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Abstract

Mathematics teacher education programs in the United States are charged with preparing prospective secondary teachers
(PSTs) to teach reasoning and proving across grade levels and mathematical topics. Although most programs require a course
on proof, PSTs often perceive it as disconnected from their future classroom practice. Our design research project devel-
oped a capstone course Mathematical Reasoning and Proving for Secondary Teachers and systematically studied its effect
on PSTs’ content and pedagogical knowledge specific to proof. This paper focuses on one course module—Quantification
and the Role of Examples in Proving, a topic which poses persistent difficulties to students and teachers alike. The analysis
suggests that after the course, PSTs’ content and pedagogical knowledge of the role of examples in proving increased. We
provide evidence from multiple data sources: pre-and post-questionnaires, PSTs’ responses to the in-class activities, their
lesson plans, reflections on lesson enactment, and self-report. We discuss design principles that supported PSTs’ learning

and their applicability beyond the study context.

Keywords Reasoning and proving - Mathematical Knowledge for Teaching Proof - Prospective secondary teachers

1 Introduction

Recognizing the critical role of proof in mathematics, pol-
icy and curricular documents worldwide emphasize teach-
ing proof across grade levels and mathematical topics (e.g.,
ACARA, 2022; MINEDUC, 2019; NCTM, 2009; NGA &
CCSSI, 2010). Teacher education programs are expected to
prepare their graduates to implement this vision of teach-
ing. Many secondary teacher preparation programs pro-
vide strong content preparation, including courses on proof
taught in mathematics departments by mathematicians,
to both mathematics and mathematics education majors
(Blomeke et al. 2014; Tatto, 2013). Studies have shown that
prospective secondary teachers (PSTs) experience difficul-
ties with proof at the university level, struggling with topics
such as understanding the relationship between empirical
and deductive reasoning, including the role of examples
in proving (e.g., Weber, 2010); reasoning with conditional
statements (e.g., Durand-Guerrier, 2003); proof production
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and comprehension (e.g., Hodds, et al., 2014) and proof by
contradiction (Antonini & Mariotti, 2008).

With few opportunities for making connections between
university proof courses and their future classroom practice,
PSTs often develop views of proof as formal exercises in
university mathematics, disconnected from secondary class-
rooms (Stylianides et al., 2017). For example, Schwarz et al.
(2008) examined future teachers’ professional knowledge of
argumentation and proof in Germany, Hong Kong, and Aus-
tralia. Across all three countries, the authors concluded that
“possessing a tertiary mathematical background as required
for teaching and having a high affinity with proving in math-
ematics teaching at the lower secondary level are not suf-
ficient preparation for teaching proof” (p. 808).

Felix Klein (1932) alluded to the problem of double dis-
continuity—the feeling of disconnect that future teachers
experience when first encountering university-level math-
ematics, and then again, at the start of classroom teaching.
While the feelings of disconnect apply to university math-
ematics in general, (e.g., Goulding et al., 2003; Winslgw
& Grgnbak, 2014), the situation with proof seems to be
unique due to the explicit expectation by policy documents
and national curricula that teachers will integrate proof in
their classroom teaching. This suggests that universities need
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to develop more effective approaches for supporting PSTs
developing proof-specific knowledge and practices.

Toward this end, we conducted a three-year design
research study (Sandoval, 2014) in which we developed
a capstone course' Mathematical Reasoning and Proving
for Secondary Teachers, as a culminating experience of a
mathematics education program. The course was offered
at the mathematics department and taught by mathematics
education faculty, the first author of this paper. The course
consists of four modules, each addressing a topic identified
in the literature as posing persistent difficulties to students
and teachers alike: (a) direct proof and argument evalua-
tion, (b) conditional statements, (c) quantification and the
role of examples in proving, and (d) indirect reasoning.
The course activities intended to help PSTs to crystalize
their mathematical knowledge, connect it to secondary cur-
riculum, learn about students’ conceptions, and apply this
knowledge by designing lessons that integrate proof with
secondary mathematical topics and enacting them in local
schools (Buchbinder & McCrone, 2020).

During the three-year design research project, we system-
atically studied the impact of the course on PSTs’ content
and pedagogical knowledge of proof. This paper provides
evidence that the course design and activities were condu-
cive to PSTs’ learning and points to the design principles
supporting that learning. Due to space constraints, we focus
on one course module: Quantification and the Role of Exam-
ples in Proving (QRE) and formulate our research questions
with respect to it:

1. How do PSTs’ knowledge and practices related to quan-
tification and the role of examples in proving change due
to participation in the course?

2. How did the course activities contribute to the observed
changes in PSTs’ knowledge and practices?

The broader project examined similar questions with
respect to other modules and the whole course; presentation
of all results is beyond the scope of this paper.

' A capstone course is "a study unit which is located towards the end
of an academic study program, with the aim of concluding or ‘crown-
ing’ the experience, and to link academic competence and training
with the needs of a professional occupation” (Winslgw & Grgnbak,
2014, p. 4).
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2 Theoretical perspectives

2.1 Reasoning and proving at the secondary level:
the focus on QRE

One of the main challenges to conceptualizing reasoning
and proving in schools has been to differentiate school-level
proofs from formal, university-level proofs while preserving
the integrity of proof as a hallmark of mathematical validity
(Harel & Sowder, 2007). To address these challenges, we
adopt a definition of proof as “‘a mathematical argument for
or against a mathematical claim that is both mathematically
sound and conceptually accessible to the members of the
local community where the argument is offered” (Stylianides
& Stylianides, 2017, p. 121). This definition can equally
apply to a community of mathematicians and of school stu-
dents. Importantly, it suggests that the validity of student
arguments should be grounded in deductive reasoning rather
than authority of a teacher, textbook or empirical evidence,
and does not require proof to be formal or have a certain
format.

