTs’ learning to
create richer opportunities to such participation. We suggest
identifying changes in PSTs” discourse that could serve as indicators
of PSTS learning to teach mathematics via reasoning and proving.
Toward this end, we aim to identify the discursive modifications in
the lesson plans the PSTs designed during the course and revised at
the end of the course. We endeavor to explore whether or how these
modifications in the PSTs” written discourse of their lesson plans
can be translated to changes in opportunities provided to students
to learn mathematics via reasoning and proving. Figure 1 visualizes
our theoretical and methodological aspects of examining the
development of PSTS practices toward teaching mathematics via
reasoning and proving. The theoretical and conceptual stands
we developed appear in blue. As described above, student learning
via reasoning and proving can be advanced by specific teaching
practices — opportunities for reasoning and proving embedded in
instructional tasks (ORP). The development of teaching practices is
reflected in the richer and better integrated ORP they provide to
students. For examining, methodologically how PSTs" practices
were developed, we suggest using PSTs" lesson plans and the
discursive modifications they made to their lesson plans as
indicators of their learning to teach mathematics via reasoning and
proving (represented in green cells in Figure 1).

Thus, our goal for this study is to illustrate the connection between
these two layers — the theoretical and methodological. This entails
showing how lesson plans can be used as a discursive methodological
tool for examining teacher professional learning toward integrating
reasoning and proving, conceptualized as a change in discourse and
the potential ORP the teachers create. We explore the following
overarching question:

How can PSTSs’ learning to teach mathematics via reasoning and
proving be characterized by their pedagogical discourse, as
reflected in the modifications PSTs made to their lesson plans
and the potential ORP provided to students by these
modifications?

10.3389/feduc.2023.1154531

To respond to this question, we operationalize the discursive
modifications made and their related ORP. This operationalization
was guided by the following two research questions:

1. What types of discursive modifications can be identified in PSTs’
revised lesson plans?

2.How do the discursive modifications relate to the types of
discourses afforded to students to participate in and to the types of

ORP provided to them?

4. Methods

4.1. Context: the capstone course
Mathematical Reasoning and Proving for
Secondary Teachers

The setting for this study was a larger research project conducted
in a large, public, four-year university in the Northeast of the
United States. The project developed and studied the capstone course,
Mathematical Reasoning and Proving for Secondary Teachers
(Buchbinder and McCrone, 2020, 2023). The course aimed to enhance
PSTs’ knowledge, skills, and dispositions for teaching mathematics via
reasoning and proving. The course includes four modules, each
focused on one proof theme, i.e., a proof topic that was identified in
the literature as posing persistent difficulties for students to learn and
for teachers to teach. The four proof themes were: (1) direct proof and
argument evaluation, (2) conditional statements, (3) quantification
and the role of examples in proving, and (4) indirect reasoning. In
each module, the PSTs first refreshed their own mathematical
knowledge of the proof theme, learned about students’ conceptions
and common difficulties pertaining to this theme, and examined
connections between the university-level proof topic and the
secondary school curriculum. A culminating experience in each
module was a lesson planning-enactment-reflection cycle. Each PST
was paired up with a schoolteacher from a local school for the
duration of the entire semester. Four times during the semester — once

Intended student learning:
Student learning
mathematics via reasoning
and proving

Can be
advanced by

Aq pa8e3u3z

FIGURE 1

Teacher practices for
promoting such learning:
Teaching mathematics via

reasoning and proving (ORP)

Pedagogical tools:
Planning, enacting, and
revising lesson plans

PSTs' lesson plans modifications as indicators of their learning to teach via reasoning and proving

Development of teacher practices:
Teacher learning to teach
mathematics via reasoning and
proving

Serve as
indicators of

How did teachers

modify their lesson
plans? Changes in teacher

pedagogical discourse

How did lesson indicating richer ORP

modifications change
the lesson plans' ORP?
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in every module - the PST reached out to the teacher to inquire about
the ongoing mathematical topic of the class. Then the PST designed a
50-min-long lesson plan, which integrated the current proof theme
with that mathematical topic. To support PSTs in this process, the
instructor of the capstone course (the second author of this paper)
devoted a two-hour class session to PSTs working in small groups,
sharing their draft lesson plans and getting feedback and suggestions
from their peers and the course instructor’. Next, the PSTs taught their
lessons to small groups of students in their teachers’ classrooms. This
occurred during regular class time; the PSTs taught a group of
consenting students in a separate classroom while the rest of the class
had a regular lesson with their teacher. The PSTs videorecorded their
lessons using table-top 360-degree video cameras, which capture the
PST and the students’ interactions during the lesson. Next, the PSTs
watched the video of their lessons and reflected on it by writing a
report (Buchbinder et al., 2021). This lesson planning-enactment-
reflection cycle was repeated four times during the semester, once for
each proof theme. At the end of the semester, the PSTs were asked to
revise two of the four lesson plans based on their experience teaching
the lesson, with regard to what they learned in the course and the
feedback they received from the course instructor and their peers.

The PSTs participating in the study were secondary mathematics
education majors who took the course across the five years of the
project®. By the time of their participation in the course, most PSTs
were in the fourth (on rare occasions, third) year of their program,
having successfully completed the majority of their mathematical
coursework, which included a course on mathematical proof and
other proof-intensive courses like geometry and/or abstract algebra.
The PSTs also had previously completed at least one course in
mathematics education where they learned lesson planning, among
other teaching methods. However, this capstone course was the only
one providing a structured clinical experience of teaching mathematics
in real classrooms.

4.2. PSTs' lesson plans and their
modifications

The data for this study came from the lesson plans designed by
PSTs as a part of course assignments collected between 2017 and 2021.
Each lesson plan had the following parts: (a) background information
on the mathematical topic of the lesson and the grade level, prior
knowledge required for the lesson, lesson objectives, and related
curriculum standards; (b) student materials and complete solutions,
(c) implementation plan outlining different parts of the lesson, the
time devoted to each part, and teacher-led explanation, (d) formative
assessment questions for lesson summary and (e) anticipated student
difficulties and planned ways to address them. Despite the required
common structure, the lesson plans varied by the level of detail in each
section and the overall format. Some lesson plans were very laconic,

4 The instructor provided feedback on the mathematical correctness and
clarity of the lesson plan but did not tell PSTs what content or activities to
include in their lesson plans

5 All PSTs who took the course agreed to have their data analyzed for this

research.
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while others were written almost as a scenario integrating planned
teacher’s speech and anticipated students’ responses.

With the 44 PSTs who participated in the capstone course during
the five years of the project, the resulting data corpus contained 88
pairs of original and revised lesson plans. When submitting the
revised lesson plans, the PSTs were asked to indicate the revisions they
made by using colored font or highlight, and crossing off text they
wish to eliminate, rather than deleting it. In addition, for each revised
lesson plan, the PSTs wrote a short essay explaining the rationale
behind their lesson modifications.

We used the data to identify changes in PSTs pedagogical
discourse anchored in modified teaching routines, narratives,
keywords, and visual mediators. Specifically, in relation to our research
questions, we sought to identify the types of modifications the PSTs
made to their lesson plans following the lessons’ enactment and
reflection, and to illustrate how the identified modifications affected
ORP afforded to students. Our focus in this paper is not to report on
the statistical trends observed in the data, but to present a theoretical
model, grounded in the commognitive perspective, and a related
methodological approach for characterizing PSTS
professional learning.

As a first step of the analysis, we identified all modifications made
to the lesson plans by diligently comparing the original lesson plan to
its revised version, using PSTs’ own identifiers (color coding) as an
initial guide. The modifications included any text that was changed,
added to, or excluded from the original lesson plan. These included
modifications to the lesson narratives themselves — the revised tasks,
objectives, scaffolding questions, visual mediators, introducing or
replacing keywords (specifically, ones related to meta-discourse on
proof), as well as changes to the overall structure of the lesson, order
and time duration of the tasks. In addition to the lesson plan
modifications, which could be objectively observed, we analyzed PSTs
essays describing the rationale for their modifications, and how they
envision the modified lesson unfold, if they were to teach it. These
essays provided us with an additional lens to teachers’ pedagogical
discourse around ORP afforded to students. The pedagogical
narratives that PSTs produced in these essays helped us to explicate
the change in their teaching routines rooted in the modifications.

In the second stage, we used a sample of 28 original and revised
lesson plans to conduct an in-depth, comprehensive analysis to
develop a coding scheme classifying the types of modifications to
the lesson narratives. The identified changes were characterized
discursively by considering the type of keywords and visual
mediators used in the modifications, the object at the core of the
modifications, and the processes (routines) the teacher or students
might need to enact according to the modification made. For
example, when the revised lesson plan included adding a
presentation explicating and explaining what a counterexample is,
the modification involved keywords and objects taken from meta-
discourse about proof (counterexample). The processes related to
this modification - teacher explaining and explicating, are
performed on a logic-based object, that of counterexample. When
the PSTs, for example, indicated that they wanted to add more time
to students’ activity to provide them more time to struggle with the
task, we identified the object at the core of this modification to
be related to more structural aspects of the lesson, including social
and pedagogical elements, rather than mathematical or logic-
related objects. Similarly, the keyword used in this type of
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modification (e.g., time, struggle, student work) and the teacher’s
processes related to it (e.g., provide more time, allow group work)
are not directly related to mathematics or logic-related objects.
PSTs, often, modified or added a visual mediator to their lesson plan
(e.g., graph of a function, proof flowchart). These visual mediators
were also analyzed based on the object at the core of the visual
mediator and the processes students or the teacher need to perform
based on the modified mediator. The process of coding the
discursive elements of the modifications in 28 lesson plans reveals
four types of modifications the PSTs made to their lesson plans:
structural, mathematical, logic-based, and reasoning-based.
We elaborate on those four types of modifications and exemplify
each of them in the Results sections. Using the inductively
developed categories, we examined the rest of the data corpus to
verify that the modifications indeed fall within these four categories.
This process led to refining and clarifying the description of the four
categories of modifications; however, no new categories emerged.
In addition, we identified compelling examples of modifications
that effectively illustrate the characteristics of the categories of
modifications we found in our in-depth analysis.

In addition to identifying the types of modification, based on
their discursive characteristics, we examined the types of ORP
(limited, reasoning-based, logic-based, fully-integrated) in the
original and revised lesson plans, to seek relationships between the
types of ORP and types of modifications. Our goal in this stage of
analysis was to capture the changes in PSTs discourse and to
characterize them with respect to types of discourse afforded to
students to participate in by these modifications. For example,
whereas some of the changes provide students richer opportunities
to participate in meta-discourse about proof (e.g., explicate the
nature of counterexamples), other modifications involve providing
students with richer opportunities to participate in mathematical
reasoning discourse. Still, some modifications altered the type of
ORP afforded to students, or even diminished it, as we will illustrate
in the Results section.

In classifying the types of modifications, it was important to
examine each modification on its own, but it was also important to
keep track of all the changes in the lesson plan as a whole, so we could
see how the different modifications related to each other and
contributed to a bigger rationale for the whole revised lesson plan.
Thus, in the third stage of our analysis, we enlarged our unit of analysis
from a single modification to an entire lesson plan of one of the PSTs
including multiple modifications. By this, we explored the types of
ORP the PST provided to students by all lesson modifications
collectively. In addition, we examined how the various modifications
that appeared in different parts of the revised lesson plan
(mathematical tasks, lesson objectives, discussion prompts, summative
questions, and instructional explanations) related to each other and
aimed to achieve a common goal.

5. Results

In this section, we first describe the types of modifications the
PSTs made to their lesson plans, and by pointing out the modified
routines, narratives, keywords, and visual mediators, we illustrate the
opportunities for reasoning and proving afforded by them. Next,
we show an example of modifications made to an entire lesson plan
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and the consequent changes in the ORP afforded to students.
We interpret the changes in PSTs’ pedagogical discourse around
reasoning and proving as reflecting their professional growth.

5.1. Types of changes in lesson plans

As mentioned above, we identified four types of modifications
PSTs made to their original lesson plans. These modifications were
characterized discursively as structural, mathematical, reasoning-
based, and logic-based.

5.1.1. Structural modifications

The first type of modification in the PSTs lesson plans is
characterized by modifications to the structural, pedagogical aspects
of the lesson. These modifications relate to participation structures,
such as students’ modes of participation, students’ interaction and
their social activity, and to the lesson structure, such as allocating
time to different activities, order of activities, supporting materials,
and teaching strategies. These modifications are characterized by
general pedagogical, social keywords (e.g., “students feel more
comfortable sharing,” “have a discussion with the students,” “allow
more time to discuss”) and reflect on teaching routines, intended to
increase and support student engagement and improve the flow of
the lesson. The discourse characteristics (narratives, keywords,
routines) involved in this type of modification are not specific to
student mathematical work nor the mathematical objects at the core
of the discourse. Rather, they focus on improving the structural and
pedagogical aspects of the lesson that aim to support and enable
student engagement. This type of structural modification was very
common in the PSTS revised lesson plans, as the following
example shows.

5.1.1.1. Example: Laura’s case

Laura chose to revise her fourth lesson plan on graphing linear
equations and indirect reasoning. The original lesson plan contained
three activities. The first two: (1) a word problem about two runners
competing in a race, asking students when one of them will overtake
the other, and (2) a review task with practice problems on graphing
linear equations. The first two activities provided only limited ORP
since both the objects at the core of the task and the processes that
need to be enacted to solve the task are mathematical (e.g., linear
equation, graphing, formulating). The third activity contained three
problems in which students were asked to use indirect reasoning to
explain why a certain point cannot be a solution to a given system of
linear equations (Figure 2). Specifically, the students were expected to
assume the given point is a solution to the system, plug it into both
equations, determine that the point does not satisfy both equations
and thus reject the initial assumption.

Thus, in contrast to the first two activities, Activity 3 involves
fully-integrated ORP. The objects at the core of this activity are systems
of linear equations (mathematical) as well as indirect reasoning (logic-
based). Students were asked to use mathematical reasoning processes
of justifying and explaining, and since they were invited to use a
particular type of reasoning, they needed to enact logic-based
processes related to indirect reasoning and its structure. Thus, students
were expected to participate in two types of discourses — mathematical
reasoning discourse and meta-discourse about proof.
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1) Explain why (0,2) cannot be a solution of the following system of linear equations: {y
2) Explain why (1,2) cannot be a solution of the following system of linear equations: {

3) Explain why (4,10) cannot be a solution of the following system of linear equations: {y

=2x+4
y=x+2
2y—x=2
y=%x+1

=4+ 1.5x
y =6+ 1.5x

FIGURE 2
Indirect reasoning and systems of equations task.