Recent reviews of international literature (e.g., Mariotti,
et al., 2018; Stylianides et al., 2017) show that proof has
been a challenging topic to learn and to teach. Students at
all levels, as well as prospective and even practicing teachers
experience challenges with understanding the relationship
between empirical arguments and deductive reasoning. A
recurring finding around the world is that students rely on
supportive examples as proof, without realizing the limita-
tions of such reasoning (Stylianides & Stylianides, 2017).
PSTs also, tend to consider empirical arguments as more
convincing than deductive proofs (Ko, 2010), and both pre-
and in-service teachers have been shown to struggle dis-
tinguishing between valid and invalid arguments (Harel &
Sowder, 2007; Ko, 2010). Thus, teachers may miss opportu-
nities to address the limitations of empirical arguments with
their students, or unintentionally reinforce this problematic
conception.

Another well-documented finding is that students and
teachers treat counterexamples as exceptions, rather than
disproof, or tend to prefer multiple counterexamples (e.g.,
Lee, 2016; Weber, 2010). Tabach et al. (2010) identified
challenges related to existential (there exist) statements.
Teachers in that study struggled to accept correct students’
proofs of existential statements when those relied on a sup-
portive example, or to reject incorrect “disproof” by non-
supportive examples.

As teachers are charged with helping students develop
mathematically accepted notions of proof and the roles of
examples in proving/disproving quantified statements, it is
important that teachers themselves have a strong mathemati-
cal and pedagogical knowledge base.
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2.2 Mathematical Knowledge for Teaching Proof:
MKT-P with the focus on QRE

Researchers have conjectured that teaching mathematical
reasoning and proving requires a special type of teacher
knowledge: Mathematical Knowledge for Teaching Proof
(MKT-P). Several frameworks deliniating this concept have
been proposed over the years (e.g., Corleis et al., 2008;
Harel, 2008; Lesseig, 2016; Lin et al., 2011; Stylianides,
2011). Following Stylianides’ (2011) and Harel’s (2008)
approaches, we conceptualize MKT-P as comprised of
three facets: Knowledge of the Logical Aspects of Proof
(content knowledge of proof), Knowledge of Content and
Students specific to proof (KCS-P) and Knowledge of Con-
tent and Teaching specific to proof (KCT-P) (Buchbinder &
McCrone, 2020).

Knowledge of the Logical Aspects of Proof includes
knowledge of different types of proofs, valid and invalid
modes of reasoning, logical relations, a range of defini-
tions and theorems and the roles of examples in proving.
The latter includes the types of inferences that can be drawn
from examples with respect to two types of quantified state-
ments: universal statements—“all objects in a domain D,
satisfy some property P(x),” and existential statements—
“there is an object in D that satisfies P(x).” Examples that
are in the domain and satisfy the property, support but do
not prove a universal statement, while one such example
proves the existential statement is true. Examples that are
in the domain but do not satisfy the property are counter-
examples disproving a universal statement but are merely
non-confirming for an existential statement; insufficient to
disprove it. Examples that are not in the domain are irrel-
evant to proving or disproving either type of statement [cf.,
Buchbinder and Zaslavsky’s (2019) Role of Examples in
Proving framework]. In classrooms, teacher knowledge of
logical aspects of proof is manifested in their use of clear
and accurate mathematical language, notation, and ability to
identify and correct students’ logical mistakes.

Knowledge of Content and Students specific to proof
involves knowledge of students’ proof-related conceptions,
misconceptions, and common mistakes. With respect to the
role of examples in proving, KCS-P involves recognizing stu-
dent challenges with this topic, such as confusion between
universal and existential quantifiers, the difficulty to discern
between examples, counterexamples and irrelevant examples
for a given statement, and making inferences that consider
both the type of quantifier and the type of example (Buch-
binder & Zaslavsky, 2019; Durand-Guerrier, 2003). Related
classroom practices involve the teacher’s ability to identify
and anticipate students’ proof-related misconceptions, facili-
tate discussions and explain proof concepts.

Stylianides (2011) notes that while classroom discus-
sions may offer opportunities to discuss the differences

between empirical examples and proof, helping students
to overcome their proof-related misconceptions requires
carefully planned classroom interventions. Thus, Knowl-
edge of Content and Teaching specific to proof (KCT-P)
involves pedagogical strategies like identifying curriculum
opportunities for reasoning and proving, designing, and
enacting proof-related tasks. Specific to the roles of exam-
ples in proving, it involves designing tasks with opportuni-
ties for students to learn about mathematically acceptable
ways to prove or disprove quantified statements and the
roles examples in these processes.

The three facets of MKT-P are closely intertwined.
Drawing distinctions between them serves the operational
purpose of capturing and assessing MKT-P. The conceptu-
alization of the classroom manifestations of MKT-P draws
on the literature connecting teacher knowledge to quality
of instruction (e.g., Charalambous, 2020; Kunter et al.,
2013). The theoretical perspective on the multidimension-
ality of MKT-P as comprised of content knowledge, peda-
gogical knowledge, beliefs, and practices aligns with other
general frameworks on teacher competence (Blomeke,
et al., 2015; Kunter et al., 2013), mathematical knowledge
for teaching (Ball et al., 2008; Shulman, 1986), and frame-
works utilized in international studies like MT21 (Schmidt
2013), and TEDS-M (Tatto, 2013). Our MKT-P framework
distills elements specific to reasoning and proof from this
research base and MKT-P literature.