Despite considering this lesson plan as her “favorite,” after
enacting the lesson, Laura decided to modify the plan. The changes
she made to the lesson plan were structural: revising the timeline of
the lesson, excluding Activity 2, and adding time to Activity 3. In
addition, she changed the mode of student interaction with Activity 3
by breaking a class into three groups, assigning each group one
question from Figure 2 above, and devoting time to group work and
the whole class discussion of student solutions.

Justifying the modifications to the lesson plan, Laura suggested
that Activity 2 was intended to be a “quick review, but in
implementation, it took longer than expected and really did not
help students in achieving my objectives” Moreover, she mentioned
that there was little time left for the indirect reasoning activity. So,
in the revised lesson plan, Laura wanted to allocate more time to it.
She wrote: “I decided that I really liked my original third activity
and thought it was valuable in implementation even though it was
a little rushed” Her pedagogical narratives [e.g., “it (Activity 2) took
longer than expected”], as well as her keywords (e.g., “little time,”
“took longer, “quick review”) and routines (“achieving my
objectives,” implementing Activity 3 “even though it was a little
rushed”), focused on the pedagogical aspect of the lesson and the
lesson’s structure, pertaining to time management and mode of
engagement with the tasks. While Activity 3 with the fully-
integrated ORP was present in the original lesson plan, the time
allotted to it, as Laura described, made it unrealistic to fulfill its
potential. By excluding tasks with limited ORP (Activity 2), adding
more time to tasks with fully-integrated ORP (Activity 3), and
restructuring the mode of student interaction with the activity
(assigning different tasks to different groups), Laura increased
students’ opportunities to engage with reasoning and proving,
specifically with fully-integrated ORP, which received more time
and prominence in the revised lesson plan.

5.1.2. Mathematical modifications

The second type of modification focuses solely on the
mathematical objects at the core of the lesson grounded in the school
curriculum and on the mathematical routines the teacher or students
are expected to follow. This includes modifications in which PSTs
changed the mathematical tasks, elaborated mathematical content,
and added explanations or questions intended to clarify
mathematical ideas or connections between them. These changes
can be viewed as modifications aimed at changing students’
mathematical discourse. In contrast to the structural modifications
that indirectly affect students’ mathematical work by changing
general pedagogical, and structural aspects of the lesson, the
mathematical modifications relate to specific mathematical objects
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and processes. The teaching routines, as well as the keywords used,
and the visual mediators utilized, are specifically related to the
mathematical object. The mathematical modifications were less
common in our analysis than the structural modifications.

The following two examples illustrate mathematical modifications.
Whereas the first case - Nate’s case, depicts mathematical
modifications that led to richer ORP, the second case — Molly’s case, is
an example of mathematical modifications that can diminish the ORP
provided to students.

5.1.2.1. Example 1: Nate's case

Nate designed an activity in which he had students discover the
extended Pythagorean theorem, which states that areas of any similar
shapes constructed on the sides of a right triangle satisfy the
relationship a® +b* = c?, where a,b are the length of the legs, and ¢
is the length of the hypotenuse of the right triangle. In the original
lesson plan, Nate relied on students’ prior knowledge of the
Pythagorean theorem and had students explore areas of rectangles,
equilateral triangles, and semi-circles constructed on the sides of a
right triangle (Figure 3). These calculations were supposed to set the
stage for observing the pattern and generalizing the Pythagorean
Theorem across the cases.

During lesson enactment, Nate discovered that algebraic
manipulations with multiple parameters were difficult for students. The
technical complexity of algebraic manipulations prevented students
from engaging with the mathematical reasoning processes of identifying
patterns and generalizing. In the revised lesson plan, Nate introduced
many changes, some of which we categorized as mathematical in nature
(Figure 4). First, to ease students into the task, he introduced an example
of a simple calculation of areas of rectangles constructed on the sides of
a right triangle with given numeric values. This was followed by an
example of the same shapes but with parameters instead of numbers.
The second modification was that Nate changed the order of
explorations of semi-circles and equilateral triangles, moving the
exploration of semi-circles immediately after rectangles since this case
is easier in terms of algebraic manipulations than the one with
equilateral triangles. The third modification included providing
numeric values for the sides of an equilateral triangle and asking
students to calculate the lengths of the altitudes as a first step of the
exploration. This modification allowed students to practice applying the
Pythagorean Theorem to find the length of the altitudes of the
equilateral triangles prior to calculating their areas. These calculations
served as a basis for a generalized case of equilateral triangles, with
parameters instead of numbers, which was left for homework.

Nate provides his rationale behind the modifications, supporting
our categorization. He wrote:
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FIGURE 3
Sequence of explorations in the original lesson plan.

2.5cm

5cm

2cm 3cm
1.5cm

FIGURE 4
Sequence of explorations in the revised lesson plan.

... The original conjecture stays in the worksheet but the next
problem about the area of rectangles changes slightly. In the
original worksheet, this problem started generalized and I was
made aware that doing this problem with actual numbers and
then generalize it will help students understand the algebra of
the next problems. The next problem is the original generalized
rectangle problem to translate their work with real numbers to
generalization. I then moved the area of semi circles before the
area of equilateral triangles, because [...] it is easier than the
problem of equilateral triangles. To mitigate the issues with the
area of equilateral triangles, I provided the altitude and values
for the base and hypotenuse. This gives them [students]
concrete numbers to work with instead of generalized values.
Hopefully this will make the problem easier to understand

and comprehend.

Nate’s modifications to the lesson plan are mathematical in nature.
He distinguishes between the “worksheet” - the mathematical task,
and the rest of the lesson plan. The objects at the core of the
modifications and the routines are mathematical: introducing numeric
examples and changing the order of the tasks to simplify calculations
and algebraic manipulations. The aim of these changes and the
rationale for changing the order of the tasks, as described by Nate, is
to scaffold students’ participation toward enacting mathematical

» «

reasoning processes (“help students understand algebra,” “mitigate
issues with areas”) and allow students to analyze similarities and
differences between the cases to identify patterns and make
conjectures (“doing this problem with actual numbers and then

»

generalize,” “translate their work with numbers to generalization”). By

this, the mathematical changes in the content of the lesson increased
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students’ opportunities to eventually participate in mathematical
reasoning discourse.

‘We move now to describe Molly’s case, in which, similar to Nate’s
case, mathematical modifications were identified, but these
modifications did not result in increasing students’ opportunities for
reasoning and proving.

5.1.2.2. Example 2: Molly's case

In one of the tasks developed by Molly for middle school geometry
class, students were given a chart reminding them of two ways to
classify triangles: by sides or by angles, along with definitions of
various types of triangles and their sketches (Figure 5).

The task for students was to find relationships between different
types of triangles and write them as conjectures; for example, all
isosceles triangles are equilateral, or if a triangle is obtuse, then it is
not equilateral. Next, students had to prove or disprove their
conjectures. This task is characterized by fully-integrated ORP since
it requires students to engage in mathematical reasoning processes of
pattern identification and conjecturing, as well as in logic-based
processes of formulating true mathematical statements on
mathematical objects. In the revised lesson plan, Molly removed the
table depicted in Figure 5 and substituted it with a table without
images of triangles, only with definitions (Figure 6).

When explaining the reason for changing the figure, Molly wrote
that she found Figure 5 online and inserted it into her lesson without
critically evaluating it: “At the time, I wanted a nice visual to help the
students, but I realize now that we cannot trust all the information on
the internet” After enacting the lesson and receiving feedback on it,
Molly realized that the diagram that she originally used “can
be misleading and can cause confusion” For example, the scalene
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You can classify triangles by their sides.

Equilateral triangle Isosceles triangle Scalene triangle

Has 3 sides that are the same
length.

Has at least 2 sides that
are the same length.

Has no sides that are the
same length.

You can also classify triangles by their angles.

Obtuse triangls

n . Acute triangle use triangle

Right triangle L
obtuse angle

(greater than 90 degrees).

Has all 3 angles that are
acute angle
(less than 90 degrees).

Has 1 angle that is a right
angle (90 degrees).

FIGURE 5
Ways to classify triangles (from Molly's original lesson plan)
(Copyright https://assignmentpoint.com/).

Scalene Isosceles Equilateral
triangle triangle triangle
A Acute Acute Acute
tr_cutel scalene isosceles equilateral
s triangle triangle triangle
Right Right Right
triangle | Scalene | isosceles ><
triangle triangle
Obtuse Obtuse
git;t:sfe scalene isosceles ><
8 triangle triangle
FIGURE 6

Summary of triangles’ relationships (from Molly’s revised lesson plan)
(Copyright basic-mathematics.com).

triangle in Figure 5 looks right, and both the acute and obtuse triangles
look isosceles, which is not always true. As Molly described, the use
of such a “misleading” figure led her to “work a little harder and try to
find a better diagram for students”

As for the ORP in the revised task, in the revised figure (Figure 6),
in contrast to the original figure (Figure 5), all the relationships
between triangle types were already explicitly summarized for
students. Thus, students were not required to find the relationship,
generalize it and determine if their conjecture is true or false. Rather,
they were only required to formulate mathematical statements in
proper logical forms. Molly wrote that she “will show the students this
picture to help them construct conditional statements” Thus, the
object and processes at the core of the task are no longer mathematical
at the middle school curriculum level - types of triangles and finding
the relationships between them. Instead, the revised object-processes
are logical - formulating conditional statements from the given
information. Thus, the ORP changed, or more precisely diminished,
to logic-based only. Molly also noticed the differences between the
figures and their mathematical affordances. She argued that the
modified figure (Figure 6) “is better because it shows what happens
when you “crossover” different triangles” However, since all the
relationships are already represented in the figure, this modification
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takes away students’ opportunities to engage with reasoning processes

on mathematical objects, such as pattern identification,
generalizations, and conjecturing (e.g., there exists a right triangle
which is also an isosceles triangle, or there is no right triangle that is
also equilateral triangle).

It can be argued that having a more mathematically precise and
less ambiguous figure for students to analyze is an improvement; or
that there may be pedagogical advantages for intentionally using
imprecise figures. While we agree with both ideas, there is no
indication in Molly’s work that she considered these issues. In terms
of the ORP afforded to students, by this mathematical modification of
changing the visual mediator of the types of triangles, the ORP of the
task were diminished from fully-integrated ORP, which includes
opportunities to participate both in mathematical reasoning and
logic-based discourse, to logic-based ORP only, which includes only

opportunities to participate in logic-based discourse.

5.1.3. Reasoning-based modifications

The reasoning-based modifications are characterized by
narratives, routines, keyword and visual mediators that focus on the
reasoning processes students need to enact, such as justifying,
conjecturing, validating, or proving. The reasoning-based
modifications include, for example, the teaching routine of asking
more scaffolding questions or revising the existing questions during
classroom discussions toward providing students more
opportunities to enact reasoning processes. This type of
modification also includes changes to the mathematical tasks that
appear in the lesson plan, which often involve changes in the
mathematical objects and sometimes even in the mathematical
processes of the task. But what makes these modifications
reasoning-based rather than just mathematical is that the main
change was made to the mathematical reasoning processes which
students need to enact. These reasoning-based modifications were
intended to increase student engagement with additional reasoning
processes enacted on mathematical objects. Thus, in most cases, the
reasoning-based modifications led to richer reasoning-based ORP,
as described in the following examples. The first example is taken
from Nate’s lesson plan within Geometry curriculum, whereas the
second example is taken from Phil’s Algebra’s lesson plan. Our aim
in providing two examples is to illustrate how reasoning processes

can be integrated in both Geometry and Algebra.

5.1.3.1. Example 1: Nate's case

Returning to Nates activity with the extension of the Pythagorean
Theorem (Figure 4), recall that he intended the exploration of cases
with different shapes constructed on the sides of a right triangle would
generate calculations that students could generalize and come up with
a conjecture. In the revised lesson plan, before asking students to write
a conjecture generalizing their observations, Nate included an
additional task in which students were expected to work in groups to
create their own case of shapes constructed on the sides of a right
triangle, calculate their areas and see if the pattern of extended
Pythagorean Theorem still holds. In this question, Nate intentionally
did not specify that the shapes need to be similar, ie., have
proportional sides. He anticipated that some students might
overgeneralize the examples examined so far without noticing that the
shapes must be similar. By adding this question, Nate expected
students to discover counterexamples — non-similar shapes — and then
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have students examine what is common in cases where the conjecture
holds. This way, students could identify that the similarity of shapes
constructed on the sides of a right triangle is a necessary condition for
the conjecture to hold. Nate explained the changes to the lesson plan
by writing:

I added a question in which the students will take the time to
create their own example, this gives them time to try and find a
counterexample and to explore other ideas not presented directly
to them. All the problems [cases examined so far] showed the
conjecture would work, and I expected students to know that
there would be a counterexample. Then I ask them to look at the
examples that worked and try and find the common thread of
similar shapes. This is a new question that supplements the
question before to really help them understand the coincidence in
the worksheet and to think critically about the work they have
been doing.

The object at the core of the modification - the new tasks Nate
designed, are mathematical objects (shapes, algebraic expressions),
and the processes students are expected to enact are both mathematical
(writing an equation, calculating) and reasoning (generating examples
and counterexamples, identifying patterns, generalizing and writing a
conjecture). Nate’s teaching routines, as reflected in the revised lesson
plan, focused on encouraging students to enact reasoning processes:

» <«

“to create their own example and find counterexample;” “to explore
other ideas not presented,” “find the common thread of similar
shapes,” and “think critically about their work” As a result of these
changes, the revised lesson plan involves richer opportunities for
students to participate in mathematical reasoning discourse. These
opportunities are also reflected in Nate’s usage of keywords such as
“explore,” “create;” “example,” and “counterexample;,” and in his
narratives focused on the importance of encouraging students to
create examples and counterexamples, generalize, conjecture, and

think critically.

5.1.3.2. Example 2: Phil's case

Phil developed a 9th-grade Algebra lesson devoted to the
distributive property. In the original lesson plan, Phil intended to
introduce the formula representing the distributive property and to
show how it can be represented with an area model (Figure 7).
He wrote: “T'll first show the general notation for the distributive
property: a(b+c)=ab+ac. Then Tll explore the distributive
property using visual demonstration with rectangles area. Show how
the visual relates to the mathematical notation, using the example
4(x+10) Next, Phil wanted students to practice applying the

x £10)

FIGURE 7
Excerpts from Phil's tasks in the original lesson plan: area model
illustration of distributive property.
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distributive property using the area model (Figure 8 shows one out of
four such exercises).