3 Method
3.1 Design research methodology

Design research methodology intertwines instructional
design and educational research (Gravemeijer & Prediger,
2019) through iterative stages of design, implementation,
analysis, reflection, and refinement of learning environ-
ments. Researchers concurrently design environments and
study phenomena emerging in them to develop local—
domain or topic-specific- learning theories that connect
instructional design with learning outcomes (Fig. 1).
The final stage of design research is a retrospective
analysis of all data and partial theories from earlier cycles
to produce contextually sensitive design principles (San-
doval, 2014). We report on the results of this reflective
analysis following three iterations and provide evidence
for how the finalized design principles contributed to the
development of PSTs’ knowledge and practices specific
to the Quantification and the Role of Examples module.
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Stage 3: Iterative cycles Stage 4:
of implementation, Retrospective
analysis of learning analysis to

D

outcomes, reflection, produce design

and refinement of principles and

Stage 1: Analysis Stage 2: Development of
of problems, embodiment (i.e., design
settings, and E> solution): instructional
existing research materials, tasks, participation
for possible structures, discursive practices,
solutions. and measurement tools.

design solutions. local theories.

t 1

t y

Refinement of Problems, Solutions, Methods, and Design Principles

Fig. 1 Four phases of design-based research

3.2 The capstone course design

The initial design principles for the course Mathematical
Reasoning and Proving for Secondary Teachers came from
the analysis of literature on students’ and teachers’ concep-
tion of proof and difficulties with proving (e.g., Ko, 2010;
Schwarz et al., 2008). Through this analysis, we identified
four proof themes for the course modules: direct proof and
argument evaluation, conditional statements, quantification
and the role of examples in proving, and indirect reasoning.

Teacher knowledge and practices outlined in our MKT-P
framework, represent the desired learning outcomes and the
course objectives. To identify pedagogical strategies for sup-
porting these objectives, we consulted literature on PSTs’
learning in undergraduate programs (e.g., Grossman et al.,
2009; Kunter et al., 2013; Wasserman et al., 2019). The key
elements emerging from the literature inspired the three
types of course activities: crystallize, connect, and apply.
Later, after iteratively testing the course design and conduct-
ing retrospective analysis, these types of activities became
formulated as design principles (Sandoval, 2014). Crystalize
activities provide PSTs opportunities to refresh and enhance
their content knowledge of the four proof themes. The con-
nect activities focuse on connecting university-level knowl-
edge of proof to secondary mathematics, and on increasing
PSTs’ awareness of students’ difficulties with proving. Apply
activities provide opportunities to enact content and peda-
gogical knowledge of proof. These types of activities inte-
grate various aspects of MKT-P as they support proof-spe-
cific content and pedagogical knowledge and practices. The
crystalize-connect-apply structure was reproduced in each
module with specific activities (Buchbinder & McCrone,
2020), including QRE module, described below.

3.3 The QRE module
3.3.1 What Can You Infer from This Example?
The module included two What Can You Infer from This

Example? activities, (Buchbinder et al., 2017), completed
by PSTs individually, online. In Activity 1 PSTs were given
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a false universal statement: “A quadrilateral whose diagonals
are congruent and perpendicular to each other is a kite,” and
asked to determine its logical structure and truth-value, and
to justify their response. Next, PSTs examined five fictitious
students’ examples and determined what can be inferred
from each example about the statement: (1) a square and (2)
non-convex kite with congruent and perpendicular diago-
nals only support the statement, (3) an isosceles trapezoid
with perpendicular diagonals and (4) a general quadrilat-
eral with congruent and perpendicular diagonals disprove
the statement, and (5) a general convex kite—irrelevant to
the statement, since its diagonals are not congruent (Fig. 2).
Next, the PSTs could revise their original assessment of
the statements’ truth-value. Then, they watched a cartoon-
based classroom scenario of students confused about which
quadrilateral is “the best” counterexample: an isosceles trap-
ezoid that has congruent and perpendicular diagonals but is
not a kite, or a general kite, which does not have congruent
diagonals. The PSTs wrote a scenario (Zazkis et al., 2013)
describing how they, as teachers, would lead the discussion
to resolve the confusion.

In Activity 2 the PSTs analyzed a true existential state-
ment: “There exist three consecutive even numbers whose
sum is divisible by four.” They examined six fictitious stu-
dents’ examples; determining, for each example, whether
it proves the statement, disproves it, neither proves nor
disproves, or cannot be used to evaluate the statement. For
instance, (8, 10, 12) are consecutive even numbers whose
sum is not divisible by 4; they neither prove nor disprove
the statement, since an existential statement cannot be dis-
proved by non-supportive examples. A triplet (4, 6, 10) has
non-consecutive even numbers, making it irrelevant, even
though the sum is divisible by 4. These distinctions were
not clarified in advance but were left for the PSTs to deduce
from the activity. Next, the PSTs could revise their original
assessment of the truth-value of the statement.

Although these activities are embedded in a school context,
they intend to crystalize PSTs’ content knowledge of QRE,
since identifying what can be inferred from a given exam-
ple does not require any pedagogical knowledge. Analyzing
the classroom scenario and writing its continuation supports
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square, and marked what |

To test this conjecture | drew a
know about it

| drew an isosceles trapezoid

| drew this general quadrilateral. |
colored the diagonals in red to show
that they are equal

- \\/

| found this example of a non-
convex kite. | measured its
diagonals and they are equal. ==

Fig.2 What Can You Infer from This Example? (Graphics are © 2021, The Regents of the University of Michigan, used with permission)

a. True-False task example
For each statement below decide whether it is true or false
and justify your answer.
1. Everythree numbers a, b, ¢ satisfy the

equation: = % +c.

4
b+c

b. Always-Sometimes-Never task example
For each equation, indicate whether it is true for all values
of the parameters, some values of the parameters, or no
values of the parameters.

a a

b+c b

Fig.3 a, b Items from the True—False and Always—Sometimes—Never tasks

pedagogical knowledge of QRE, embodying the connect
design principle.

3.3.2 Task analysis: true—false vs. always-sometimes—
never

In this activity the PSTs solved two tasks with the same
mathematical content but different requirements. The
True—False task required sorting of six statements into non-
mutually exclusive categories: universal, existential, require
a general proof, require a disproof by a counterexample,
require a proof by supportive example, have only supportive
examples, have both supportive and counterexamples, and
have no supportive examples. The Always—Sometimes—Never
task contained the equations from the True—False task
not embedded in quantified statements (Fig. 3). For each
equation, the PSTs determined if it is true for all values of
parameters, some values, or no values of the parameters.
This intended to emphasize that while a predicate P(x) can
be true or false, depending on the variable (x), a quantified

statement must have a single truth-value. Next, for all six
equations, the PSTs wrote their own, true, universal or exis-
tential statements.