This task has limited ORP, since both the object of the task and the
processes that students need to enact are school-based mathematical
(distributive property, integers, calculations, area representations).
Reflecting on the lesson, Phil was concerned with the fact that students
had little ownership over their mathematical knowledge when the
formula was simply presented to them. Phil wrote: “I felt that it would
be much better to have students explore the distributive property on
their own through working with the worksheet, rather than just give
it to them on the board like I did” Phil also was concerned with
with
subtraction” He wrote that “it was hard for students to look at area as

students “modeling distributive property expressions
a negative”

In the revised lesson plan, Phil designed a new activity where
students were given colored chips: green representing positive
numbers and red for negative numbers. First, the students were
asked to use the chips to represent three pairs of expressions, such
as 3(2) + 3-(—1) and 3-(2-1), related to two parts of the distributive
property. This task was followed by a set of questions:

What did you have to do differently for the subtraction example?
What do you notice in common for all the examples?
Is there a general way you can write this pattern?

BN =

Create your own distribution problem with four numbers and
represent it with your chips. Example: 3-(2+1+2).

5. Does the pattern work with four numbers? Will it continue to
work with even more?

This example again illustrates reasoning-based modification.
Note that the mathematical objects of the modified activity remain
the same as in the original one: integers and the distributive property.
Also, in both original and modified tasks, students needed to work
with representations and visual mediators. The main modification
concerns the nature of the processes that students need to enact
while solving the task. Whereas the original task had students
writing a mathematical sentence representing the area model of the
distributive property, the modified task calls for different types of
reasoning processes, such as pattern identification, conjecturing,
generalizing, and justifying. These types of processes were absent
from the original task but are at the core of the modified one.
Therefore, Phil’s reasoning-based modification changed the ORP of
the task from limited to reasoning-based ORP. In addition, Phil’s
pedagogical narratives and teaching routines, similar to those of
Nate, focused on encouraging students to enact reasoning processes:
“explore the distributive property on their own” by “noticing what is
common” across examples, finding “a general way to write a pattern,”
and pondering of this would be true with “more numbers.” Phil’s
pedagogical discourse, including teaching routines such as “explore,”
“noticing,” and “write a pattern,” supports the richer ORP provided
by the task Phil revised.

5.1.4. Logic-based modifications

This category of changes is characterized by modifications to the
logic-based discourse of the lesson. These changes included making
the logic-based objects and processes of the lesson plan explicit to
students, for example, by modifying teacher explanations, introducing
logic-based vocabulary, adding questions that require students to
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1a. Write a number sentence for

the total area, thinking of one

rectangle or two.

FIGURE 8

x ( + ) = X + X =
area of the area of the area of the
whole rectangle first part second part

Excerpts from Phil's tasks in the original lesson plan: sample exercise (Copyright Homeschoolmath.net).

enact logic-based processes like identifying a type of quantifier or
unpacking the logical structure of a statement. Other changes included
adding discussion prompts requiring students to reflect on the type of
reasoning they used to solve the provided tasks, making the logical
structure of this reasoning explicit and formalized. These types of
changes are characterized by modifications to the logic-based objects
and processes pertaining to the lesson plan and therefore intended to
modify students’ participation in logic-based discourse.

5.1.4.1. Example: Zoe's case

Zo€’s lesson for 8th-grade students intended to combine
solving simple equations with quantification and the role of
examples in proving them. The students were given seven
equations (e.g., 2x—2(x—3)—5 =4-3, 2m+2—m(3—1) = 2(6),

2(y+1)+4y2+6

=8), which they had to solve and sort according to
the number of solutions: no solutions, one solution, and infinitely
many solutions. Then students had to determine whether the following
statements were true or false and explain their reasoning. The
statements were: (a) An equation always has a solution, (b) There
exists an equation with an infinite number of solutions. Zoe wrote in
her original lesson plan that she expected students to “come up with a
counterexample to prove the first sentence false and a supporting
example to prove the second sentence true.” She also planned to ask
them why a counterexample is enough to prove the first statement
false and why a supporting example is enough to prove the second
statement true. However, the lesson plan included no written
explanation about how exactly Zoe planned to introduce students to
the roles of examples in proving and disproving quantified statements.

After enacting the lesson and reflecting on it, Zoe noticed that in
the original lesson plan, the proof-related ideas were introduced only
at the end of the lesson: “the role of examples in proving was only
introduced in the end [...] catching students by surprise,” with “not
thinking about this idea of proofs throughout the lesson” Hence, in
the revised lesson plan, Zoe added, at the very beginning of the lesson
an introduction to the topic of the role of examples using familiar,
non-mathematical context. Zoe wrote an explicit description of how
she would introduce students to the topic of the roles of examples
in proving:

To introduce the topic of the role of examples in proving, I can ask

them questions about when examples are enough to prove
something. I will begin by saying “All cars are red” and asking the
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students if they can prove me right or wrong. The goal is that the
students can respond with an example of a car that is not red,
which would disprove my statement. I could also say, “there exists
a dog with brown fur” and ask the students if they can prove that
statement. The students should be able to come up with an
example of a dog with brown fur, which would prove the
statement. This could lead to a discussion about using examples
in proving and when an example is sufficient in proving

and disproving.

When justifying her lesson modifications, Zoe explained that
“when the students are asked to use examples to prove or disprove
different statements about equations, they should already have some
ideas of how to do this,” and the inclusion of the explicit explanation
“ties the lesson together” Zoe also expressed hope that the
introductory discussion would aid student understanding and that
she “can bring students back to our discussion if they are
still struggling”

Characterizing the change made to Zo€’s lesson, the object at the
core of the change is logic-based. The mathematical task remained
unchanged, as well as the logic-based tasks of validating and justifying
the truth-value of quantified statements. When enacting the lesson,
Zoe discovered that students struggled to determine if the given
mathematical statements were true or false, to justify their thinking,
and, in general, to participate in the discussion around this task. This
was because students were missing the relevant keywords (e.g., a
counterexample), the endorsed narratives (e.g., “when examples are
enough to prove something?”), and the processes of meta-discourse
about proof, particularly those that related to the role of examples in
proving or disproving statements [e.g., using examples of solved
equations as examples or counterexamples of the quantified statements
(a) and (b)]. The focus of Zoe’s modifications was on introducing
logic-based vocabulary and modeling the logic-based processes
related to the form and structure of validating and justifying. In
summary, the logic-based modifications in the revised lesson plan
enhanced students’ opportunities to participate in logic-based
discourse. These enhanced opportunities are also reflected in Zoe’s
pedagogical discourse. Zoe€’s teaching routines and her pedagogical
narrative point to the explicit manner by which she planned to engage
students in logic-based discourse (e.g., “ask what their solution is and
what they think it means;” and if students wrongly assume that all
equations have solutions, Zoe would orient them to their calculations
to “see that there are some examples of equations with no solutions”).
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5.2. lllustration of changes to the entire
lesson plan

So far, we have described and illustrated categories of specific
changes in the lesson plans. A single lesson plan may contain one or a
few types of modifications, which collectively affect the learning
opportunities provided to students and the types of discourses
students can participate in. To better understand this phenomenon, it
is important to analyze a lesson as a whole, considering not just the
individual changes but also how these changes, collectively, interact
with and complement each other. We illustrate this by analyzing
Diane’s 9th-grade Algebra lesson plan.

5.2.1. Diane’s original lesson plan

This lesson intended to integrate the proof theme of indirect
reasoning (and prove by contradiction) with the mathematical topic
of the quotient rule of exponents. The lesson involved four
components: introduction, individual student work, class discussion,
and summary. The introduction focused on the collective recall of key
vocabulary terms such as base and exponent and the meaning of
natural number exponents as repeated multiplication. The individual
work contained an exploration activity in which students were
supposed to discover the quotient rule by observing and generalizing

a pattern of calculations. The students were to fill out a table (Figure 9)
m

x - N
and come up with the quotient rule: — = x"7". The task’s directions
x

to students were: “The table is going to help you figure out a general
rule about simplifying exponents that can be used when we are solving
equations that have exponents in them. Work on your own to look for
a pattern in the examples and try and make a more general rule”
The plan for the whole-class discussion contained two parts. First,
“go over the worksheet and ask students to present their ideas of the
generalized rule they created in the last row of the table” The second
part involved “Indirect Reasoning Activity;” which presented students
with a set of questions about the quotient rule, whose solutions may
involve indirect reasoning (Figure 10). For example, to answer
question 6 (the first question in Figure 10), students may substitute
x =28 into the equation, use the quotient rule to obtain a false
statement 4° = 43, and conclude that x = 8 cannot be a solution. The
mode of engagement was a whole class discussion, with students

@

End result

Expression to
simplify
3%

3
s
7

Expand it out
3+3+3%3
3.3

3

P
&

w
10%

xm
2

FIGURE 9
Diane’s original task.
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getting a few minutes of individual thinking time for each question
and then justifying their answers to the class.

To summarize the lesson, Diane planned to “have a conversation
about how sometimes we have to show why things are not true, and
we can use contradictions to do this” However, she did not intend to
explicitly introduce the concept of indirect reasoning, asserting that
“using the words ‘indirect reasoning’ is not going to be particularly
helpful” to the students.

5.2.2. Diane's modified lesson plan

Following the lesson enactment and reflection, at the end of the
course, Diane introduced several types of changes to her original
lesson plan. In what follows, we describe the modifications, and then
we show how, collectively, these modifications lead to richer ORP in
the lesson plan.

5.2.2.1. Structural modifications

To increase and support students’ active participation, Diane
introduced an intermediate check of student work as they completed
the first three rows of the table in Figure 9. This pedagogical change
was intended, according to Dian€’s explanation, to make students
more comfortable and confident in the outcomes of their calculations
and set the stage for pattern identification and generalization. Another
structural modification, that focused on the structure of students’
participation, was explicitly reminding students about expectations
for active engagement and sharing ideas. Justifying this modification
Diane wrote: “This will make the lessons go smoother and more
enjoyable for everyone involved. Emphasize that they (students) are
not being graded, so there is really no pressure, and I would love to
hear what they are thinking”

5.2.2.2. Reasoning-based modifications

A different type of modification - reasoning-based modification,
was the introduction of a slide with questions scaffolding students
generalizing activity and their discovery of the quotient rule of
exponents (Figure 11). The aim of the slide, as Dinae described, was
for students “to start thinking of the general rule that will come
from the expression in the bottom row of the table” The intended
reasoning processes of the first exploratory activity were for
students to identify a pattern, notice how the values of the
exponents change, and generalize the pattern they identified to any
number and exponent. The processes remained unchanged between
the original and revised version of the lesson. However, the way the
original task was set up did not elicit the intended engagement of
students with these processes. By adding this slide, Diane made the
reasoning processes more explicit and provided scaffolding for
students’ thinking.

5.2.2.3. Logic-based modifications

The third type of change in Diane’s lesson was during the Indirect
Reasoning Activity and pertained to logic-based modification. In the
original lesson plan, students were expected to solve questions about
why certain values of variables are impossible by identifying
contradictions resulting when these values are used. The lesson
summary was supposed to contain a discussion of the usefulness of
this type of reasoning. While Diane was aware that students are
engaged with indirect reasoning, this remained implicit for the
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Be ready to explain why you Why?

chose the answer that you
did.

Question 6

FIGURE 10
Sample questions from the indirect reasoning activity.

What values of x, in general, would make this

x4
y2

Can the quotient rule for exponents be used in
this case?

Why or why not?

Question 10 Question 11

Guiding Questions

Q  What patterns are you noticing?
O How are the values of the exponents changing?

3 Do you notice anything similar about all of the examples you
are working with?

O What strategies are you going to use to generalize the
pattern for any number or any exponent?

FIGURE 11
Scaffolding questions for discovering the quotient rule.

students. As she described in her essay: “I never specifically said ‘we
are going to be using indirect reasoning, nor did I ever have them
complete an indirect proof” As a result, students were missing the
keywords and endorsed narratives of logic-based discourse and
struggled to participate in the discussion. In the revised lesson, Diane
decided to explicitly address the logic-related objects and processes.
Right before the Indirect Reasoning Activity, she added a slide, which
intended to help her navigate discussions about indirect reasoning and
the nature of contradiction in mathematics. The slides contained two
discussion questions: What is a contradiction? And why might
we want to find a contradiction? Diane motivated this change by
writing: “I would like to place more emphasis on the fact that we are
finding contradictions as the reasoning that some of these equations
cannot work. We will discuss what a contradiction is and what it tells
us in mathematics” The object at the core of this modification is logic-
based: the nature of contradiction and its application. Although it is
discussed in the context of exponents, these questions are meta-
mathematical, anchored in logic-based discourse.

5.2.2.4. Mathematical and logic-based modifications
Another modification, characterized by a logic-based and
mathematical modification, appeared when Diane modified the
wording of the mathematical questions in the Indirect Reasoning
Activity. The original questions only prompted students to “be ready
to explain why you chose the answer that you did” without explicitly
connecting student responses to indirect reasoning and proof by
contradiction. In the revised lesson plan, each question was
accompanied by an explicit prompt to “explain what is the
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contradiction here?” When students were asked to solve the second

question in Figure 10 - “Determine what values of x, in general, would
8 X
4
make —- > — false. And why?” - Diane added a discussion question:
4

2
“What4contradiction would these values lead to?” These modifications
focus on both the logic-based object of contradiction and the
mathematical object of exponent expressions in these questions. As
opposed to the former modification - asking students what a
contradiction is, which we categorized as solely logic-based
modification, this modification - requiring students to identify the
contradiction, also required students to operate on mathematical
objects (exponent expressions) while engaging with logic-based
processes (applying indirect reasoning).

The two latter types of modifications were also identified in
Diane’s modified lesson summary. Similar to the logic-based
modification mentioned above, Diane explicitly introduced the notion
of indirect reasoning (Figure 12, slide 27), and akin to the
mathematical and logic-based modification, she made indirect
reasoning underlying students’ answers to the mathematical questions
explicit to them (Figure 12, slides 28-30). Diane’s rationale for making
these modifications to the lesson summary was:

To conclude the lesson, we will talk about how the students were
using indirect reasoning. I am going to take a few of the answers
that students submitted to previous questions that show great
examples of indirect reasoning and put them on a slide.