The PSTs completed these tasks in groups, each group
with one version of the task, and then compared their work.
This activity is mainly focused on crystalizing content
knowledge of QRE. The connect aspect is manifested in the
use of secondary school mathematical content, and in the
follow-up discussion where PSTs contemplated learning
opportunities for reasoning and proving afforded by these
tasks.

3.3.3 QRE-integrated lesson cycle

For the apply activity, each PST reached out to their coop-
erating school teacher to find out the mathematical topic to
be taught. The PSTs designed a lesson plan integrating that
topic with some key ideas of QRE. To support the PSTs,
the instructor devoted class time to lesson planning, and
consultation with peers and the course instructor. Next, the
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Table 1 Summary of evaluation methods by data source and knowledge type

Type of knowledge/practice

Proof-specific content knowledge

Proof-specific Knowledge of con-
tent and students (KCS-P)

Proof-specific
knowledge of
content and teaching
(KCT-P)

Data Source MKT-P questionnaire
and paired ¢ test

In-class activities: What Can
You Infer from This Exam-
ple?

Lesson plans

Reflections on enacted lessons

Course essays

Quantitative analysis of changes in aggregated pre-post MKT-P scores on QRE items. ANOVA

Qualitative analyses of shifts in
PSTs’ responses before and after
examining student work

Quantitative assess-
ment of Proof and
QRE integration in
lesson plans
Qualitative analysis of reflective noticing of pedagogical
practices and student thinking

Qualitative open-coding of PSTs’ self-reported evidence of learning from the course (types of

knowledge / practices) with connections to specific course activities or design principles

PSTs taught small groups of students in a local school, vide-
orecorded the lesson and wrote a reflection report. PSTs’
lesson plans were graded for scope and richness of proof-
related tasks and correctness of mathematical explanations;
the classroom teaching was not assessed to reduce perfor-
mance pressure; the post-lesson reflections were graded for
completion. For research purposes, we re-analyzed the entire
data corpus, as described below.

3.4 Participants

The participants were 34 PSTs (22 females, 12 males) who
took the capstone course in the three years of the project.
The PSTs were in their final, fourth year of secondary math-
ematics education program, having completed most of their
mathematical courses alongside mathematics majors, includ-
ing proof-intensive courses like Mathematical Proof, Geom-
etry, and Abstract Algebra (some PSTs took it concurrently
with the capstone course). Also, all PSTs had completed
one or two mathematics education courses, which had no
classroom practicum component.

3.5 Data sources and analysis

We used a combination of descriptive statistics and qualita-
tive analyses (Table 1).

To assess changes in PSTs’ knowledge we compared their
pre-post course performance on the MKT-P questionnaire
(Cronbach’s alpha=0.892; moderate to good internal con-
sistency). The number of QRE items varied between 9 to 11
across versions of the questionnaire, which changed slightly
over the years. The items were distributed among the three

@ Springer

facets of MKT-P and mathematical topics: algebra, func-
tions, and geometry; but we report on them in aggregate,
since there were not enough data points in each set. Each
item was scored on a scale from O to 3. Three points were
given for a correct answer supported by a correct explanation;
intermediate scores of 1 or 2 were given for partially correct
responses. We used ANOVA and paired ¢ test to compare pre-
to-post-course means, with Bonferroni correction for multi-
ple comparisons. To compensate for unequal variances, we
used Tukey’s Honest Significant Difference test.

Questionnaire data were triangulated using multiple
sources: PSTs’ responses to the course activities, lesson
plans, and written artifacts. For each data source, we devel-
oped an analytic rubric based on our MKT-P framework.
To examine the development of PSTs’ content knowledge,
we analyzed shifts in their responses to What Can You Infer
from This Example? tasks before and after the PSTs examin-
ing students’ examples, coding for the mathematical correct-
ness and types of justifications.

To examine the PSTs’ proof-specific knowledge of con-
tent and teaching, we analyzed the extent to which they
integrated QRE in their lesson plans. Lesson planning is
one of the core tasks of teaching, often used to assess peda-
gogical knowledge. Of the common criteria for evaluating
lesson plans, we focused on objectives, formative assess-
ment, explanations- adaptation of mathematical content to
facilitate learning, and task design (Blomeke et al., 2008;
Silver et al., 2009). Each lesson plan was scored on four
parameters: (1) the ratio of QRE-related lesson objectives;
(2) the ratio of QRE-specific discussion prompts in lesson’s
summary; (3) a dichotomous score of 1 or 0, based on inclu-
sion, or not, of an explanation of the roles of examples in
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5+3
another random number, say 3. We get i
. 5 50 8
common denominator. We get: =2 and "

Janet, a student in Mr. Brown’s class, notices that increasing a numerator and denominator of a
fraction by the same number results in a larger fraction.

Mr. Brown asked the class what they think about Janet’s conjecture. Consider students’ responses.

. 5 . .
Kacey: Let’s say we take a random fraction ~» We increase the numerator and the denominator by
8 . .
o We can compare the two fractions by calculating a

56 . L .
=5 Obviously, the new fraction is larger. Since we
used random numbers in all our calculations, it is safe to say that any other numbers will produce the

same result. Which means that Janet’s conjecture is true.
i) Assign a score from 1 (lowest) to 4 (highest) to the student’s argument.

it) Ifyou assigned a score of 4 —explain why. If you assigned a score less than 4 explain what errors
or potential misconceptions you noticed in the student’s solution.

Fig.4 A KCS-P item Kacey

proving; (4) the ratio of tasks containing opportunities for
students to engage with QRE. The unit of analysis was the
smallest unit in which students were asked to do something,
e.g., calculate, justify, generalize, prove. Adding the four
ratios resulted in a numeric score ranging from 0 for les-
sons with no proof content, to 4 for lessons devoted to QRE
entirely.