As opposed to the original lesson plan, rather than expecting
students to learn “indirectly” about the nature and logical structure of
indirect reasoning, Diane introduced changes that make these
non-trivial logical elements explicit to students and connect them to
their mathematical narratives.

5.3. The ORP afforded by Diane’s
modifications

Diane’s original lesson plan contained opportunities for students
to enact mathematical processes, such as calculating and solving, on
mathematical objects: exponential expressions. The lesson also
involved some opportunities to enact mathematical reasoning
processes, such as identifying patterns, generalizing, and justifying
when discovering the quotient rule and when justifying solutions to
questions in the Indirect Reasoning Activity. The logical aspects of
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What is
indirect reasoning?

“This does not work,
because otherwise
there will be a
contradiction”
27
“I don't think it could be 8 because then
the equation would be 4°8/42 is equal
to 4%/45, and that wouldn't be true.”
It cannot be 8, because otherwise the
equation would be 4°8/4*2 is equal to “This does not work,
, because otherwise
4%/4°5, and that wouldn't be true. Wibea
contradiction”

** there is a contradiction

29

FIGURE 12
Summary questions explicating indirect reasoning.

Examples of you guys using indirect reasoning
in today’s lesson:

‘T don't think it could be 8 because then the equation would
be #8/4°2 is equal to 4'x/4'5, and that wouldn't be true.”

“No because the base of the numerator and the base of the
denominator are different, so the quotient rule will not
work”

28

“No because the base of the
numerator and the base of the
denominator are different, so the
quotient rule will not work.”

“This does not work,
because otherwise
there will be a
contradiction”

This number will not work because, the
base of the numerator and the base of
the denominator are different, so the
quotient rule will not work.

** there is a contradiction

30

indirect reasoning were intentionally implicit in Dian€’s original
lesson plan, as she considered them unnecessary, meaning that the
original lesson did not involve explicit opportunities to participate in
logic-based discourse.

After enacting and reflecting on the lesson, Diane’s goal in
modifying the lesson was “to try and better incorporate the Indirect
Reasoning proof theme throughout the lesson” Her revised lesson
plan involved all four types of modifications: structural, mathematical,
reasoning, and logic-based. Collectively, these modifications provided
students with increased opportunities to participate both in
mathematical reasoning discourse and in meta-discourse about proof.
For example, Diane’s structural modifications described above, were
intended to increase access to opportunities to participate in
mathematical reasoning discourse and decrease social costs associated
with this participation. As for encouraging students to participate in
mathematical reasoning discourse, the reasoning-based modifications
Diane made to her lesson plan increased support and scaffolding for
students to enact mathematical reasoning processes when discovering
the quotient rule (Figure 11). Students were encouraged to identify
patterns and generalize while enacting mathematical processes
(substituting and computing) on mathematical objects (exponential
expressions) and producing mathematical narratives (e.g., 4% = 43).
Thus, students were provided richer opportunities to participate in
mathematical reasoning discourse.

Importantly, Dian€’s logic-based modifications introduced new
opportunities for students to participate in logic-based discourse on
contradiction and indirect reasoning during the Indirect Reasoning
Activity and the lesson discussion (Figure 12). These opportunities
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manifested in her modifications related to making the non-trivial
logical elements of the lesson (e.g., contradiction, indirect reasoning)
explicit to students. In addition, in her mathematical modifications,
Diane also connected these logical elements to the mathematical
narratives students produced. Thus, as a whole, Diane’s modifications
generated fully-integrated ORPs, which collectively afford more ample
and richer opportunities for students to participate both in
mathematical reasoning discourse and logic-based discourse.

These fully-integrated ORPs are also reflected in Diane’s
pedagogical narratives and teaching routines focused on the
importance of explicating the logical elements (e.g., “place more
emphasis on the fact that we are finding contradictions”), connecting
them to mathematics (e.g., “ask students to explain what is the
contradiction here”), and encouraging students to reason (e.g., “help
them to start thinking of a general rule”). The fully-integrated ORP
generated in her revised lesson plan, together with her modifications
- reflecting her teaching routines — and her justification to these
modifications - her pedagogical narratives - indicate Diane’s
professional learning to teach mathematics via reasoning and proving.

6. Discussion

This article is part of a long-term study that aims to advance
teachers’ professional learning toward integrating reasoning and
proving in teaching mathematics and to examine how this learning
develops over time (Buchbinder and McCrone, 2020, 2023). The
capstone course designed in the larger study is a semester-long
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intervention aimed to promote PSTs professional competence for
teaching mathematics via reasoning and proving. A literature review
reveals limited theoretical and methodological tools for capturing and
characterizing how teachers’ practices specific to reasoning and
proving evolve (Stylianides et al., 2017; Depaepe et al., 2020). To
address these challenges, we developed a conceptualization that
involves a triple-layered characterization of student learning, teaching,
and learning to teach mathematics via reasoning and proving. One of
the key premises of our conceptualization is that teachers’ professional
growth is intrinsically linked to their classroom experimentation,
including the learning opportunities they provide to students and
student learning processes, and reflection on the consequences of this
experimentation (Clarke and Hollingsworth, 2002). We expanded
Buchbinder et al. (2021) earlier conceptualization of principles for
teaching mathematics via reasoning and proving and operationalized
them using the commognitive perspective (Sfard, 2008). The
commognitive perspective, with its robust tools for characterizing
discourses in terms of objects, processes, keywords, and visual
mediators, allowed us to operationalize each of the three layers of the
model (Figure 13) and strengthen the theoretical connections between
the layers. Specifically, our model describes which type of student
learning PSTs were expected to promote in their classrooms - learning
mathematics via reasoning and proving, which type of teaching
practices they should enact to promote it — teaching mathematics via
reasoning and proving, and how PSTS’ own learning can be cast in
similar terms.

Student learning mathematics via reasoning and proving is
conceptualized by participating in two types of discourses:
mathematical reasoning discourse and meta-discourse about proof (or
logic-based discourse). Teaching mathematics via reasoning and
proving entails providing opportunities for students to participate in
the two types of discourses by providing reasoning-based, logic-based
and fully-integrated ORP. Consequently, PSTs" learning to teach
mathematics via reasoning and proving is conceptualized as a change
in their pedagogical discourse. This change is captured by the
modifications they made to their lesson plans, which reflect on their
teaching routines, their use of keywords and visual mediators, and the

10.3389/feduc.2023.1154531

pedagogical narratives used to justify these modifications. The
modifications the PSTs made and their pedagogical narratives, ideally,
lead to richer, more integrated, and more ample ORP afforded
to students.

We operationalized our framework methodologically by focusing
on PSTs lesson plans as a proxy for their teaching practice (e.g.,
Blomeke et al., 2008) and utilized commognition to capture changes
in PSTS practices related to teaching mathematics via reasoning and
proving by examining the modifications they made to their lesson
plans as a lens to their pedagogical discourse. With respect to the types
of modifications made to the lesson plans (the first research question),
our analysis revealed four types of modifications: structural,
mathematical, reasoning-based, and logic-based. Structural
modifications reflect changes to the pedagogical, structural aspects of
a lesson, like timing, order of activities, supportive materials, and to
the structure of students’ participation and to their interactions.
Mathematical modifications aim to affect student mathematical
discourse by making changes to the mathematical content of the
lesson. Reasoning-based modifications intend to increase student
engagement with mathematical reasoning processes, either by making
the existing processes more explicit or by adding new prompts
requiring students to enact reasoning processes, such as conjecturing,
generalizing, validating, and justifying. The logic-based modifications
are specifically aimed to explicate the logic-based objects and
processes and increase student engagement with them.