Following lesson enactment, the PSTs watched the video
of their lesson, wrote a reflection on what they noticed
(about 8-9 comments per 50-min video), and responded to
prompts like: What QRE-related ideas were included in your
lesson? How do you know if students understood them? We
analyzed PSTs’ pedagogical learning from these reflections
using the concept of reflective noticing (Buchbinder et al.,
2021), which combines teacher noticing (Dindyal et al.,
2021) and reflection (Moore-Russo & Wilsey, 2014). We
also analyzed PSTs’ summative, post-course reflections,
using open coding (Patton, 2002), to identify recurring
themes of PSTs’ perceived challenges with, and learning
from the course activities.

4 Results
4.1 Enhancement of PSTs’ knowledge of QRE
4.1.1 Evidence from the MKT-P questionnaire

We present evidence for qualitative and quantitative
improvements in PSTs’ pre-to-post course performance.
Figure 4 shows a KCS-P item in which a student Kacey,
attempted to prove a general conjecture with random exam-
ples. Successful completion of the item entails recognizing
the flaw in Kacey’s argument, rating it low and explaining
the misconception.

To illustrate improvement in PSTs’ performance, consider
Eva’s” response. On the pre-test Eva rated Kacey’s argument
high (3 out of 4) since “it is not a reasoning that can be used
with only one example.” The high rating and focusing on a
single example may suggest Eva’s own fragile understand-
ing. On the post-test Eva rated Kacey’s work low (2 out of
4) and explained:

Kacey shows a supporting example of the conjecture.
Her example supports the statement. However, this one
example is not enough information to prove the state-
ment is true in general, she needs a general proof.

Here Eva used precise vocabulary and provided clear
indication of understanding the limitation of supportive
examples for proving universal statements, which require
a general proof.

These types of changes were typical of many PSTs;
reflecting stronger content knowledge and improved ability
to identify students’ misconceptions. The mean post-score
on Kacey item in years two and three increased by a full
point; in year one the mean score increased by 0.4 points due
to a high mean pre-score of 2.57 out of 3 (on a scale from 0
to 3, as described in Sect. 3.5).

Figure 5 shows a KCT-P item in which a student Sam
conjectured that 0 and 2 are the only numbers whose prod-
uct is equal to their sum. This non-existence statement is
equivalent to a universal statement: all numbers except 0
and 2, do not have this property. A student Calvin finds only
pairs of numbers whose sum is not equal to their product and
concludes that the conjecture is true. But the inability to find
supportive examples is insufficient to prove nonexistence. In
fact, there are infinite number pairs whose product is equal to

2 All names are pseudonyms.
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share their ideas. Below are their arguments.

something unique only to 2 and 0.

Sam noticed that 2+ 2 = 2 -2, and 0 + 0 = 0 - 0. Sam thinks that except for 0 and 2, there do not
exist two numbers whose sum is equal to their product.

The teacher, Mrs. Chang decided to have the class explore Sam’s conjecture, and invited students to

Calvin: I tested multiple numbers: same and different, positive and negative, and even fractions and
zero. I could not find any other numbers except for 2 and 0 that have this feature. 3+ 3 #3-3, 4+

5+4-5 (-2)+7+(-2)'7, 04+ 1= 0-1,and even fractions: %+% * %% I think this is

1) Identify errors (if any) in the student’s argument. If none, write “no errors”.
ii) Provide feedback to the student, highlighting strengths and weaknesses of their argument.

Fig.5 A KCT-P item Calvin

Table 2 Change in performance

X Year No. of PSTs No. of Mean Pre  Mean Post  Effect size: p value Confidence interval
on QRE portion of MKT-P data Cohen’s d?
questionnaire points
Year1 14 126 2.135 2.603 04 <0.0001 (0.264, 0.672)
Year2 11 121 1.612 2.202 0.5 <0.0001 (0.402,0.779)
Year3 9 90 1.011 1.772 0.7 <0.0001 (0.520, 1.002)

2Cohen’s d values less than 0.5 is a small effect size; 0.5-0.8 medium effect size

their sum, e.g., 3 and 3/2, 4 and 4/3. Regardless of whether
the PSTs noticed that, they were expected to identify a flaw
in Calvin’s argument and provide feedback on his work.

On the pre-test Bella complimented Calvin on trying mul-
tiple types of numbers but criticized the use of examples as
proof, writing: “errors and weaknesses are that you can’t
prove by example with just a handful.” This response makes
one suspect whether more examples would be acceptable to
Bella. On the post-test she wrote:

He used proof by examples to show no more exist,
and that is a flaw in thinking for universal statement.
Calvin tried more examples than Sam but that is not
enough to prove that 2, 0 are only ones. His thinking
of finding a counterexample is correct, but his coun-
terexample must be a number that works to show 0,
2 aren’t only it. Showing proof by example here isn’t
good enough.

This answer illustrates typical pre-post changes in PSTs’
responses: the increased use of correct vocabulary and cor-
rect explanation of inapplicability of a proof by example. It
also specifies what type of object constitutes a counterexam-
ple for the conjecture. The change in the mean score on this
item was negligible in year one; but in years two and three
it increased by 0.77 and 1.22 points respectively.

Table 2 shows the aggregated mean change in pre-post-
course performance on all QRE items. The number of data
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points is the product of the number of participants and the
number of QRE items.

The effect size in year 1 was small, due to this cohort
having relatively high pre-mean, leaving limited space for
growth. The effect size in years two and three was medium.
In each year, the pre-to-post performance improved sig-
nificantly. These results may be partially explained by
repeated exposure to proof content, but not entirely, since
despite taking several proof-intensive courses, the pre-
course means in all years were quite low (on 0-3 scale)
(Table 2). Thus, PSTs’ experiences in the capstone course
likely contributed to the observed growth. PSTs’ self-
report data supports this assumption, as this quote shows:

As a student who was previously a pure mathemat-
ics major and have taken many proof-based classes
before this course, this was the only course that
allowed students to truly explore these types of proof
and apply the knowledge gained from these ways of
proving in an alternative setting.

This quote, and similar ones, suggest that PSTs per-
ceived their engagement with proof in the capstone course
as qualitatively different from their experiences in other
mathematics courses. The PSTs expressed appreciation for
the opportunities to contextualize their knowledge of proof
and apply it in situations approximating teaching practice.
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Table 3 Justifications of the truth-value of the statement: a quadrilateral whose diagonals are congruent and perpendicular to each other is a

kite (N=34)
Truth value Justification type/example Before examining stu- After examin-
dent work ing student
work
True “A square is a type of kite”; “non-convex kite satisfies the statement” 3 1
False Correct or unspecified counterexample “Other quadrilaterals have these 6 17
properties”
Irrelevant counterexample “Square/Rhombus” 8
Incorrect explanation: “Kites don’t have congruent diagonals” 17 7
Both correct and irrelevant Counterexamples 0 8

The universal quantifier is implicit. The statement is equivalent to a conditional “If a quadrilateral has congruent and perpendicular diagonals,
then it is a kite.” (For detailed analysis of this statement see Buchbinder et al., 2017)

Table 4 Justifications for the truth-value of the statement: there exist three consecutive even numbers whose sum is divisible by four (N=34)

Truth value Justification type

Before examining student After examin-

work ing student
work

False Non-confirming example used as a counterexample 1
True Gave supportive example or said such examples exist 12 8

Correct explanation that one supportive example proves existential 4 11

statement
Correct explanation and an example 17 14
Attempt at general proof 1 1

4.1.2 Evidence from the What Can You Infer from This
Example? activities

Tables 3 and 4 show the shifts in PSTs’ justifications for
the truth-value of the two statements, after examining stu-
dent work.

Almost all PSTs correctly identified the truth-value of
both universal and existential statements. However, only
6 out of 34 PSTs correctly justified the falsehood of the
universal statement referring to the existence of a counter-
example—a quadrilateral with congruent and perpendicu-
lar diagonals, which is not a kite. Meaning that most of
PSTs’ initial justifications were incorrect (Table 3). Eight
PSTs considered a square or a rhombus as counterexam-
ples, which is incorrect, since both are kites. Half of the
PSTs wrote that “kites do not have congruent diagonals.”
This is geometrically imprecise and logically inapplicable
to disprove this statement.

After examining students’ examples, the number of
PSTs’ incorrect justifications and irrelevant counterex-
amples decreased, while the number of correct responses
more than doubled. These shifts occurred even before the
whole class discussion, solely due to the PSTs’ interaction
with the activity. The increase from 0 to 8 in the number of

justifications that use both correct and irrelevant counter-
examples is problematic. It suggests that the PSTs main-
tained their initial incorrect idea while also accepting cor-
rect counterexamples as legitimate.

For existential statements (Table 4), almost all PSTs
initially proved it with a correct supportive example or
explained that such an example exists, or both. After
exploring student work there was an increase in the num-
ber of correct general explanations that a single supportive
example proves an existential statement. We interpret this
as PSTs’ increased ability to verbalize the mathematical
warrant behind existential proof.

The follow-up whole-class discussion was centered on
crystalizing content and pedagogical knowledge of proof
through collective analysis of the hypothetical student
work and of the PSTs” own anonymized responses. The
PSTs found this process beneficial as this comment shows:

Sometimes, a student’s reasoning seemed valid and
correct to me, but I later learned how their reasoning
could be more developed, or why it was invalid. Over
time, I improved upon recognizing invalid proofs and
techniques.

The PSTs attributed their improvement to the situ-
ated nature of the activities and the opportunity to
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Number of | Options of True or False: “If two triangles True or False: “There exist two
congruent congruent have __ corresponding___ that triangles that have
elements elements in is/are congruent, then the triangles corresponding___ that is/are
in two two are congruent” congruent such that the triangles are
triangles triangles congruent.”
“If two triangles have 1 corresponding | “There exist two triangles that have 1

One 1 angle angle that is congruent, then the corresponding angle that is congruent
congruent triangles are congruent.” such that the triangles are congruent.”
element .

1 side

If two triangles have 2 corresponding | There exist two triangles that have 2

Two 2 angles congruent angles, then the triangles corresponding congruent angles, such
congruent are congruent. that the triangles are congruent.
elements 1 side and 1

angle

3 sides
Three
congruent | 3 angles
elements 2 sides and 1

angle
Four 3 sides and 1
congruent

angle
elements

Fig. 6 Silvia’s worksheet integrating QRE in a lesson on congruent triangles

analyze student mathematical work both individually and
collectively.

4.2 Enhancement of PSTs' QRE-related practices
4.2.1 Lesson planning

The apply activities involved lesson planning, enactment,
and reflection. The PSTs designed QRE-integrated lessons
in a variety of mathematical topics and grade levels such
as: equations, proportional reasoning, functions, congru-
ent triangles, parallel lines, standard deviation, and matrix
operations.

The success of QRE integration in the lesson plans var-
ied. There were 16 lesson plans (47%) with none or low
QRE integration scores of 0—1.3 (see the Methods section).
For example, Jane’s high school-level lesson on matrices
had a QRE integration score of 0.4 out of 4. The plan con-
tained no explanation of quantified statements or the role of
examples in proving, and no relevant summary questions,
as Jane expected students to “learn about quantified state-
ments indirectly.” Of the eight tasks in the lesson plan, two
were True—False questions about matrix multiplication, one
universal and one existential.

There were 12 lessons (35%) with the medium QRE inte-
gration scores of 1.3-2.6. These lessons mentioned QRE in
either the objectives, explanations, or summary, and/or had
a relatively high ratio of QRE-related tasks. For example,
Emily’s lesson on quadratic functions scored 2.2 on QRE
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integration. Of the six lesson objectives, one was “students
will learn about quantification and the role of examples in
proving”. Of the 17 tasks, 12 were devoted to QRE. Emily
had students examine six Always—Sometimes—Never ques-
tions about quadratic functions, e.g., “knowing the vertex
and the y-intercept we can graph the parabola,” and then
consider how many examples would be sufficient to prove/
disprove each statement depending on if it is always, some-
times, or never true. Emily used these questions to discuss
the role of examples in proving/disproving quantified state-
ments. One out of three lesson summary questions assessed
student understanding of this topic.