Answering the second research question, we illustrated how each
of these modifications in the revised lesson plan could alter the
opportunities for reasoning and proving (ORP) afforded to students.
Whereas most modifications provided richer ORP for students,
we found some modifications that diminished or changed the nature
of the ORP provided to students compared to the original lesson plan.
For example, Zo€’s logic-based modifications — adding explications,
definitions, and examples, which are related to logic-based objects
(e.g., types of examples, the meaning of “always, sometimes, never
true”), resulted in richer opportunities provided to students to
participate in meta-discourse about proof. Nate’s mathematical and
reasoning-based modifications, e.g., adding numeric examples before

Learning to Teach
Mathematics via
Reasoning and
Proving

FIGURE 13

Triple-layer characterization of learning, teaching, and learning to teach mathematics via reasoning and proving.

Teachers produce modified
narratives around providing students
with richer, ampler, and more
integrated ORP

Teachers provide students with ORP
to participatein the two types of
discourses:

¢ Reasoning-based ORP
¢ Logic-based ORP
¢ Fully-integrated ORP

| Students participatein two types of

discourses:

¢ Mathematical reasoningdiscourse

¢ Meta-discourseabout proof
(logic-based discourse)
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algebraic manipulations and adding questions requiring reasoning
processes, increased students opportunities to participate in
mathematical reasoning discourse. In contrast, Molly’s mathematical
modification of changing the figure with the types of triangles to the
figure that included the relationships that students were originally
expected to notice. This modification altered the ORP afforded to
students from fully-integrated to logic-related. Although students
were still expected to apply logic-based processes (formulating
conditional statements), Molly’s modification led to diminishing the
tasks’ ORP, since it excluded the reasoning-based processes of
classifying, comparing, generalizing, and conjecturing. The extended
example of Diane’s lesson shows how considering all the modifications
made to the entire lesson plan allowed us to characterize more
holistically the ORP afforded to students. Collectively, the various
modifications Diane made to her lesson plan resulted in richer, fully-
integrated ORP.

We further connected the modifications PSTs made to their lesson
plans and the increased (or altered ORP) afforded to students by these
modifications to change in PSTS practices around reasoning and
proving by identifying changes in their pedagogical discourse (our
overarching research question). The analysis of Diane’s case illustrates
how the discursive modifications and the ORP afforded by them, as
well as the pedagogical narratives she produced when justifying these
modifications, can indicate Diane’s evolving professional learning to
teach mathematics via reasoning and proving — under the theoretical
conceptualization outlined above. Similar indicators of other PSTs’
professional learning in the form of modified ORP are evident in the
local revisions to the lesson plans and the related PSTS rationale for
these revisions.

/. Contributions, implications, and
future directions

Our goal in this paper, as described above, was to present the
theoretical conceptualization and the related methodological
approach for capturing how teachers learn to teach mathematics via
reasoning and proving. One of the strengths of our conceptualization
is relating teachers’ pedagogical growth to modified teaching (in our
case — the envisioned teaching reflected in the modified lesson plan)
and to student learning (in our data - the opportunities for student
learning embedded in the lesson plan). In particular, teacher
pedagogical growth is characterized as PSTs’ modified pedagogical
discourse, reflected in the modifications to the lesson plans, and the
modified, ideally, richer ORP afforded to students. The second
strength of our approach is the reliance on the robust conceptual
(Sfard, 2008) and its
conceptualization of learning. Hence, all three components of our

tools of commognition discursive
framework - student learning, teaching, and teacher learning - are
described in unified discursive elements such as keywords, routines,
and visual mediators. Hence, our study contributes to the recent
applications of the commognitive perspective, and other discursive
perspectives for studying and advancing teacher learning (e.g.,
Thoma and Nardi, 2018; Zayyadi et al., 2020; Christiansen et al.,
2022; Osterling, 2022).

Our study contributes to the inquiry of teacher learning,
specifically around integrating reasoning and proving. It is known that
teachers have a central role in advancing student engagement with
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reasoning and proving. Yet, how teachers learn to teach mathematics
via reasoning and proving remains an under researched topic (Nardi
and Knuth, 2017; Stylianides et al., 2017; Buchbinder and McCrone,
2022). Capturing the development in teachers’ practice is challenging,
in particular, in the context of a university teacher preparation
program, where PSTs’ classroom teaching experiences are often short
and limited (e.g., Jacobson, 2017). By using lesson plan modifications
as a proxy for teacher practice, our study contributes to the body of
knowledge exploring methodological approaches for capturing
development of teacher pedagogical expertise (Depaepe et al., 2020).
While lesson plans have been previously used to capture teachers’
knowledge and practices (e.g., Taylan, 2018; Konig et al., 2021), this
study shows how teacher learning can be captured by attending to the
discursive elements and characteristics of the lesson plan. This can
be an invaluable asset for researchers aiming at examining PSTs’
professional learning in situations where access to classrooms
is limited.

Our theoretical conceptualization and methodological approach
can be used to gauge empirical patterns in the PSTS’ data. For example,
the PSTs in our study modified their lesson plans in various ways,
including different amounts of modifications, different types of
modifications, and different types of ORP provided by these
modifications. While analyzing the data, we observed clear differences
between PST practical learning in the form of modified
ORP. Examining each PST’s professional learning is beyond the scope
of this paper, but we believe it is possible due to our theoretical and
methodological work performed in this study. Quantifying the
modifications and analyzing changes within and between participants
may be useful in future studies for evaluating the extent of professional
learning of a particular teacher or group of teachers.

It is important to note that our analysis of both the original and
the modified lesson plans focused on the ORP embedded in these
plans, as written by the PSTs, i.e., the intended curriculum, in Stein
etal. (2007) terms. Examining the actual ORP provided to students in
the enacted lessons is beyond the scope of our analysis, and our focus
was on the potential ORP in both the original and revised lesson plans.
However, this analysis can step forward to examine the modifications
made to the lesson plan in the enacted lessons, and to compare the
potential ORP as appeared in the lesson plan (intended curriculum)
to the actual ORP provided to students during the enacted lesson.
We began exploring this direction in our ongoing work that focuses
on classroom discourse and the extent to which teachers provide
students with various ORP in mathematics classrooms (Weingarden
and Buchbinder, 2023).

Our analysis may be extended beyond the context of our study to
professional development settings with practicing teachers or
supervised teaching experiences. In regular school teaching settings,
it is not often that teachers have time to deeply reflect on the enacted
lessons and carefully modify their lesson plans. It may even take a full
school year before a teacher has a chance to teach the same lesson
again. However, teachers often need to write and/or modify lesson
plans in the context of professional development programs, when
being evaluated, or when seeking promotion (Silver et al., 2009; Konig
etal., 2021). Our framework could be used in such circumstances and
settings and provide clear and precise criteria for identifying and
capturing teacher learning. In addition, the reliance on written
artifacts, such as lesson plans, opens the possibilities for scaling up
data collection and analysis, as opposed to costly and time-consuming
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observations (Blomeke et al., 2008). Future studies can explore these
applications of our theorization.
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