Six lesson plans (18%) had high QRE-integration scores
of 2.6—4. Such lessons contained explicit explanations of
the role of examples in proving/disproving quantified state-
ments, QRE-related objectives and summative questions,
and at least half of the tasks directly dealing with QRE.
For example, in Silvia’s lesson on congruent triangles (QRE
integration score of 3.15) students had to prove or disprove
eight pairs of quantified statements, which differed only by
the type of quantifier (Fig. 6). Moreover, students had to
formulate the statements themselves, from the given infor-
mation about the pairs of triangles. The lesson contained
an exposition on proving/disproving quantified statements;
three out of four lesson objectives and two out of five sum-
mative questions specifically addressed QRE.

A prevalent theme in the PSTs’ post-course reflections
was that lesson planning was “the most challenging” but
also “most worthwhile” aspect of the course. Angie wrote:
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Table 5 Categories indicating PSTs’ learning from reflection

Category

Example PST reflection response

Reflecting on one’s teaching in relation to student learning A student asks for help on the first problem. Eventually we come to an answer
together. Overall, I think going over this problem step by step really helped

him

Reflecting on student understanding

There appears to be only one student, who admittedly does not understand the

Jjump from solving the linear equation to deciding that the entire statement is
false. I am trying to explain this to her. I’m not sure if she actually understands

Critically assessing pedagogical choices

I like the way I asked students why we can say those four sides are all congruent

[...] but I don’t like the way I chose to explain why we can’t assume the third
side is congruent

Contemplating alternative teaching move

I should have thought about how this is a new concept to them and should have

done a better job of explaining and encouraging questions

Connecting to a general pedagogical principle

These kinds of discussions are very important in a math classroom because it

allows students to see their peers’ thinking

Reflecting on the efficiency of an in-the-moment decision

Since I was hearing various answers, I called on each student to tell me what they

think. It was essential to intervene and assist students because this led to them
being able to prove the conjecture

While incorporating the proof themes into our lessons
was challenging, it was also very eye-opening into the
multitude of ways that higher-level mathematics topics
can be brought into lower-level subjects.

In summary, 53% of the lesson plans had medium or high
QRE integration scores, suggesting that despite the chal-
lenges, about half of the PSTs succeeded in designing lesson
plans that creatively integrated QRE with regular mathemat-
ics topics. Notably, 60% of the lessons used True—False or
Always—Sometimes—Never task formats. The post-course
reflections provided supportive evidence that PSTs drew
inspiration from the course activities in their lesson plans.

4.2.2 PSTs'learning from reflection on enacted lessons

We outline the main findings of the analysis of PSTs’ reflec-
tions on enacted lessons to illustrate their effect on PSTs’
pedagogical growth (for more details see Buchbinder et al.,
2021). Effective reflection entails teachers noticing multi-
ple aspects of classroom environment, critically analyzing
them, and making connections to past experiences, theoreti-
cal principles, and future actions (Moore-Russo & Wilsey,
2014). The analysis revealed four broad categories of PSTs’
noticing: mathematical content, teaching, students, and
interactions. The two modal categories, accounting for 45%
of codes, were PSTs’ noticing their own teaching of math-
ematics and their interactions with students. This is typical
of novice teachers, who tend to focus on aspects of the class-
room situation directly involving them (Dindyal et al., 2021).

Next, we used literature-based categories to identify evi-
dence of PSTs’ learning from reflections (shown in Table 5
in the descending order of frequency).

Given the foci of PSTs’ noticing, it is not surprising that
the modal category (33% of codes) was reflecting on one’s
teaching in relation to student learning. Post-course reflec-
tions support this observation, as this comment shows:

It was a learning experience to teach the lesson, but
a great deal of learning occurred watching the videos
because I could analyze my lesson in depth. I was able
to go back in time to my lesson and see how what
I said or what I did affected the discourse that took
place.

The added value of this analysis is illustrating that PSTs’
reflections bear characteristics of effective reflection, which
may have contributed to PSTs’ learning.

5 Discussion
5.1 Summary and limitations

We presented evidence of PSTs’ learning from the Quantifi-
cation and the Role of Examples in Proving (QRE) module,
and from the course overall. The evidence for strengthened
PSTs’ content knowledge is shown in significant improve-
ment in PSTs’ performance on the QRE portion of the
MKT-P questionnaire and an increased number of correct
justifications on What Can You Infer from This Example?
activities, even prior to the whole class discussion. The evi-
dence for enhanced pedagogical knowledge and practices
came from PSTs’ lesson plans and reflections on enacted
lessons. PSTs” written comments provide additional support,
connecting course activities to their learning, although self-
reported data should be treated with caution.

@ Springer



0. Buchbinder, S. McCrone

These results must be interpreted within methodological
limitations of the study. First, the number of the participants
is small, not allowing for generalizing the outcomes. Sec-
ond, the feasibility of assessing MKT with questionnaires
has been contested due to the situated nature of teacher
knowledge (Charalambous, 2020). Our study followed the
established methodological tradition of using questionnaires
for assessing cognitive aspects of MKT-P (cf., Krauss et al.,
2008; Tatto, 2013) while practices were assessed using
scenario-based instruments (e.g., Zazkis et al., 2013) and
a lesson enactment cycle. Third, since the course design
and measurements are aligned, as typical of design research
(Sandoval, 2014), the observed improvement in MKT-P
scores may be, at least partially, attributed to this alignment.
To mitigate these challenges we used multiple data sources
to triangulate evidence of PSTs’ enhanced knowledge of
QRE. Another limitation related to the nature of MKT is
that if teacher knowledge or competence are special to the
teaching profession and grow with experience (Krauss et al.,
2008; Shulman, 1986), it is unclear how much change can
occur in a single semester. We addressed this challenge by
treating lesson enactment as a non-assessed learning expe-
rience, and only considering lesson planning and reflective
noticing as indicators of growth of MKT-P (cf., Blomeke
et al., 2008; Dindyal et al., 2021).

Finally, the absence of a control group, although typical
of design research (Gravemeijer & Prediger, 2019), makes
it difficult to attribute the outcomes to the course. In a rela-
tated study (Buchbinder et al., 2022) we partially address
this issue by comparing PSTs’ MKT-P performance to that
of other mathematically knowledgeable groups, like under-
graduate mathematics majors and inservice secondary teach-
ers. That study showed that PSTs’ post-course performance
is closer to that of inservice teachers, who outperformed all
other groups. However, such comparison is not a substitute
for a controlled study, which can be conducted in the future.

5.2 Design principles: crystalize-connect-apply

University mathematics programs seek to bridge the dou-
ble discontinuity (Klein, 1932) and to address the needs of
future mathematics teachers in various ways (Tatto, 2013).
Instructors may explicate connections between university
and school mathematics by introducing tasks grounded in
secondary context or adopt curricula emphasizing such con-
nections (e.g., Wasserman et al., 2023). To the best of our
knowledge, these efforts are less common with respect to the
topic of proof. Our study addressed this gap by designing
a novel capstone course, bridging between university-level
proof and secondary teaching. Although the course targets
both content and pedagogical MKT-P, it’s focus is inherently
mathematical, organized around four proof themes. This
approach asserts the primacy of subject matter knowledge
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in teachers’ knowledge (Harel, 2008), and positions teaching
as a form of applied mathematics (Stylianides & Stylianides,
2010).

Since adding a whole course to an existing program may
not be feasible for most universities, it is important to clar-
ify the contributions of our study. The outcomes of design
research are not intended to be generalized in the same way
as those of experimental research, but the design principles
generated in the retrospective analysis may apply beyond
the research context (Gravemeijer & Prediger, 2019). The
motivation for the three design principles: crystalize—con-
nect—apply, came from extensive analysis of research litera-
ture (see Method section), which typically treats each princi-
ple separately. Our study distills these design principles from
various strands of literature and illustrates how they can be
integrated in a holistic design, embodied in specific activi-
ties, which correspond to three types of learning opportuni-
ties afforded by the course.

In the QRE module, the crystalize design principle:
Use activities that strengthen (crystalize) PSTS’ content
knowledge specific to proof, was embodied in the activities
What Can You Infer from This Example?, True—False, and
Always—Sometimes—Never. These activities aimed to crystal-
ize PSTs’ knowledge of the roles of examples in proving/
disproving quantified statements relying solely on content
knowledge. The use of secondary mathematics content in the
statements intended to focus PSTs’ attention on the logical
aspects of QRE rather than on the complexity of university-
level content (Dawkins, 2017). Concurrently, the use of sec-
ondary mathematics content in these tasks supported the
second design principle: Connect university-level knowledge
of proof with secondary school mathematics. In our study,
this principle entails two types of connections (1) the math-
ematical connections between university-level proof and
secondary curriculum, and (2) pedagogical connections to
student mathematical conceptions. In the QRE module these
connections were closely intertwined and linked with the
first design principle. That is, the opportunities to strengthen
content knowledge of QRE were situated in secondary class-
room contexts and linked with pedagogical opportunities to
examine students’ conceptions. By presenting mathematical
arguments as products of student work, the activities sup-
port positioning of PSTs as future teachers, affecting their
interactions with the tasks (e.g., Baldinger & Lai, 2019).

The crystalize and connect design principles may be
implemented in a variety of courses. Tasks requiring analy-
sis of fictitious students’ arguments have been successfully
used in university courses like Calculus, Real Analysis,
Abstract Algebra and capstone courses to strengthen connec-
tions between university and school mathematics (Alvarez,
et al., 2022; Wasserman et al., 2019; Winslgw & Grgnbeak,
2014). Analyzing written arguments, identifying mistakes,
and responding to incorrect solutions provide students in
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university mathematics courses with opportunities to reflect
on their own mathematical understanding, become aware
of their own possible misconceptions and engage in self-
explanation and justification (Hodds et al., 2014). Thus,
tasks embedding the crystalize and connect design princi-
ples could benefit PSTs, and other majors, in a variety of
university mathematics courses. Future studies may examine
applications of our tasks, or modifications thereof, in proof-
intensive university courses.

The apply design principle: Provide opportunities to
apply (enact) content and pedagogical knowledge specific
to proof in environments approximating school teaching
was realized through the plan-enact-reflect lesson cycle.
Originally, we envisioned this as an assessment component
but early on realized that this is a learning opportunity for
the PSTs to develop practical skills for integrating proof in
teaching mathematics. The benefits of including this design
principle in our study are evident in the relative success
of PSTs in designing QRE-oriented lessons, the improved
performance on pedagogical items of the MKT-P question-
naire, and PSTs’ self-report. The apply design principle
emphasizes the importance of engaging future teachers with
approximations of practice (Grossman et al., 2009) and the
value of reflecting on one’s practice (Moore-Russo & Wil-
sey, 2014).

Implementing the apply design principle in our study
required conditions that may be challenging to replicate: an
instructor specializing in mathematics education, the course
being offered to PSTs exclusively, and coordination with
local schools. However, some alternatives to lesson planning
and enacting can be utilized in other university courses. For
example, scripting tasks and lesson plays, where students
explain a concept or a procedure in the form of a written
scenario and visual images have been used in courses like
Abstract Algebra, problem-solving for secondary teachers,
and others (ZazKkis et al., 2013; Zazkis & Herbst., 2017).

Our study serves as a proof of existence for the possibility
of supporting PSTs’ learning to teach reasoning and proving
at the secondary level via a university mathematics course.
Future studies may explore the effects of individual design
principles, modules, or activities in other settings.
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